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ABSTRACT 

 
The possibility of embedding strong discontinuities into finite elements allowed the simulation of 

different problems, namely, brickwork masonry fracture, dynamic fracture, failure in finite strain 

problems and simulation of reinforcement concrete members. However, despite relevant contributions 

to this field, a general embedded formulation capable of dealing with strong discontinuities using 

conforming finite elements is still missing. Therefore a new conforming embedded formulation is 

herein proposed and compared with other relevant formulations, namely the Generalised Strong 

Discontinuity Approach (GSDA) [1] and the Generalised Finite Element Method (GFEM) [2].  

The academic example in Fig. 1 is adopted to illustrate the conforming issues in the case of crack 

propagation. Fig. 1(b-c), computed for P (1;1)N , allows concluding that: i) although with the GSDA 

both the jumps and the tractions are continuous across element boundaries, incompatible 

displacements between elements and at the tip are obtained (Fig. 1(b)); ii) the deformed mesh 

obtained with the new formulation and GFEM are qualitatively better; iii) the new embedded 

approach is fully compatible (Fig. 1(c)); iv) the displacements obtained with both the new formulation 

and GFEM are similar, although the former leads to a slightly stiffer solution than the latter 

(Fig. 1(c)). 

A structural example of a double-edged-notched specimen subjected to mixed-mode fracture is now 

given. In Fig. 2(a) the usual representation of embedded approaches is shown, where only the regular 

nodes of each element are represented. Therefore, the enriched elements remain unpartitioned and 

seem compatible, although distorted. Fig. 2(b) corresponds to Fig. 1(a), but now each enriched 

element has the discontinuity truly represented inside the parent element and the corresponding 

domain becomes partitioned. Therefore, the non-conformity of the elements becomes evident. In 

Fig. 1(c) the deformed mesh obtained with the new conforming formulation is shown. 
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(a) (b) (c) 

Figure 1: (a) mesh (dashed line indicates the prescribed discontinuity); and deformed mesh (displacements 

magnified 2 times) obtained with: (b) the GSDA; (c) the new formulation (continuous) and GFEM (dashed). 
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Figure 2: Deformed mesh obtained using embedded elements (displacements magnified 200 times): (a) classic 

representation of (apparently compatible) deformed elements; (b) representation of the true deformed mesh 

revealing non-conforming elements; (c) solution with conforming elements. 

Compared to previous embedded approaches (e.g. [1]): i) no additional degrees of freedom are 

required; and ii) the continuity of both tractions and enhanced kinematical field across elements is 

automatically ensured. The proposed formulation is variationally consistent and built upon the 

framework of the discrete crack approach. Therefore, mesh objectivity is automatically inherited. 

Several structural examples allowed to conclude that the new embedded formulation is capable of 

providing results which are practically indistinguishable from the results obtained with GFEM.  

However, in spite of the common variational framework [1] and similar results, the two formulations 

are built in a significantly different manner. The following main differences can be observed: i) the 

GFEM is nodal based whereas the present formulation is built at element level; ii) crack propagation 

is simpler to implement in the embedded approach, since only the crossed finite elements are 

enriched, instead of all nodes surrounding the discontinuity, as typically performed in GFEM; 

iii) with the embedded formulation, only one additional node is required at each new enriched finite 

element due to crack propagation, whereas with GFEM all nodes supporting the discontinuity must be 

enriched; iv) with the present formulation, all additional degrees of freedom are located at the 

discontinuity, where the quantities of interest are measured. Finally, although the observed 

computational cost was similar for the bi-dimensional structural problems above presented, the 

embedded formulation is expected to gain advantage in three-dimensional problems since 

significantly fewer degrees of freedom are required for each enriched finite element. 
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