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The interferon-induced guanylate-binding protein 1 gene (GBP1) plays an important role in
host defense against viral, bacterial and protozoan infections. To explore novel genetic variants
in this gene, we re-sequenced a 587-bp fragment spanning the exon 2 of the GBP1 gene in a
sample panel consisting of 34 wild boars and 59 local domestic pigs from three geographic re-
gions (China, Iberian Peninsula, and Central Europe) and 12 individuals of three commercial
breeds (Pietrain, Landrace, and Large White). In a final 543-bp sequence fragment, there
were 14 single nucleotide polymorphisms (SNPs), of which five were coding (three novel mu-
tations). A total of 19 haplotypes were reconstructed and most haplotypes were shared by two
or more sample groups. Those shared haplotypes revealed a clear signature of genetic intro-
gression from Chinese domestic pigs into European domestic pigs. In addition, there were
six haplotypes with frequencies below 1%, but none of them were present in the three com-
mercial breeds (Pietrain, Landrace, and LargeWhite). Although a limited number of individuals
and breeds were analyzed, the absence of rare alleles (or haplotypes) in the commercial breeds
is an indication that a significant proportion of genetic diversity in domestic species is not pre-
sent in commercial breeds. This study demonstrated the potential to find sufficient genetic
variation for population genetic analyses of demography versus selection, in functional can-
didate genes of domestic pigs and wild boars worldwide.
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1. Introduction

Interferon (IFN) proteins are essential for host defense
against intracellular pathogens and tumor cells, by triggering
transcriptional up-regulation of thousands of genes (Borden
et al., 2007). Many of the most abundant proteins induced
by IFNs are guanosine triphosphatases (GTPases), which con-
stitute four major families — the p47 immunity-related
x: +351 252 661780.
).
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GTPases (IRGs), the p65 guanylate-binding proteins (GBPs),
Mx proteins, and very large inducible GTPases (VLIG)
(MacMicking, 2004; Martens and Howard, 2006).

In recent years, the GBP gene family has received much
attention, due to their multiple functions (reviewed in
Vestal and Jeyaratnam, 2010). Originally, two members of
GBPs (GBP1 and 2) were identified as proteins in human fi-
broblasts treated with IFNs, particularly IFN-γ (Cheng et al.,
1983). An early study showed that human GBP1 mediated
an antiviral effect against vesicular stomatitis virus and en-
cephalomyocarditis virus (Anderson et al., 1999). Recently,
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Table 1
Samples of domestic pigs and wild boars analyzed in this study.

Sample name Country n Sample group

Portuguese Alentejano Portugal 26 dIB
Portuguese wild boar Portugal 5 wIB
Spanish wild boar Spain 12 wIB
Black Slavonian Hungary 6 dHG
Swallow-bellied Mangalica Hungary 5 dHG
Red Mangalica Hungary 5 dHG
Blonde Mangalica Hungary 5 dHG
Romanian Mangalica Romania 5 dHG
Hungarian wild boar Hungary 14 wHG
Chinese local pig China 7 dCN
Chinese wild boar China 3 wCN
Pietrain Hungary 5 CB
Landrace Hungary 3 CB
Large White Hungary 4 CB
Total 105

Abbreviations: n, the number of individuals; dIB, Iberian domestic pigs; wIB,
Iberian wild boars; dHG, Hungarian and Romanian domestic pigs; wHG,
Hungarian wild boars; dCN, Chinese domestic pigs; wCN, Chinese wild
boars; CB, commercial breeds.
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extensive transcriptome and genome analyses revealed addi-
tional members of GBPs in human (hGBP1 to 7) and mice
(mGBP1 to 11) (Kresse et al., 2008; Olszewski et al., 2006).
Moreover, recent functional studies also demonstrated that
some members of the GBP family (e.g., GBP1, GBP6, GBP7
and GBP10) played important roles in host defense against
bacterial and protozoan infections (Degrandi et al., 2007;
Kim et al., 2011). Besides those antiviral and antimicrobial ac-
tivities, members of the GBP family also have other functional
effects, such as inhibition of proliferation of endothelial cells,
inhibition of matrix metalloproteinase expression, and intes-
tinal epithelial development (Schnoor et al., 2009; Vestal and
Jeyaratnam, 2010).

GBP1 is the best studied member of the GBP family and its
structure and activity has been well characterized. The struc-
ture of human GBP1 contains an N-terminal large G domain, a
C-terminal α-helical elongated domain, and a short interme-
diate region connecting domains (Prakash et al., 2000). The
large G domain (residues 1–317) retains the main biochemi-
cal properties of the full-length protein and two residues
Arg48 and Ser73 located in this domain were found to be cru-
cial for nucleotide-dependent homodimerization and cleavage
of GTP or GDP (Ghosh et al., 2006). The availability of structural
information, together with the well-characterized functions in
immunity, makes the GBP1 gene a good candidate locus for
identifying functional genetic variants that potentially underlie
disease resistance, in human populations and in economically
important livestock species.

Little is so far known about functional genetic variation
harbored in the GBP1 gene of major livestock species. Recent
analysis of the cDNA sequences of porcineGBP1 gene discovered
four single nucleotide polymorphisms (SNPs), including two
synonymous mutations each in the exon 8 and the exon 11
and two non-synonymous mutations (in the same codon)
resulted in an amino acid change from Lysine to Glycine in
the exon 2 (Ma et al., 2008). Additionally, association analysis
revealed that those two non-synonymous SNPs in the exon 2
had significant associations with red blood cell traits (Ma et
al., 2008). Nevertheless, whether there are quantitative trait
loci (QTLs) related to immunity that are co-localized with the
GBP1 gene in pig breeds, warrants further study.

Previous genetic studies revealed no indication of an
overall reduction in genetic variability of international com-
mercial versus European local pig breeds, at two candidate
genes (FABP4 and IGF2) (Ojeda et al., 2006; Ojeda et al.,
2008). In contrast, a genome-wide diversity study of world-
wide chicken using SNPs demonstrated significant genetic di-
versity reduction in commercial breeds (Muir et al., 2008). As
a result, whether the pattern observed at the FABP4 and IGF2
in domestic pigs can be extrapolated to other candidate genes
(e.g., GBP1), remains an open question. In this study, we re-
sequenced a 587-bp fragment spanning the exon 2 of the
GBP1 gene in a sample panel consisting of wild boars and local
domestic pigs from three geographic regions (China, Iberian
Peninsula, and Central Europe) and three commercial breeds,
to further explore novel genetic variants harbored in this gene.

2. Materials and methods

The sample panel was composed of 105 individuals, in-
cluding 59 domestic pigs, 34 wild boars, and 12 individuals
of three commercial breeds (Table 1). Chinese local pigs
were collected from northeastern (five individuals) and
northwestern (two individuals) Yunnan, China. Effort was
made to collect samples from unrelated individuals. These
samples covered three geographic regions — China, Iberian
Peninsula, and Central Europe (Hungary and Romania),
representing Asian and European lineages or two areas of
pig domestication (Giuffra et al., 2000; Larson et al., 2005;
Megens et al., 2008).

Genomic DNA was extracted from ear skin tissues using
DNeasy Blood & Tissue Kit (Qiagen GmbH, Hilden, Germany).
A 587-bp fragment spanning the exon 2 of the GBP1 gene was
amplified by using PCR primer pair Exon 2-SNP-F (5′ GGA
TAA CAC TTC GGT AAC TTG C 3′) and Exon 2-SNP-R (5′ GAA
GGG GAA ACT GAG ACA CAA T 3′), as previously described
(Ma et al., 2008). PCR products were purified and sequenced
for both strands at the High-Throughput Genomics Unit
(HTGU), Department of Genome Sciences, University of
Washington (http://www.htseq.org/). The raw sequence
trace files were aligned and checked using software package
DNASTAR v7.1 (DNASTAR Inc., Madison, WI, USA).

Haplotypes were reconstructed from unphased genotypic
sequences by PHASE v2.1.1 algorithm (Stephens and
Donnelly, 2003; Stephens et al., 2001), implemented in
DnaSP v5.10 (Librado and Rozas, 2009). Diversity measures
were calculated in Arlequin v3.5.1.2 (Excoffier and Lischer,
2010). The phylogenetic relations among haplotypes were
built by the program Network v4.600 (http://www.fluxus-
engineering.com/sharenet.htm), using median joining algo-
rithm (Bandelt et al., 1999).

3. Results and discussion

After trimming primer sequences, we finally obtained a
543-bp sequence fragment, corresponding to nucleotide po-
sitions between 2118 and 2660 of the porcine GBP1 reference
sequence NC_010446.4 (15,728 bp, Sscrofa10.2 Primary As-
sembly). This sequence fragment included 164 bp of the in-
tron 1, 200 bp of the exon 2, and 179 bp of the intron 2.
There were 14 SNPs detected among all sequences
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Table 2
The frequency and distribution of 19 haplotypes across sample groups.

Haplotype SNPs N Frequency dIB wIB dHG wHG dCN wCN CB

H01 TCTAAAATCCGGCC 1 0.0048 1

H02 TCTAACCCCCGGCC 2 0.0095 2

H03 TCTAACCTCCGGCC 4 0.0190 1 3

H04 TCTAAAATGCTACC 2 0.0095 1 1

H05 CCTGGCCTGCTACC 4 0.0190 1 1 2

H06 TCTAACCCGCGGCC 8 0.0381 2 3 3

H07 TCTGGCCCGCGGCC 10 0.0476 5 5

H08 TCTAACCCGCTGCC 106 0.5048 20 12 39 12 3 20

H09 TATAACCCGCGGCC 27 0.1286 15 3 9

H10 TCTGGCCCGTTACC 3 0.0143 1 2

H11 TATAACCCGCGGCT 1 0.0048 1

Nucleotide positions of these 14 SNPs corresponding to 2123, 2161, 2216,
2301, 2302, 2314, 2315, 2356, 2502, 2516, 2519, 2526, 2628, and 2641 of
the porcine GBP1 gene reference sequence NC_010446.4; Coding SNPs are
shaded in gray; N, the number of sequences (N=2n, where n is the number
of individuals); Abbreviations of sample groups are provided in Table 1.
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(Table 2), of which three, five, and six were located in the in-
tron 1, the coding part of the exon 2 (190 bp, corresponding
to 1–190 bp of the GBP1 whole coding region sequence),
and the intron 2, respectively. Among those five coding
SNPs, two non-synonymous mutations 2301A>G and
2302A>G that were equal to ns10A>G and ns11A>G
reported in a previous study (Ma et al., 2008), occurred at
the first and second positions of the 4th codon, causing a re-
placement from Lysine to Glycine (K4G); Two novel mutations
2314C>A (non-synonymous) and 2315C>A (synonymous) oc-
curred at the second and third positions of the 8th codon,
resulting in a change from Proline to Glutamine (P8Q); The
final one novel mutation 2356C>T (non-synonymous) oc-
curred at the second position of the 22th codon, leading to a
substitution from Alanine to Valine (A22V). Notably, high
level of genetic variability observed in the GBP1 gene (14
SNPs in 543 bp sequences, 14/543=0.026) from this study is
comparable to that found in the FABP4 gene (134 SNPs in
6400 bp sequences, 134/6400=0.021) (Ojeda et al., 2006).
Fig. 1. Themedian-joining network of the 543-bpGBP1haplotypes. The size of each circ
sample groups are provided in Table 1.
A total of 19 haplotypes were reconstructed by PHASE
analysis from these 14 SNPs (Table 2). The predominant hap-
lotype H08 (identical to the reference sequence NC_010446.
4) with a frequency of 50.48% was distributed in all sample
groups except for Chinese wild boars (wCN); while the second
common haplotype H09 had a frequency of 12.86%, found in
three sample groups (dIB, wIB, and dHG) (Table 2 and Fig. 1).
Most of the haplotypes were shared by two or more sample
groups, except for seven unique haplotypes (Table 2 and
Fig. 1). Those shared haplotypes revealed a clear signature of
genetic introgression from Chinese domestic pigs (dCN) into
European domestic pigs (dIB and dHG). For instance, the haplo-
types H05 and H08 were shared by dCN, dIB, and dHG, while
the haplotypes H16 and H17 were shared by dCN and dHG.
The genetic contribution of Chinese domestic pigs to European
domestic pigs and perhaps indirectly to commercial breeds
detected here, was congruent with historical records and
previous genetic studies (e.g., Giuffra et al., 2000).

As expected, Chinese domestic pigs (dCN) displayed high-
est values of both haplotype diversity and nucleotide diversi-
ty, whereas the three commercial breeds pooled together
(CB) showed lowest value of haplotype diversity (Table 3).
Within Europe, both domestic pigs (dIB) and wild boars
(wIB) from the Iberian Peninsula exhibited higher levels of
genetic variability than those (dHG and wHG) from Central
Europe (Hungary and Romania). This pattern of diversity dis-
tribution observed here was congruent with previous studies
that revealed larger overall genetic variability in Asian (or
Chinese) domestic pigs and wild boars than their European
counterparts (Megens et al., 2008; Ojeda et al., 2008).

In summary, we detected three novel coding SNPs (two
non-synonymous and one synonymous) in the coding part
of the GBP1 exon 2 (residues 1–63), which belongs to the
large G domain (residues 1–317) of the GBP1 protein
(Ghosh et al., 2006; Prakash et al., 2000). Although our se-
quenced coding fragment contains seven GTP/Mg2+ binding
sites (residues 47–53), both newly discovered non-
synonymous mutations (P8Q and A22V) are located at
upper positions of this binding domain. Thus, whether the
two mutations would have structural and functional effects,
needs to be further explored. In addition, we found six
le is proportional to its frequency in the number of sequences. Abbreviations for



Table 3
Diversity measures across sample groups.

Sample group N S h π

dIB 52 12 0.7685 0.0041
wIB 34 7 0.8182 0.0049
dHG 52 10 0.4133 0.0027
wHG 28 8 0.7593 0.0037
dCN 14 10 0.8681 0.0081
wCN 6 7 0.7333 0.0074
CB 24 7 0.2899 0.0037
All 210 14 0.7208 0.0050

N, the number of sequences; S, number of polymorphic sites; h, haplotype
diversity; π, nucleotide diversity per site. Abbreviations of sample groups
are provided in Table 1.
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haplotypes with frequencies below 1%, but none of them
were present in the three commercial breeds (Pietrain, Land-
race, and Large White). Although a limited number of indi-
viduals and breeds were analyzed, the absence of rare
alleles (or haplotypes) in the commercial breeds is an indica-
tion that a significant proportion of genetic diversity in do-
mestic species is not present in commercial breeds (Muir et
al., 2008). Furthermore, this study demonstrated the poten-
tial to find sufficient genetic variation for population genetic
analyses of demography versus selection, in functional candi-
date genes of domestic pigs and wild boars worldwide. This
study also highlighted the urgent needs of applying re-
sequencing techniques such as next-generation sequencing
technology to investigate genome-wide functional genetic
variation in wild boars and local domestic pigs worldwide.
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