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Abstract We derive the equations of the multiplicative
decomposition in the context of finite strain plasticity with
elastic isotropy and arbitrary (isotropic and anisotropic) flow
rules. We include multiple surface yield criteria and mixed
control of stress components, a requirement for special stress
states such as plane stress or uniaxial stress. Ductile dam-
age and fracture are also considered. The approach is also
appropriate for symmetric single-crystal flow rules. A direct
integration of the rate equations is performed as well as
smoothing of the complementarity conditions with the Chen-
Mangasarian function. The resulting problem is smooth and
always converges quadratically, typically requiring fewer
steps than return-mapping algorithms. Exceptional robust-
ness is observed. Illustrative examples are shown in 2D, shells
and 3D analyses confirming the combination as very effective
for the class of problems considered.
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1 Introduction

Combination of the return-mapping technique [36,50,60]
and mixed formulations [18,19] led to a standardization of
elasto-plastic modeling with finite elements (see the trea-
tise by Belytschko et al. [15] and the one by Bonet [17]).
However, return-mapping algorithms still pose challenges
to systematization: the predictor in the presence of ductile
damage evolution can give a false indication and there is an
implicit inequality for the plastic multiplier. Another prob-
lem for implicit return-mapping occurs when the hardening
law depends on the plastic strain rate, such as the Johnson-
Cook model and Nemat-Nasser models [50]: plastic strain
rate may raise the yield stress and produce fictitious unload-
ing. Classical finite strain constitutive approaches (e.g. the
rotated Fe Fp method [4]) inherit some of the difficulties of
the small strain algorithms.

Besides these problems, in complex simulations the con-
vergence radius is often not satisfactory [25]. For ductile
fracture problems, where mesh adaptation, quadrature point
alterations and even full remeshing has to be adopted, small
convergence radius can be impairing for a successful anal-
ysis. Here, we introduce a new finite strain elasto-plastic
algorithm able to include, in the same underlying frame-
work, kinematic hardening, anisotropy and damage. Adding
to this, recent ductile damage models (specifically the one by
Areias et al. [12]) make use of non-differentiable convex
yield functions, not easily tractable by classical return-map-
ping algorithms.

Concerning small strain constitutive implementations,
solutions based on the dual formulation are now established
both with predictor/corrector [36] and Shur-based methodol-
ogies [40]. Our approach consists in smoothing the comple-
mentarity condition (cf. [23]) and solving monolithically the
resulting system by a classical Newton root finder. Numerous
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manuscripts have dealt with J2 [28,35,58] plasticity in finite
strains including kinematic hardening. Cost-effective algo-
rithms are then adopted for von-Mises plasticity, based on
radial-return technique (parallel trial elastic strain and final
deviatoric stress [36]) which reduces the constitutive solution
to one algebraic equation. Of course for finite strains the addi-
tional condition of coaxiality of the strain measures and the
Kirchhoff stress is either verified or imposed. This started
with the paper by Weber and Anand [63]. Semi-implicit
methods, which freeze the flow vector in the solution, hence
retaining the advantages of the Key and Krieg approach for
more complex cases, have been disseminated by Moran et al.
(see, e.g. [49]). Other yield functions require the direct use
of Lee’s decomposition [41] and monolithic integration. This
has been done for a similar case by Lührs et al. [45] and it was
applied to the von-Mises yield criterion. The lack of smooth-
ness of the problem is still not tackled consistently for this
case. We first enumerate our requirements:

• Use of isotropic hyperelastic laws: τ ≡ τ (be) where be

is the elastic left Cauchy-Green tensor and τ is the Kir-
chhoff stress measure (cf. [21, p. 142] for the isotropy
limitation).

• Possibility of imposing additional conditions, such as
known stress components, in the constitutive system.

• Multiple-surface plasticity, with no restriction in the form
of the flow rule or the yield functions.

This work is specially dedicated to the presentation and
verification of this new approach for finite strain plasticity.
Isoerror maps in finite strains are shown with better results
than Simo’s classical Fe Fp algorithms ([56–58]). In addition,
demanding tests are also performed. Specifically, besides
the well known tension test (here performed in 3D) which
caused convergence problems in the past (cf. [25]), we also
test anisotropic problems, ductile damage and fracture. In
addition, in contrast with recent works accounting for elas-
tic anisotropy (specifically [20]) the overall computations
are simpler despite the limitation to elastic isotropy (plastic
anisotropy is of course accounted for).

2 Constitutive model

2.1 Introduction to multiple-surface finite strain plasticity
with elastic isotropy

The deformation map of a continuous medium is character-
ized by its derivative, the deformation gradient F. For an
isotropic hyperelastic material it is known that the Kirchhoff
stress can be determined from the left Cauchy-Green tensor,
b,1 as (cf. [17,21, p. 162]):

1 In the elasticity context, be is simply denoted b.

τ = 2
dψb

db
b = 2b

dψb

db
(1)

where ψb is a function of b whose image is the value of the
strain energy density.2 This form of calculating the Kirch-
hoff stress from the kinematics is specially convenient for
computations since Voigt notation can be used (τ and be are
symmetric) with considerable savings. In the subsequent sec-
tions, we will require the derivative of τ with respect to F.
Using (1), the derivative of τ with respect to F is obtained
by the chain rule3:

dτ

dF
= ∂τ

∂b
: db

dF
(2)

with the last term being given, in elasticity, by its components
as:

[db]i j

[dF]mn
= δim [F] jl + δ jm [F]in (3)

with i, j,m, n ∈ Isd . The index-set Isd contains natural
numbers up to the number of space dimensions (sd) of the
model under consideration. The left-hand-side of (3) is a
fourth-order tensor with minor-symmetry in the first and sec-
ond indices. The classical spatial modulus,4 can be obtained
as:

[C ]i jkl = [dτ ]i j

[dF]kn
[F]ln − [τ ]il δ jk − [τ ] jl δik (4)

This form of C is deduced by writing the time-derivative
of the Kirchhoff stress as in Simo and Hughes [60, p. 255,
Eq. 7.1.74]:

Lẋτ = τ̇ − lτ − τ lT (5)

where l = Ḟ F−1 is the spatial velocity gradient and Lẋ

is the Lie derivative of τ using the spatial velocity ẋ as the
flow. After replacing it, in (5), by the contraction of the spatial
modulus with the strain rate (Ref. [60, p. 257, Eq. 7.1.85])
and taking into account minor-symmetry of C , it results:

C : l = τ̇ − lτ − τ lT (6)

The time-derivative of the Kirchhoff stress (replacing the
left-hand-side of [62] (45.17)) is calculated using the chain
rule:

[τ̇ ]i j = [dτ ]i j

[dF]kn

[
Ḟ
]

kn (7)

2 Strain energy per unit undeformed volume.
3 To avoid symbol duplication, we use the same symbols for function
names and their image.
4 This is adopted in many finite strain applications due to the sparsity
of the initial stress matrix, cf. [14,62].
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using the relation Ḟ = l F, we can write (6) for all l as

[C ]i jkl [l]kl = [dτ ]i j

[dF]kn
[l]kl [F]ln − [τ ]l j [l]il − [τ ]il [l] jl

(8)

with k, l and n as free-indices. Now we can take the deriva-
tive of both members of (8) with respect to [l]kl and obtain
the result (4).

The Kirchhoff stress is not classically written in terms of
b, rather in terms of invariants or principal stretches (see, e.g.
[33]). However, to suit our purposes, we write the relevant
expressions in terms of b. The numerical usefulness of (3) is
apparent for finite strain plasticity, since the derivative with
respect to an elastic left-Cauchy-Green tensor be will then
have to be related to C to be used in what is now the clas-
sical finite-strain weak form of equilibrium ([58,59,61]) for
finite element applications. Note that, given a specific form
of ψb, any isotropic elastic law can be inserted in (1), its
derivative calculated and then both τ and C are completely
defined. Additional kinematical-like internal variables v are
also used in the list of ingredients to represent work-hard-
ening phenomena. If normality is assumed, which implies
convexity of the yield surface, the general constitutive laws
for elastic isotropy can be written as:

φi ≤ 0 (9)

φi γ̇i = 0 (10)

γ̇i ≥ 0 (11)

F = Fe Fp (12)

dp =
ns∑

i=1

γ̇i ni (13)

d = de + dp (14)

τ = 2
dψb

dbe
be = 2be

dψb

dbe
(15)

v̇ = −
ns∑

i=1

γ̇iϕi (16)

where

• φi , i = 1, . . . , ns are yield functions of a given yield
criterion with ns yield functions. They are given by a dif-
ference between an equivalent stress,σeqi and a hardening
function y : φi = σeqi − y.

• γ̇i , i = 1, . . . , ns are the plastic multipliers correspond-
ing to each of the ns yield functions.

• Fe and Fp are the elastic and plastic parts of the defor-
mation gradient, respectively, as proposed by Lee [41].

• dp is the plastic strain rate, defined below for the case
of elastic isotropy, related to the total strain rate d as in
Eq. 14 and de is the elastic strain rate. These will be later
specified.

• ni are flow vectors for each of the ns yield functions.
• be is the elastic Cauchy-Green tensor, which measures

the recoverable part of the left-Cauchy-Green tensor.
• ϕi are nh-dimensional functions of hardening rates, nec-

essary to represent work-hardening, damage, etc.

The relation between be and Fe follows classical conventions
(cf. [58]): be = Fe FT

e = FC−1
p FT and poses no special

problems. In contrast, the definition of dp and therefore the
determination of the evolution law for be is less direct and
is motivated by the equality b−1

e τ = τ b−1
e valid for elastic

isotropic materials. For isotropic hyperelastic laws we can
relate dp with the time-derivative of be assuming a constant
F. Since be depends both on Fp and F we can therefore par-
tition the time increment of be in two parts (this is standard,
cf. [17]):

ḃe = ∂be

∂F
: Ḟ

︸ ︷︷ ︸
◦
be

+ ∂be

∂Fp
: Ḟp

︸ ︷︷ ︸
�

be

(17)

where
◦
be = ḞC−1

p FT + FC−1
p ḞT is the time-derivative

of be assuming that Fp is constant and
�

be = F
˙

C−1
p FT is

the time-derivative of be assuming that F is constant. Power
conjugacy for elastically isotropic materials (ψb ≡ ψb(be))
can be written as5:

ψ̇b = dψb

dbe
: ḃe = 1

2
(τ b−1

e ) : ḃe = 1

2
τ : (ḃeb−1

e )

= 1

2
(b−1

e τ ) : ḃe = 1

2
τ : (b−1

e ḃe) (18)

This decomposition is shown, for example, in [17] and its
validity is limited to elastic isotropy.

Having
�

be defined, as above (17), as the time-derivative
of be maintaining F constant, we can write the plastic strain
rate as (see also Eq. 7.18 in [17] for a particular case):

dp = −1

4

�

beb−1
e − 1

4
b−1

e

�

be (19)

from which de is defined as:

de = 1

4
ḃeb−1

e + 1

4
b−1

e ḃe (20)

This spatial plastic strain rate can also be obtained from
the principle of maximum plastic dissipation. A more gen-
eral (not restricted to elastic isotropy) of (19) for dp was used
recently by Areias and Rabczuk [7] and Areias and Matous
[5] and follows similar derivations by Nemat-Nasser6 in [50].
Note that in that case, the standard plastic strain rate d p in the

5 This deduction was an essential ingredient that allowed the writing
of [56].
6 Not implemented in practice before.
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intermediate configuration is used (see [7]). This particular
form (19) has not, to the authors’ knowledge, been used in
the literature. The Voigt form of (19) allows the isolation of
�

be
7:

4dpV = −AV

�

beV (21)

where AV is a matrix formed the components of b−1
e . In 3D

(with 6 strain components), matrix AV is given by:

AV

=

⎡

⎢⎢⎢⎢
⎢⎢⎢
⎣

2b−1
e11 0 0 2b−1

e12 2b−1
e13 0

0 2b−1
e22 0 2b−1

e12 0 2b−1
e23

0 0 2b−1
e33 0 2b−1

e13 2b−1
e23

b−1
e12 b−1

e12 0 b−1
e11 + b−1

e22 b−1
e23 b−1

e13
b−1

e13 0 b−1
e13 b−1

e23 b−1
e11 + b−1

e33 b−1
e12

0 b−1
e23 b−1

e23 b−1
e13 b−1

e12 b−1
e22 + b−1

e33

⎤

⎥⎥⎥⎥
⎥⎥⎥
⎦

(22)

with b−1
ei j being the i th row, j th column of b−1

e . Note that
AV is i) sparse and ii) only 6 distinct values are present. This
facilitates the task of Acegen (cf. [39]) to generate very effi-
cient code for A−1

V without the full cost of a dense 6 × 6
inverse. In addition, complementarity (9–11) is equivalent
to:

μγ̇i − 〈μγ̇i + φi 〉 = 0 (23)

where μ > 0 is here a constant used for dimensional consis-
tency only. Macaulay brackets 〈•〉 ≡ max(0, •) are used to
replace the inequalities. Note that, if (23) holds, only one of
two cases occur for each yield surface which are independent
of the value of μ > 0:

• ∀μ > 0, μγ̇i + φi ≥ 0 ∧ μγ̇i − 〈μγ̇i + φi 〉 = 0, ⇒
φi = 0 ⇒ γ̇i ≥ 0

• ∀μ > 0, μγ̇i + φi < 0 ∧ μγ̇i − 〈μγ̇i + φi 〉 = 0, ⇒
γ̇i = 0 ⇒ φi < 0

In summary, the relevant constitutive equations are8:

�

beV = −4
ns∑

i=1

γ̇i A−1
V nV i (24)

v̇ = −
ns∑

i=1

γ̇iϕi (25)

τV = 2

(
dψb

dbe
be

)

V
(26)

μγ̇i − 〈μγ̇i + φi 〉 = 0 (27)

7 The subscript V is adopted when using Voigt notation.
8 Note that, in this context, no explicit use of the principle of maximum
dissipation is required.

where τV is the Kirchhoff stress in Voigt form and the V
operator in (26) transforms the components of a symmetric
tensor to the Voigt form. The first and last equations of this
system will be subject to a specific treatment. A semi-implicit
method will be used to integrate (24) and the Chen-Manga-
sarian smoothing procedure [23] will be applied to the non-
smooth Eq. 27. The complementarity conditions are often
called Karush–Kuhn– Tucker conditions (cf. [44]). Note that,
in the literature, even if multiple surfaces are considered,
some variant of the active-set strategy is invariably adopted
(e.g. [42]). The notions of subdifferential and normal cone are
classical for non-differentiable yield functions (cf. [32]) and
in the convex case these can be exactly replaced by multiple
yield functions.

2.2 Time integration and complementarity smoothing

The particular form of numerical solution of the constitutive
system (24–27) depends on the quantity driving the flow rule.
In classical discretization methods (either with mesh, such
as the finite element method or meshless, such as element-
free Galerkin) of finite strain problems, displacement is typ-
ically in the set of nodal degrees-of-freedom. This favors the
so-called “strain-driven” methodology to constitutive inte-
gration. However, some stress components can also be pre-
scribed, and this situation will be addressed in Sect. 2.6 (see
also [38] for a small strain analysis). Two additional sub-
scripts are used to identify the time-step. At a given time-step
n indicates the previously converged value of a given quan-
tity and n + 1 the predicted value of the same quantity. The
elastic left Cauchy-Green tensor is written at time-step n +1
by specializing its definition:

ben+1 = Fn+1C−1
pn

FT
n+1 +	�be (28)

= 	Fben	FT +	�be (29)

where 	�be is the increment of be caused by a change in
C−1

p and 	F = Fn+1 F−1
n . The so-called “trial” be is here

identified here as beo :

be◦ = 	Fben	FT (30)

The flow rule is integrated semi-implicitly; matrix A is
kept constant (i.e. frozen) as a function of ben and then the
flow rule reads (Voigt notation is used):

0 = bV e◦ − bV en+1 − 4A−1
V nnV	γ (31)

which is a nonlinear equation, part of the constitutive system.
The notation	γ = {	γ1, . . . ,	γns }T,φ = {φ1, . . . , φns }T ,

ϕ = {ϕ1, . . . ,ϕns } and nV = {nV 1, . . . , nV ns } is employed.
Note that if 	γi = 0, with i = 1, . . . , ns it follows that
bV en+1 = bV e◦ and Eq. 31 is trivially satisfied. Internal vari-
able evolution is integrated with the classical backward-Euler
method:
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0 = vn − vn+1 + ϕ	γ (32)

In addition to these two equations, the complementarity
conditions can be written in vector form as:

μ�	γ − 〈
μ�	γ + φ

〉 = 0 (33)

with	γ = {	γ1, . . . ,	γns }T and φ = {φ1, . . . , φns }T . We
then have the following set of constitutive unknowns:

χ = {bV en+1 ,	γ , vn+1}T (34)

and, as a nonlinear system,

e = {(31), (33), (32)}T (35)

Since we did not use the exponential integrator (see, e.g.
[58] for a discussion), incompressibility is not exactly satis-
fied. However, it can be enforced as an additional equation.
Equation 33 can also be written as:

φ�(	γ , bV en+1 , vn+1) = μ�	γ − 〈
μ�	γ + φ

〉 = 0 (36)

At the Gauss point level, Newton’s method of solution
is used to determine (34) from (35). Therefore, the deriva-
tive of the system with respect to the constitutive unknowns is
required. For conciseness, we introduce the following
notation9:

m = A−1
V nnV (37)

[M]i jk = ∂ [m]i j

∂ [bV e]k
= ∂ [m]i j

∂ [τV ]l

∂ [τV ]l

∂ [bV e]k

=
[

A−1
V n

]

in

∂ [nV ]nj

∂ [τV ]l

∂ [τV ]l

∂ [bV e]k
(38)

[N]i jk = ∂ [m]i j

∂
[
vn+1

]
k

(39)

[∇φ�
]b

i j = ∂
[
φ�

]
i

∂ [τV ]k

∂ [τV ]k

∂ [bV e] j
(40)

[∇φ�
]γ

i j = ∂
[
φ�

]
i

∂
[
γ
]

j

(41)

[∇φ�
]v

i j = ∂
[
φ�

]
i

∂ [v] j
(42)

[∇ϕ
]b

i jk =
∂
[
ϕ
]

i j

∂ [bV e]k
(43)

[∇ϕ
]γ

i jk =
∂
[
ϕ
]

i j

∂
[
γ
]

k

(44)

9 Note that An is constant, which significantly simplifies the calcula-
tions.

Fig. 1 Replacement ofμ�	γi −〈μ�	γi + φi 〉 byμ�	γi −S(μ�	γi +
φi ) as a function of a Error parameter (μ� = 1 is depicted)

[∇ϕ
]v

i jk =
∂
[
ϕ
]

i j

∂ [v]k
(45)

It is noticeable that nested derivatives emerge due to inter-
dependence:

J = ∂e
∂χ

=

⎡

⎢⎢⎢
⎣

−δi j −4 [M]ik j
[
	γ

]
k −4 [m]i j −4 [N]ik j

[
	γ

]
k

[∇φ�
]b

i j

[∇φ�
]γ

i j

[∇φ�
]v

i j

[∇ϕ]b
ik j

[
	γ

]
k [ϕ]i j + [∇ϕ]γik j

[
	γ

]
k −δi j + [∇ϕ]vik j

[
	γ

]
k

⎤

⎥⎥⎥
⎦

(46)

In addition to this Jacobian, e also depends on bV e◦. The
derivative of e with respect to be◦ is given by:

L = ∂e
∂bV e◦

=

⎡

⎢⎢
⎢
⎣

−4 [M]ik j
[
	γ

]
k

[∇φ�
]b

i j
[∇ϕ

]b
ik j

[
	γ

]
k

⎤

⎥⎥
⎥
⎦

(47)

The relations (33) are replaced by the smooth ramp func-
tion of Chen and Mangasarian [24]. Consequences of this
replacement were discussed by Areias and Rabczuk [7].
Figure 1 shows the effect of this replacement in the satis-
faction of the complementarity condition.

One can observe that, the classical effective plastic strain
εpn+1 is not typically included in [∇φ�]vi j . The reason for
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this is that εpn+1 can be related to the remaining iterative
quantities. Using the backward-Euler method, εpn+1 reads10

εpn+1 = εpn +
√

2

3
‖nV	γ ‖V (48)

where ‖ • ‖V is the Voigt norm of a tensor • or the Frobenius
norm of the corresponding matrix. The variation of (48) can
be written in the following format:

dεpn+1 =
√

2

3

d‖nV	γ ‖V

d
[
nV	γ

]
m

×
(
∂ [nV ]mp

∂ [τV ]l

∂ [τV ]l

∂ [bV e]k

[
	γ

]
p d [bV e]k + [nV ]mp

[
d	γ

]
p

)

(49)

This relation is rarely shown (we couldn’t find it in the lit-
erature) and, of course it is crucial to ensure the quadratic rate
of convergence. Equation 48 is generally used despite being
appropriate for the von-Mises yield surface. For general yield
criteria, we consider two cases: a multi-surface yield criterion
with a single hardening variable εp or each surface equipped
with hardening variables εi

p with i = 1, . . . , ns . Equivalence
of plastic dissipation provides the rationale for determining
the effective plastic strain:

σeqi ε̇
i
p = γ̇i ni : τ , i = 1, . . . , ns (50)

In the first case, an approach would consist in summing
each term i = 1, . . . , ns in (50):

εpn+1 = εpn +
ns∑

i=1

	γi
ni : τ

σeqi

(51)

In the second case, each surface is associated to a given
hardening variable εi

p with i = 1, . . . , ns :

εi
pn+1

= εi
pn

+	γi
ni : τ

σeqi

(52)

For both cases, the variation of εi
pn+1

is required for the
use of Newton’s method of solution:

dεi
pn+1

= ni : τ

σeqi

d	γi

+
[
	γi

σeqi

(
τ : dni

dτ
+ni

)
−ni : τ

σeq

]
: ∂τ
∂be

: dbe

(53)

note that in this derivation (53) double contractions are actu-
ally performed using the Voigt form by doubling the shear
components contribution.

For independent yield criteria, clearly (51) would be pref-
erably employed. However, for classical multi-surface yield
criteria, (52) would be more appropriate. The reader can

10 This form follows directly from the general expression in the seminal
work of Lubliner [44] and can be specialized for each yield criterion.

observe that our present approach departs from classical
Fe Fp “principal directions” algorithmia [20,58] but also from
extensions to small strain classical derivations (see, e.g. [34,
46]). No return-mapping is necessary and all yield criteria
can be included without modifications to the framework.

2.3 Constant flow vectors

Certain yield criteria have constant flow vectors in the sense
that dependence may occur with respect to F but not with
respect to be and vn+1. This is the case of classical Schmid
single-crystal plasticity and of many models of J2 plastic-
ity (cf. [48,54]). In addition, functions ϕ can be related with
vn+1 in a simpler form than previously shown, and there-
fore iteration in 	γi only is possible. Advantage is taken of
this fact to further simplify the algorithm and the lineariza-
tion. The plastic multipliers can be determined by a reduced
Newton iteration:
([∇φ�

]γ
i j − 4

[∇φ�
]b

ik [m]k j

)
d	γ j + [∇φ]vi j dv j = −φi

(54)

dvk=
(

[I] jk − [∇ϕ
]v

j ik 	γi

)−1

×
([∇ϕ

]γ
j il 	γi+

[
ϕ
]

jl −4
[∇ϕ

]b
jin [m]ln 	γi

)
d	γl

(55)

where (55) will be replaced in (54) to write a Newton itera-
tion in 	γ . This iteration may be of more difficult solution
than a combined iteration in	γ and v which will have more
unknowns but typically a larger radius of convergence.

2.4 Explicit inversion of an affine relation between bV e

and τV (metal plasticity)

In the case where it is possible to explicitly invert the rela-
tion between bV e and τV , multiplications in (38), (39) can be
avoided, which results in considerable computational savings
since matrix-matrix multiplications are ©(n3

V ) operations,
with nV being the number of Voigt components. Specifically,
we can iterate for τV directly (as in small strain elasto-plas-
ticity, cf. [44,60]). The quasi-incompressible Neo-Hookean
elasticity law can be further simplified, even without the tradi-
tional deviatoric/volumetric split. The latter was explored in
very particular conditions (J2 plasticity) in Ref. [57] with the
dilatational part of the flow vector (n) being null. If small elas-
tic strains are considered, this would result in a very efficient
alternative to the hypoelastic procedures (cf. [34]). Interest-
ingly, a plastic predictor can also be used (see also [50]). If an
affine relation between τV and bV e is employed the following
law is possible:

τV = Clinear (bV e − I2) (56)

123



Comput Mech (2012) 49:545–564 551

Table 1 Tested yield criteria

Yield criterion Number of yield surfaces Equivalent stresses

von-Mises 1 σeq1
=

√
I 2
1 − 3I2

Tresca 6 σeqk
= τ̃i − τ̃ j , i �= j

Ductile damage 2 σeq1 =
√

I 2
1 −3I2− f c1 I1

1− f

σeq2 =
√

I 2
1 −3I2

1− f

Plane Hill criterion (τ ′ = T T τ T ) 1 σeq1
=

√
fH (τ

′
22 − τ ′

33)
2 + gH (τ

′
33 − τ ′

11)
2 + hH (τ

′
11 − τ ′

22)
2 + 2nH τ

′2
12

I1 = trτ , I2 = 1
2

[
(trτ )2 − trτ 2

]
, I3 = det τ

T = {{cos(θ),− sin(θ)} , {sin(θ), cos(θ)}} fH = 1
2 (1 − r1c + r2c)

gH = 1
2 (1 + r1c − r2c)

hH = 1
2 (r1c + r2c − 1)

nH = 1
2 r12c

Table 2 Tested hyperelastic
strain energy densities

Hyperelastic law Kirchhoff stress

Neo-Hookean (quasi-incompressible) τ = G (det be)
− 1

3
(
be − 1

3 tr [be] I
) + κ

√
det be

(√
det be − 1

)
I

Metal plasticity τ = dτ
dbe

|be=I (be − I)

where Voigt form is used with I2 = {1, 1, 1, 0, 0, 0}T for
nV = 6. With (56) the following system arises:

C−1
linear	τV − 4A−1

n nV	γ = 0 (57)

vn − vn+1 + ϕ	γ = 0 (58)

μ�	γ − 〈
μ�	γ + φ

〉 = 0 (59)

with τV = τe0 +	τ . Constitutive unknowns are now 	τV ,

	γ and vn+1. The same procedure as before is adopted to cal-
culate the tangent modulus. For metal plasticity, this seems
appropriate since be is close enough to the unit (be = I) and
has many advantages with respect to the classical objective-
rate approaches. Perhaps the most useful being the number
of operations to determine the consistent tangent modulus.

2.5 Linearization

The constitutive spatial modulus is required to use in the ele-
ment tangent stiffness matrix, which in turn is used in the
Multilevel-Newton’s algorithm (please consult the inaugu-
ral work of Hartmann [30] concerning this important topic).
Newton’s method of solution is applied at two levels: the
Gauss point level and the equilibrium level. With that goal,
the total derivative of τn+1 with respect to Fn+1 (4) is given
by the chain rule of derivation:

dτV n+1

dFn+1
= ∂τV n+1

∂bV e◦
(I4 − Te◦)

∂bV e◦
∂Fn+1

(60)

where the constitutive-independent derivative is given by:

∂ [be◦]i j

∂
[
Fn+1

]
mn

= [I]im
[
Fn+1

]
jl

[
b̃
]

nl

+ [
Fn+1

]
ik

[
In+1

]
jm

[
b̃
]

kn (61)

and b̃ = F−1
n bn F−T

n . Matrix Te◦ in (60) is determined by
the product:

Te◦ = Tb J−1 L (62)

with Tb being a matrix which filters all rows of J−1 not
related with the derivative with respect to b. Finally, the deriv-
ative of τV with respect to bV e◦ is determined analytically by
Mathematica with the Acegen add-on [39]. For the simplified
case (Sect. 2.3) the linearization can also directly obtained
and is therefore omitted. We remark that the tangent matrix
(4) is not major-symmetric as in classical works and a non-
symmetric linear sparse solver is required.

2.6 Mixed control

In addition to the purely constitutive equations, it often occurs
that some component (or components) of stress has a known
value (plates, shells and beams are classical examples where
known values of stress exist), independent of the constitutive
models. Of course, this subject has been dealt in the context
of anisotropic elasticity and finite strain isotropic plasticity
[37] but not in the most general case. For small strains, the
work of Klisinski [38] (who coined the term mixed control)
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Fig. 2 Isoerror maps and representation of two classical yield criteria (current implementation)

shows that stress and strain components can be used as con-
trol variables and a uniqueness condition was derived. Finite
strains introduce some further calculations, as we shall see.
We use a transformation method to provide a general solu-
tion to this problem. In its simplest form, a m-dimensional
function of F, f (F), is enforced:

f (F) = 0 (63)

The image of function f (F) can be, for example, a stress
component. We partition the components of F in retained (r)
Fr and slave (s) Fs parts: F = Fr + Fs

11 where the num-
ber of independent components of Fs is m. The derivative of
τi j with respect to Fkl is obviously used in Newton method

11 Typically, F33 is the slave part of the deformation gradient in a shell,
when covariant coordinates are used.
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Fig. 3 Iso-error maps of two classical finite-strain plasticity models: Simo 1988 [56,57] (�) and Simo 1992 [58] (��) models

to enforce (63). This condition is enforced outside the con-
stitutive iteration since it adds further non-linearities which
reduce the convergence radius.

Linearization of f (F) and non-singularity of ∂ f /∂Fs

reads

dFs = −
(
∂ f
∂Fs

)−1

f −
(
∂ f
∂Fs

)−1
∂ f
∂Fr

: dFr (64)

Then the derivative of τ with respect to Fr which will be
required for the element technology part of the implemen-
tation is obtained after convergence of (63) and the inner
constitutive system. The variation of τ with respect to Fr is
then given by:

dτ = dτ

dF
:
(

I −
(
∂ f
∂Fs

)−1
∂ f
∂Fr

)

: dFr (65)

Plane stress condition is applied for m = 1, f = {τ33}Fs

= {F33}. The corresponding thickness field is determined
from F33 : h = F33 H where H is the undeformed thickness
and h is the deformed counterpart. For beams, two normal
stress components are set to zero. A formal analysis of this
procedure was performed recently (cf. Areias et al. [9]) and is
much more complex than what is presented here. In addition,
as was sharply pointed by a referee of this work, transverse
shear stresses can occur in general. However, to avoid this
possibility we make use of our recent model ([10]) where the
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Fig. 4 Effect of Error in the strain energy density value and results for loading

Fig. 5 Relevant dimensions and mesh for the tension test

Kirchhoff-Love hypothesis is adopted. Note that this is the-
oretically supported, as discussed by Antman [1] and more
specifically by Antman and Marlow [2] where the conse-
quences of the Kirchhoff-Love hypothesis were studied.

2.7 Least-square projection in trial principal directions
for specific isotropic yield criteria

Since the work of Weber and Anand [63], Simo [58] and
Souza Neto et al. [52], it was found convenient for isotro-

Fig. 6 Tresca and von-Mises effective plastic strain contour plot

pic flow rules which do not alter or slightly alter the elas-
tic principal directions, to iterate in the reduced principal
space. If isotropic elasticity coaxiality between be and τ is
satisfied and the so-called “return mapping” maintains this
coaxiality,12 then this approach is exact (this is the case of
radial return[36]). Although we are interested in more general
laws, it is now important to view these approaches under our

12 It requires a coaxial flow rule.
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Fig. 7 Load versus longitudinal displacement results for von-Mises with and without projection and Tresca criterion. Also shown are results from
Simo’s work [58] and Peric and de Souza Neto’s work with axisymmetric elements [52]

own method. We use a projection technique so that isotropic
laws use approximate eigenvectors. The idea is to perform a
decomposition of b�e :

b�e = λ2
i ni ⊗ ni (66)

where λi are the principal trial elastic stretches and ni are the
corresponding spatial eigenvectors. We use Ei = ni ⊗ ni in
Voigt format and perform a least-square projection of τ using
Ei as basis:

min
τi

1

2
(τ − τ̃i Ei ) : (τ − τ̃i Ei ) (67)

which results for τ̃i :

τ̃i = [
Ei : E j

]−1 {E j : τ
}

(68)

and, for the derivative (in Voigt form j = 1, . . . , nV with nV

being the number of Voigt components),

∂τ̃i

∂τ j
= [Ei : Ek]−1 [Ek] j (69)

This procedure is exact for the flow rule proposed by
Simo [58,60]13 if the von-Mises yield criterion is used, and
approximate in general. For principal-stress based criteria
with corners, it allows large load steps to be used since
the eigenprojections Ei are kept constant during constitu-
tive integration. This was the leitmotiv in [52]. Obviously, τ̃i

13 Which does not coincide with the present one.

depends on b�e , and therefore on F by means of the eigen-
projections Ei which increases the linearization cost (for the
analytical derivation, cf. [27]). We use Mathematica with the
Acegen add-on to calculate the derivative. The well-known
corner vicissitude in Tresca and Mohr-Coulomb yield crite-
ria (sharply diagnosed by de Borst [26]) is definitely solved
by using multi-surface plasticity with either the present least-
square technique or the principal direction geometric method
in [52]. When combined with our smoothing technique, no
active-set strategy is required. Note that, if there is substan-
tial time change in ni , then artificial locking occurs, as we
will observe.

2.8 Prototype and test constitutive laws

Table 1 shows the prototype yield criteria used for the assess-
ment and numerical examples sections. The ductile dam-
age criterion was adopted recently to deal with differences
between tension and compression for ductile materials in a
simpler form than the Rousselier proposal [53] (Table 2).

2.9 Mixed finite element technology for incompressible
and quasi-incompressible problems

For 3D elements based on the low-order tetrahedron tech-
nology, we employ a MINI-like (cf. Arnold [13]) element
which was analyzed and used in [5–7]. The inf-sup test was
performed by the first Author successfully for several well

123



556 Comput Mech (2012) 49:545–564

Table 3 Tension test: constitutive properties (consistent units)

E 206.9

ν 0.29

σy 0.45 + (0.715 − 0.45)(1 − e−16.93εp )+ 0.12929εp

Criterion #1 von-Mises

Criterion #2 von-Mises (with projection)

Criterion #3 Tresca (with projection)

Criterion #4 Ductile damage

known benchmarks. The degrees-of-freedom are: nodal dis-
placements at the 4 nodes of the tetrahedron and an internal
bubble whose additional degrees-of-freedom are condensed
out. In addition, pressure degrees-of-freedom are used in the
corner nodes. The pressure field (p) is tied to the displace-
ment field by a standard approach: the internal virtual work
is given by:

δWi =
∫

�0

{[Dev]τ : ∇δx + p I : ∇δx + (pc − p)δp} d�0

(70)

where [Dev] is the deviatoric projection operator and pc is
the constitutive Kirchhoff pressure, pc = 1

3 Tr[τ ]. Integra-
tion is performed in the undeformed configuration (�0) by
using standard relations (τ = σ J ). Note that if (70) is written
in the deformed configuration, the classical definitions with
the Cauchy stress are obtained.

Displacement and pressure interpolation are obtained as
follows:

uh =
4∑

K=1

NK (ξ)uK + N5(ξ)u5 (71)

ph =
4∑

K=1

NK (ξ)pK (72)

where

N1(ξ) = ξ1

N2(ξ) = ξ2

N3(ξ) = ξ3

N4(ξ) = 1 − ξ1 − ξ2 − ξ3

N5(ξ) = ξ1ξ2ξ3(1 − ξ1 − ξ2 − ξ3) (73)

The mixed formulation presented in these references is
convergent. In addition, as depicted in the following section
the error map of det C−1

p is analyzed.

3 Assessment of errors in stress and incompressibility
satisfaction

A seminal discussion of discrete constitutive equations and
inequalities as non-smooth systems of Differential-Algebraic
Equations (DAE) was presented by Ellsiepen and Hartmann
in [29]. The Multilevel-Newton method was adopted with
a local error estimator controlling the step size. Under that
perspective, isoerror maps are now relegated to an illustrative
tool of inspection of specific load paths.

Fig. 8 Effect of the step size in
the results of the von-Mises
criterion (without projection) for
the tension test
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Fig. 9 Necking of a bar: relevant dimensions, loads and boundary conditions, and material properties. The characteristic length lc is required to
properly model the softening response

Isoerror maps (cf. [55]) are extended to finite strain plas-
ticity and employed here to represent the error resulting from
the time integration of:

• The plastic strain rate, dp which is semi-implicit.
• The flow rule in terms of be which is fully implicit.

We also verify the accuracy of the incompressibility condi-
tion and the thickness variation error. In summary, the fol-
lowing quantities are inspected:

E R Rτ = ‖τ − τ100‖2

‖τ100‖2
(74)

E R Rdet C−1
p

= det be − (det F)2

(det F)2
(75)

E R Rthickness = h − h100

h100
(76)

where the subscript 100 indicates that 100 steps were adopted
to estimate the exact solution. It is worth noting that, although
being the focus of many papers in the last century, incom-
pressibility is approximately satisfied, with error values
similar to those of stress and thickness. The quasi-incom-
pressible Neo-Hookean model is adopted for the elastic
behavior. Although neither the yield function nor the incom-
pressibility condition are exactly satisfied,14 corners in the

14 Without smoothing of the complementarity condition, E R Rτ can
also be significant.

so-called non-smooth yield surfaces [60] are exactly repre-
sented, as Fig. 2 shows. Comparatively, the two von-Mises
return-mapping algorithms of Simo (with [56,57] and, in
principal directions, [58]) are also shown (Fig. 3) with larger
values of errors of stress and determinant of C−1

p . In that
sense, an exact methodology for plastic incompressibility
was presented by Hartmann et al. [31].

In addition, an assessment of the smoothing procedure is
performed in 1D for the strain energy density of the nearly-
incompressible Neo-Hookean model. For a pure one-step
loading the effect of the error parameter is shown in Fig. 4.
The problem is non-smooth for Error = 0 and otherwise
smooth. In the examples, we adopt a default value of Error =
1 × 10−3.

4 Numerical examples

4.1 Tension test of a truncated cone: comparison
of von-Mises and Tresca criteria

4.1.1 Classical testing and comparison with published
results

We perform a test of a nearly-cylindrical specimen made of
ASTM A-533 steel. It is subject to an imposed displacement
in its base. This specific geometry is used to force necking
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Fig. 10 Anisotropic plate: contour plots (θ = 0, θ = π
4 and θ = π

3 ) for the void fraction and F33. The coarse mesh is used. Localization angle
should be ±41.16◦ (cf. [43])

and was adopted by Simo [58] (see also Ref. [61] where the
test is repeated) in the context of plasticity in principal com-
ponents, where radial return is still applicable. The test data
was obtained by Norris et al. [51] who performed an exper-
imental test and used a 2D finite-difference simulation with
grid rezoning in the specimen core. We use the properties of
their specimen 2499R and a piece-wise linear law adapted
from the one by Simo [58] and, in a axisymmetric version, by

Peric and de Souza Neto [52]. The latter Authors performed
the numerical test with Tresca criterion. Finite element sim-
ulations based on a finite-strain version of the radial-return
algorithm result in convergence problems after the limit point
is reached (cf. [64, pp. 358–359]). The geometry, boundary
conditions and material properties are summarized in Fig. 5.
The Neo-Hookean elastic model was used combined with the
element presented in Sect. 2.9.
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Fig. 11 Pulling displacement versus

Fig. 12 Cylindrical shell:
relevant dimensions, loads,
boundary conditions and
material properties

The effective plastic strain contour plots are shown in
Fig. 6 for the two criteria. Note that the highly deformed
elements near the core of the specimen were also obtained
in Ref. [52]. The ductile damage model makes use of the
following relations:

c1 = 3

(
σyc

σyt
− 1

)
(77)

f = max
history

(
ε1

ε1 max

)2

(78)

where σyc is the compressive yield stress (given by the hard-
ening law) and σyt is the tensile yield stress (we take it in

this example as 2/3 lower than σyc). The quadratic law for
the void fraction, (78), is a function of the maximum tensile
Almansi strain (ε1) and the allowed tensile strain (ε1 max)
which is here taken as 2. Analogous laws were adopted
recently in [12].

The load and longitudinal displacement results are shown
in Fig. 7. The results for the von-Mises criterion agree closely
with the principal direction approach by Simo (cf. [58]).
For the Tresca criterion, our results are slightly softer than the
ones of Ref. [52]. Concerning the effective plastic strain con-
tour plot (see Fig. 6) and mesh behavior, the Tresca criterion
produces very close results to those reported in [52].
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Fig. 13 Sequence of deformed meshes for the cylindrical shell problem (3894 × 4 elements)

4.1.2 Evaluation of step size effect

The prescribed number of displacement steps used to solve
the tension test affects the load-longitudinal displacement
results. In addition, this test is known to be very difficult
to solve with large steps, since convergence difficulties are
known to occur near the maximum load region (cf. [25]).
Our method is veryrobust, as can be observed in Fig. 8.
We can use only 11 steps (down from 15 steps in [7]) to
simulate the process up to a longitudinal displacement of 7
consistent units (which agrees with the original simulation
[58]). We are unaware of similar performance reported in the
literature. In addition, since no artificial freeze of the flow
vector is enforced, the results are very step-size insensitive.
Specifically, the results using 11 steps are close to what is
achieved with 40 steps. Some further localization is observed
as diffuse necking is somehow sensitive to the number of
steps (Table 3).

4.2 Plastic anisotropy testing (thickness variation)
and diffuse necking

A finite strain plane-stress strip is tested in tension to verify
the localization behavior of Hill criterion with three anisot-
ropy angle: 0, π/4 andπ/3 with the prototype ductile damage
model. Thickness variation is accounted with the procedure
described in Sect. 2.6. The geometry, boundary conditions
and relevant properties are presented in Fig. 9. The test is
inspired by the classical localization analysis (presented in
the textbooks [16,43]). Results for the three values of θ are

shown in Figs. 10 and 11. Contour plots are smooth and
agree qualitatively with what is expected in the localization
of an anisotropic damaged material. This further attests the
robustness and generality of the proposed algorithms.

The load-displacement results are shown in Fig. 11 where
a comparison between meshes is also performed for θ = π/4.

4.3 Ductile fracture of a cylindrical shell

Combining our recent shell element with the ductile fracture
algorithm recently presented ([11,12]) we are able to model
implicitly ductile fracture of shells undergoing large strains.
The data for our benchmark example is shown in Fig. 12 and
it is formally introduced here. In addition, our recent shell
element (cf. [10]) is adopted with the following parameters:

• 5 layers with 3 Gauss points each.
• 6 degrees-of-freedom in each node, including physically

significant drilling rotation.
• Two scalar internal variables (void fraction f and effec-

tive plastic strain εp) are stored. In addition, the elastic
left Cauchy-Green tensor is also stored.

It can be seen as a computational challenge to test the robust-
ness of combined finite strain plasticity, ductile damage and
fracture problems. We use damped linear control, an exten-
sion of our recently proposed control algorithm [8]. Two
meshes are tested (and two planes of symmetry used): one
containing 2218 elements and 1166 nodes and another con-
taining 3894 elements and 2021 nodes. This type of problem
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Fig. 14 Effective plastic strain contour plot and void fraction contour plot (3894 × 4 elements). Fractured elements have all integration points
with 0.95 void fraction

demands a high degree of robustness to the elasto-plastic
algorithm. Note that the crack path is determined by the
Ma-Sutton criterion (cf. [47]) and there is no crack path
smoothing. The crack nicely turns near the cylinder end, as
can be observed in Fig. 13. Although experimental results are

not available for this test, detonation tests (cf. [22]) of pipes
produce very similar crack paths. Effective plastic strain and
void fraction contour plots are shown in Fig. 14. Pressure-
displacement results are presented in Fig. 15 where very good
agreement between the two meshes can be observed.
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Fig. 15 Control node displacement versus internal pressure for the cracking cylinder

5 Conclusions

A general framework for finite strain plasticity appropri-
ate for hyperelastic isotropic laws, plastic anisotropy and
damage laws was presented. The flow rule is semi-implic-
itly integrated and the remaining constitutive equations are
implicitly integrated. Smoothing by use of Chen-Mangasar-
ian functions replaced the strict complementarity condition,
so that the return-mapping algorithm was avoided. This was
found to be specially relevant for ductile fracture exam-
ples, since they are very demanding in terms of convergence
properties of elasto-plastic algorithms. Besides being able
to solve the tension test benchmark with much fewer steps
than before, additional examples included damage and plas-
tic anisotropy. The overall scheme is computationally simpler
than previous general integration schemes. It was found that
computational costs are higher than classical J2 Neo-Hook-
ean based or Hencky-based approaches, but arbitrary isotro-
pic elastic laws, flow rules, yield functions and hardening
functions can be adopted. In addition, since no return-map-
ping is required, nor a particular solution method for plastic-
ity, we can include more complex behavior without the effort
usually required to derive closed-form quantities for specific
return-mappings in finite strain plasticity.
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