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Abstract

Extreme value theory (EVT) provides a framework to formalize the study of behaviour

in the tails of a distribution. In this paper we use EVT to model the statistical behaviour

of mortality rates over a given high threshold age and to estimate the significance of rare

longevity risk in a given population. We adopt a piecewise approach in estimating the

optimal threshold age using an iterative algorithm of maximum likelihood estimation.that

statistically determines the cut-off between the central (Gompertz) part of the distribution

and the upper tail modelled using the generalized Pareto distribution. The model is

empirically tested using the most recent period mortality data for the total, male and

female populations of Portugal and Spain. We use some classical results from EVT

to estimate the evolution of the theoretical maximum life span over time and to derive

confidence intervals for the central estimates. We then use time series methods to forecast

the highest attained age. We observe a good fit of the model in all populations and

subperiods analysed and on the whole life span considered. We estimate an increase in

the theoretical maximum life span over time for all populations, more significant in the

male subpopulations.

JEL Code: G22, J11.

Keywords: longevity risk, extreme value theory, life tables, maximum life span.

∗Corresponding author: University of Évora - Department of Economics and CEFAGE-UE
(Center for Advanced Studies in Management and Economics), Largo dos Colegiais, N.o 2, 7000-
803, Évora/Portugal, e-mail: jbravo@uevora.pt. The author gratefully acknowledges partial
financial support from FCT, program POCTI.

†Pedro Corte Real. Departamento de Matemática, Faculdade de Ciências e Tecnologia, Uni-
versidade Nova de Lisboa, Portugal. E-mail: parcr@fct.unl.pt

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Científico da Universidade de Évora

https://core.ac.uk/display/62453724?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1 Introduction

Increasing life expectancy at all ages in the developed world is one of the success

stories of the last century. Improvements in survival are pushing new limits: today

more than half of all males and two thirds of all females born in Western countries

may reach their 80th birthday. The proportion of centenarians increased about

ten times over the last thirty years, and more and more people celebrate their

100th birthday (Robine & Vaupel, 2001).

These mortality improvements are a clear evidence of how far society and

science have come in improving general living conditions, promoting healthier

lifestyles, offering better medical and healthcare services that helped prolong our

lives. As a result, the demographic structure of the population has changed sig-

nificantly, with an increasing proportion to the overall mortality improvement

in developed countries arising from a faster than expected decrease in mortality

rates at advanced ages. Developments in the treatment of heart diseases,greater

awareness of the dangers of smoking are just some of the reasons behind this trend

that is reflected in the rapidly increasing number of centenarians in the industri-

alized world (Vaupel, 2010). Unless radical breakthroughs are achieved, humans

will continue to suffer senescence although improvements in life expectancy are

expected to continue in the near future due to advances in the treatment of cancer

or dementia.

These positive news create significant financial challenges to governments that

require governments, insurers, pension fund sponsors, individuals and actuaries

to understand the drivers in order to estimate future trends. Governments have

to predict longevity in order to provide for sustainable pension and healthcare

systems. Pension fund sponsors must appropriately fund pensions and other ben-

efits promised to their employees in retirement. Individuals know that they will

be increasingly subject to longevity risk and are expected to resume to private

solutions in order to supplement their retirement income. Life insurance compa-

nies need to meet their customers’ requirements by providing annuities and other

retirement products, by pricing products in fair and appropriate manner and by

guaranteeing they have enough capital to meet future liabilities and uncertainties.

As demand for individual annuity increases, insurers will have to manage the

potential longevity risk in ongoing/new new annuity policies. Longevity risk is de-

fined as the uncertainty of mortality improvement in the future. It exists in both

individual (idiosyncratic) and aggregate (systematic) levels. In aggregate terms,

longevity risk is defined as the risk that members of some reference population
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might live longer, on average, than anticipated. The risk of systematic devia-

tions is different in nature from that of random fluctuations around the trend, a

well-known type of risk in the insurance business, breaks down the risk pooling

mechanism and becomes non-diversifiable, making the provision of risk manage-

ment tools increasingly difficult. Effectively, the risk of systematic deviations

arises from either a “model” or a “parameter” risk, which are unquestionably

non-pooling risks.

Individual longevity risk refers to the risk that individuals might live longer

than their own expected life expectancy and thus face the risk of outliving their

resources. They can reduce the risk of exhausting assets before passing away by

consuming less per year, but such strategy then increases the chance that they

might die with too much wealth left unconsumed. In other words, dying with too

little wealth is undesirable, but having too much wealth is also undesirable, since

it represents foregone consumption opportunities. In this scenario, individuals

will have to become more self-reliant and will wish to diversify their sources of

income in retirement, insuring against the risk through the social security systems,

defined benefits plans and, increasingly, through private annuity products.

For actuaries, it has long been crucial to have a reliable model of old-age mor-

tality for pricing and reserve calculations and risk management (e.g., alternative

risk transfer mechanisms such as the longevity bond), particularly in products

whose cash flows are contingent on survival. In this area, life tables are the most

popular instrument used to represent the underlying distribution of future life-

time variable and their construction relies on reliable mortality data. In this

regard, although data on population estimates (and corresponding exposure to

risk) and death counts at advanced ages is normally available, except for censuses

years their quality is considered poor leading to large sampling errors and highly

volatile crude death rates. These problems are exacerbated in life insurance or

pension fund populations given their smaller dimension.

In the past, in the absence of appropriate mortality data at advanced ages

actuaries very often neglected the importance of this phenomena and arbitrarily

adopted an ad-hoc procedure by selecting an ultimate age and setting the death

probability at that age equal to 1 without any changes to other mortality rates.

This creates a discontinuity at the ultimate age compared to the penultimate

and prior ages. Given the nature of mortality dynamics at these ages and the

increasing importance of survival payments in life insurance and pension fund

portfolios, it is inaccurate to close life tables this way. Measuring and managing

mortality and longevity risks is a huge challenge for risk managers. The financial
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effect of underestimating the life table limiting age can be substantial, not only in

terms of expected losses but particularly in terms of risk measures such as VaR or

Expected-Shortfall since these quantities heavily rely on the tail of the population

survival distribution.

Various methodologies have been proposed for estimating mortality rates at

oldest ages and for closing life tables within the insurance industry (for a more

detailed review see, for instance, Thatcher et al. (1998), Boleslawski and Tabeau

(2001), Buettner (2002), Pitacco (2004), Bravo et al. (2007) and references

therein). Ad-hoc methods include the forced method described above, a blended

method consisting in selecting an ultimate age and blend the death probabilities

from some earlier age to converge smoothly into 1.0 at the ultimate age, a pattern

extrapolation method that simply consists in letting the pattern of mortality con-

tinue until the mortality quotient approaches or hits 1 and in setting that as the

life table ultimate age and, finally, methods that involve selecting an ultimate age

but end the table at whatever rate is produced by the extrapolation procedure at

that age given that the ultimate death probability is less than 1.0. Other meth-

ods generate population numbers from death registrations, which for the purpose

of estimating the number of very old people are considered to be more reliable

than population estimates derived from censuses. The most popular methods in-

cluded in this category are the method of extinct generations and the survivor

ratio method.

Other methodologies include fitting mortality curves over a certain age range,

for which crude mortality rates may be calculated directly from data, followed by

extrapolation. The Coale-Kisker method, named after Coale and Guo (1989) and

Coale and Kisker (1990), assumes that the exponential rate of mortality increase

at very old ages is not constant, as stipulated by the classical Gompertz and

Heligman-Pollard (1980) models, but declines linearly with age. Himes, Preston,

and Condran (1994) presented a standard life table model standard for adult ages

combined with a Brass-type logit relational model for mortality at the oldest-

old ages. Denuit and Goderniaux (2005) developed a log-quadratic regression

model on death probabilities observed at advanced ages combined with closure

constraints on life tables. These constraints are set to ensure the existence of

a horizontal tangent at a pre-defined ultimate age and to prevent an eventual

decrease of mortality quotients at very old ages. Kannisto (1992) and Thatcher

et al. (1998), among others, consider that the logistic function has a convenient

asymptotic behaviour (decelerating increase in mortality rates) when it comes to

model mortality rates at advanced ages.
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In recent years several papers have been published using extreme value the-

ory (EVT) to model human mortality at extremely high ages as an attractive

solution for the problems of inaccuracy and unavailability of mortality data at

very old ages. Aarssen and De Haan (1994) estimated a finite upper bound on

the distribution of human life spans, while Galambos and Macri (2000) argued

that such an upper bound could not exist. Thatcher (1999) modeled the high-

est attainable age by using classical extreme value theory. Watts et al. (2006)

modeled the highest attained age by using the Generalized Extreme Value (GEV)

distribution. Beelders and Colarossi (2004) use EVT to model mortality risk and

apply the results to the pricing of the Swiss Re mortality bond issued in 2003.

Han (2005) uses EVT to model the mortality rate for the elderly. Li et al.

(2008, 2010) use some classical results from EVT to develop a model named

threshold life table that can be used to extrapolate survival distributions to ex-

treme ages and to estimate the appropriate end point of a life table. Chen and

Cummins (2010) employ extreme value theory to model rare longevity events in

the context of longevity risk securitization.

In this paper, we use the threshold life table model proposed by Li et al. (2008)

to model a 30-year series of recent period life tables produced for the Portuguese

and Spanish male, female and total populations. The model integrates EVT with

the classical approach of parametric modeling of mortality. More specifically,

the model combines the classical Gompertz mortality law for the mortality rates

before the threshold and assumes mortality exceedances over the threshold follow

a generalized Pareto distribution. The optimal threshold age is obtained through

an iterative method of maximum likelihood estimation. This allows us to not

only model the mortality data within our samples but also make statistically

significant extrapolations of more extreme out of sample longevity events. We

observe a good fit of the model in all populations and subperiods analysed and

on the whole life span considered. Using some classical results from EVT, we

then test for the existence of a finite upper bound for the survival distribution,

i.e., for the existence of an end point of a life table and analyse the evolution of

the highest attainable age in the sample populations. Confidence intervals for the

life table end point are estimated using the classical delta-method. We observe

an increasing trend in the limiting age in all populations over time, with slight

gender differences. The results of the models are not considered by their own but

are benchmarked to results obtained in similar studies.

Finally, we go a step further and use standard time series methods to model

the evolution of the limiting age over time and to derive point forecasts and
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correspondent confidence intervals for the highest attained age in the future.

The outline of the paper is as follows. Section 2 summarizes some results

from EVT and describes the methodology used for mortality modeling. Section 3

presents the data used in this study and applies the threshold life table model to

the male, female and total populations of Portugal and Spain. Section 4 considers

the use of EVT to estimate the theoretical maximum life span attained in the

populations under consideration over time. Section 5 uses time series methods to

forecast the theoretical maximum life span. Section 6 concludes.

2 Mortality Modeling

2.1 The tail distribution: Extreme value theory

In this section we summarize some results from EVT which underlie this study.

For a detailed review of this subject see, e.g., Embrechts, Klüppelberg andMikosch

(2008). Extreme value theory provides a framework to formalize the study of be-

haviour in the tails of a distribution. Broadly speaking, there are two types

of models for extreme values. Block maxima models apply to maxima of a se-

quence of observations and the Peaks-Over-Threshold (POT) models deal with

exceedances over a given high threshold. In our case, we are interested in the

exceedances in the tail distribution of human life span since we focus on the be-

haviour of mortality rates at advanced ages, i.e., over a given high threshold age

u.

Suppose we have a sequence of iid random variables X1, ...,Xn, representing

risks or losses, from an unknown common distribution function F and let Mn =

max {X1, ...,Xn} . A natural measure of extreme events are the values of Xi that

exceed a high threshold u. Let x0 be the finite or infinite right endpoint of the

distribution F . That is to say, x0 = sup {x ∈ R : F (x) < 1} ≤ ∞. We define the

excess distribution above the threshold u as the conditional probability

Fu (x) = P {X − u ≤ x|X > u} =
F (x+ u)− F (u)

1− F (u)
, (1)

for 0 ≤ x < x0 − u. Fu(x) is thus the probability that X exceeds the threshold u

by no more than an amount x, given that the threshold is exceeded.

According to the Pickand-Balkema-de Haan Theorem (Balkema and de Haan,

1974), for a sufficiently high threshold u, the excess distribution function Fu (x)

may be approximated by the generalized Pareto distribution (GDP), Gξ,θ (x), for
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some value of ξ and θ. The GPD, Gξ,θ (x), is defined here as

Gξ,θ (x) =







1−
(

1 + ξx
θ

)−1/ξ
, if ξ �= 0

1− exp
(

−x
θ

)

, if ξ = 0
(2)

where θ > 0, and the support is x ≥ 0 when ξ ≥ 0 and 0 ≤ x ≤ −θ/ξ when

ξ < 0. ξ represents the shape parameter of the distribution or tail index and θ is

an additional scaling parameter. when ξ > 0 we have a reparameterized version of

the ordinary Pareto distribution. The case ξ = 0 corresponds to the exponential

distribution and ξ < 0 is usually known as a type II Pareto distribution.

We can extend the GPD family by adding a location parameter γ. The GPD

Gξ,γ,θ (x) is then defined to be Gξ,θ (x− γ) . Therefore, for x−u ≥ 0, the distrib-

ution function of the ground-up exceedances Fu (x− u) may be approximated by

Gξ,θ (x− u) = Gξ,u,θ (x) .

From the many applications of GPD, in this paper we focus on the behaviour

of mortality rates over a given high threshold age u. In this sense, Gξ,u,θ (x) can

be interpreted as follows: Let X represent the time-to-death random variable for

a person aged 0. Then, for some high age u, Gξ,u,θ (x) represents the probability

that the person will die before age u + x, given survival to age u, that is, in

actuarial terms, xqu. Fortunately, the GP distribution provides us with closed

expressions for yearly death probabilities qx and mortality forces µx. Let Tx

denote the remaining lifetime for an individual aged x at time t = 0. For a given

high age x ≥ u, we can derive

qx = 1−
(

1 +
ξ

θ + ξ (x− u)

)− 1

ξ

(3)

and

µx =
1

θ + ξ (x− u)
(4)

The above results have been given in terms of stationary sequences of random

variables. Interestingly, they can be adapted for use with data from non-stationary

sequences, in which characteristics of the stochastic process change with modifica-

tions in some related random variable. For instance, the distribution of life spans

might shift upward/downward over time due to medical breakthroughs, pandemic

episodes or cohort specific covariates. In this case, the GPD parameters can be

expressed as functions of time and that information can be used to project the

evolution of extreme life spans over time.
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2.2 Model Specification

Traditionally, the modeling of an age pattern of mortality is performed in a two-

stage piecewise approach. First, parametric or non-parametric graduation tech-

niques are applied to the death probabilities (rates) at young and adult ages in

order to smooth out data irregularities and, eventually, to resume the mortal-

ity curve by a few parameters. Then, the graduated rates are extrapolated to

advanced ages using an appropriate life table closing procedures (e.g., Brass rela-

tional model, Heligman-Pollard model, 1980; Coale-Kisker method, 1990; Denuit

and Goderniaux, 2005).

This approach has, however, two main drawbacks: first, although some meth-

ods (e.g., Denuit and Goderniaux, 2005) provide statistical algorithms for the

choice of the threshold age, all the methods require a more or less subjective

decision on the age at which the extrapolation begins. Second, all the methods

demand an assumption on either the age at which the life table is closed (e.g.,

Coale-Kisker method, Denuit and Goderniaux, 2005) or, in other cases, an ad-hoc

constraint on the profile of mortality rates at advanced ages, e.g., the Gompertz

law in the Heligman-Pollard model.

The application of EVT entails the choice of an adequate cut-off between

the central part of the distribution and the upper tail, i.e., a point separating

ordinary realizations of the random variable considered from extreme realizations

of the same variable. When working with threshold exceedances, the cut-off is

induced by the threshold age u. This is a very delicate issue concerning statistical

methods of EVT, since the choice of the threshold age u entails a trade-off between

bias and variance.of the parameter estimates.

On the one hand, we need to choose a high enough u so that the GPD can

be applied asymptotically to mortality data (reduce bias). An excessively high

threshold leaves us with scant extreme observations, not enough to obtain efficient

estimates, yielding imprecise upper quantile estimates. On the contrary, if u is

set too low many ordinary data are taken as extreme ones, thus yielding biased

estimates. A value of u too small implies that the generalized Pareto character

does not hold for the moderate observations and it yields biased quantiles esti-

mates. In both cases, the resulting estimates are flawed and may lead to erroneous

conclusions when assessing risk.

To identify the optimal threshold value we can resort to (i) graphical tools,

namely to an empirical mean excess function plot or to a plot of the index maxi-

mum likelihood estimators resulting from using increasing thresholds, (ii) to com-

mon sense-based choices of the cut-off (e.g., choose u in such a way that about
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5%-15% of the data are thought of as extreme observations), (iii) to Monte Carlo

simulation methods and, finally, (iv) to algorithms (based for instance on the

bootstrap method) that endogenously pick out the cut-off that is most suited to

the data at hand.

The threshold life table model developed by Li et al. (2008) addresses this

issue by adopting a piecewise approach in which the threshold age is chosen in a

statistical way without the need of any subjective decision and in which the fitted

statistical distribution determines, if exists, the appropriate end point of the life

table. More specifically, in a threshold life table death rates at earlier adult ages

are graduated by means of a parametric function, namely the classical Gompertz

(1825) mortality law. At advanced ages, instead of the traditional mathemati-

cal extrapolation, the threshold life table model assumes a given extreme value

statistical distribution, namely the GPD.

Let z = {X − u|X > u} be the conditional exceedances of the age at death

X over a given threshold age u. Based on the above extreme value theory results,

the threshold life table model is defined as

F (x) =







1− exp
(

− B
lnC (Cx − 1)

)

, if x ≤ u

1−
(

1 + ξ(x−u)
θ

)−1/ξ
, if x > u

(5)

In other words, the threshold life table model assumes that the survival dis-

tribution is Gompertzian before the threshold age, and the exceedances over the

threshold age u follow a Generalized Pareto distribution. To ensure that F (x) is a

proper distribution function, the following constraints must be met: B > 0, C > 1

and θ < 0. By construction, the model guarantees that F (x) is continuous at the

threshold age, but that the smoothness of F (x) around u is not guaranteed and

should be carefully addressed in empirical applications. In fact, standard para-

metric or non-parametric graduation (Splines, Loess,...) methods may be needed

to smooth the mortality curve around the threshold age.

2.3 Algorithm for Parameter Estimation

Li et al. (2008) propose two methods for choosing the threshold age: a maximum

likelihood estimation method, that we adopt here, and a weighted least-squares

estimation method. In describing the method, we assume that we are provided

with period (static) mortality data for individual ages xmin to xmax − 1 and the

open age group xmax and above.

Let lx denote the number of survivors to age x. The number of deaths between

ages x and x+ 1 is therefore dx = lx − lx+1. The likelihood contribution for each
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age x = xmin, xmin + 1, ..., xmax − 1 is the probability of dying between age x and

age x+ 1, raised to the number of deaths, or

(

s (x)− s (x+ 1)

s (xmin)

)dx

.

where s(x) = 1 − F (x) is the survival function. The likelihood contribution for

the survivors to age xmax is the probability of survival to age xmax, raised to the

number of survivors, or
(

s (xmax)

s (xmin)

)lxmax

The resulting likelihood function is therefore

L (B,C, ξ, θ, u) =

[

xmax−1
∏

x=xmin

(

s (x)− s (x+ 1)

s (xmin)

)dx
]

×
(

s (xmax)

s (xmin)

)lxmax

(6)

The logarithm of L (B,C, ξ, θ, u) can be decomposed, after some algebra, into

the sum of two components, l1 (B,C, u) + l2 (ξ, θ, u), where

l1 (B,C,u) =
u−1
∑

x=xmin

(dx ln (s (x)− s (x+ 1)))+lu ln (s (u))−lxmin
ln (s (xmin)) (7)

where s (x) = exp
(

− B
lnC (Cx − 1)

)

, and

l2 (ξ, θ, u) =
xmax
∑

x=u

(

dx

(

s (x)

s (u)
− s (x+ 1)

s (u)

))

+ lxmax
ln

(

s (xmax)

s (u)

)

(8)

where s(x)
s(u) =

(

1 + ξ(x−u)
θ

)−1/ξ
.

For a fixed u, parameter estimation for the parametric (Gompertz) modeling

part and the generalized Pareto part can be done separately by maximizing l1

and l2, respectively. The choice of u depends on the maximization of the profile

log-likelihood function lp:

lp (u) = l
(

B̂ (u) , Ĉ (u) , ξ̂ (u) , θ̂ (u) , u
)

(9)

where l = ln (L), B̂ (u), Ĉ (u) , ξ̂ (u) , and θ̂ (u) are the maximum likelihood esti-

mates of B, C, ξ and θ for a fixed u, respectively.

The algorithm for estimating the optimal threshold age u and other parameters

in our model can be summarized as follows:

1. for u = xmax − 1,
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(a) find the values of B and C that maximize l1 (B,C, u);

(b) find the values of ξ and θ that maximize l2 (ξ, θ, u);

(c) compute the value of the profile log-likelihood, lp;

2. repeat Step (1) for u = xmax − 2, xmax − 3, ..., xmin;

3. Find the value of u that yields the maximum profile log-likelihood.

The value of u obtained in step (3) is the optimal threshold age. The maximum

likelihood estimates B̂, Ĉ, ξ̂ and θ̂ under the optimal threshold age are then

considered the optimal model parameter values.

Suppose the threshold excess X−u0 follows a GPD with estimated parameter

ξ̂ < 1. For any u > u0, we can estimate the mean excess lifetime function as

e (u) = E [X − u|X > u] =
θ̂ (u0) + ξ̂ (u− u0)

1− ξ̂
. (10)

or, alternatively, for a given y > 0

e (u0 + y) = E [X − (u0 + y)|X > u0 + y] =
θ̂ (u0) + ξ̂y

1− ξ̂
(11)

3 Data and Results

In this section we use the threshold life table model to model the most recent pe-

riod (contemporaneous) mortality rates for the total, male and female populations

of Portugal and Spain. The data are period life table functions (deaths, number

of survivors,...) by single years of age up to 110 and over provided by the Human

Mortality Database (2011), hereafter referred to as the HMD. For both countries,

the latest available data on HMD is for year 2009. For Portugal data is available

since 1940, whereas for Spain data is available since 1908. For both countries, the

use of data prior to 1970 is questioned due to age heaping problems, as detailed

in the HMD background and documentation papers. For that reason, we have

considered for both populations life table data only for ages x ∈ [65, 110+] and

calendar years x ∈ [1980, 2009] .

In Figures 1 and 2 we take a first look at the evolution of death rates by age

and calendar year in the overall populations of both countries. As can be observed,

in the last thirty years the death rates have been declining steadily at all ages,

with greater speed at ages between 65 and 85. The behaviour of death rates for

the male and female populations in both countries shows a similar pattern.
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Figure 1: Death rates qx by year and age, Portugal, sexes combined

Figure 2: Death rates qx by year and age, Spain, sexes combined

Next, for each year in the sample period and for both populations and corre-
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sponding gender specific sub-populations we implemented the algorithm detailed

in 2 using the R language (R Development Core Team, 2011). The search for the

optimal threshold age u and corresponding maximum likelihood parameter esti-

mates B̂, Ĉ, ξ̂ and θ̂ was conducted using an iterative procedure that maximizes

the overall fitness of the combined model, rather than the fitness at the extreme

ages only. In estimating the optimal threshold age we have considered integer

ages in the age interval [85, 102] .

Figures 3, 4, 5 and 6 display for each year in the estimation period the optimal

threshold age u∗, the maximum likelihood estimates of GPD parameters (ξ, θ) and

the mean excess life time over u∗.

Figure 3: Optimal threshold age u∗, mean excess life time over threshold u∗ and

GPD parameters by year t ∈ [1989, 2009] , and mean excess life time over threshold

u∗ in 2009, Portugal, total population.
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Figure 4: Optimal threshold age u∗, mean excess life time over threshold u∗ and

GPD parameters by year t ∈ [1989, 2009] , and mean excess life time over threshold

u∗ in 2009, Spain, total population.

We can observe that the optimal threshold age has been increasing steadily

over time in all populations under analysis and that u∗ is normally slightly higher

for the male population than for the female population. Not surprisingly, the

mean excess life time seems to be decreasing over time, particularly for the Spanish

population. The scale parameter θ exhibits a declining trend whereas the shape

parameter ξ exhibits a volatile pattern over time with no clear trend.

To illustrate the model’s performance, Figure 7 shows the maximum likelihood

estimated threshold life tables for the Portuguese and Spanish male, female and

total populations in 2009 at the optimal threshold age. We observe a good fit for

the entire life span, despite the fact that the original model definition doesn’t en-

sure a smooth transition between the mortality rates by the Gompertz component

and GPD segment. Once again, this is a consequence of the iterative estimation

procedure that favours the overall goodness-of-fit instead of partial performance.
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Figure 5: Optimal threshold age u∗, mean excess life time over u∗ and GPD para-

meters for the male (left panel) and female (right panel) Portuguese populations.
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Figure 6: Optimal threshold age u∗, mean excess life time over u∗ and GPD

parameters for the male (left panel) and female (right panel) Spanish populations.
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Figure 7: Maximum likelihood estimated threshold life tables for the Portuguese

and Spanish male, female and total populations in 2009 at the optimal threshold

age.
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Beyond the threshold age, the mortality rates increase progressively up to an

end point, which contrary to previous methods is determined statistically.

Table 1 exhibits, for all populations under consideration, the parameter es-

timates and corresponding standard errors (in brackets) for the Gompertz and

GPD components of the optimal threshold life table, the optimal threshold age

and the mean excess life time at the optimal threshold age in 2009.

Parameter Portugal Spain

Estimates Total Male Female Total Male Female

lnB -12.4264 -11.3836 -13.9247 -12.3482 -11.14593 -14.3180

se (0.145972) ( 0.119124) (0.156839) (0.137046) (0.127534) (0.150765)

p-value <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001

lnC 0.119307 0.109497 0.135526 0.115845 0.104500 0.137273

se (0.001927) (0.001583) (0.002059) (0.001785) (0.001683) (0.001957)

p-value <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001

ξ −0.17589 −0.14312 −0.20422 −0.16413 −0.16943 −0.20827

se (0.00831) (0.013931) (0.005590) (0.011046) (0.010421) (0.006355)

p-value <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001

θ 3.32856 2.856573 3.789288 3.045186 3.463071 3.700971

se (0.045071) (0.062403) (0.037106) (0.050734) (0.05549) (0.038234)

p-value <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001

u 94 94 93 97 95 95

e (u) 2.83 2.50 3.15 2.62 2.96 3.06

Table 1: Parameter estimates, standard errors and p-values for the Gompertz

and GPD parameters, optimal threshold age and mean excess life time; Male,

female and total Portuguese and Spanish populations, 2009

We can observe that the parameter estimates of the Gompertz mortality law

and of the GPD function are all statistically significant at the optimal threshold

age. The empirical results also show that the shape parameter ξ exhibits a volatile

pattern over time but is always negative, which means that according to classical

results on EVT the support of the distribution has a finite upper bound. In

the following section, we elaborate on this topic and test for the existence of a

theoretical end point for the life table and its dynamics over time.
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4 Estimating the maximum life span

As we saw on Section 2, in the threshold life table the exceedance z = {X − u|X > u}
over the threshold age follows a GPD with parameters θ and ξ, the value of which

determines the precise distribution of z. In Section 3 we concluded that the esti-

mated parameters for the GPD are (statistically) significantly less than zero. In

these cases, i.e., when ξ < 0, we know from classical results on EVT that the

support of the distribution Gξ,θ (x) is 0 ≤ x ≤ −θ/ξ. In other words, we can test

for the existence of a finite upper bound given by ω = u− θ/ξ by testing the hy-

pothesis ξ < 0. Our empirical results suggest that life tables for both populations

and subpopulations have a theoretical end point. Moreover, since ξ < 0 and θ > 0

this theoretical end point ω will be greater than the optimal threshold age u.

Following Li et al. (2008), we now consider a group of n individuals who sur-

vive to the threshold age u. We let Xi be the age at death for the ith individual,

zi = {Xi − u|Xi > u}, and denote Mn = max {zi, i = 1, 2, ..., n} the highest ex-

ceedance over the threshold age. In this case, u+Mn will be the highest attained

age for this group of n individuals.

Assuming that the exceedances zi and zj for two different individuals are

independent and that zi, i = 1, 2, ..., n follows a GPD with ξ < 0, the distribution

function of Mn can be expressed as:

FMn (y) =











0, y < 0

(FY (y))n , 0 ≤ y < −θ/ξ

1, y ≥ −θ/ξ

(12)

From 12 it follows that when n tends to infinity the distribution of Mn as-

ymptotically degenerates at −θ/ξ, i.e.,

lim
n→∞

FMn
(y) =

{

0, y < −θ/ξ

1, y ≥ −θ/ξ
(13)

If the number of survivors at the threshold age is sufficiently large, the highest

attained age of these n survivors converges (in probability) to ω = u − θ/ξ, the

theoretical end point of the threshold life table, which is strictly greater than u

since θ > 0 and ξ < 0.

To derive confidence intervals for end point of the threshold life table, we recall

first that the uncertainty of the estimate of ω arises from the variability of the

maximum likelihood estimates of the GPD parameters θ and ξ. This means that

we can resort to some classical results on the asymptotic properties of maximum
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likelihood estimates. In particular, we follow Li et al. (2008) and Han (2005) and

compute confidence intervals for ω using the classical delta method.

The delta method is a method for deriving an approximate probability dis-

tribution for a function of an asymptotically normal statistical estimator from

knowledge of the asymptotic variance of that estimator. More formally, we recall

a general result for maximum likelihood theory that states that under standard

regularity conditions (see, e.g., Rohatgi, 1976), if β̂ is a vector of ML estimates,

then √
n
(

β̂ − β
)

d→ N
(

0, V ar
(

β̂
))

Let G(β) be some function. To estimate the variance, we evaluate the partial

derivatives at the ML estimates,
(

∂G(β|x)
∂β′

)
∣

∣

∣

β=β̂
, which leads to

V ar
(

G(β̂)
)

=
∂G(β̂)

∂β̂
′ V ar

(

β̂
) ∂G(β̂)

∂β̂

Given these results, the asymptotic variance of the estimate of ω can be esti-

mated by

V ar (ω̂) =
(

∂ω
∂ξ

∂ω
∂θ

)

(I (ξ, θ))−1

(

∂ω
∂ξ
∂ω
∂θ

)

(14)

where I (ξ, θ) is the information matrix of the estimators θ̂ and ξ̂.

Using the asymptotic normality property of maximum likelihood estimates,

the approximate 100% × (1− α) confidence interval for ω can be written using

the classic Wald (1939) formula

(

ω̂ − zα/2
√

V ar (ω̂), ω̂ + zα/2
√

V ar (ω̂)
)

(15)

where zα/2 denotes the corresponding value from the standardized cumulative

distribution function for the significance level α.

In figure 8 we display the mean and 95% confidence interval estimates of ω

for the Portuguese and Spanish male, female and total populations in the period

from 1980 to 2009. In all populations, we can observe an increasing trend in the

estimated highest attainable age, more pronounced in the Spanish populations.

The mean estimates of ω are consistently higher for the Spanish population, for

all subpopulations. The Portuguese male and female populations exhibit mean

estimates of ω that follow similar paths and are close in absolute terms, although

it is clear that the mean estimates for the male population are more volatile over

time.

20



Figure 8: Point estimates and corresponding 95% confidence intervals for the

highest attainable age ω in Portugal and Spain, disaggregated by sex and calendar

year.
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In Spain, the mean estimates of ω are clearly higher and more volatile over

time for the male population when compared to their female counterparts.

The mean and 95% confidence interval estimates of ω for all populations under

consideration in 2009 are displayed in Table 2.

Country Population Central Estimate 95% Confidence Interval Threshold Age

Total 112.92 (103.49; 120.32) 94

Portugal Male 114.96 (98.05, 131.87) 94

Female 111.78 (104.73, 118.84) 93

Total 115.55 (104.41, 126.69) 97

Spain Male 115.44 (102.41, 128.47) 95

Female 112.77 (106.42, 119.12) 95

Table 2: Predicted limiting ages considering the GP distribution estimated pa-

rameters at the optimal threshold age, Year 2009

We can observe that the theoretical end point of the life table is consistently

higher for the Spanish total, male and female populations when compared with

their Portuguese counterparts. In both populations, the rate of improvement in

the estimated highest attained age has been higher for the male sub-population,

whereas for the Spanish population the rate of improvement has been similar.

Over the whole period of analysis, the average increase in the estimated highest

attained age is approximately 0.09 (0.11) year per annum for the total Portuguese

(Spanish) population, 0.21 (0.11) per annum for the male Portuguese (Spanish)

population and 0.06 (0.07) for the female Portuguese (Spanish) population.

The average increase in the maximum life span reported here is in line with

the related literature.1 The central estimates of ω for the Portuguese and Span-

ish total populations are in line with those obtained by Li et al. (2010) for

the Australian (112.20), New Zealand (109.43) populations and by Li (2007) for

the Japanese (112.46), Danish (108.24), Finish (109.01), Norwegian (112.56) and

Swedish (111.98) populations, in this later case considering this case the 1897 birth

cohort. In the Spanish population, the maximum life span is consistently higher

in the male population when compared with the female counterpart, whereas in

Portuguese population male and female populations interchange positions over

time.

1For example, Li et al. (2008) estimate an average increase in the estimated highest attained
age of 0.15 year per annum for the Japanese population.
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In Portugal there are no official life tables designed for use within the Por-

tuguese insurance and pension fund industry. On the contrary, in Spain life tables

commonly used for valuing benefits for pension fund retirees and life insurance

policies are the PERM/F 2000C (for policies existing at 3/10/2000) and PERM/F

2000 P (for policies issued after 3/10/2000). Both cohort life tables assume that

no one will survive to age 115, an age in line with mean estimates for the maximum

life span derived in this study.

The amplitude of the confidence intervals is higher in the Spanish population,

particularly in male subpopulation, and is relatively stable in period analysed.

Confidence intervals are significantly wider for the male population when com-

pared with their female counterparts. In Table 3 we exhibit a list of validated su-

percentenarians for the Spanish population, obtained from the Human Longevity

Database (HLD).2

We observe that the list of confirmed supercentenarians exhibits a maximum

life span well within the confidence intervals for Spanish population.

It should be noted, however, that maximum observed life spans are not nec-

essarily synonymous with theoretical maximums for at least two reasons. First,

maximum longevity is an inappropriate general concept because there is no spe-

cific identifiable age for each species to which some select individuals can survive

but beyond which none can live. Second, the record age of a species is heavily

influenced by the number of individuals observed (Carey et al., 2003).

2Up to date, the Human Longevity Database doesn’t provide data for the Portuguese popu-
lation.
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ID Number Age Sex Birth date Death date Status

115 114 F 10/06/1881 16-01-1996 Death
116 114 M 03/04/1883 03-07-1997 Death
117 114 M 15/12/1889 05-03-2004 Death
118 113 F 28/10/1883 25-05-1997 Death
119 112 M 23/02/1881 20-01-1994 Death
120 112 F 01/09/1889 15-02-2002 Death
121 111 F 20/07/1885 21-06-1997 Death
122 111 M 18/02/1888 15-11-1999 Death
123 111 F 27/08/1895 08-04-2007 Death
124 111 F 18/08/1890 25-03-2002 Death
125 111 F 28/07/1891 16-11-2002 Death
126 111 F 04/05/1888 09-08-1999 Death
127 111 F 13/12/1894 02-02-2006 Death
128 111 F 26/03/1884 12-04-1995 Death
129 110 F 19/06/1891 21-04-2002 Death
130 110 M 22/04/1879 23-01-1990 Death
131 110 F 01/03/1885 24-11-1995 Death
132 110 M 11/04/1879 01-01-1990 Death
133 110 F 15/02/1886 06-11-1996 Death
134 110 M 24/12/1886 09-09-1997 Death
135 110 M 16/10/1878 13-06-1989 Death
136 110 F 18/03/1887 27-10-1997 Death
137 110 F 08/08/1886 01-12-1996 Death
138 110 F 24/05/1879 08-09-1989 Death
139 110 F 06/11/1887 19-01-1998 Death
140 110 F 21/04/1895 02-06-2005 Death
141 110 F 21/11/1883 25-11-1993 Death
142 110 F 22/04/1894 26-04-2004 Death

Table 3: Validated Supercentenarians in Spain as January 2011, HLD

5 Forecasting the maximum life span

In this section we assume that mean estimates of the limiting age ω can intrinsi-

cally be viewed as stochastic process. In this sense, standard Box-Jenkins tech-

niques are used to estimate and forecast ωt within an ARIMA(p, d, q) time series

model. Let {ω̂t, t = tmin, . . . , tmax} denote a realization of the finite chronologic

time series K = {ωt, t ∈ N} . The model takes the general form

(1−B)d ωt = µ +
Θq (B) ǫt
Φq (B)
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where B is the delay operator (i.e., B (ωt) = ωt−1, B2 (ωt) = ωt−2, . . .), 1 −
B is the difference operator (i.e., (1−B)ωt = ωt − ωt−1, (1−B)2t ω = ωt −
2ωt−1 + ωt−2, . . .), Θq (B) is the Moving Average polynomial, with coefficients

θ = (θ1, θ2, . . . , θq), Φq (B) is the Autoregressive polynomial, with coefficients

φ =
(

φ1, φ2, . . . , φp

)

, and ǫt is white noise with variance σ2
ǫ .

Before proceeding to estimate the model, we tested for the existence of unit

roots in order to determine if the variables were non-stationary, using the adjusted

Dickey-Fuller (ADF) test (Dickey and Fuller, 1979). We used two approaches to

determine the number of lags to be included in the model in order to determine

the order of the autoregression and to eliminate correlation in the residuals. More

specifically, we determine the optimal number of lags by examining the BIC cri-

terion and by examining the t−values on coefficients and use the Durbin Watson

statistic (Durbin and Watson, 1950) to check for first order autocorrelation in

the residuals. We tested for the inclusion of a trend and/or a drift term in the

specification of the model in those cases where it was significant.

Table 4 reports the ADF test results of the variables in levels and in first

differences. The results for the variables in levels indicate that we cannot reject

the existence of a unit root in all series K. The results of the ADF test on the

first difference of these variables indicate that they are I(1) in levels.

Country Population Variables in levels 1st Difference series

Statistic p-value Statistic p-value

Total -3.0975 0.12503 -5.237 0.00019

Portugal Male -2.8432 0.19402 -4.9208 0.00044

Female -2.3763 0.38356 -5.4952 0.00009

Total -2.5343 0.31067 -6.2326 0.00001

Spain Male -2.3169 0.41276 -5.9486 0.00003

Female -3.541 0.05290 -6.3728 0.00001

Table 4: Augmented Dickey-Fuller (ADF) tests for the existence of a unit root

in the time series of the limiting age

The results of the ADF tests indicate that the series under analysis are I(1)

so we stationarize them by estimating the model in first annual differences. Next,

we followed the standard identification, estimation, diagnostic checking and fore-

casting stages of the Box-Jenkins methodology to estimate the ARIMA((p, d, q)
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models for each time series. To determine whether AR or MA terms are needed

to correct any autocorrelation that remains in the differenced series we looked at

the autocorrelation function (ACF) and partial autocorrelation (PACF) plots of

the differenced series and selected the model that performs better under the BIC

Information criterion. Table 5 resumes the results of this procedure and exhibits

the best ARIMA(p, d, q) model selected for each population and corresponding

BIC criterion.

Portugal Spain

Model/Criterion Total Male Female Total Male Female

ARIMA(p, d, q) (0, 1, 1) (0, 1, 1) (1, 1, 0) (0, 1, 1) (0, 1, 1) (0, 1, 2)

BIC 86.39 123.46 67.36 134.99 109.53 52.88

LB test statistic 12.7193 8.7496 9.4621 15.9864 26.8666 8.4879

LB test p− value 0.8891 0.9856 0.9769 0.7175 0.1391 0.9881

Table 5: Best ARIMA(p,d,q) model and BIC Information criterion

Finally, to investigate whether the forecast errors of the ARIMA models are

normally distributed with mean zero and constant variance, and whether the

are correlations between successive forecast errors we checked the correlogram

of the residuals and tested formally the null hypothesis of zero autocorrelation

considering the Ljung-Box (LB) test. The results exhibited in Table 5 indicate

that we cannot reject the null hypothesis of null autocorrelation between the

model residuals.

In Figure we show the estimated and forecasted values of the maximum life

span ωt and corresponding 50-99 % confidence intervals.

We forecast an increase in the theoretical maximum life span over time for all

populations, more pronounced in the male subpopulation. However, it should be

stressed that the amplitude of the confidence intervals gives a clear measure of

the significant uncertainty in the forecasted values.
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Figure 9: Estimated and forecasted values of the maximum life span ωt and

corresponding 50-99 % confidence intervals.
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6 Conclusion

Old-age mortality for populations of developed countries has been improving

rapidly over the last decades. Mortality improvements are naturally viewed as

a positive change for individuals and as a substantial social achievement for soci-

eties, but they challenge actuaries, economists, demographers and policy planners

in obtaining a reliable estimate of old-age mortality in preparing their demo-

graphic and financial projections. In this paper, we use EVT to model the statis-

tical behaviour of mortality rates over a given high threshold age and to estimate

the theoretical maximum life span in the Portuguese and Spanish male, female

and total populations. We observe a good fit of the model in all populations and

subperiods analysed and on the whole life span considered. The empirical results

derived in this study suggest the existence of an increasing over time finite upper

bound for the survival distribution, i.e., indicate the existence of a theoretical

end point of a life table. This result is crucial for actuaries that need a reliable

model of old-age mortality for pricing and reserve calculations and for implement

longevity risk management techniques. Using standard time series methods we

forecast an increase in the highest attained age in all populations, more significant

in the male subpopulation.
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