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Abstract. Systems of linear equations, called �exible systems, with coe¢ cients having uncer-
tainties of type o (:) or O (:) are studied. In some cases an exact solution may not exist but a general
theorem that guarantees the existence of an admissible solution, in terms of inclusion, is presented.
This admissible solution is produced by Cramer�s Rule; depending on the size of the uncertainties
appearing in the matrix of coe¢ cients and in the constant term vector some adaptations may be
needed.
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1. Introduction. The aim of this work is to �nd conditions that guarantee
the existence of an admissible solution, in terms of inclusion, for systems of linear
equations which have entries that are not exact: the matrix of coe¢ cients and/or the
constant term vector of the system have coe¢ cients with uncertainties of type o (:) or
O (:). Uncertainties of this kind can be seen as groups of functions and they have been
generalized by Van der Corput [1] in a theory of neglecting where these uncertainties
are called neutrices. We use an alternative approach to Van der Corput�s program
within nonstandard analysis where neutrices will now be convex external subsets of
the nonstandard real number system which are groups for addition; an example is
given by the external set of all in�nitesimals.

The kind of systems under consideration will be called �exible systems of linear
equations. We will show that admissible solutions of a non-singular non-homogeneous
�exible system of linear equations are given by Cramer�s Rule, with some restrictions
induced by the size of the uncertainties of the system. For a review of Cramer�s Rule
we refer to [9] and [4].

This article has the following structure. In Section 2 we recall the notions of
neutrix and external number and their operations. In Section 3 we de�ne �exible
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systems of linear equations and introduce the notions of admissible and exact solu-
tions. In Section 4 we present conditions upon the size of the uncertainties appearing
in a �exible system of linear equations that guarantee that an admissible solution
is produced by Cramer�s Rule. We also investigate appropriate adaptations under
weaker conditions. We then present the Main Theorem and give some examples that
illustrate it. In Section 5 we present the proof of the Main Theorem. In Section 6 we
present some applications of the Main Theorem. We start by showing that an admis-
sible solution of a reduced �exible system of 2 by 2 linear equations given by Cramer�s
Rule is always an admissible solution produced by Gauss-Jordan elimination. Then
we show that the admissible solution is in fact the exact solution of the system.

To indicate strict set identity we will use the symbol "=". The symbol "�"
represents inclusion. Strict inclusion is denoted by "�".

2. Neutrices and External numbers. The setting of this article is the ax-
iomatic nonstandard analysis IST as presented by Nelson in [8]. A recent introduction
to IST is contained in [3]. We use freely external sets where we follow the approach
HST as indicated in [5]; this is an extension of an essential part of IST . For a
thorough introduction to external numbers with proofs we refer to [6] and [7].

We recall that within IST the nonstandard numbers are already present in the
standard set R. In�nitesimal numbers (or in�nitesimals) are real numbers that are
smaller, in absolute value, than any positive standard real number. In�nitely large
numbers are reciprocals of in�nitesimals, i.e. real numbers larger than any standard
real number. Limited numbers are real numbers which are not in�nitely large and
appreciable numbers are limited numbers which are not in�nitesimals. The external
set of all in�nitesimal numbers is denoted by �, the external set of all limited numbers
is denoted by $, the external set of all positive appreciable numbers is denoted by @
and the external set of all positive in�nitely large numbers by /1.

A neutrix is an additive convex subgroup of R. Except for f0g and R, all neutrices
are external sets. The most common neutrices are � and $. All other neutrices
contain $ or are contained in �. Examples of neutrices contained in � are "$,
"� and $" /1, numbers smaller than any standard power of ", where " is a positive
in�nitesimal. Examples of neutrices that contain $ are !$, !� and !2$, where !
is an in�nitely large number. The external class of all neutrices is denoted by N .
Neutrices are totally ordered by inclusion. Addition and multiplication on N are
de�ned by the Minkowski operations as it follows:

A+B = fa+ b j (a; b) 2 A�Bg

and

AB = fab j (a; b) 2 A�Bg ;
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for A;B 2 N .

The sum of two neutrices is the largest one for inclusion.

Proposition 2.1. If A;B 2 N , then A+B = max (A;B) :

Neutrices are invariant under multiplication by appreciable numbers.

Proposition 2.2. If A 2 N , then @A = A:

An external number is the algebraic sum of a real number and a neutrix. If a 2 R
and A 2 N , then � � a+A 2 E and A is called the neutrix part of �, being denoted
as N (�); N (�) is unique but a is not because for all c 2 �, � = c+ N (�). We then
say that c is a representative of �. Clearly, neutrices are external numbers such that
the representative may be chosen equal to 0. All classical real numbers are external
numbers with the neutrix part equal to f0g. The external class of all external numbers
is denoted by E. An external number � is called zeroless, if 0 =2 �. Let � = a + A

be zeroless. Then its relative uncertainty R (�) is de�ned by the neutrix A=a. Notice
that A=a = A=�, hence R (�) is independent of the choice of a; also R (�) � � (see
Lemmas 5.1 and 5.2). Let � = a + A and � = b + B be two external numbers.
Then either � and � are disjoint or one contains the other. Addition, subtraction,
multiplication and division of � with � are given by Minkowski operations. One shows
that

�+ � = a+ b+max (A;B) ;

�� � = a� b+max (A;B) ;
�� = ab+max (aB; bA;AB)

= ab+max (aB; bA) if � or � is zeroless;
�

�
=
a

b
+
1

b2
max (aB; bA) =

��

b2
; with � zeroless.

The relation � 6 � if and only if ] � 1; �] �] � 1; �] is a relation of total order
compatible with addition and multiplication. In practice, calculations with external
numbers tend to be rather straightforward as it will be illustrated by the following
examples.

Let " be a positive in�nitesimal. Then

(6 +�) + (�2 + "$) = (6� 2) + (�+ "$) = 4 +�;

(6 +�)(�2 + "$) = 6 (�2) + (�2)�+6"$+�"$
= �12 +�+ "$+ "� = �12 +�;
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6 +�
�2 + "$ =

6

�2 �
1 +�=6
1 + "$=2

= (�3) 1 +�
1 + "$

= (�3) (1 +�)(1 + "$) = �3 +�:

However, multiplication of external numbers is not fully distributive, for instance

�" = �(1 + "� 1) � �(1 + ")�� � 1 = �+� = �:

Yet distributivity can be entirely characterized [2]. Let � = a+A, � and  be external
numbers, where a 2 R and A is a neutrix. Important cases where distributivity is
veri�ed are

(2.1) a(� + ) = a� + a

and

(2.2) (a+A)� = a� +A�:

Also subdistributivity always holds, this means that �(�+) � ��+�; the property
follows from the well-kown property of subdistributivity of interval calculus.

Definition 2.3. Let A be a neutrix and � be an external number. We say that
� is an absorber of A if �A � A.

Example 2.4. According to Proposition 2.2, appreciable numbers are not ab-
sorbers. So an absorber must be an in�nitesimal. Let " be a positive in�nitesimal.
Then " is an absorber of � because "� � �. However, not necessarily all in�nitesimals
are absorbers of a given neutrix, for instance "$"� /1 = $"� /1.

3. Flexible systems of linear equations. In this section we introduce some
notations and de�ne the �exible systems and some related notions.

Notation 3.1. Let m;n 2 N be standard. For 1 6 i 6 m; 1 6 j 6 n; let
�ij = aij +Aij , with aij 2 R and Aij 2 N . We denote

1. A = [�ij ], an m� n matrix
2. � = max

16i6m
16j6n

j�ij j

3. a = max
16i6m
16j6n

jaij j

4. A = max
16i6m
16j6n

Aij

5. A = min
16i6m
16j6n

Aij :
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In particular, for a column vector B = [�i], with �i = bi + Bi 2 E for 1 6 i 6 n,
we denote � = max

16i6n
j�ij, b = max

16i6n
jbij, B = max

16i6n
Bi and B = min

16i6n
Bi:

We observe that not all equations with external numbers can be solved in terms of
equalities. For instance, no external number, or even set of external numbers, satis�es
the equation �� = $ since one should have � � $ and �$ = � � $. So we will
study inclusions instead of equalities.

Definition 3.2. Let m;n 2 N be standard and �ij = aij + Aij ; �i = bi + Bi;

�j = xj +Xj 2 E for 1 6 i 6 m; 1 6 j 6 n. We call8><>:
�11�1+ ::: +�1j�j+ ::: +�1n�n � �1
...

...
...

...
�m1�1+ ::: +�mj�j+ ::: +�mn�n � �m

a �exible system of linear equations.

Definition 3.3. Let n 2 N be standard. Let A = [�ij ] be an n�n matrix, with
�ij = aij + Aij 2 E; and let B = [�i] be a column vector, with �i = bi + Bi 2 E for
all i; j 2 f1; :::; ng.

1. A is called a non-singular matrix if � = detA is zeroless.

2. B is called an upper zeroless vector if � is zeroless.

Definition 3.4. Let n 2 N be standard and �ij = aij + Aij ; �i = bi + Bi;

�j = xj +Xj 2 E for all i; j 2 f1; :::; ng. Consider the square �exible system of linear
equations

(3.1)

8><>:
�11�1+ ::: +�1j�j+ ::: +�1n�n � �1
...

...
...

...
�n1�1+ ::: +�nj�j+ ::: +�nn�n � �n

;

with matrix representation given by AX � B. If A is a non-singular matrix, the
system is called non-singular. If B is an upper zeroless vector, the system is called
non-homogeneous. Moreover, if 1 is a representative of �, A is called a reduced matrix
and we speak about a reduced system. If external numbers �1; :::; �n can actually be
found to satisfy (3:1), the column vector (�1; :::; �n)

T is called an admissible solution of
AX � B. A solution � = (�1; :::; �n)

T of the system (6:2) is maximal if no (external)
set � � � satis�es this �exible system. If �1; :::; �n satisfy the system (3:1) with
equalities, the column vector (�1; :::; �n)

T is called the exact solution of AX � B.

4. Existence of admissible solutions. Not all non-singular non-homogeneous
�exible systems of linear equations can be resolved by Cramer�s Rule. We need to
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control the uncertainties of the system in order to guarantee that Cramer�s Rule
produces a valid solution and, if necessary, to make some adaptations. The matrix A
of coe¢ cients has to be more precise, in a sense, than the constant term vector B. The
general theorem presented in this section shows that, under certain conditions upon
the size of the uncertainties appearing in a non-singular non-homogeneous �exible
system of linear equations, it is possible to guarantee the existence of admissible
solutions by Cramer�s Rule. Even when not all of those conditions are satis�ed it
is still possible, in some cases, to obtain an admissible solution given by adapting
Cramer�s Rule, where we neglect some uncertainties of the system.

In this section we will simply call a non-singular non-homogeneous �exible sys-
tem of linear equations �exible system and a reduced non-singular non-homogeneous
�exible system of linear equations reduced �exible system.

We start by de�ning the kind of precision needed in order to control the uncer-
tainties appearing in a �exible system.

Definition 4.1. Let n 2 N be standard. Let A = [�ij ]n�n be a non-singular
matrix, with �ij = aij + Aij 2 E, and B = [�i]n�1 be an upper zeroless vector, with
�i = bi +Bi 2 E for 1 6 i; j 6 n.

We de�ne the relative uncertainty of A by

R (A) = A�n�1��:

We de�ne the relative precision of B by

P (B) = B��:

Remark 4.2. If A = [�], with � = a+ A zeroless, the relative uncertainty of A
reduces to A=a, the relative uncertainty of the external number detA = �. In general
R (A) gives an upper bound of the relative uncertainty of detA. Note that if � � @
we simply have R (A) = A��.

Notation 4.3. Let n 2 N be standard. Let A = [�ij ] be an n� n matrix, with
�ij = aij + Aij 2 E, and B = [�i] be a column vector, with �i = bi + Bi 2 E, for
1 6 i; j 6 n. We denote

Mj =

264 �11 ::: �1(j�1) �1 �1(j+1) ::: �11
...

...
...

...
...

�n1 ::: �n(j�1) �n �n(j+1) ::: �nn

375
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Mj (b) =

264 �11 ::: �1(j�1) b1 �1(j+1) ::: �11
...

...
...

...
...

�n1 ::: �n(j�1) bn �n(j+1) ::: �nn

375

Mj (a; b) =

264 a11 ::: a1(j�1) b1 a1(j+1) ::: a11
...

...
...

...
...

an1 ::: an(j�1) bn an(j+1) ::: ann

375 :

Theorem 4.4. (Main Theorem) Let n 2 N be standard. Let A = [�ij ] be a non-
singular matrix, with �ij = aij +Aij 2 E and � = detA = d+D, and let B = [�i] be
an upper zeroless vector, with �i = bi +Bi 2 E for 1 6 i; j 6 n. Consider the �exible
system AX � B where X = [�i] ; with �i = xi +Xi 2 E for all i 2 f1; :::; ng.

1. If R (A) � P (B), then

X =

2664
detM1(b)

d
...

detMn(b)
d

3775
is an admissible solution of AX�B.

2. If R (A) � P (B) and � is not an absorber of B, then

X =

2664
detM1(b)

�
...

detMn(b)
�

3775
is an admissible solution of AX�B.

3. If R (A) � P (B), � is not an absorber of B and B = B, then

X =

264
detM1

�
...

detMn

�

375
is an admissible and maximal solution of AX�B.

We will call
�
detM1

� ; :::; detMn

�

�T
the Cramer-solution of the �exible system (3:1).

So Part 3 of Theorem 4.4 states conditions guaranteeing that the Cramer-solution
maximally satis�es (3:1).

Under the weaker conditions of Part 2, one is forced to substitute the constant
term vector B by a representative, the uncertainties occurring in B possibly being too
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large. If only the condition on the relative precision R (A) � P (B) is known to hold,
also the determinant � must be substituted by a representative. The condition that
� should not be so small as to be an absorber of B may be seen, in a sense, as a
generalization of the usual condition on non-singularity of determinant of the matrix
of coe¢ cients, i.e. that this determinant should be non-zero.

We show now some examples which illustrate the role of the conditions presented
in Theorem 4.4.

The �rst two examples show that not all �exible systems can be resolved by
Cramer�s Rule and also illustrate the importance of the condition on precision in a
�exible system.

Example 4.5. Let " be a positive in�nitesimal. Consider the following non-
homogeneous �exible system of linear equations�

(3 + "�)x+ (�1 +�) y = 1 + "$
(2 + "$)x+ (1 + "�) y = "$:

A real part of this system is given by
�
3x� y = 1
2x+ y = 0

which has the exact solution�
x = 1

5

y = � 2
5

.

We have � =

���� 3 + "� �1 +�
2 + "$ 1 + "�

���� = 5 + �, which is zeroless. So the initial system
is non-singular. When we apply Cramer�s Rule, we get

x =

���� 1 + "$ �1 +�
"$ 1 + "�

����
�

=
1 + "$

5 +� =
1

5
+�

y =

���� 3 + "� 1 + "$

2 + "$ "$

����
�

=
�2 + "$
5 +� = �2

5
+�:

However, this is not a valid solution because

(3 + "�)x+ (�1 +�) y = (3 + "�)
�
1

5
+�

�
+ (�1 +�)� 2

5
+�

= 1 +� � 1 + "$

and

(2 + "$)x+ (1 + "�) y = (2 + "$)
�
1

5
+�

�
+ (1 + "�)

�
�2
5
+�

�
= � � "$:



Cramer�s Rule Applied to Flexible Systems 9

In fact, using representatives, it is easy to show that this system does not have solu-
tions at all.
We have R (A) = A��� = 3�

5+� = � and P (B) = B�� = "$
1+"$ = "$. So

R (A) " P (B) and Theorem 4.4 cannot be applied, although � is not an absorber of
B, since �B = "$ = B, and B = B = "$.

Example 4.6. Let " be a positive in�nitesimal. Consider the following �exible
system: �

3x+ (�1 + "�) y = 1 + "$
2x+ y = "$:

Its matrix representation is given by AX = B, where

X =

�
x

y

�
, A =

�
3 �1 + "�
2 1

�
, B =

�
1 + "$

"$

�
:

We have A = "�; B = "$ and � = detA =
���� 3 �1 + "�
2 1

���� = 5 + "� zeroless. Also
(i) R (A) = "� � "$ = P (B), (ii) � is not an absorber of B since �B = "$ = B and
(iii) B = "$ = B. Hence all the conditions of Part 3 of Theorem 4.4 are satis�ed. By
applying Cramer�s Rule we get

x =

���� 1 + "$ �1 + "�
"$ 1

����
�

=
1 + "$

5 + "� =
1

5
+ "$

y =

���� 3 1 + "$

2 "$

����
�

=
�2 + "$
5 + "� = �2

5
+ "$:

When testing the validity of this solution, we have indeed that

3x+ (�1 + "�) y = 3
�
1

5
+ "$

�
+ (�1 + "�)

�
�2
5
+ "$

�
= 1 + "$

and

2x+ y = 2

�
1

5
+ "$

�
+

�
�2
5
+ "$

�
= "$:

Notice that this system has the same real part as the previous system, to which
Cramer�s Rule could not be applied.

The following example also satis�es the conditions of Part 3 of Theorem 4.4,
which guarantee the validity of the solution produced by Cramer�s Rule.
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Example 4.7. Let " be a positive in�nitesimal. Consider the following �exible
system 8<:

�
1 + "2�

�
x+ y +

�
1 + "3$

�
z = 1

" + "��
2 + "3$

�
x+

�
�1 + "2�

�
y � z = "��

"+ "3�
�
x+ y +

�
2 + "2�

�
z = 1 + "� :

Given its matrix representation AX = B, one has that

� =

������
1 + "2� 1 1 + "3$

2 + "3$ �1 + "2� �1
"+ "3� 1 2 + "2�

������ = �3 + "2 � is zeroless,
R (A) = A�2�� = 4"2�

�3+"2� = "2� and P (B) = B�� = "�
1
"+"�

= "2�. So (i)
R (A) � P (B), (ii) � is not an absorber of B since �B = "� = B and (iii) B = B =
"�. When we apply Cramer�s Rule, we get

x =

������
1
" + "$ 1 1 + "3$

"$ �1 + "2� �1
1 + "$ 1 2 + "2�

������
�

=
� 1
" + "�

�3 + "2� =
1

3"
+ "�

y =

������
1 + "2� 1

" + "$ 1 + "3$

2 + "3$ "$ �1
"+ "3� 1 + "$ 2 + "2�

������
�

=
2� 4

" + "�
�3 + "2� =

4

3"
� 2
3
+ "�

z =

������
1 + "2� 1 1

" + "$

2 + "3$ �1 + "2� "$

"+ "3� 1 1 + "$

������
�

=
2
" � 2 + "�
�3 + "2� = � 2

3"
+
2

3
+ "� :

When testing the validity, we �nd that (x; y; z)T satis�es the equations. Indeed�
1 + "2�

�
x+ y +

�
1 + "3$

�
z

=
�
1 + "2�

�� 1
3"
+ "�

�
+

�
4

3"
� 2
3
+ "�

�
+
�
1 + "3$

��
� 2

3"
+
2

3
+ "�

�
=
1

"
+ "�

�
2 + "3$

�
x+

�
�1 + "2�

�
y � z

=
�
2 + "3$

�� 1
3"
+ "�

�
+
�
�1 + "2�

�� 4
3"
� 2
3
+ "�

�
�
�
� 2

3"
+
2

3
+ "�

�
= "�

�
"+ "3�

�
x+ y +

�
2 + "2�

�
z

=
�
"+ "3�

�� 1
3"
+ "�

�
+

�
4

3"
� 2
3
+ "�

�
+
�
2 + "2�

��
� 2

3"
+
2

3
+ "�

�
= 1 + "� :
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The next example refers to Part 2 of Theorem 4.4.

Example 4.8. Let " be a positive in�nitesimal. Consider the following �exible
system: �

3x+ (�1 + "�) y = 1 +�
2x+ y = "$:

Its matrix representation is given by AX = B, with

X =

�
x

y

�
, A =

�
3 �1 + "�
2 1

�
, B =

�
1 +�
"$

�
:

We have A = "� and B = "$. The determinant � = detA =

���� 3 �1 + "�
2 1

���� =
5 + "� is zeroless. One has R (A) = "� � "$ = P (B) and � is not an absorber of
B. However B = "$ 6= � = B. So this system satis�es only the conditions of Part 2
of Theorem 4.4. Cramer�s Rule yields

x =

���� 1 +� �1 + "�
"$ 1

����
�

=
1 +�
5 + "� =

1

5
+�

y =

���� 3 1 +�
2 "$

����
�

=
�2 +�
5 + "� = �2

5
+�:

This is not a valid solution. Indeed

2x+ y =
2

5
+�+

�
�2
5
+�

�
= � � "$:

If we ignore the uncertainties of the constant term vector in detM1 and detM2, by
Part 2 of Theorem 4.4, Cramer�s Rule produces an admissible solution:

x =

���� 1 �1 + "�
0 1

����
�

=
1

5 + "� =
1

5
+ "�

y =

���� 3 1

2 0

����
�

=
�2

5 + "� = �2
5
+ "� :

When testing the validity of this solution, we have indeed that

3x+ (�1 + "�) y = 3

5
+ "�+2

5
+ "� = 1 + "� � 1 +�
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and

2x+ y =
2

5
+ "��2

5
+ "� = "� � "$:

In the last example we may apply only Part 1 of Theorem 4.4.

Example 4.9. Let " be a positive in�nitesimal. Consider the following �exible
system: �

3x+
�
�1 + "2�

�
y = 1 +�

2"x+ "y = "$:

Here the matrix representation is given by AX = B, with

X =

�
x

y

�
, A =

�
3 �1 + "2�
2" "

�
, B =

�
1 +�
"$

�
:

We have A = "2� and B = "$. The determinant � = detA =
���� 3 �1 + "2�
2" "

���� =
5" + "3� is in�nitesimal, yet zeroless. It holds that R (A) = "� � "$ = P (B) but
� is an absorber of B because �B = "2$ � "$ = B. So this system satis�es the
condition of Part 1 of Theorem 4.4. By applying Cramer�s Rule we get

x =

���� 1 +� �1 + "2�
"$ "

����
�

=
"$

5"+ "3� = $

y =

���� 3 1 +�
2" "$

����
�

=
"$

5"+ "3� = $:

These results are clearly not valid, because

3x+
�
�1 + "2�

�
y = 3$+

�
�1 + "2�

�
$ = $ � 1 +�:

Observe that the results produced by Cramer�s Rule are not even zeroless though the
determinant is zeroless and the constant term vector is upper zeroless.
If we ignore the uncertainties of the constant term vector and the uncertainty of �,
by the application of Part 1 of Theorem 4.4, the solution produced by Cramer�s Rule
is now admissible. One has

x =

���� 1 �1 + "2�
0 "

����
d

=
"

5"
=
1

5

y =

���� 3 1

2" 0

����
d

= �2"
5"
= �2

5
:
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When testing the validity of this solution, we have indeed that

3x+
�
�1 + "2�

�
y =

3

5
� 2
5

�
�1 + "2�

�
= 1 + "2� � 1 +�

and

2"x+ "y =
2"

5
� 2"
5
= 0 � "$:

5. Proof of Theorem 4.4. We present now some preliminary results and some
Lemmas that will be used in the proof of Theorem 4.4.

We start by recalling some simple results about calculation properties of external
numbers.

Lemma 5.1. Let � = a + A be a zeroless external number. Then its relative
uncertainty R(�) = A=a satis�es

A

a
� �:

Proof. Since � = a + A is zeroless, one has 0 =2 � and so jaj > A. Hence A
a < 1

and so A
a � � because there is no neutrix strictly included in $ and which strictly

contains �.

Lemma 5.2. Let A be a neutrix and � = b + B be a zeroless external number.
Then A

� =
A
b and A� = Ab:

Proof. Since B � b� by Lemma 5.1, AB � �bA � bA. Hence A
� = 0+A

b+B =
bA
b2 =

A
b and A� = (0 +A) (b+B) = max (bA;AB) = Ab.

Lemma 5.3. Let a 2 R, A 2 N and n 2 N be standard. If jaj > A, then

N ((a+A)
n
) = an�1A:

Proof. Since jaj > A, we have (a+A)2 = (a+A) (a+A) = a2 + aA. So
(a+A)

3
= (a+A) (a+A)

2
= (a+A)

�
a2 + aA

�
= a3 + a2A. Using external induc-

tion, we conclude that

(a+A)
n
= an + an�1A:
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Hence N ((a+A)n) = an�1A:

Below some useful upper bounds with respect to matrices and determinants will
be derived.

Remark 5.4. Let A = [�ij ] be a reduced non-singular matrix, with �ij =
aij +Aij 2 E for 1 6 i; j 6 n and � = detA. Since � is zeroless, one has � � 1 +�
by Lemma 5.1. Consequently Aij � � for all i; j 2 f1; :::; ng, hence A � �:

Lemma 5.5. Let n 2 N be standard. Let A = [�ij ] be a reduced non-singular
matrix, with �ij = aij +Aij 2 E for 1 6 i; j 6 n and � = detA = d+D. Then

D = N (�) � A:

Proof. Let Sn denote the set of all permutations of the set f1; 2; :::; ng and � =
(p1; :::; pn) 2 Sn. Let � = (a1p1 +A1p1) � ::: � (anpn +Anpn). Because a = 1, by
Remark 5.4, one has jakpk j 6 a = 1 and Akpk � A � � for all k 2 f1; :::; ng. So, by
Lemma 5.3, N (�) � N

��
1 +A

�n�
= A.

Now,

� =

�������
a11 +A11 ::: a1n +A1n

...
...

an1 +An1 ::: ann +Ann

������� =
X
�2Sn

sgn (�) �

=
X
�2Sn

sgn (�) (a1p1 � ::: � anpn +N (�)) ;

with sgn (�) 2 f�1; 1g : Then

N (�) =
X
�2Sn

N (�) � n!A = A:

Lemma 5.6. Let n 2 N be standard. Let A = [�ij ]n�n be a reduced non-singular
matrix with �ij = aij + Aij 2 E and B = [�i]n�1 be an upper zeroless vector with
�i = bi +Bi 2 E, for 1 6 i; j 6 n. Then, for all j 2 f1; :::; ng

(i) detMj < 2n!�:

(ii) N (detMj (b)) � b:A and N (detMj) � b:A+B:

Proof. Let Sn be the set of all permutations of f1; 2; :::; ng and � = (p1; :::; pn) a
permutation of Sn. We have � zeroless and, for 1 6 j 6 n,

Mj =

264 �11 ::: �1(j�1) �1 �1(j+1) ::: �1n
...

...
...

...
...

�n1 ::: �n(j�1) �n �n(j+1) ::: �nn

375 :
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Let � = �1p1 � ::: ��(j�1)pj�1�(j+1)pj+1 � ::: ��npn and i(= i�) be such that sgn (�) ��i
is one of the terms of detMj . Because a = 1, by Remark 5.4, it holds that � � 1+�
and A � �. So j�j 6 �n�1 6 1 +�.

(i) One has

detMj =
X
�2Sn

sgn (�) ��i 6
X
�2Sn

j��ij 6 n! (1 +�)� < 2n!�:

(ii) By Lemma 5.3, N (�) � N
��
1 +A

�n�1�
= A. Then, for 1 6 j 6 n

N (detMj (b)) = N

 X
�2Sn

sgn (�) �bi

!
=
X
�2Sn

N (�bi)

=
X
�2Sn

biN (�) � n!b:A = b:A:

So, for 1 6 j 6 n

N (detMj) = N

 X
�2Sn

sgn (�) ��i

!
=
X
�2Sn

N (��i)

=
X
�2Sn

�N (�i) + �iN (�) �
X
�2Sn

j�jB + biN (�)

� n!
�
B + b:A

�
= B + b:A:

Lemma 5.7. Let n 2 N be standard. Let A = [�ij ] be a reduced non-singular
matrix, with �ij = aij+Aij 2 E and � = detA = d+D, and let B = [�i] be an upper
zeroless vector, with �i = bi +Bi 2 E, for 1 6 i; j 6 n. Consider the reduced �exible
system AX � B. Assume that X =

�
�j
�
, with �j = xj +Xj 2 E for all j 2 f1; :::; ng,

is an admissable solution, and R (A) � P (B). Then

1. Ax �
�
A��

�
� � B, with x = max

16j6n
jxj j :

2. If N
�
�j
�
� B for all j 2 f1; :::; ng, for all i 2 f1; :::; ng one has

N

0@ nX
j=1

�ij�j

1A � N (�i) :

Proof. 1. Because A is a non-singular matrix, � is zeroless. So d 6= 0. Moreover,
since A is a reduced matrix, a = 1 and so R (A) = A��.
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By Cramer�s Rule

2664
detM1(a;b)

d
...

detMn(a;b)
d

3775 is the only solution of the classical linear sys-
tem PY = C, where P = [aij ]n�n is a real matrix and Y = [xi]n�1 and C = [bi]n�1
are real column vectors, with i; j 2 f1; :::; ng.

So x =
���detMk(a;b)

d

��� for some k 2 f1; :::; ng. By Part (i) of Lemma 5.6 we have in
particular that detMk (a; b) < 2n!b 6 2n!�. Then using Lemma 5.2

Ax = A
detMk (a; b)

d
� A

d
2n!� =

A

�
�

= R (A)� � P (B)� =
�
B��

�
� � B:

Hence Ax �
�
A��

�
� � B:

2. Suppose that N
�
�j
�
� B for all j 2 f1; :::; ng. Then, using Lemma 5.2 and

Part 1, one has for all i 2 f1; :::; ng

N

0@ nX
j=1

�ij�j

1A =

nX
j=1

N
�
�ij�j

�
=

nX
(

j=1

�ijN
�
�j
�
+ �jN (�ij))

=
nX
(

j=1

aijN
�
�j
�
+ xjN (�ij)) �

nX
(

j=1

aB + xA)

= n
�
B + xA

�
� B +B = B � N (�i) :

Hence N

 
nP
j=1

�ij�j

!
� N (�i) ; for all i 2 f1; :::; ng.

We are now able to present the proof of the Theorem 4.4, starting with the case
of reduced �exible systems.

Proof of Theorem 4.4. We assume �rst that a = 1. Because A is a non-singular
matrix, � = detA = d+D is zeroless. So d 6= 0 and 1

� =
1

d+D = 1
d +

D
d2 . Hence, by

Lemma 5.2

(5.1) N

�
1

�

�
=
D

d2
=
D

�2
:

For all i; j 2 f1; :::; ng ; let x = [xj ] be a solution of the system
Xn

j=1
aijxj = bi.

Then by distributivity regarding multiplication by real numbers [2] and Part 1 of
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Lemma 5.7

�i1x1 + :::+ �inxn = (ai1 +Ai1)x1 + :::+ (ain +Ain)xn

= (ai1x1 + :::+ ainxn) + (Ai1x1 + :::+Ainxn)

� bi +Ax � bi +B � bi +Bi = �i:

To complete the proof consider now the neutricial part of the system AX � B.

1. By Part (ii) of Lemma 5.6, Lemma 5.2 and Part 1 of Lemma 5.7, for all
j 2 f1; :::; ng

(5.2) N

�
detMj (b)

d

�
=
1

d
N (detMj (b)) �

b:A

d
=
�
A��

�
� � B:

So N
�
�j
�
= N

�
detMj(b)

d

�
� B for all j 2 f1; :::; ng. Hence X =

h
detMj(b)

d

i
16j6n

is

a solution of AX�B by Part 2 of Lemma 5.7.

2. Suppose that � is not an absorber of B. So B � �B and we have

(5.3) B�� � B:

Then using Lemma 5.2 and formula (5.1), for all j 2 f1; :::; ng

N
�
�j
�
= N

�
detMj (b)

�

�
=
1

�
N (detMj (b)) + detMj (b) �N

�
1

�

�
=
1

d
N (detMj (b)) + detMj (b) �

D

�2

= N

�
detMj (b)

d

�
+
detMj (b)

�
� D
�
:

Using formula (5.2), Part (i) of Lemma 5.6 and Lemma 5.5 one derives

N

�
detMj (b)

d

�
+
detMj (b)

�

D

�
� B + 2n!�

�

A

�
= B +

�
A��

�
�

�
:

Moreover, by Part 1 of Lemma 5.7 and formula (5.3)

(5.4)

�
A��

�
�

�
� B�� � B:

Hence for all j 2 f1; :::; ng

N
�
�j
�
� B +B = B:

Therefore Part 2 of Lemma 5.7 implies that X =
h
detMj(b)

�

i
16j6n

is a solution of

AX�B.
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3. Suppose now that � is not an absorber of B and that B = B. Then using
Lemma 5.6 and formula (5.1), for all j 2 f1; :::; ng

N
�
�j
�
= N

�
detMj

�

�
=
1

�
N (detMj) + detMj �N

�
1

�

�
� 1

�

�
b:A+B

�
+ 2n!�N

�
1

�

�
=
1

�

�
b:A+B

�
+ �

D

�2
:

By Lemmas 5.2 and 5.5 and formula (5.3)

1

�

�
b:A+B

�
+�

D

�2
� �

�
A��

�
+B��+

�

�

�
A��

�
�
�
A��

�
�+B+

1

�

�
A��

�
�:

It follows from Part 1 of Lemma 5.7 and formula (5.4) that
�
A��

�
� � B and

1
�

�
A��

�
� � B. So

(5.5) N
�
�j
�
� B:

Hence X =
h
detMj

�

i
16j6n

is a solution of AX�B by Part 2 of Lemma 5.7.

As for the general case, let a be arbitrary. Because A = [�ij ] is a non-singular
matrix, � = detA is zeroless. So d 6= 0 and a 6= 0. Consider the n � n matrix
A0 = [�ij�a] � [cij + Cij ] and the column vector B0 = [�i�a]. Then A0 is a non-
singular matrix and B0 is an upper zeroless vector, with c = max

16i;j6n
jcij j = 1. So

A0X � B0 is a reduced �exible system with the same solutions as the system AX � B.
One has

R (A0) =
�
A�a

�
cn�1

��an
= Aan�1�� = R (A) � P (B) = (B��) (a�a) = P (B0) :

Hence X =
h
detMj�an
��an

i
16j6n

=
h
detMj

�

i
16j6n

satis�es the equation A0X � B0.
Then X satis�es also the equation AX�B.

Finally we prove that X is maximal. Indeed, let �1; :::; �n be such that (�1; :::; �n)
T

satis�es (6:2), and xj 2 �j for 1 6 j 6 n. Then for every choice of representatives
aij 2 �ij with 1 6 i; j 6 n there exist b1 2 �1,..., bn 2 �n such that8><>:

a11x1+ ::: +a1nxn = b1
...

...
...

an1x1+ ::: +annxn = bn

:

Put

d = det

264 a11 ::: a1n
...

...
an1 ::: ann

375 :
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Then xj =
Mj(a;b)

d 2 detMj

� for 1 6 j 6 n. Hence �j �
detMj

� for 1 6 j 6 n and so
X is maximal.

6. On Gauss-Jordan elimination. Theorem 4.4 yields closed form formulae
for column vectors of external numbers satisfying the �exible system (3:1) by inclu-
sion. In this section we study their relation with solutions obtained by Gauss-Jordan
elimination, which are of more practical interest. This will be done by direct veri�ca-
tion in the case of a reduced non-singular non-homogeneous �exible system of 2 by 2
linear equations. The veri�cations in the general case need some additional lemmas
and will be the subject of a second article.

The solution of reduced �exible systems by the operations of Gauss-Jordan elim-
ination corresponds to multiplication by certain matrices. Sum and product of ma-
trices will be de�ned pointwise.

Indeed, let A = [�ij ]m�n, B =
�
�ij
�
m�n and C =

�
jk
�
n�p, where m;n; p 2 N,

1 6 i 6 m; 1 6 j 6 n; 1 6 k 6 p and �ij ; �ij ; jk are all external numbers. Then

A+ B =
�
�ij + �ij

�
m�n

and

AC =

24 X
16j6n

�ijjk

35
m�p

:

One di¢ culty to overcome is the fact that multiplication of matrices with external
numbers is not fully distributive and associative. These are consequences of the fact
that multiplication of external numbers is not fully distributive. For an example, let
A � f0g be a neutrix. Then��

1 1

1 1

� �
1 1

�1 �1

���
A A

A A

�
=

�
0 0

0 0

�
� [0]

and�
1 1

1 1

���
1 1

�1 �1

� �
A A

A A

��
=

�
1 1

1 1

� �
A A

A A

�
=

�
A A

A A

�
6= [0] :

Still, monotony for inclusion is preserved in the following way: Let ij 2 E for
1 6 i; j 6 2 and let U; V;X; Y 2 N with U � X and V � Y . Then

(6.1)
�
11 12
21 22

� �
U

V

�
�
�
11 12
21 22

� �
X

Y

�
:
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Indeed �
11 12
21 22

� �
U

V

�
=

�
11U + 12V

21U + 22V

�
�
�
11X + 12Y

21X + 22Y

�
=

�
11 12
21 22

� �
X

Y

�
:

We use the property of subdistributivity of interval calculus in the next proposition
on matrix calculation with di¤erences. We consider the general case, for the proof is
straightforward.

Proposition 6.1. Let n 2 N be standard and let �ij ; �i; �j 2 E for all i; j 2
f1; :::; ng. Assume 264 �11 ::: �1n

...
...

�n1 ::: �nn

375
264 �1

...
�n

375 �
264 �1

...
�n

375 :
Let Bi = N (�i) for all i 2 f1; :::; ng. Let xi; yi 2 �i and ui = xi � yi for 1 6 i 6 n.
Then the column vector (u1; :::; un)

T satis�es264 �11 ::: �1n
...

...
�n1 ::: �nn

375
264 u1

...
un

375 �
264 B1

...
Bn

375 :

Proof. It follows from subdistributivity that for 1 6 i 6 n

�i1u1 + :::+ �inun = �i1 (x1 � y1) + :::+ �in (xn � yn)
� �i1x1 � �i1y1 + :::+ �inxn � �inyn
= �i1x1 + :::+ �inxn � (�i1y1 + :::+ �inyn)
� �i � �i = Bi:

For the solution of reduced �exible systems by the operations of Gauss-Jordan
elimination we will consider matrices with real entries. Then, taking pro�t of (2.1),
distributivity holds to a large extent, which leads to some convenient simpli�cations.
Below we will maintain the notations of Notation 3.1.

Definition 6.2. Let �12; �21; �22; �1; �2; �1; �2 2 E. Let a12 2 �12; a21 2 �21
and a22 2 �22. Consider the reduced non-singular non-homogeneous �exible system
of linear equations

(6.2)
�
(1 +A11) �1 + �12�2 � �1
�21�1 + �22�2 � �2:
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Let d = a22 � a21a12, then d 6= 0. We de�ne matrices G1, G2 and G3 by

G1 =
�

1 0

�a21 1

�
;G2 =

�
1 0

0 1
d

�
;G3 =

�
1 �a12
0 1

�
:

We write G [:] to indicate the repeated multiplication of matrices G3(G2(G1 � [:])).

Observe that, with A =
�
1 a12
a21 a22

�
, the matrix G1 corresponds to the subtrac-

tion of a21 times the �rst row of the second row of A, the matrix G2 divides the second
row of G1A by d and the matrix G3 subtracts the second row a12 times of the �rst
row of G2(G1A). These are the appropriate Gauss-Jordan elimination operations for

the matrix A, indeed GA = I2 with G3 (G2 � G1) = 1
d

�
a22 �a12
�a21 1

�
.

Definition 6.3. Let (x; y) 2 R2. We call (x; y)T a Gauss-solution of (6:2) if for
all choices of representatives of �12; �21; �22 and corresponding matrices one has

G
�
1 +A11 �12
�21 �22

� �
x

y

�
� G

�
�1
�2

�
:

We will asume that N (�1) = N (�2) � B. In case � is not an absorber of B
and A�� � B��, every element of the solution given by Cramer�s Rule is a Gauss-
solution and vice-versa. This will be shown in the remaining part of this section. We
start with some useful properties of multiplication of matrices.

Because the matrices G1, G2 and G3 contain only real numbers, by (2.2) distrib-
utivity holds with respect to expressions of the form a + A, with a 2 R and A 2 N .
Hence

(6.3) G
�
1 +A11 �12
�21 �22

�
= G

�
1 a12
a21 a22

�
+ G

�
A11 A12
A21 A22

�
:

Lemma 6.4. Consider the reduced non-singular non-homogeneous �exible system
(6.2). Assume that � is not an absorber of B. Let a12 2 �12; a21 2 �21 and a22 2 �22.
Then

1. B = B� = B��.

2. G
�
B

B

�
=

�
B

B

�
.

3. If A�� � B�� one has

G
�
A11 A12
A21 A22

�
�
�
B�� B��
B�� B��

�
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and

G
�
A11 A12
A21 A22

� �
B

B

�
� G

�
B

B

�
:

Proof. 1. Because (6:2) is a reduced non-singular �exible system, 0 < j�j 6
2 +� 6 3. Moreover, � is not an absorber of B. So

B � �B � 3B = B:

Hence B = B�. Moreover B�� = (B�)=� = B(�=�) = B, since �=� � 1 +�.

2. Firstly, since ja21j 6 1, one has

G1
�
B

B

�
=

�
1 0

�a21 1

� �
B

B

�
=

�
B

a21B +B

�
=

�
B

B

�
:

Secondly, by Part 1,

G2
�
B

B

�
=

�
1 0

0 1
d

� �
B

B

�
=

�
B
B
d

�
=

�
B

B

�
:

Thirdly, since ja12j 6 1,

G3
�
B

B

�
=

�
1 �a12
0 1

� �
B

B

�
=

�
B + a12B

B

�
=

�
B

B

�
:

Hence

G
�
B

B

�
= G3

�
G2
�
G1 �

�
B

B

���
=

�
B

B

�
:

3. If A�� � B��, by Part 1 one has A � B��. Then, because for all
i; j 2 f1; 2g, Aij � A � B��, using formula (6:1) and Part 2, one obtains, whenever
b is a representative of �

G
�
A11 A12
A21 A22

�
� G

�
B�� B��
B�� B��

�
= G

�
B�b B�b
B�b B�b

�
=
1

b
G
�
B B

B B

�
=
1

b

�
B B

B B

�
=

�
B�� B��
B�� B��

�
:

Moreover, also using Lemma 5.1

G
�
A11 A12
A21 A22

� �
B

B

�
� G

�
B�� B��
B�� B��

� �
B

B

�
� G

�
� �
� �

� �
B

B

�
� G

�
B

B

�
:
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We also need a property on the order of magnitude of the entries of a matrix with
respect to its determinant.

Lemma 6.5. Let A =

�
�11 �12
�21 �22

�
be the matrix of coe¢ cients of the reduced

non-singular �exible system (6.2) and � = detA. Then j�12j > �� or j�22j > ��:

Proof. One has � = �11�22 � �12�21, with j�ij j 6 1 + � for all i; j 2 f1; 2g.
Suppose that �12 � �� and �22 � ��. Then �11�22 � (1 +�) � � = �� and
�12�21 � � (1 +�)� = ��. So � � ��, which is absurd because � is zeroless.
Hence j�12j > �� or j�22j > ��.

The next two propositions yield a lower bound on the uncertainty of Cramer-
solutions and an upper bound on the uncertainty of Gauss-solutions.

Proposition 6.6. Consider the reduced non-singular non-homogeneous �exible
system of linear equations (6:2). Assume that � is not an absorber of B and that
A�� � B��. Then

N

�
detM1

�

�
= N

�
detM2

�

�
= B:

Proof. By formula (5:5), N
�
detM1

�

�
� B and N

�
detM2

�

�
� B. On the other

hand one has

a22B + a12B � (a22B + b1A22 +BA22) + (a12B + b2A12 +BA12)

= N

�
det

�
b1 +B a12 +A12
b2 +B a22 +A22

��
= N (detM1) :

By Lemma 6.5, j�12j > �� or j�21j > ��. So a22 = c1d, with jc1j > �, or
a12 = c2d, with jc2j >�. Using Part 1 of Lemma 6.4, we �nd a22B = c1dB = c1B � B
or a12B = c2dB = c2B � B. Therefore B � a22B + a12B � N (detM1). Hence

B

�
� N (detM1)

�
� N

�
detM1

�

�
:

Again by Part 1 of Lemma 6.4 one has B = B
� . So B � N

�
detM1

�

�
and we

conclude that N
�
detM1

�

�
= B.

The proof is the same for N
�
detM2

�

�
= B.

Proposition 6.7. Consider the reduced non-singular non-homogeneous �exible
system of linear equations (6:2). Assume that � is not an absorber of B and that
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A�4 � B��. Let x1;; x2;y1; y2 2 R such that (x1; x2)
T and (y1; y2)

T are Gauss-
solutions of (6:2). Let u1 = x1 � y1 and u2 = x2 � y2. Then u1 2 B and u2 2 B:

Proof. Let a12 2 �12; a21 2 �21 and a22 2 �22. Then

(6.4) G
�
1 +A11 �12
�21 �22

� �
u1
u2

�
�
�
B

B

�
;

for, using Part 2 of Lemma 6.4,

G
�
1 +A11 �12
�21 �22

� �
u1
u2

�
� G

�
1 +A11 �12
�21 �22

� �
x1
x2

�
� G

�
1 +A11 �12
�21 �22

� �
y1
y2

�
� G

�
b1 +B

b2 +B

�
� G

�
b1 +B

b2 +B

�
= G

�
b1
b2

�
+ G

�
B

B

�
� G

�
b1
b2

�
� G

�
B

B

�
=

�
B

B

�
�
�
B

B

�
=

�
B

B

�
:

Also

(6.5) G
�
1 +A11 �12
�21 �22

� �
u1
u2

�
�
�
u1
u2

�
+

�
� �
� �

� �
u1
u2

�
:

Indeed, by distributivity, Part 3 of Lemma 6.4 and Lemma 5.1

G
�
1 +A11 �12
�21 �22

� �
u1
u2

�
= G

�
1 a12
a21 a22

� �
u1
u2

�
+ G

�
A11 A12
A21 A22

� �
u1
u2

�
�
�
u1
u2

�
+

�
B�� B��
B�� B��

� �
u1
u2

�
�
�
u1
u2

�
+

�
� �
� �

� �
u1
u2

�
:

Assume (u1; u2) 2 R2 such that (u1; u2)T satis�es

(6.6)
�
u1
u2

�
+

�
� �
� �

� �
u1
u2

�
�
�
B

B

�
:

Then

(6.7)
�
u1 +�u1 +�u2 � B
u2 +�u1 +�u2 � B:
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Suppose �rst that max (ju1j ; ju2j) = ju1j. So u1 + �u1 + �u2 = u1 + �u1 =
(1 +�)u1. If u1 =2 B, also u1=2 =2 B. Hence ju1 +�u1 +�u2j > ju1j =2 =2 B, which
contradicts the �rst equation of system (6.7). Therefore u1 2 B and also u2 2 B.
The case that max (ju1j ; ju2j) = ju2j is analogous. Hence all solutions (u1; u2)T of
(6.6) satisfy u1 2 B and u2 2 B. By (6.5) all solutions of (6.4) satisfy (6.6). Hence
all solutions of (6.4) satisfy u1 2 B and u2 2 B.

By Part 3 of Theorem 4.4, if 4 is not an absorber of B and A�� � B��, a
Cramer-solution of the system (6:2) is an admissible solution. We show now that
under these conditions any element of this solution is a Gauss-solution.

Theorem 6.8. Assume that 4 is not an absorber of B and that A�� � B��.
Let (x; y)T 2

�
detM1

� ; detM2

�

�T
. Then (x; y)T is a Gauss-solution of (6:2).

Proof. Let a12 2 �12; a21 2 �21 and a22 2 �22. Choose b1 2 �1 and b2 2 �2 and
let b = max(jb1j ; jb2j). Put d1 = b1a22 � b2a12, d2 = b2 � b1a21 and d = a22 � a12a21.
One has jd1j 6 3b and jd2j 6 3b.

We assume �rst that
�
x

y

�
=

�
d1
d
d2
d

�
. Then

G
�
1 a12
a21 a22

� �
x

y

�
=

�
x

y

�
=

�
d1
d
d2
d

�
= G

�
b1
b2

�
:

Now we prove that

G
�
A11 A12
A21 A22

� �
x

y

�
� G

�
B

B

�
:

Indeed, using Parts 3 and 1 of Lemma 6.4, one obtains that

G
�
A11 A12
A21 A22

� �
x

y

�
�
�
B�b B�b
B�b B�b

� �
x

y

�
=

�
B
b x+

B
b y

B
b x+

B
b y

�
=

�
B
b
d1
d +

B
b
d2
d

B
b
d1
d +

B
b
d2
d

�
�
�

B
b
b
d +

B
b
b
d

B
b
b
d +

B
b
b
d

�
=

�
B
�
B
�

�
=

�
B

B

�
= G

�
B

B

�
:

Then it follows by distributivity that

G
�
1 +A11 �12
�21 �22

� �
x

y

�
= G

�
1 a12
a21 a22

� �
x

y

�
+ G

�
A11 A12
A21 A22

� �
x

y

�
� G

�
b1
b2

�
+ G

�
B

B

�
= G

�
b1 +B

b2 +B

�
= G

�
�1
�2

�
:
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Hence (x; y)T is a Gauss-solution of (6:2).

Finally, let
�
x0

y0

�
2
"

detM1

4
detM2

4

#
be arbitrary. By Proposition 6.6 one has

N
�
detM1

�

�
= N

�
detM2

�

�
= B: So

�
x0

y0

�
2
�
x

y

�
+

�
B

B

�
. Then by distributivity

and Lemma 6.4

G
�
1 +A11 �12
�21 �22

� �
x0

y0

�
� G

�
1 +A11 �12
�21 �22

� �
x

y

�
+ G

�
1 +A11 �12
�21 �22

� �
B

B

�
� G

�
�1
�2

�
+ G

�
1 a12
a21 a22

� �
B

B

�
+ G

�
A11 A12
A21 A22

� �
B

B

�
� G

�
�1
�2

�
+

�
B

B

�
+ G

�
B

B

�
= G

�
�1
�2

�
+ G

�
B

B

�
+ G

�
B

B

�
= G

�
�1
�2

�
:

Hence (x0; y0)T is also a Gauss-solution of (6.2).

Next theorem is a converse to Theorem 6.8. Under the usual conditions, a Gauss-
solution must be an element of the Cramer-solution.

Theorem 6.9. Assume that 4 is not an absorber of B and that A�� � B��.
Let (x; y)T be a Gauss-solution of (6:2). Then (x; y)T satis�es (6:2), in fact (x; y)T 2�
detM1

� ; detM2

�

�T
.

Proof. Let a12 2 �12; a21 2 �21 and a22 2 �22. Choose b1 2 �1 and b2 2 �2 and
let b = max(jb1j ; jb2j). Put d1 = b1a22�b2a12, d2 = b2�b1a21 and d = a22�a12a21. It
follows from Theorem 6.8 that (x; y)T =

�
d1
d ;

d2
d

�T
is a Gauss-solution, and it clearly

satis�es (6.2). Let (x0; y0)T be an arbitrary Gauss-solution of (6.2). By Propositions
6.7 and 6.6 it holds that x0 2 d1

d + B = detM1

4 and y0 2 d2
d + B = detM2

4 . Then it

follows from Part 3 of Theorem 4.4 that (x; y)T satis�es (6:2).

Theorem 6.10. Assume that 4 is not an absorber of B and that A�� � B��.
Then the Cramer-solution of the reduced �exible system (6:2) equals the external set
of all Gauss-solutions.

Proof. By Theorem 6.8 and 6.9 it holds that
�
detM1

� ; detM2

�

�T
is equal to the

external set of all Gauss-solutions.

This �nal theorem implies that the external set of all Gauss-solutions, being equal
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to the Cramer-solution, by Part 3 of Theorem 4.4, also constitutes an admissible and
maximal solution of the reduced �exible system (6.2).
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