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1 Gwistor spaces with parallel characteristic torsion

1.1 The purpose

It has now become clear that every oriented Riemannian 4-manifold M gives rise to a
Go-twistor space, as well as its celebrated twistor space. The former was discovered in
[5, 6] and we shall start here by recalling how it is obtained. Often we abbreviate the
name Go-twistor for gwistor, as started in [3]. Briefly, given M as before, the Go-twistor
space of M consists of a natural G5 structure on the S3-bundle over M of unit tangent

vectors

SM={ueTM: |ul|=1}

exclusively induced by the metric ¢ = (, ) and orientation.

We shall describe the characteristic connection V¢ of SM in the case where M is an
Einstein manifold. This guarantees the gwistor structure is cocalibrated, an equivalent
condition. And hence the existence of that particular connection by a Theorem in [20].
Then we restrict to constant sectional curvature; we deduce the condition under which
the characteristic torsion, i.e. the torsion of the characteristic connection, is parallel for
Ve¢. Finally we are able to deduce its classification, according with the holonomy obtained
and the cases in [I8]. The reason why we made such restriction is that the study of the
characteristic connection in the general Einstein base case is much more difficult and we
wish to present the problem. We also remark that (G5 manifolds with parallel characteristic
torsion are solutions to the equations for the common sector of type Il super string theory,
cf. [19, 20].

The author takes the opportunity to thank the hospitality of the mathematics de-
partment of Philipps Universitat Marburg, where part of the research work took place.
In particular he thanks Ilka Agricola and Thomas Friedrich (Humboldt Universitit) for
raising the questions which are partly answered here and for pointing many new directions

of research.

1.2 Elements of Go-twistor or gwistor space

Let M be an oriented smooth Riemannian 4-manifold and SM its unit tangent sphere
bundle. The Ga-twistor structure is constructed with the following briefly recalled tech-
niques (cf. [3], 5], 6]).

Let m : TM — M denote the projection onto M, let V¥ be the Levi-Civita connection
of M and let U be the canonical vertical unit vector field over T'M pointing outwards of
SM. More precisely, we define U such that U, = u, Yu € TM. The Levi-Civita connection
of M induces a splitting TT'M ~ n*T'M & 7*T' M. The pull-back bundle on the left hand
side is the horizontal subspace ker 7*V¥CU isomorphic to 7*T'M through dm. The other
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7'M, on the right, is the vertical subspace ker dm. We are henceforth referring to the

classical decomposition of TT'M, as displayed in several articles and textbooks.
Restricting m to SM we have T'SM = H &V where H denotes the restriction of the

horizontal sub-bundle to SM and V is such that V,, = u* C 7#*TM, thus contained on

the vertical side. Every vector field over SM may be written as
X =X"4 Xv = X"+ 7mVECU. (1)

The tangent sphere bundle inherits a Riemannian metric, the induced metric from the
metric on T'M attributed to Sasaki: 7*¢g & 7*g. We simply invoke this metric with the
same letter g or by the brackets ( , ). Then we may say that SM is the locus set of the
equation (U,U) = 1 and indeed () is confirmed: notice d(U,U)(X) = 2(x*V%CU, U).
There is also a natural map

0:TTM — TTM (2)

which is a 7*V¥“parallel endomorphism of TT'M identifying H isometrically with the
vertical bundle 7*T'M = ker dw and defined as 0 on the vertical side. It was introduced
in [3, 5 [6]. Then we define the horizontal vector field 6'U.

The original discovery of the gwistor space is now explained.

Each 4-dimensional vector space (7*T'M),,, u € SM, has a natural quaternionic struc-
ture given as follows. Every vector may certainly be written as Au + X with A € R and

X 1 u. Then two such vectors multiply by
(Mu+ X1) - (Aou+ Xo) = (Mo — (X1, Xo))u + M X + XX + X X Xo
where the cross-product X; x X5 is given by
(X x Xy, 2Z) = 7*voly (u, XY, Z), VX,Y,Z cu'.

A conjugation map is obvious: Au + X = Au — X. With this metric compatible quater-
nionic structure (normed algebra with unit) and with the canonical splitting and the map
¢, we may apply the Cayley-Dickson process to obtain an octonionic structure on 77" M g,
having the vertical U, = u as generator of the reals. The imaginary part is the tangent
bundle to SM, with a natural Go = Aut O structure. This defines gwistor space.

The tangent bundle 7'SM inherits a metric connection, via the pull-back connection
and still preserving the splitting, which we denote by V*. On tangent vertical directions,
due to the geometry of the 3-sphere with the round metric, we must add a correction term
to the pull-back connection. That is, for any X,Y € I'(T'SM):

VXY = o'VyCXY — (*VyCXY UV = 7 Vy©XY + (X, YU (3)

We then let RV(X,Y) = 7*R(X,Y)U = R™V"(X,Y)U, which is a V-valued tensor. We
follow the convention R(X,Y) = [V§®, Vi) = VI5,. Notice RY(X,Y) = RY (X", Y").
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Finally, the Levi-Civita connection V¢ of SM is given by
VixY = VLY — %RU(X, Y)+ A(X,Y) (4)
where A is the H-valued tensor defined by
(AX,Y), Z) = %((RU(K Z).Y) +(RU(Y, Z), X)), ()

for any vector fields X,Y, Z over SM.
There are many global differential forms on SM. Specially relevant are the 1- and a

2-forms given by

One can easily deduce 5 = —du.

1.3 Structure forms of gwistor space

The easiest way to see other differential forms of gwistor space is by taking an orthonormal
basis on a trivialised neighbourhood as follows. First we take a direct orthonormal basis
€, ..., e3 of H, arising from another one fixed on the trivialising open subset of M, such
that eg = u € SM at each point u, i.e. eg = 0'U. Then we define

€y = 061, €5 = 062, € = 963 (6)

which completes the desired set; we say ey, ...,¢es is a standard or adapted frame. Note

feq = U, as if u has the gift of ubiquity. The dual co-frame is used to write

g=e vol = 0128 dp = e 4 €52 4 53, o = et

y = €90 4 204 | 315 (g = €120 4 23 4 B15 as = 123,
These are all global well-defined forms. They satisfy the basic structure equations, cf. [3]:

xa = vol = A ag = mvolyy, xQp = — A Quo, *Qg = L\ Qv
1
wdp=spA(dp)’, x(dp)* =2pAdp, (dp)® Ap=6Volsa, (7
1
al/\a2:3*u:§(d,u)3, dpu N a; = dp A xa; = ag A a; =0,

ab--jk b

Vi =0, 1,2, where we wrote a = ag. We use the notation e = e%"...eleF and often
omit the wedge product symbol, like in (du)?.

We have given the name G,-twistor or gwistor space to the Gy structure on SM defined
by the stable 3-form

o=a—puNdy—as
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(as explained previously, it is induced by the Cayley-Dickson process using the vector field

U and the volume forms vol, ). Let % denote the Hodge star product. Then
x¢ = vol — %(du)2 — iAo
We know from [3, Proposition 2.4] that
dé = RYa + rvol — (du)* — 2u A oy and dx¢=—pAvol
where we have set

RUq — Z Rijor7® + Rij02e% + Ryj0569%, (8)
0<i<j<3
with Rijkl = <R<€Z’, €j)€k, €l>, Vi,j, /{Z,l S {0, 1, 2, 3}
Also, r = (U, U) is a function, with r the Ricci tensor, and p is the 1-form (RicU)’ €

Q%(V*), vanishing on H and restricted to vertical tangent directions. One may view p as

the vertical lift of r( ,U). We continue considering the adapted frame ey, ..., es on SM;
then
3 3
P = Z kakez-i-?: and r = Z RjOOj- (9)
ik=1 j=1

We also remark
da =R%, day = 2u A aip — rvol. (10)

We know the gwistor space SM is never a geometric GG manifold. Recall that any
given Go-structure ¢ is parallel for the Levi-Civita connection if and only if ¢ is a harmonic
3-form. Indeed, our d¢ never vanishes. However, an auspicious result leads us forward.
(SM, ¢) is cocalibrated, ie. d¢ = 0, if and only if M is an Einstein manifold, cf. [3, [5, [6].

The curvature of the unit tangent sphere bundle has been studied, but the Riemannian
holonomy group remains unknown in general (cf. [T, [I0] and the references therein). From
the point of view of gwistor spaces, hence just on the 4-dimensional base space, we are

interested on the holonomy of the GG, characteristic connection.

1.4 The characteristic connection

Following the theory of metric connections on a Riemannian 7-manifold (V, ¢) with G
structure, cf. [2,[19, 20], the characteristic connection consists of a metric connection with
skew-symmetric torsion for which ¢ is parallel. If it exists, then it is unique. Formally we
may write

1
(VexY, Z) = (VIXY, Z) + éTc(X, Y, Z)
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where g denotes the metric and V7 the Levi-Civita connection. If ¢ is cocalibrated, then

such T exists; it is given by

T = wdé — < {4, #6)s (1)

cf. [20, Theorems 4.7 and 4.8]E|.

We recall there are three particular Go-modules decomposing the space A® of 3-forms
(cf. [9, 14, 17]). They are A3, A3, A3, with the lower indices standing for the respective
dimensions. In the same reasoning, A> = A% & A7,. Thus, by Hodge duality, d¢ has
three invariant structure components and d¢ has two. In gwistor space we have proved
the latter vanish altogether, or not, with p, given in ([@). The analysis of the tensor d¢ is
struck with the never-vanishing component in A3.. It is of pure type A3, if and only if M
is an Einstein manifold with Einstein constant —6 (see [3l Theorem 3.3]).

Apart from a Ricci tensor dependent component, the curvature tensor of M contained
in dp = RVa + -+ - remains much hidden in the A3, subspace.

We have deduced a formula for the Levi-Civita connection V¢ of SM, shown in (4)).
The characteristic connection V¢ is to be deduced here in the cocalibrated case given by
a constant sectional curvature metric on M. In our opinion, this analysis corroborates

the correct choice of techniques in dealing with the equations of gwistor space.

1.5 Characteristic torsion of gwistor space

Let us start by assuming M, g is an Einstein manifold with Einstein constant A. Such

condition is given by any of the following, where A is a priori a scalar function on M:
r=XA < RicU=XN <& r=MA\
In our setting it is also equivalent to d x ¢ = 0. Then A\ is a constant.

Proposition 1.1. The characteristic connection V¢ = V9 + %TC of SM is given by

2\ —6 +)\ Ad +)\
a+ = —Qy.
3 3N M 3 2

T°¢ = +(RYa) +
Moreover, 6T° = 0.
Proof. We have by (8) and some computations

(RYa, %¢)Volgryr = RVa A g = —RYa A (udp + as) = AVolgy,.

'Notice we use a different orientation than that in [20]. Therefore, we have to replace * by —x in
formulas given there.



Albuquerque 7

Also rvolgp = AVolgyr, —(dp)?¢ = p A (du)® = 6Volgay, —2u Aoy Ad = 2u A ag A
ay = 6Volgy. Hence (d¢, x¢) = 2(A + 6). One finds helpful identities in (7). Since
xdp = *RYa + A — 21 A dp — 205, we get from ([IT)
2
T° = xd¢ — 6()\ +6)p
A
= *RUoz+)\oz—2,u/\du—2a2—(§+2)(a—u/\du—a2)

and the first part of the result follows. From the first line we immediately see d«T°=0. W

Until the rest of this section we assume M has constant sectional curvature k, so that
Rij = k(0101 — 0ix65;) with k € R a constant. Then by (&)

RVa = —ku A ay.
In particular,
d¢ = 3kvol — (dp)? — (K +2)u A ay.
Henceforth A = r = 3k and *RYa = —kay, and the following result is immediate.

Proposition 1.2. The characteristic torsion of the characteristic connection is given by
T¢=2(k—1)a+ ku A dpu. (12)

Taking formulas () and (), the next Propositions are the result of simple computa-

tions.
Proposition 1.3. For any X, Y € TSM:

1. RY(X,Y) = k((0Y,U)0X — (0X,U)0Y); or simply RV = kO A u
2. A(X,Y) =E((6X,Y)0'U + (0Y, X)0'U — u(X)0'Y — pu(Y)0'X).

We also omit the proof of the next formulas. These are the application of the general

case treated in [3, Proposition 2.2] to our situation with RY and A given just previously.
Proposition 1.4. For any X € T'SM we have:

VIx0'U = 250" X — £(0X — p(X)U)

VIxvol = Ax - vol = E(u(X)uAas — (0X) Aas — (X 06) Aas)
Vixa =5(uA(0X)so— p(X)o)

Vixpu=23EX" 00— £(0X)

Voxdp = A (X7 = (X))

VIxar = ku(X)(3a —az) + p A (B2 X 0o+ 5(6X)o0q)

Vixas = kp(X) (a1 — 2a3) + p A (52X Y000 + £X Las)

NS S e o~
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8. VIxaz = ZE(0'X)avol + (0'U) 1Ax - vol = ZE (0" X) wvol + Ep(X)as.
We may now deduce:

Vixdp = Vixa—=VixpNdp—pAVixdp — Vixas

k 3k k—2 k
= HA (0X)aa — ?ﬂ(x)al + (TX" 06+ 5(QX)b) A dp
3k k k—2
+?,u(X)oz3 —gH A Xoaz — — A X"a0q.

A computation confirms that V¢ = 0 with V¢ = V9 + %TC and T given by (I2]).

We are now in position to compute V¢T°.

Theorem 1.1. Let M be an oriented Riemannian 4-manifold of constant sectional cur-

vature k. The characteristic connection V¢ of the associated gwistor space satisfies
1
VexT® = k(k—1D)X"J(uNay — §<dﬂ)2)-
In particular, SM has parallel torsion if and only if k =0 or k = 1.

Proof. For any direction X € T'SM and using the cyclic sum in three vectors,
6
c c g c c 1 c g c 1 c c
VexT® = VIXT® — ®T(§TX’ , ) =VIxT —3 E T°(X, ,e;) NT(e;, , ).
=0

Since T° = 2(k — 1)a+ ku A du, we get
/{32
VexT® = VIXT® — ?du(X, YAdp + k(E—1D)Xo(p A ay).

Now we have from Proposition [[.4]

VIXT = (k= Dk(p A (6X) oo — p(X)aw) — ( %X" o6+ %2(9)()") A dp

and then we see easily that V¢xT° = 0 for X € H. Taking a vertical direction X, the

desired formula for the covariant derivative of T° is achieved. [ ]

Let us now see the decompositions under GG, representations referred in section [[L4] in
the case under appreciation. Recall d¢ has no A2 component. Since d¢ = 0, there are no

A2, A2, components either. By results in [3, Proposition 3.6], the A%, A3 parts are

d¢ = g(k:+2) *¢+*%((15k —12)a+ (6k — 2)p A dp — (k + 2)ap).

Regarding T it is coclosed. Now a characteristic connection with closed torsion is called

a strong Gy with torsion, denoted SG2T in [I5]. We may retain the following result.
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Proposition 1.5. The gwistor space arising from constant curvature on M has an SGyT

connection if and only if k = 0.

We have the decompositions 7 = —k—’;ZQZ) + 7% and
dT° = k(dp)® — 2k(k — Dp Aoy = gk:(k: —2) % ¢+ 757",
where 717, 787" sitting in A3, = ker(- A ¢) N ker(- A x¢), are given by
= %((151@ —12)a+ (6k — 2)p Adp — (k + 2)aw),

e 2k
74T = 7((6 —3k)a+ (14+3k)pAdp+ (1 — 41{:)0@).

2 Holonomy of the ‘parallel torsion’

2.1 Results on the Stiefel manifold V),

Theorem [T leads to the consideration of two distinct cases. We start with & = 1.

Since our results so far are local, we assume M is simply-connected and complete. As
it is well known, SM with M = S{, the radius 1 sphere, agrees with the Stiefel manifold
SO(5)/SO(3) = Vs2. Recall that transitivity of the action by isometries induced on the
tangent sphere bundle of a Riemannian symmetric space is exclusive to all rank 1 spaces,
cf. [9, Proposition 10.80]. In particular, in dimension 4, we are left with S* P?(C), the
real hyperbolic space H* and the hyperbolic Hermitian space CH?.

We thus study briefly the space V} o, the unit tangent sphere bundle of S~ with [ > 2.
In the sequel, we let the name Stiefel manifold refer just to V, o (with the index 2 fixed).
Firstly, the Stiefel manifolds are simply-connected for [ > 5. The following results are
due to Stiefel and to Borel, cf. [II Proposition 10.1]:

H*(Vig,Z) = H*(S"! x 8'72,7Z)  if  is even
H(Vig,Z) = H*3(Vi9,Z) =7, H'"'(Vi9,Z) = Zs if [ is odd
H*(VE,Q, Zg) = H*(Slfl X SliQ, ZQ) = /\{{L‘l_l,l‘l_g}.
A stands for the free multiplicative exterior algebra generated on the given z; of degree

j. We also have the additive isomorphism H*(Vj,7Zs) = H*(S'"™',Zy) @ H*(S'"2,Zy).
Moreover, V] 5 is a rational homology sphere for [ odd, cf. [I2]. Now, we may deduce that

w(SSl_l) = Z W*wf

where S'~! is the base manifold and 7 is the projection. There is a general formula in [4].
It is well known that w(S*) = >~,.gw; = 1 for all k. Hence the following result for which

we do not know a reference.
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Proposition 2.1. The total Stiefel- Whitney class of Vi 5 is 1. In particular, this space is

orientable and admits a spin structure.

Now, regarding the Riemannian structure from a slightly general picture, let us see
how we are driven to Vo = SS51 with the metric induced from the Sasaki metric of the
tangent bundle, cf. section

First we recall from [2] 12, [13], 20] what is the natural geometric notion concerned with
a Riemannian reduction from the Lie group SO(2n + 1) to the structure group U(n). A
metric almost contact manifold consists of a Riemannian manifold (S, §) together with a
1-form 7, a vector field £ and an endomorphism ¢ € I'(End T'S) satisfying the relations:
VX, Y €TS

nE) =1, ¥ =-1+n®¢
JeX,9Y) = g(X,Y) =n(X)n(Y),  »(§) =0.

If furthermore dn = 2F, where F(X,Y) = g(X,¢Y), then we have a metric contact
structure. If the CR-structure defined by the distribution D = kern is integrable, then
we have a so called normal contact structure. The integrability condition is the vanishing
of a certain Nijenhuis tensor of the almost complex structure J = pp. If £ is a Killing
vector field, i.e. L¢g = 0, then we say we have a K-contact structure. Since on a contact
structure we have L¢F' = 0, the K-contact equation is assured equivalently by Lep = 0. A
normal K-contact structure is known as a Sasakian structure; then S is called a Sasakian
manifold.

The K-contact condition is equivalent to VIx¢ = —p(X), VX € TS. A K-contact

structure is normal (and thence the manifold is Sasakian) if furthermore (cf. [21])
(VIxp)(Y) = g(X, V)€ = n(Y)X. (13)

Now let M be a Riemannian manifold of dimension m = n+ 1. Y. Tashiro has shown
the unit tangent sphere bundle SM (of dimension 2n + 1) has a metric contact structure.
It is given, in present notation, by § = ig, n= %u, §=20'U and ¢ = 0 —Up —60'. Notice
g is the Sasaki metric and 6 is the map in ([2). We have, by ([I0) easily generalized to any

dimension,
1 1 1

so dn = 2F as expected. Tashiro also proved the following [10, Theorem 9.3]: the contact
metric structure on SM is a K-contact structure if and only if (M, g) has constant sectional
curvature 1. And then deduces SM is Sasakian. The proof goes as follows: notice V9 = V9

is given in (). Then we find

1
(VIxEY") = —§<RUX7£>YU> = —(Rxn gyU, Y").
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So, just looking at the vertical part of the equation V9x¢ = —¢(X), on the base manifold
it reads (R(X,u)u,Y) = (X,Y), VX, Y € TMnNu*. Clearly, this means constant sectional
curvature 1. The horizontal part of the equation gives the same result. The reciprocal is
also easy, and the Sasakian condition follows. Moreover, in this case the Sasakian equation
(I3)) alone implies the round curvature 1.

A contact manifold (S, g,n,&,¢) is said to be n-Einstein if its Ricci tensor can be
written as Ric3(X,Y) = A\g + vn ® n with A\, v constants (cf. [13] 24]).

We compute, with methods as found in [I], that the contact manifold (SM, g,n,&, ¢)

verifies equalities

Ric 5(X,Y) = Ric,(X,Y) =
k‘2 N N /{32 . ) /{32 (14)
= ((m = 1)k = )XY+ (m = 24 )XY + (2 = m)u(X)u(Y)

if M has constant sectional curvature k.

Proposition 2.2 ([16]). Assuming constant sectional curvature k, the contact manifold
SM s n-Einstein if and only if k=1 or k =m — 2.

This result was also deduced by [16]. In the Sasakian case k = 1 notice the formula
A+ v = 2n, as theoretically expected ([I3, Lemma 7]).
In [20] 24] we have the notion of contact connection on a contact manifold, i.e. a linear

connection on & such that
Vg=0, Vn =0, Vi =0.

[20, Theorem 8.4, case 1] guarantees that any Sasakian manifold admits a contact con-

nection with totally skew-symmetric torsion given by
T =nAdn. (15)

Moreover, T is parallel for such V = V9 + %T, which is unique — so it is called the
characteristic connection of the normal contact structure. In general, cf. [20, Theorem
8.2], this contact connection with skew-symmetric torsion exists if and only if the Nijenhuis
tensor is skew-symmetric and ¢ is a Killing vector field.

In sum, Tashiro’s results on SM led us to the case of integrable geometries, the
homogeneous Sasakian space V;,, where | = m + 1 = n + 2, with metric ig and Ricci
curvature tensor Ric, = (m — %) g+ %Tm 1 ® . This space admits a characteristic contact
connection (7" is the same viewed as a (2,1)-tensor) V = V9 + 2y A dp. And there is
no simply-connected Riemannian manifold besides S* whose unit tangent sphere bundle
admits a characteristic contact connection. For the existence assures the manifold is

K-contact.
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To complete the picture, the characteristic foliation F¢ determined by &, hence with 1
dimensional leaves, gives a projection onto the Grassmannian of oriented 2-planes in R/,
a complex quadric, Vi — G~I'l72.

Starting from a Kihler-Einstein manifold (X?*,g,J) of scalar curvature 4n(n + 1),
it is shown in [8, pag. 83] how to construct Einstein-Sasakian metrics on an associated
S'-bundle 7 : § — X?": the bundle whose first Chern class is ¢; = %¢1(X?") where A
is the maximal integer such that %cl (X?") is an integral cohomology class. Moreover, S
is simply connected and admits a spin structure (cf. Proposition 2.1). The 1-form 7 is
induced by the associated U(1)-connection, so that dn is essentially the Kéahler form of
X,

The example of the Stiefel manifold is already mentioned in [§], as noticed by [12].

2.2 Holonomy of the characteristic contact connection of V;,

We may now continue our study of the gwistor space of the 4-sphere with the canonical

Sasaki metric.

Proposition 2.3. The characteristic connection V¢ of the Go-twistor space (Vs 2, g, @) is
given by the torsion T = pAdp and its holonomy is contained in SU(3). Thus coincides

with the contact metric connection. The torsion is parallel.

Proof. By the results given in (&) we find a contact connection with skew-symmetric
torsion 7" = p A dp (contracting now with the metric g). Additionally we have that T
is V-parallel. We remark that u A Vdu = 0. Computing Va = (V9 + %T)a, applying
Proposition [[.4] and the usual technique, we find « is parallel. Since Vi = 0 and

1 1
ay = 5040(9/\9/\1) = §ozo(g0/\<p/\1),
(cf. [3] for this notation and remarks on differentiation) we get
VOzQ =0.

Hence V¢ = V(a — A dp — ay) = 0 and therefore the (unique) SU(3) C G5 connection
V with totally skew-symmetric torsion is the characteristic connection of the gwistor
structure, V = V°. [ |

Of course T above agrees with the result found in ([I2]) for sectional curvature 1.

Now, the formulas from [20] for the curvature of the characteristic connection are
combined with the Riemannian curvature. So it is important to recall the references on
the latter. There is a long literature on results about the sectional, Ricci and scalar
curvatures of the Sasaki metric on the tangent sphere bundle of any given Riemannian

manifold. The techniques are those from e.g. [I] and several other references therein,
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where Einstein metrics are found (interesting enough, for V; 5 we also have SO(I)-invariant
Einstein metrics given in [7], which use the method below and recur to results of Wang).

We follow homogeneous space theory to determine the holonomy of the characteristic
connection.

Let n, m be integers such that [ = m+1 = n+2 (as in section 2.1]), let K = SO(I), H =
SO(n), g = s0(l),h = so(n). Now we consider the trivial embedding H C K. So we
may decompose g = h @ m with m the subspace of matrices having 0 where § falls. Since
[h,m] C m and H is connected, we have a reductive homogeneous space Vo = K/H.
Then the tangent vector bundle of K/H arises from the canonical principal H-bundle,
associated to m. Let D;; be the matrix with 0 everywhere except in position (i, j) where

it has a 1. We have a canonical basis of g given by

i
The vectors eg = E,,; and e, = E;;, €4y = Eip, 1 <@ < n constitute a basis of m,
which we may take to be an orthonormal basis of a K-invariant Riemannian metric, cf.
[22], 25]. Compare also with formula (@), i.e. the adapted frame of Gao-twistor space.

We recall the canonical connection V of K/H is given by V. e, = 0, Va,b such that
0 <a,b<2n+1. Its torsion satisfies TV(X,Y) = —[X, Y], where the index denotes the
component in m, cf. [23].

The new metric corresponds with the Sasaki metric of 5™ introduced in section
and generalised to any dimension. Indeed, the embedding SO(n) C SO(m) C SO(I)
induces the respective decomposition of h, to which the Levi-Civita connection of the

sphere corresponds. The horizontal and vertical subspace decomposition is clear.

Theorem 2.1. The characteristic contact connection V¢ = V94 %u/\d,u on Vi o coincides

with the invariant canonical connection. Moreover, V¢ is complete and its holonomy group

is SO(n).

Proof. Here we refer just to Chapter X of [23] Volume I1]. First recall from [23 Proposition
2.7] that every K-invariant tensor is parallel for the (invariant) canonical connection. By
the way they were defined, the tensors g, «, 0, ¢, u, du, € are all clearly K-invariant. Also
the torsion TV(X,Y, Z) = —g([X,Y], Z) = g(Y,[X, Z]) is totally skew-symmetric. Hence
the result follows by uniqueness of the characteristic connection. The theory says the

canonical connection V is complete and what its holonomy Lie subalgebra is. [

Interesting enough, one may check the identity on a triple of vectors on m

Finally, we return to gwistor space.
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Corollary 2.1. The holonomy of the characteristic Gy-connection on the unit sphere
bundle of the 4-sphere (Vs2) is complete and equal to SO(3).

This allows us to look for the classification of the G-twistor space V55 with charac-
teristic holonomy algebra hol(V¢) C go, corresponding to a Ga-connection with parallel
skew-symmetric torsion, as described in [I8]. We arrive precisely to the case of [I8, The-
orem 7.1] (with a certain ¢ in that reference equal to 1/7), which comes form the Lie
subalgebra so(3) C su(3) C go.

The characteristic curvature tensor is given by R(X,Y)Z = —[[X, Y]y, Z] or by

1
R =—3(285105 +5® 5%+ 50 5)

as results from [I§] (or [23]), with the S; being generators of s0(3) C go. Formulas for

Ric, found in (I4]) match precisely with those given in the new reference.

2.3 Holonomy of the characteristic connection of SR*

The characteristic connection on the gwistor space of a flat 4-dimensional space also
has parallel torsion; harmonic as proved earlier. The Gs-twistor structure verifies d¢ =
—(dp)? = 2 A ap. The simply-connected germ of such gwistor, say SM = R* x S3, was
described in [3] with canonical coordinates, inducing a trivial framing. Recall from (I2)

that the torsion of the characteristic G metric connection is 7¢ = —2a.

Proposition 2.4. Let M be an oriented flat Riemannian 4-manifold. Then the charac-

teristic Gy connection V¢ = V9 — a on the qwistor space SM 1is flat.

Proof. The Levi-Civita connection of T'M is the flat connection 7*V*¢ = d duplicated for
TTM =n*TM & n*T'M. Then the Levi-Civita connection of SM is just the connection
V* = V9 written in [B). By Gauss formula, R/(X,Y,Z, W) = (X", W")(Y",Z") —
(XY, Z°) YV, W"). Using an adapted frame, cf. (),

RI= (M@l 4% ®e® 1 8@ etl).
On the other hand, a formula in [20] says
1 1
R¢ = RY -+ Z Z(@i_ITC) X <€Z'JTC) + Z Z(ei_ch) A (€Z‘_ITC).
Thence, since T¢ = —2¢%5, we have
1
1 Z(eiJTC) ® (e;uT°) = e® @ e + e’ @ e + M @ e = —RY.

and clearly > (e; JT°) A (e;uT°) = 0. u
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Notice both metric connections preserve the Riemannian splitting. On the vertical

side, the connection V¢ is the invariant SO(3)-connection with skew-symmetric torsion
—2a described e.g. in [2, Remark 2.1] and known to E. Cartan.
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