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a b s t r a c t

In this paper we use techniques linking combinatorial structures (symbolic dynamics) and
algebraic–geometric structures to study the variation of the geodesic length spectrum,
with the Fenchel–Nielsen coordinates, which parametrize the surface of genus τ = 2. We
explicitly compute length spectra, for all closed orientable hyperbolic genus two surfaces,
identifying the exponential growth rate and the first terms of a growth series.

© 2010 Published by Elsevier B.V.

1. Introduction1

The various relations between hyperbolic geometry and number theory have prosed a large number of interesting2

problems.Much of work carried out to resolve them involves interplay between these two fields and, in particular, the use of3

algebra and number theory to answer topological and geometric questions regrading lowdimensional hyperbolicmanifolds.4

The geodesic flow on a surface of constant negative curvature was the first non-trivial example of symbolic dynamics. It is5

known that the dynamical problem of counting periodic orbits is equivalent to the (group) problem of counting conjugacy6

classes in the fundamental group of the surface and that the limit set of this group can be coded as a subshift of finite type7

(see [1]). Several peculiarities are associated with this problem: the presence of an infinite algebra of Hermitian operators8

commuting with the Laplacian (Hecke operators) and an exponential growth in the number of lengths of periodic orbits9

(closed geodesics). The metric and geometric structure of surfaces can be analyzed using the closed
∧
geodesic spectrum and10

the Laplace–Beltrami operator spectrum. Obtaining these spectra is not easy; however, what is more difficult is describing11

their dependence with the parameters which determine the metric and geometric structure of the surface. We study these12

spectra dependence of these using a boundary map when a Riemann surfaceM of genus 2, thus with negative curvature, is13

considered.14

The present paper is part of a program aimed
∧
at providing an understanding of Laplacian spectrum and geodesic length15

spectrum behavior, of the compact Riemannian manifold endowed with a metric of constant curvature of −1. We use16

techniques
∧
linking combinatorial structures (symbolic dynamics) and algebraic–geometric structures. Given a compact17
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Fig. 1. Compact Riemann surface of genus 2 and the geodesics γ1, γ2, γ3 .

Riemannian manifold M , the Laplace–Beltrami operator ∆ defined on functions on M is an elliptic operator with discrete 1

spectrum 2

λ0 = 0 < λ1 ≤ λ2 ≤ · · · ≤ λk ≤ · · · → ∞. 3

For surfaces of genus τ = 2, in a previous paper, we computed the geodesic length spectrum of M (lengths of closed 4

geodesics) (see [2,3]), 5

0 < `1 ≤ `2 ≤ · · · ≤ `k ≤ · · · → ∞. 6

These surfaces were obtained by gluing together pairs of pants with no twists in the boundary components. This 7

corresponds to Riemann surfaces in a Teichmüller space for which the Fenchel–Nielsen coordinates are of the form 8

(`(γ1), `(γ2), `(γ3), 0, 0, 0), where `(γi), with i = 1, 2, 3, are the lengths of three geodesics on the surface (see Fig. 1) 9

(see [4,5]). We will denote `i as length `(γi) with i = 1, 2, 3. The special nature of genus 2 has made it more accessible for 10

providing more detailed results. The set of equivalence classes of hyperbolic metrics (or equivalently complex structures) 11

under orientation preserving diffeomorphisms on M forms the moduli spaceM of compact Riemann surfaces of genus τ . 12

It is represented by a quotient space M = H2/G of the upper half-plane H2 by a Fuchsian group G which is isomorphic to 13

the fundamental group ofM . The discrete group G is identified with the corresponding system of generators. A fundamental 14

domain F is defined. The method is to decompose the Riemann surface into a set of 2 pairs of pants using three simple 15

closed geodesics. Then the Fenchel–Nielsen coordinates are defined by using geodesic length functions of the three simple 16

closed geodesics, γi and twist angles σi, along these geodesics, with i = 1, 2, 3. With explicit constructions and side pairing 17

transformations (see [3]), we define the Fuchsian group G associated with the closed Riemann surface of genus 2 (see Fig. 3). 18

This paper is organized as follows. In Section 2 we introduce a geometric description of the surface, the universal 19

covering space, the Fenchel–Nielsen parameters, amore familiarway of
∧
parametrizing the Teichmüller space, and an explicit 20

geometrical construction of the fundamental domain. In Section 3we compute the generators of the fundamental group and 21

describe the construction of the boundary map and the associated Markov matrix. Finally, in Section 4, we obtain explicit 22

values for the geodesic length spectrum and analyze its behavior with the variation of the Fenchel–Nielsen coordinates 23

identifying, in particular, the exponential growth rate and the first terms of the growth series. 24

The preparation of this paper was overshadowed by the death of professor Sousa Ramos in January, 2007. Our original 25

intention was to write it jointly: most of the main ideas in this paper were worked out jointly with him, and I have done my 26

best to complete the paper. I grieve the loss of my professor and my friend, and dedicate this paper to him. 27

2. Geometric description and Fenchel–Nielsen parameters 28

Throughout this paper, all surfaces are closed Riemann surfaces of genus 2, and all references to lengths, distances, etc. are 29

to be understood in terms of hyperbolic geometry. There aremany interesting spaces associatedwith a surfaceM. In order to 30

studying dynamical systems onM, one considers the group of automorphisms ofM itself; for studying geometry, geometers 31

are interested in Teichmuller space, which is the space of hyperbolic structures. We are interested in both approaches and 32

the relations between them. 33

LetM1 andM2 be compact orientable Riemann surfaces.M1 andM2 are called equivalent if there exists a conformal 34

diffeomorphism k : M1 → M2. Now letM0 be a Riemann surface of given topological type and let ki : M0 → Mi, i = 1, 2 35

be diffeomorphisms. We denote by [k] the homotopic class of a diffeomorphism. (M1, [k1]) and (M2, [k2]) are equivalent, if 36

k2 ◦ k−11 :M1 →M2, is homotopic to a conformal diffeomorphism. The space of equivalence classes is termed Teichmuller 37

space T . Then a point in T can be regarded as being an equivalence class of
∧
orientation preserving homeomorphisms 38

h of the H2. Two such homeomorphisms are equivalent if the corresponding representations are equivalent; two such 39

representations, A and B are equivalent if there is an element S ∈ PSL(2,R) so that SAS−1 = B. We then know that the 40

space of metrics of constant curvature can be shown to be homeomorphic to R6 (see [6]). When we choose the rule of 41

decomposition (the manner of gluing) and the lengths of closed geodesics we decide the decomposition. The set of lengths 42

Please cite this article in press as: C. Grácio, J.S. Ramos, Geodesic length spectrum on compact Riemann surfaces, Journal of Geometry and Physics (2010),
doi:10.1016/j.geomphys.2010.06.006



UN
CO

RR
EC

TE
D
PR

OO
F

GEOPHY: 1725

ARTICLE  IN  PRESS
C. Grácio, J.S. Ramos / Journal of Geometry and Physics xx (xxxx) xxx–xxx 3

of all geodesics used in the decomposition into pants and the set of the so-called twisting angles used to glue the pieces1

provides a way of realizing this homeomorphism.2

Given a surfaceM of negative curvature and genus τ = 2, the universal covering surface of M is given by the hyperbolic3

plane which can be represented by the Poincaré
∧
disc, D2 = {z ∈ C : |z| < 1}, with metric ds2 = dz.dz

(1−|z|2)2
or the upper4

half-plane, H2 = {z = x+ iy : y > 0}, with metric ds2 = dz.dz
y2
. In both realizations, the isometry group is generated by the5

linear fractional transformations h(z) = az+b
cz+d . In the half-plane H

2, the matrices A =
(
a b
c d

)
, ad− bc = 1 belong to SL2(R),6

the real unimodular group.7

In this paper, H2 is the universal covering space ofM and the fundamental group G, is a subgroup of SL2(R).8

M can be decomposed into a union of two ‘‘pairs of pants’’ (surfaces of genus zero with three boundary circles) joined9

along 3 closed geodesics. The complex structure of a pair of pants P is uniquely determined by the hyperbolic lengths of the10

ordered boundary components of P .11

A chain on a surfaceM is a set of four simple closed non-dividing geodesics, labelled γ1, γ2, γ3, γ4, where γ2 intersects12

γ1 exactly once; γ3 intersects γ2 exactly once and is disjoint from γ1; γ4 intersects γ3 exactly once and is disjoint from both13

γ1 and γ2.14

Given the chain γ1, γ2, γ3, γ4, it is easy to see that there are unique simple closed geodesics γ5 and γ6 so that γ5 intersects15

γ4 exactly once and is disjoint from γ1, γ2 and γ3; and γ6 intersects both γ5 and γ1 exactly once and is disjoint from the other16

γi. This set of six geodesics is known as a geodesic necklace (see [5]). If one cuts a surfaceM along the geodesics of a chain,17

one obtains a simply connected subsurface. It follows that we can find elements A, B, C , D of π1(M), that these elements18

generate π1(M), so that the shortest geodesic in the free homotopic class of loops corresponds to, respectively, A, B, C , D,19

is γ1, γ2, γ3, γ4. There are several possible choices for these elements; we use the Maskit’s option which yields the defining20

relation: ABDA−1C−1D−1CB−1 = 1 (see [6]).21

Let us construct our particular set of generators, A0, B0, C0,D0. These generators are normalized so that C0 has its repelling22

fixed point at 0 and its attracting fixed point at∞; the attracting fixed point of A0 is positive and less than 1; and the product23

of the fixed points of A0 is equal to 1.24

In the non-deformed surfaceM0 = H2/G0 the group G0 is a subgroup of the (2, 4, 6)-triangle group. One can use the fact25

that G0 is a subgroup of the (2, 4, 6)-triangle group to calculate the corresponding multipliers or traces for g1, . . . , g6 and26

we can write explicit matrices A0, . . . , F0 ∈ SL(2,R).27

We set28

A0 =
(
2− 2

√
3 3

−3 2+ 2
√
3

)
, B0 =

(
2

√
3

√
3 2

)
, C0 =

(
2+
√
3 0

0 2−
√
3

)
,29

D0 =
(
2 −3− 2

√
3

3− 2
√
3 2

)
, E−10 = C0.A0 and F−10 = B0D0.30

It was proven in [5], that the group G0, generated by A0, . . . ,D0, is appropriately normalized, discrete, purely hyperbolic31

and represents our surfaceM0, as described above. Therefore the axes of A0, . . . , F0 splitM0 into four right angle equilateral32

hexagons. Since the equilateral hexagon with all right angles is unique, it follows that our group and generators are as33

desired.34

Once we have defined G0, then we define the normalized deformation space D as the space of representations ϕ:G0 →35

PSL(2,R); the image group G = ϕ(G0) is discrete, with M = H2/G a closed Riemann surface of genus 2. Also here, the36

product of the fixed points of A = ϕ(A0) is equal to 1, with the attracting fixed point positive and smaller than the repelling37

fixed point; the repelling fixed point of C = ϕ(C0) is at 0; and the attracting fixed point of C is at∞. The point of intersection38

of C0 with the common orthogonal between A0, and C0 lies at the point i, of the imaginary axis. The normalizations given in39

the definition ofD make clear that there is a
∧
well-defined real-analytic diffeomorphism between the Teichmüller space T40

and the normalized deformation spaceD (see [5]).41

Definition 1. Let γ1, γ2, γ3 be the oriented decomposition curves, `j, be the lengths of γj and θj, j = 1, . . . , 3 the twist angles42

used to glue the pieces, respectively. The system
{
`j, θj

}3
j=1 is called the coordinates of Fenchel–Nielsen.43

Using this decomposition, in order to obtain a geometric image and to study the dynamical properties, we construct44

a fundamental domain F . For each fundamental domain, the fundamental group G is now generated by the side pairing45

transformations gi (and their inverses) that we considered when we chose the side identifications. In this case the group G,46

as subgroup of SL2(R), is represented by the generators G = 〈g1, . . . , g6〉.47

Definition 2. Anopen setF of the upper half-planeH2 is a fundamental domain forG ifF satisfies the following conditions:48

(i) g(F ) ∩ {F } = ∅ for every g ∈ Gwith g 6= id.49

(ii) If F is the closure of F in H2 then H2 =
⋃
g∈F g(F ).50

(iii) The relative boundary ∂F of F in H2 has measure zero with respect to the two-dimensional Lebesgue measure.51

Please cite this article in press as: C. Grácio, J.S. Ramos, Geodesic length spectrum on compact Riemann surfaces, Journal of Geometry and Physics (2010),
doi:10.1016/j.geomphys.2010.06.006
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Fig. 2. The hexagon H1 .

Fig. 3. Hyperbolic plane and the fundamental domain for twist angles are all equal to zero.

These conditions indicate that the Riemann surfaceM = H2/G is considered as F with points on ∂F identified under 1

the covering group G. Using the hyperbolic geometry it is possible to determine explicit formulas for the generators. Images 2

of F under G provide a tiling (tessellation) of H2, where each image is a ‘‘tile’’ of the universal covering surface ofM. To 3

explicitly describe the construction of the fundamental domain, we consider a chain on the surfaceM, like the one inM0, 4

(see Fig. 1). When we cut the surfaceM along these geodesics, we divide it into four equilateral hexagons. These geodesics 5

are the shortest ones in the free homotopic class of loops corresponding to some elements hi (i = 1, . . . , 6) of π1(M), the 6

fundamental group ofM. We have the hexagon H1 whose sides si are the arcs of γi and these arcs are contained in the axes 7

of the hyperbolic transformations hi (i = 1, . . . , 6). Their translation length in the positive direction along these axes is 2li, 8

where li denotes the length of γi = `(γi). We select, as a reference, a geodesic segment γ , axis of h, (see Fig. 2) which is the 9

common orthogonal between the axes of h1 and h3. Remark that if h2 is orthogonal to h1 and h3 then h2 = h. Let us term 10

P the intersection point between h and h1 and P2 the intersection point between h2 and h1. The other parameters are the 11

gluing angles. Then we consider the parameter σ determined by the distance between the intersection of hwith h1 and the 12

intersection of h2 with h1. If h2 = h then l5 is equal to zero. The other two parameters τ and ρ are determined by the angles 13

θ2 and θ3 between h2, h1 and h1, h3, respectively. So `1 = `(γ1), `2 = `(γ2), `3 = `(γ3), `4 = `(γ4), σ = |P − P2|, τ = 14

arc tanh (cos(θ2)) and ρ = arc tanh (cos(θ3)). Using the normalization selected, we obtain the hexagon H1 represented in 15

Fig. 2. 16

Let h be h =
(
a b
c d

)
, where c 6= 0. The reflection through an axis h is represented by the transformation r given by 17

r(z) =
(

1
√
a+ d2 − 4

)
(a− d)z + 2b
2cz + (d− a)

. 18

The reflection with respect to the axis of h4 sends H1 to another
∧
right-angled hexagon H2. Finally the reflection with 19

respect to the imaginary axis (symmetry) sends H1 and H2 to the hexagons H3 and H4. Thus, we construct the fundamental 20

domainF = H1∪H2∪H3∪H4. If the twist angles (for our purposes we denote the twist angles σ = σ1, τ = σ2 and ρ = σ3) 21

are zero, σ1 = σ2 = σ3 = 0, then the fundamental domain is a right-angled polygon (see Fig. 3). 22

With the variation of Fenchel–Nielsen parameters we obtain different fundamental domains. This construction depends 23

on the choice of the original geodesics γi, i = 1, . . . , 4 and the manner of gluing. For our computation purposes, we require 24

the fundamental domain to be a dodecagon.Wehave to select either the convenient parameters {`i, θi}3i=1, or, the convenient 25

geodesic chain γ1, γ2, γ3, γ4, in order to obtain a dodecagon. Its sides are obtained by the intersection of the geodesic axes, 26

and as a consequence; they are geodesic segments. We term vertex the single point which is at the intersection between 27

Please cite this article in press as: C. Grácio, J.S. Ramos, Geodesic length spectrum on compact Riemann surfaces, Journal of Geometry and Physics (2010),
doi:10.1016/j.geomphys.2010.06.006
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two consecutive sides. The circular arc that contains a side si intersects the real axis at two points pi and qi. The sides are1

denoted s1, . . . , s12 counting counterclockwise from zero. It is known (see [7]) that if F is any locally finite fundamental2

domain for a Fuchsian group G, then {g ∈ G : g(F ) ∩ F = φ} generates G.3

LetM = H2/G be our compact surface of genus 2. The fundamental domainF is a bounded fundamental polygonwhose4

boundary ∂F consists of the 12 geodesic segments s1, . . . , s12. Each side si of F is identified with sj, by an element g ∈ G5

and so each g ∈ G produces a unique side s, namely, s = F ∩ g(F ). There is a bijection between the set of the sides of F6

and the set of elements g in G for which F ∩ g(F ) is a side of F . We construct a map from the set of the sides of F onto7

itself g : si → sj where si is identified with sj. This is called a side pairing of F and the side pairing elements of G generate G.8

In this construction we select the side rule for the pairing9

s1 → s7, s2 → s12, s3 → s5, (2.1)10

s4 → s10, s6 → s8, s9 → s11.11

Making this selection we explicitly calculate formulas for the side pairing transformations g1, . . . , g12 and we explicitly12

obtain the generators gi = gi(`1, `2, `3, σ1, σ2, σ3), i = 1, . . . , 12, where `1, `2, `3, σ1, σ2, σ3 are the F–N coordinates. By13

using the linear fractional transformations defined above it is possible to obtain the boundary map: fG : ∂F → ∂F , defined14

by a piecewise linear fractional transformation in the partition P = {Ii = [pi, pi+1), i = 1, . . . , 11, [p12, p1)}, which is orbit15

equivalent to the action of the fundamental group on ∂F .16

3. Boundary map17

In this section,we describe in detail the construction of the boundarymap and its domain. These constructions and results18

will be essential for the determination of geodesic length spectrum.19

With the option (see the side rule (2.1)) we can, explicitly, calculate formulas for the side pairing transformations20

g1, . . . , g6, g7 = g−11 , . . . , g12 = g
−1
6 .21

This means that22

s7 = g1(s1), . . . , s9 = g6(s11), s1 = g7(s7), . . . , s11 = g12(s9).23

Let24

gi(z) = (aiz + bi)/(ciz + di), for gi(sj) = sk,25

with

ri = (qi − pi)/2,ci = 1/(rjrk)1/2,
bi = (aidi − 1)/ci.

26

Then we solve the system of equations27 {
(aipj + bi)/(cipj + di) = qk,
(aiqj + bi)/(ciqj + di) = pk

28

to determine {ai, di}.29

Thus we explicitly obtain the generators30

gi = gi(`1, `2, `3, σ1, σ2, σ3), i = 1, . . . , 12.31

We called G0 the set of these generators.32

The isometric circle, I(g), is defined as the circle that is the complete locus of points in the neighborhood of whose lengths33

are unaltered inmagnitude by the linear fractional transformation, g−I(g) = {z : |cz + d| = 1}. As a transformation g ∈ G is34

defined by g(z) = az+b
cz+d then g

′(z) = (cz+d)−2. Then g is expansive in the interior of I(g) and contractive at the exterior. Let35

us consider fundamental domainF with sides s1, . . . , s12 always
∧
labelled in an counterclockwise directionwhere g(si) = gi36

are the corresponding elements of G. We denote the intersection points with the boundary by p1, q1, p2, q2, . . . , p12, q12.37

One way to construct the domain F , is to take the region outside the isometric circles for each element g ∈ G (see [8]). A38

vertex vi, i = 1, . . . , 12 of the dodecagon F is the intersection of si−1 and si (see Fig. 4). We call A(vi) the set of all geodesic39

arcs that pass vi (for instance, if i = 1, A(v1) is the set of brown arcs on Fig. 4) and A =
⋃12
i=1 A(vi). The points of intersection40

between these arcs and the Poincaré upper
∧
half-plane boundary are denoted by M(vi). The point of M(vi), immediately41

before qi+1 is termed Ti and that immediately before pi−1, is called Si. Note that Ti precedes but it is not equal to Si+1. We42

obtain 12 regions (which are 12 generators) involving each point vi defined by the geodesic arcs ofM(vi) (see Fig. 4).43

Theorem 3. The Poincaré upper
∧
half-plane boundary is divided, by the set M =

⋃12
i=1M(vi) into intervals.44

Proof. Let be an arbitrary point, P , of the Poincaré upper
∧
half-plane boundary; then P ∈ [pi, pi−1) for some i = 1, . . . , 12. If45

P ∈ [pi, pi+1), the domain of the generator gi, we consider the point gi(P).With the previous construction, P will belong to the46

setM(vi) or to the setM(vi+1). But P ∈ M(vi)means that P ∈ {pi, qi, . . . , Ti}. So the gi image, of the arc v̂iP(∈ A(vi))will be a

Please cite this article in press as: C. Grácio, J.S. Ramos, Geodesic length spectrum on compact Riemann surfaces, Journal of Geometry and Physics (2010),
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Fig. 4. Poincaré upper
∧
half-plane (pavimentation).

geodesic arc ofA =
⋃12
i=1 A(vi). As gi(vi) = vj, j = 1, . . . , 12 is a F vertex, then gi(P) ∈ gi(M(vi)).We can state that gi(P) ∈ M 1

because M =
⋃12
i=1M(vi). If P ∈ M(vi+1) we can apply similar reasoning to the above, so that gi(M) ⊂ M,∀{i=1,...,12}. We 2

can conclude that the Poincaré upper
∧
half-plane boundary its divided, by the setM =

⋃12
i=1M(vi), into intervals. � 3

To proceed from here we require the boundary map to have properties enabling a study of the dynamics of the geodesic 4

flow, namely the codification of periodic orbits. 5

Definition 4. A map f is a Markov map for the partition P if f satisfies: (i) piecewise smoothness; (ii) local invertibility; 6

(iii) (Markov property) each f (Jj) is a union of intervals of the partition P . 7

Unfortunately, in general, fG(pi) 6∈ {pi}12i=1 so we need to refine the partition Q . For our purposes, it is important to ensure 8

that our boundarymap, fG, is aMarkovmap, which implies the fulfilling of theMarkov condition. However, we can introduce 9

the lateral limits p±i , of the discontinuity points pi, thus refining, the partition. 10

Definition 5. Let P =
{
Jj
}N
j=1 be the Markov (finite or infinite) partition introduced through the itineraries of the lateral 11

limits, p±i . Let be 12

W =

{
lim
ε→0
f kG (pi − ε), lim

ε→0
f kG (pi + ε)

}12
i=1
, ∀k ∈ N. 13

The sets
{
Jj
}N
j=1 are subintervals defined by the points of partition P . 14

With this partition, the map fG is a Markov map. This follow, naturally from the construction of the fundamental group 15

and the fundamental domain of the surface. 16

Theorem 6. The boundary map fG is a Markov map for the partition P . Moreover, P is finite. 17

Proof. The fundamental groupG of the surfaceM is generated by the hyperbolic transformations, gi, whichwere determined 18

explicitly the beginning of this section. This is a Fuchsian group, which is purely hyperbolic, since M is compact. Ifmi is the 19

number of elements of the setM(vi), then 1 ≤ mi ≤ ∞. The fact that G is purely hyperbolic, ensures there are no parabolic 20

points in ∂F . Then mi < ∞, allows us to conclude that the set M =
⋃12
i=1M(vi) and partition P are finite. However if 21

G = 〈gi, i = 1, . . . , 12〉 then it is a finitely generated group with M = H2/G a genus 2 closed Riemann surface. Therefore G 22

it is a finitely generated Fuchsian group of first kind. Finally, we can conclude that fG is a Markov map (see [9]) and partition 23

P is finite. � 24

Proposition 7. The intervals [pi, qi), i = 1, . . . , 12, defined above, are not empty. 25

Proof. Since we have constructed a fundamental domain for a Fuchsian group G that is a geodesic polygon with a finite 26

number of sides identified with the
∧
side pairing rules, we know that partition P is finite and that parabolic vertices do not 27

exist. Considering the definition of the isometric circle we have
∣∣f ′G(x)∣∣ bounded by 1 in all intervals of the Markov partition 28

P , (with the exception of those that in the form [pi, qi)). According to the proof set out above, there are no parabolic points, 29

so the points pi and qi do not coincide. Therefore the intervals [pi, qi) are not empty. � 30

Corollary 8. The map fG satisfies: 31

∃n > 0, (n = 2), inf
x∈(0,1)

∣∣(f nG )′(x)∣∣ > ξ > 1. 32

Proof. This proof is a natural consequence of the previous proposition. � 33

In order to analyze the geodesic length spectrumwith the parameters of F–N it is necessary to investigate if this partition, 34

P , that we have constructed, depends on these coordinates, that is, if it remains stable under conditions of deformation. This 35

question has already been resolved (see [3]). 36
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Theorem 9. Partition P , introduced by the family of boundary map fG = fG(`1, `2, `3, σ1, σ2, σ3), is stable under conditions of1

deformation, i.e., it does not depend on the variation of the Fenchel–Nielsen coordinates (`1, `2, `3, σ1, σ2, σ3).2

The boundary map is represented by (see [2]),3

fG :
⋃

i=1,...,12

Ii →
⋃

i=1,...,12

Ii,4

x→ fG(x)|Ii = gi(x), i = 1, . . . , 12.5

Let AfG be the matrix given by:6

aij =
{
1 if Jj ⊂ fG(Ji),
0 otherwise7

which is the Markov matrix associated with fG.8

We can define the Markov subshift (ΣAfG , σ ), whereΣAfG is the space of admissible symbolic sequences in the alphabet9

Σ = {1, . . . , 12}, corresponding to the Markov partition of ∂F and Markov matrix AfG and σ is the usual shift map.10

4. Length spectrum11

Although, the notion of closed geodesic lengths spectrum allows us to find the position of an element of the Teichmüller12

space T , it does not indicate that the determined length corresponds to a determined closed geodesic.13

This spectrum contains the lengths of all geodesics. While not all this information is necessary, we are able to identify14

which geodesic has a given length. Gelfand presented this conjecture (see [10]). To support it, he proved that there exists a15

continuous deformation of compact Riemann surfaces that does not modify the spectrum. Later, Mckean (see [11]) showed16

that the number of non-isometric compact Riemann surfaces, which have the same spectrum, is finite. Finally, Wolpert17

(see [12]) proved that surfaces for which this number is different from 1 are contained in a submanifold Vτ (genus τ ) of18

T , with low dimension. This result proves the Gelfand conjecture for general cases. Simultaneously, Vignerás (see [13])19

showed that the submanifold Vg is not empty. However, nothing is known about the explicit determination of the finite20

part of the spectrum that determines the total spectrum (which identifies a Riemann surface). The problem is how to21

explicitly determine this spectrumand to study its behavior in accordancewith the variation of Fenchel–Nielsen coordinates.22

The identification, enumeration and codification of orbits use symbolic dynamics through constructions that involve the23

geometry of the surface and the algebraic structure of its fundamental group G. The action of the fundamental group on24

the boundary of the Poincaré upper
∧
half-plane (or Poincaré disc boundary) is shown to be orbit equivalent to the Markov25

map, fG, that we have defined, and codification is obtained by the expansion of the boundary points. For this codification,26

successive ideas and constructions were produced by Nielsen, Hedlund (see [14]), Artin et al. (see [15]), Bowen and Series27

(see [9]).28

We have determined the fundamental group G (finitely generated), associated with the fundamental domain F (of a29

negative curvature compact surface M) and the limit set of G is identified with a subshift of finite type (see [1]). A point x of30

the limit set of G belongs to the Poincaré upper
∧
half-plane boundary that is the real axis.31

Definition 10. Let xi0 be an element of the limit set of G. As it belongs to one of the intervals Ii0 of the Markov partition32

P , the image under fG(xi0) = gi0(xi0) = xi1 , is another boundary point xi1 . The point xi1 belongs to the intervals Ii1 so33

fG(xi1) = gi2(xi1) = xi2 . We repeat this process successively and obtain a sequence34

x 
 · · · gi2gi1 where gi2 , gi1 ∈ G
0

35

which is called the expansion (fG-expansion) of the boundary point x.36

Definition 11. To each point x of the limit set of Gwe associate a fG-expansion, that is the infinite word associated with the37

point x.38

Proposition 12. To each point x it is possible to associate only one word and the admissibility of this word is determined by the39

Markov matrix AG.40

Proof. This matrix identifies the possible transitions between states in the associated subshift of finite type, (ΣAG , σ ). Thus41

the occurrences in the limit set are given by the admissibility in subshift of finite type therefore by AG. �42

Previous results enable us to determine explicitly the words associated with each boundary point. In particular, they43

allow us to study its variationwith F–N parameters. In the following tableswewrite some fG-expansion (words) for different44

values of F–N parameters. The fG-expansion is dependent on the selection of Fenchel–Nielsen coordinates.45
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Example 13. In the first, regular case, which is of notable importance, as we shall see, the value of all F–N length coordinates 1

is `1 = `2 = `3 = log
(
2+
√
3
)
and the twist angles σ1, σ2, σ3 are zero. 2

x = 1.5↔ 6, 12, 3, 8, 7, 3, 3, 7, 2, 3, 6, 12, 3, 8 3

x = 2.0↔ 11, 7, 11, 6, 10, 5, 11, 12, 3, 12, 3, 3, 10, 6 4

x = 2.5↔ 3, 6, 10, 8, 12, 11, 10, 6, 4, 7, 4, 3, 6, 10. 5

Example 14. In the second case the value of all F–N length coordinates is `1 = log(2+
√
3)+ 0.3, `2 = `3 = log(2+

√
3) 6

and the twist angles σ1, σ2, σ3 are zero. 7

x = 1.5↔ 6, 10, 7, 2, 10, 2, 7, 10, 12, 3, 4, 7, 7, 7 8

x = 2.0↔ 12, 6, 10, 7, 9, 12, 5, 4, 8, 7, 4, 1, 5, 4 9

x = 2.5↔ 4, 11, 1, 8, 10, 7, 6, 10, 6, 10, 6, 9, 7, 10. 10

The elements of G can be considered as deformation classes of closed curves on M, relative to a fixed base point (see 11

Section 2). A identification between deformation classes and conjugated classes exists: two elements g and g ′ belong to the 12

same deformation classes if and only if g ′ = k−1gk for some k ∈ G. Simpler deformation classes occur when there are closed 13

curves without self-intersections. In terms of fG-expansions, this means that an element it cannot follow its inverse. Let us 14

term this a reduced or simple word. 15

Definition 15. We define the fG-expansion of a geodesic γ by taking the fG-expansions of its endpoints γ− and γ+. 16

γ � γ−.γ+ � · · · gi2gi1 .hi1hi2 · · · where gik , hik ,∈ G
0, k = 1, 2, 3, . . . . 17

We obtain the representation (codification) of a geodesic γ in H2 (or D2) by juxtaposing the fG-expansions of their 18

endpoints γ− and γ+. A sequence g1g2 · · · gn(gi ∈ G0) is admissible if ∪nr=1(fG)
−r([g−1i ]) 6= ∅. 19

In order to proceed, we now need to introduce more terminology and definitions. 20

Definition 16. Given g ∈ G (and γ ∈ M) we define its word length |g| as the smallest number of elements of G required 21

in a presentation of g i.e. |g| = inf{n : g = g1 · · · gn with g1, . . . , gn ∈ G0}; for a closed geodesic γ and associated class [h] 22

in G, we denote |γ | = inf{|g| : g ∈ G e [g] = [h]}, which is the word length of γ ; the geometric length of γ is given by 23

`(γ ) =
∫
γ
m(z) |dz| and is dependent on the metric of the surface. 24

Note 1. By convention, we set |e| = 0, where e is the identity element in G. 25

Let us call the geodesic γ joining γ− to γ+ as admissible if the sequence (γ−)−1 • γ+ is admissible (see the previous 26

proposition). 27

The above definitions are
∧
well defined because there is a known result (see [16]) that establishes a bijection between 28

closed geodesics on M and (non-trivial) conjugacy classes [g] for G. 29

Theorem 17. Admissible geodesics are conjugated under G if and only if the corresponding sequences are shift equivalent. 30

Proof. Let us consider admissible geodesic conjugated for G, which are in the same conjugated class [gγ ]. Should be recalled 31

that the boundary map, fG, is
∧
orbit equivalent to the action of the fundamental group G in boundary ∂F . Then the fG- 32

expansions of their endpoints are the same, therefore the sequences are equivalent when (shift transformation σ(x)i = xi+1 33

is considered) they belong to the same σ -orbit. � 34

Using previous results, we can enumerate closed geodesics in M through the enumeration of the conjugacy classes of 35

group G. With most finite exceptions, there is a bijection between the primitive closed geodesics γ on M (of length `(γ ) 36

and word length |γ |) and the primitive k-periodic orbits,O(x) = {x, f (x), f 2(x), . . . , f k(x)}. It should be noted that a closed 37

geodesic is called primitive if it is not a repetition of a closed geodesic of strictly smaller length and, similarly, a closed orbit 38

is called primitive if it is not the iterate of a closed orbit of a strictly smaller period. We establish equivalences between 39

concepts and mathematical spaces that illustrate, in a sufficiently strong form, this
∧
geometric–algebraic linking, translated 40

into symbolic dynamics, between the geometry of the surface and the algebraic structure of fundamental group G. The 41

different results and considerations given above can be summarized by the following schema. 42

periodic points for fG ←→ admissible sequences for σ
l l

primitive closed geodesics onM ←→ conjugated classes for G
43

This means that running through all the primitive admissible sequences relative to the Markov subshift corresponds to 44

considering all the primitive periodic orbits in the flow. Moreover, this correspondence is equivalent to the consideration of
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all primitive closed geodesics, γ , on the surface and, consequently, it is sufficient for identifying all conjugated classes [g]1

with word length |g|, in G. Now, we need to identify the conjugacy classes. Fortunately, this is possible by using traces of the2

elements of the group (see [7]). These elements are viewed asmatrices in SL2(R) and the identification of thematrices g and3

−g in PSL2(R) = SL2(R)/{±1} can be understood automatically. Thus, tr(g) denotes the corresponding matrix–trace. Let us4

consider two elements g and h of the group G. Their conjugacy classes are equal if and only if the squares of their traces are5

also equal. That is,6

[g] = [h] ⇔ tr2(g) = tr2(h).7

For different values of F–N parameters, we obtain different conjugacy classes, so identification is dependent on8

coordinates of F–N. We compute the conjugacy classes for different selections of word length and F–N coordinates.9

Case 1. In the first (regular case), where the word length is |g| = 1, with options `1 = `2 = `3 = log(2 +
√
3) and10

σ1 = σ2 = σ3 = 0, only one conjugacy class exists.11

gi g1 · · · g12
tr2(gi) 16 · · · 16

12

Case 2. In this case we have the same word length, |g| = 1. However, with the options `1 = `2 = log(2 +
√
3), `3 = 1.713

and σ1 = σ2 = σ3 = 0 there are 4 conjugacy classes.14

gi g1 g2 g3 g4 g5 g6 g7 g8 g9 g10 g11 g12
'tr2(gi) 31.9975 16 49.2274 7.1839 49.2274 16 31.9975 16 49.2274 7.1839 49.2274 16

15

Case 3. In the third (regular case), where we have word length |g| = 2, with options `1 = `2 = `3 = log(2 +
√
3) and16

σ1 = σ2 = σ3 = 0, we have 9 conjugacy classes.17

g1.gi tr2(g1.gi) g2.gi tr2(g2.gi) g3.gi tr2(g3.gi)
g1.g1 196 g2.g1 64 g3.g1 400
g1.g2 64 g2.g2 196 g3.g2 676
g1.g3 400 g2.g3 676 g3.g3 196
g1.g4 64 g2.g4 400 g3.g4 64
g1.g5 16 g2.g5 100 g3.g5 4
g1.g6 64 g2.g6 2500 g3.g6 100
g1.g7 4 g2.g7 64 g3.g7 16
g1.g8 64 g2.g8 1156 g3.g8 676
g1.g9 16 g2.g9 676 g3.g9 1156
g1.g10 64 g2.g10 16 g3.g10 64
g1.g11 400 g2.g11 100 g3.g11 2500
g1.g12 64 g2.g12 4 g3.g12 100

18

The main purpose of this section is to provide an understanding of the behavior of the geodesic length spectrum of M,19

that is, the set of lengths of closed geodesics of M, with F–N coordinates. The determination of the geodesic length spectrum20

is thus equivalent to describing the set of traces of non-conjugate hyperbolic elements in the Fuchsian group. We can use21

results obtained by Beardon (see [7]) allowing for the determination of the length of the geodesic by using the traces of22

corresponding elements in the fundamental group.23

We obtain the length spectrum of the closed geodesics by computing24

`(g) = 2 cosh−1[tr(g)/2].25

Case 4. In the regular case, with options `1 = `2 = `3 = log(2+
√
3) and σ1 = σ2 = σ3 = 0, where we have word length,26

|g| = 1, there is just one distinct element of the geodesic length spectrum that is, `(g) ' 2.63392.27

Case 5. It should be recalled that for the regular case tr(gi) = 4,with i = 1, . . . , 12. So `(gi) = 2 cosh−1[tr(4)/2] ' 2.6339228

gi [tr(gi)]2 `(gi)
g1 16 2.63392. . .
· · · · · · · · ·

g12 16 2.63392. . .

29
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Case 6. For options `1 = `2 = log(2 +
√
3), `3 = 1.7 and σ1 = σ2 = σ3 = 0, where we have word length, |g| = 1, there 1

are 4 distinct elements of the geodesic length spectrum (see following table). 2

gi g1 g2 g3 g4 g5 g6
'[tr(gi)]2 31.9975 16 49.2274 7.18392 49.2274 16
'`(gi) 3.4 2.63392 3.85452 1.60608 3.85452 2.63392
gi g7 g8 g9 g10 g11 g12
'[tr(gi)]2 31.9975 16 49.2274 7.18392 49.2274 16
'`(gi) 3.4 2.63392 3.85452 1.60608 3.85452 2.63392

3

We study the behavior of the length spectrum where we consider word length, |g| = 2. 4

Case 7. For the regular case where we have word length, |g| = 2, we have 9 distinct values for the length spectrum, while 5

it should be recalled that for this case we have 9 distinct conjugacy classes: 6

g1.gi tr2(g1.gi) '`(g1gi) g2.gi tr2(g2.gi) '`(g2gi) g3.gi tr2(g3.gi) '`(g3gi)
g1.g1 196 5.26783 g2.g1 64 4.12687 g3.g1 400 5.98645
g1.g2 64 4.12687 g2.g2 196 5.26783 g3.g2 676 6.51323
g1.g3 400 5.98645 g2.g3 676 6.51323 g3.g3 196 5.26783
g1.g4 64 4.12687 g2.g4 400 5.98645 g3.g4 64 4.12687
g1.g5 16 2.63392 g2.g5 100 4.58486 g3.g5 4 0
g1.g6 64 4.12687 g2.g6 2500 7.82325 g3.g6 100 4.58486
g1.g7 4 0 g2.g7 64 4.12687 g3.g7 16 2.63392
g1.g8 64 4.12687 g2.g8 1156 7.05099 g3.g8 676 6.51323
g1.g9 16 2.63392 g2.g9 676 6.51323 g3.g9 1156 7.05099
g1.g10 64 4.12687 g2.g10 16 2.63392 g3.g10 64 4.12687
g1.g11 400 5.98645 g2.g11 100 4.58486 g3.g11 2500 7.82325
g1.g12 64 4.12687 g2.g12 4 0 g3.g12 100 4.58486

7

Case 8. For option `1 = `2 = log(2 +
√
3), `3 = 1.7 and σ1 = σ2 = σ3 = 0, where we have word length, |g| = 2, we 8

have 16 distinct values for the length spectrum, which should be recalled that for this case we have 16 distinct conjugacy 9

classes: 10

g1.gi tr2(g1.gi) `(g1gi) g2.gi tr2(g2.gi) `(g2gi) g3.gi tr2(g3.gi) `(g3gi)
g1.g1 899.848 6.8 g2.g1 127.99 4.83614 g3.g1 1908.65 7.5531
g1.g2 127.99 4.83614 g2.g2 196 5.26783 g3.g2 1724.46 7.45151
g1.g3 1908.65 7.5531 g2.g3 1724.46 7.45151 g3.g3 2230.41 7.70905
g1.g4 57.4668 4.01546 g2.g4 198.859 5.28246 g3.g4 88.4112 4.45898
g1.g5 16 2.63392 g2.g5 181.22 5.18858 g3.g5 4 0
g1.g6 127.99 4.83614 g2.g6 9602.51 9.16957 g3.g6 181.22 5.18858
g1.g7 4 0 g2.g7 127.99 4.83614 g3.g7 16 2.63392
g1.g8 127.99 4.83614 g2.g8 6722.76 8.81296 g3.g8 1724.46 7.45151
g1.g9 16 2.63392 g2.g9 1724.46 7.45151 g3.g9 1156 7.05099
g1.g10 57.4668 4.01546 g2.g10 11.4285 2.63392 g3.g10 88.4112 4.45898
g1.g11 1908.65 7.5531 g2.g11 181.22 5.18858 g3.g11 6926.78 8.84286
g1.g12 127.99 4.83614 g2.g12 4 0 g3.g12 181.22 5.18858

11

However, our aim is to carry out amore complete (analysis rather than that of just two cases) of this length spectrumwith 12

F–N coordinates, order to provide an understanding of how the geodesic length spectrum behaves under the conditions of 13

deformation of the surface. It should be recalled that these coordinates are a system of global coordinates in the Teichmüller 14

space T . In Fig. 5 we study the geodesic length spectrum for word length |g| = 1. It can be clearly observed that the only 15

case in which there is one element of the geodesic length spectrum, is the regular case (`1 = `2 = `3 = log(2 +
√
3) 16

and σ1 = σ2 = σ3 = 0). This case is represented by the blue line. For the other cases, there are 4 distinct elements of the 17

geodesic spectrum. 18
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Fig. 5. The length spectrum with F–N coordinates `1, `2, `3 variation.

Fig. 6. The maximum number of distinct elements, for each value of `i , of the length spectrum is 17. For the regular case `i = log(2 +
√
3) there are 9

distinct elements.

Fig. 7. For the regular case `i = log(2+
√
3) ' 1.31696 there are 8 distinct elements (blue line) and for `i = 1.7 there are 17 elements. (For interpretation

of the references to colour in this figure legend, the reader is referred to the web version of this article.)

In Figs. 6 and 7 we study the geodesic length spectrum for word length |g| = 2. The maximum number of distinct1

elements of the length spectrum is 17 and in the regular case we have 8 distinct elements. This case is represented by the2

blue line.

Q1

3

For word length |g| = 3 (see Fig. 8) the maximum number of distinct elements of the length spectrum is 46 and in the4

regular case we have 24 distinct elements.5

We can systematize in a table the number of distinct elements of the length spectrum when we select the value of the6

regular case for the coordinates of F–N (`i = log(2 +
√
3)) or when we choose another value (`i 6= log(2 +

√
3)) for F–N7

coordinates. As, can be observed in the table, this value depends on the word length considered.8

Definition 18. Let G be a finitely presented group, with generating set S, such that S is closed under inverses. The growth9

series of G is the formal sum: Ψ (G, S)(x) =
∑
∞

i=0 anx
n where an is the number of words in G of minimal word length n in10
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Fig. 8. For the regular case `i = log(2+
√
3) ' 1.31696 there are 24 distinct elements (blue line) and for `i = 1.7 there are 46 elements. (For interpretation

of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 4.1
Number of distinct elements of the length spectrum.

Word length (g) = n `i = log(2+
√
3) `i 6= log(2+

√
3)

1 1 4
2 8 17
3 24 46
4 143 410
5 633 2623

the generating set S. The growth rate of G is given by 1

λ(G, S) = lim
n→∞

sup |an|
1
n . 2

The growth series Ψ (G, S) is rational, for example, when G is hyperbolic, automatic, or a Coxeter group (see for 3

example [17], formore details). In the automatic case, we can obtainΨ (G, S) as λ(f (G, S))where f (G, S) is the characteristic 4

polynomial of an associated matrix. 5

Theorem 19. (1) Let M be a closed, non-deformed, surface with genus τ = 2 (regular case). The exponential growth rate 6

λ = λ(G, S) = 4 and the first terms of the growth series are: 7

ξ(z) =
∑
g∈G

z|g| = z + z2 + z3 + z4 + z5 + z6 + · · · 8

ξ(z) =
∞∑
n=0

anzn = z + 8z2 + 24z3 + 143z4 + 633z5 + · · · 9

and the radius of convergence of ξ(z) is 14 . 10

(2) LetM be any closed, deformed surface with genus τ = 2 (non-regular case). The exponential growth rate λ = λ(G, S) = 5 11

and the first terms of the growth series are: 12

ξ(z) =
∑
g∈G

z|g| = z + z2 + z3 + z4 + z5 + z6 + · · · , 13

ξ(z) =
∞∑
n=0

anzn = 4z + 17z2 + 46z3 + 410z4 + 2623z5 + · · · 14

and the radius of convergence of ξ(z) is 15 . 15

Proof. (1) Let us begin by recalling the notion of growth series for finitely generated groups (see [18]). Let G be a finitely 16

generated group and let G0 be a finite generating set.We are in this case sowe can define the growth series ξ(z) = ξ(G, S, z) 17

by ξ(z) =
∑
g∈G z

|g|
=
∑
∞

n=0 anz
n where an = #{g ∈ G : |g| = n}, is the number of words in G of minimal word 18

length n in the generating set S. With the previous constructions, G is a finitely generated group with a finite generating set 19

S = {g1, . . . , g6, g7 = g−11 , . . . , g12 = g
−1
6 } (see section above). So the radius of convergence of ξ(z) is given by

1
λ
=

1
4 , 20

where λ = limn→∞ sup |an|
1
n = 4 (see Table 4.1) and the number λ = λ(G, S) is the exponential growth rate of the pair 21

(G, S). 22

(2) Let us apply the same arguments as used in the previous demonstration. � 23
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