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This paper concerns the description of some properties of p-dimensional invertible real maps
Tb, turning into a (p − 1)-dimensional non invertible ones T0, p = 2, 3, when a parameter b of
the first map is equal to a critical value, say b=0. Then it is said that the noninvertible map is
embedded into the invertible one. More particularly properties of the stable, and the unstable
manifolds of a saddle fixed point are considered in relation with this embedding. This is made
by introducing the notion of folding as resulting from the crossing through a commutation curve
when p = 2, or a commutation surface when p = 3.

1. Introduction

This paper is devoted to the description of some
properties of p-dimensional invertible real maps Tb,
which turn into a (p−1)-dimensional non invertible
one T0, p = 2, 3, when a parameter b of the first
map is equal to a critical value, say b=0. Then it
is said that the noninvertible map is embedded into
the invertible one. The properties considered here
are essentially related to the manifolds of a saddle
fixed point qi having at least one of its multipliers
(eigenvalues) with a modulus less than one.

The first steps dealing with both stable and un-
stable manifolds of a saddle point were obtained for
p = 2 in [Mira, 1978, 1979, 1987] [Gumowski &

Mira, 1980] . It was about two-dimensional invert-
ible maps Tb (Jacobian J = −b) (written here in
the recurrence form):

xn+1 = f(xn, a) + yn

yn+1 = bxn
, n = 0, 1, ...., (1)

which from the initial condition (x0, y0), y0 �= 0,
turns into the one-dimensional noninvertible map
T0:

xn+1 = f(xn, a), n = 1, 2, ....., (2)

with the initial condition x1 for n = 1,when b = 0.
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The formulation of the problem for p = 3 is
given in [Mira et al., 1996] (pages 565-567). The
same reference (pages 8-13) considers the general
problem of the embedding of (p − k) noninvertible
map into a p-dimensional invertible one, p = 3, 4, ...,
k = 2, 3, ..., from the Valiron’s results [Valiron,
1948]. Considering an embedding of a noninvert-
ible map into a p-dimensional invertible one with
p = 2, and 3, the purpose of this paper concerns
some properties of the unstable manifold and the
stable one related to saddle fixed point, associated
with some limit properties when the embedding pa-
rameter b → 0. It is a question of completing the
previous results for p = 2, which in the past were
only deduced from numerical observations in some
cases, and indicating some extensions for p = 3. It
appears from these considerations that the (p− 1)-
dimensional noninvertible map gives a germinal sit-
uation of the phase space, which permits to under-
stand the p-dimensional invertible map behavior for
sufficiently small | b |-values. We remark that the
properties appear in a more evident way in the case
of piecewise linear maps (cf. the pioneering results
of [Lozi, 1978]), because the stable and unstable
manifolds of saddle points are also piecewise linear.

This paper does not intend to present a general
theory of the embedding of a (p − 1)-dimensional
noninvertible map into a p-dimensional invertible
map, but only to give a comprehensive view of this
question from some examples. In this framework it
must not be considered as a mathematical text in
the classical sense. It is only a question to give some
key directions for future more elaborated texts. So,
in order to facilitate the matter exposition, the sim-
plest situations are considered. They are related to
the following hypotheses called (H).

- (a) The maps are defined by continuous func-
tions.

- (b) The embedded (p-1)-dimensional nonin-
vertible map is of (Z0−Z2) type, that is a critical set
CS separates the phase space into two regions : Z0

whose points have no real preimages, and Z2 each
point having two real preimages. CS is a critical
point C (image of the unique extremum of f(x, a)
in (2)) for p = 2. When p = 3, let T0 be the em-
bedded two dimensional noninvertible map. CS is a
critical curve LC, image of the set defined by J = 0,
J being the Jacobian of T0 if the map is smooth,
or image of the set of non-smoothness in the other

case. The critical set CS separates a region J > 0
from a region J < 0, and CS is the set of points
having two coincident rank-one preimages. The set
CSn = Tn

0 (CS) is called critical set of rank n + 1.
Here Tn

0 indicates n successive applications of the
map T0. When p = 3, it is supposed that LC is
connected, made up of only one branch.

- (c) The maps and their inverses are without
denominator (for avoiding difficulties described in
[Bischi et al., 1999]).

The properties of a saddle unstable manifold
and of a stable one, when the embedding parameter
b tends toward zero, have the following important
consequences:

- A saddle unstable manifold in the p-
dimensional space of the invertible map is crushed
in the (p − 1)-dimensional space of the noninvert-
ible map. Then the set of bending back (or ”fold”)
points of the saddle unstable manifold tend toward
arcs of the critical sets of rank 1, 2, 3, ..., related
to the embedded noninvertible map, i.e. arcs of
the set CS of points, and their successive images
(pages 291-296 of [Mira, 1987]). In particular, a
chaotic attractor generated by a noninvertible map,
the boundary of which is made up of arcs of CS and
CSn, n = 1, 2, ..., k, can be considered as the result
of such a crushing.

- The limit set of a saddle stable manifold in the
p-dimensional space of the invertible map tends to-
ward a (p−1)-dimensional non connected set of this
space, which intersects the (p−1)-dimensional space
of the noninvertible map at the (p− 2)-dimensional
saddle stable set of T0, and its successive preimages.

After this introduction, the second section gives
some definitions and reminds useful properties of
two-dimensional noninvertible maps. The third sec-
tion is devoted to the case p = 2. Considering
piecewise linear maps and smooth maps, properties
of the stable, or the unstable, manifold of a saddle
point are described, from the notion of commuta-
tion sets defined in sec. 2. The fourth section con-
cerns the case p = 3. Due to difficulties related to
the dimension increase of the phase space, this last
part will be limited with respect to the case p = 2.
In particular the two-dimensional stable manifold
of a saddle point will be considered for a smooth
map, and the two-dimensional unstable manifold of
a saddle in the case of a piecewise linear map.
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2. Formulation of the problem. Definitions.
Properties

2.1. Formulation of the problem

For p = 2 in a recurrence form, the embding is
given by (1) which from the initial condition (x0, y0)
turns into the one-dimensional noninvertible map
T0 given by (2).In a map form, Tb is written:

x′ = f(x, a) + y
y′ = bx

(3)

The corresponding noninvertible map form T0

is written :

x′ = f(x, a) (4)

When the dimension of the embedding is p = 3,
the recurrence form is :

xn+1 = f(xn, yn, a)
yn+1 = g(xn, yn, c) + zn

zn+1 = b(dxn + eyn)
n = 0, 1, .., (5)

The map form Tb is:

x′ = f(x, y, a)
y′ = g(x, y, c) + z
z′ = b(dx + ey)

(6)

With the initial condition (x0, y0, z0), z0 �= 0,
from n = 1, Tb=0 turns into the two-dimensional
recurrence T0:

xn+1 = f(xn, yn, a)
yn+1 = g(xn, yn, c)

, n = 1, 2, ....., (7)

with the initial condition (x1, y1), supposed to be
a noninvertible recurrence. In a noninvertible map
form T0 is written :

x′ = f(x, y, a)
y′ = g(x, y, c)

(8)

The following assumptions are made for the
functions f(x, y, a) and g(x, y, c) :

- (i) the map T0 is noninvertible of (Z0 − Z2)
type,

- (ii) the Jacobian of Tb does not change its
sign for b �= 0, that is the three-dimensional map is
invertible.

The condition (ii) ensures that the map Tb is in-
vertible whether the map is smooth, or nonsmooth.
The paper concerns only maps family having the
forms (3) and (6).

2.2. Definitions

Definition 2.1. Let T a continuous noninvertible
map X ′ = TX, dimX = p. The critical set of rank-
one, say CS , is the geometrical locus of points
X having at least two coincident preimages. The
critical set CSi of rank-(i+1), i > 0, is the rank-i
image of the set CS0 ≡ CS.

Noninvertible maps, giving rise to regions Zi

are classified into types related to the nature of the
regions Zi characterizing the considered map. The
class of maps having the simplest properties is that
of the (Z0 − Z2) maps. For this class CS sepa-
rates the space into two open regions Z0 and Z2, a
point X ∈ Z2 having two real distinct preimages of
rank-one, and a point X ∈ Z0 being without real
preimages.

Definition 2.2. A closed and invariant set A is
called an attracting set if some neighborhood U of
A exists such that T (U) ⊂ U , and Tn(X) → A as
n → ∞,∀X ∈ U .

Definition 2.3. The set D = ∪n≥0T
−n(U) is the

total basin (or simply: basin of attraction, or in-
fluence domain) of the attracting set A (definition
2).

Definition 2.4. Let p a saddle fixed point and
U a neighborhood of p. The local unstable set
W u

loc(p) of p ∈ U is given by: W u
loc(p) = {x ∈

U : x−n ∈ T−n(x) → p, x−n ∈ U,∀n}, and the
global unstable set W u(p) of p is given by W u(p) =⋃

n≥0 Tn[W u
loc(p)]. The local stable set W s

loc(p) of
p ∈ U is given by: W s

loc(p) = {x ∈ U : xn ∈
Tn(x) → p, xn ∈ U,∀n}, and the global stable set
W s(p) of p is given by W s(p) =

⋃
n≥0 Tn[W s

loc(p)].

Definition 2.5. The point q is said homoclinic
to the non-attracting fixed point p (or homoclinic
point of p) iff q ∈ W u(p) ∩ W s(p). Let r another
non-attracting fixed point. A point q ∈ U(p) is
said heteroclinic from p to r, if Tn(q) → r, when
n increases, and q belongs to the local unstable set
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Fig. 1. Folding of an arc, generated by the commutation set (surface) S0, in the case p = 3. Case of a
nonsmooth map.

W u
loc(p) of p ∈ U(p).

Definition 2.6. Commutation sets (S) of the
maps (3) and (6).

(a) Case of a continuous nonsmooth map : S0

is the set of non smoothness in the p-dimensional
space. When b = 0, in the (p-1)-dim. space, S0,
turns into a set separating two regions where the
noninvertible map Jacobian has opposite signs.

(b) Case of a smooth map. Let J” be the Jaco-
bian matrix of T0, that is the (p-1)×(p-1) minor of
the Jacobian matrix of Tb, defined by the (p-1) first
linesrows and columns in the p-dimensional space.
S0 is the set J” = 0 in the p-dimensional space.
When b = 0, in the (p-1)-dim space, S0, turns into
a set separating two regions where J” has opposite
signs.

(c) S0 is called rank-0 commutation set. Sn =
Tn

b (S0) is called rank-n commutation set.

Definition 2.7. Folding of an arc, generated by
the commutation set S0, in the case p = 2.

Let γ0 be a sufficiently small arc crossing
through S0, γ0 ∩ S0 = a0, a1 = Tb(a0), a1 ∈ S1,
γ1 = Tb(γ0). Let N1 be the normal to S1 at a1.

(a) Case of a nonsmooth map on S0. The com-
mutation set (curve) S0 is said to give rise to a fold-
ing, if the two arcs of γ1, joining at a1 (fold point),
are located on the same side of N1.

(b) Case of a smooth map on S0. S0 gives rise
to a folding near the point a1, when the two arcs
of γ1, joining at a1, are locally settled on the same
side of a line M1 parallel to N1, and located in a
neighborhood of N1. The point a′1 of γ1 on M1 is
the fold point.

Definition 2.8. Folding of an arc, generated by
the commutation set (surface) S0, in the case p = 3.

Let γ0 be a sufficiently small oriented arc cross-
ing through S0, γ0 ∩ S0 = a0, a1 = Tb(a0), a1 ∈ S1,
γ1 = Tb(γ0), v−1 and v+

1 being the tangents to γ1

just before and just after a1. Let Ω1 the plane de-
fined by the vectors v−1 and v+

1 , N1 the normal to
S1 at a1, N ′

1 the normal to Ω1 at a1. Let Π1 be the
plane defined by N1 and N ′

1.
(a) Case of a nonsmooth map on S0. S0 is said

to give rise to a folding at the point a1, when v−1
and v+

1 are located on the same side of the plane
Π1 (see Fig. 1).

(b) Case of a smooth map on S0. S0 gives rise



On the embedding of a dim-(p-1) noninvertible map into a dim-p invertible map. 5

S
1

S
1

N1

��

��

��

��

��

��

Fig. 2. Folding of a piece of surface, generated by
the commutation set (surface) S0, in the case p = 3.
Case of a nonsmooth map.

to a folding near the point a1, when v−1 and v+
1 are

located on the same side of a plane Π′
1 located in a

neighborhood of Π1, and parallel to this plane. The
point a′1 of γ1 on Π′

1 is the fold point.

Definition 2.9. Folding of a piece of surface, gen-
erated by the commutation set (surface) S0, in the
case p = 3.

Let Γ0 be a piece of surface crossing through
S0, Γ0 ∩ S0 = δ0, Γ1 = Tb(Γ0), Γ1 ∩ S1 = δ1.and an
arc η1 ⊆ δ1. Let Θ1 be the piece of surface made
up of the set of the normals N1 to S1 at each point
a1 ∈ η1.

(a) Case of a nonsmooth map on S0. S0 gives
rise to a folding along η1, when Γ1 is locally situated
on the same side of Θ1(see Fig. 2).

(b) Case of a smooth map on S0. S0 gives rise
to a folding along an arc η′1 near η1, when Γ1 is lo-
cally situated on the same side of a piece Θ′

1 located
in a neighborhood of Θ1. The arc η′1 of Γ on Π′

1 is
the fold arc.

Remark. If S0 gives rise to a folding in the sit-
uations of the definitions 7, 8 and 9, it is not always
ensured that the arc γn = Tn

b (γ0) undergoes a fold
on the set Sn = Tn

b (S0), in the cases of definitions
7 and 8, and the piece Γn = Tn

b (Γ0) undergoes a
fold in the case of definition 9. The folding is char-

acterized by properties equivalent to those related
to N1 in the case of definition 7, Π1 in the case of
definition 8, and Θ1 in the case of definition 9, by
considering the tangent set to the rank-n iterate of
each of these three sets locally.

2.3. Some reminders and characteristic
features

2.3(A). Critical sets

Most of results obtained till now concern one-
dimensional noninvertible maps (CS is a point C)
and two-dimensional ones (CS is a curve LC) [Mira,
1980; Mira et al., 1996], i.e. p = 2 for the invertible
maps (3), and p = 3 for the invertible maps (6). For
the general class of noninvertible maps of the plane
T : R2 → R2, LC is made up of several branches
separating the plane into regions, the points of a
region having a number of rank-one preimages (or
antecedents) different from the one related to the
adjoining region. The plane R2 can be subdivided
into open regions Zi, R2 =

⋃
i Zi, (Zi being the

closure of Zi), the points of which have i distinct
rank-one preimages. The boundaries of these re-
gions are branches of the rank-one critical curve
LC, locus of points such that at least two determi-
nations of the inverse map are merging. In general,
a critical curve LC is made up of several branches.
The locus of these ”coincident rank-one preimages”
is a curve LC−1, called rank-one curve of merging
preimages. As in any neighborhood of a point of LC
there are points for which at least two distinct in-
verses are defined, LC−1 is a set of points for which
the Jacobian determinant of the noninvertible map
T vanishes when it is smooth, or for which T is not
differentiable, when it is nonsmooth. The curve LC
satisfies the relations T−1(LC) ⊇ LC−1, T−1 being
the backward iteration of T , and T (LC−1) = LC.

The simplest case of two-dimensional nonin-
vertible maps corresponds to LC made up of only
one branch, which separates the plane into two open
regions Z0 and Z2 (case of this paper). A point be-
longing to Z2 has two distinct real preimages (or
antecedents) of rank-one, and a point of Z0 has no
real preimages. The corresponding maps are said
of (Z0 − Z2) type. In more complex cases a clas-
sification of noninvertible maps from the structure
of the set of Zi regions can be made [Mira et al.,
1996].
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2.3(B). Basins of invertible maps and nonin-
vertible ones

Let T be the p-dimensional map: X ′ = TX. The
total basin D of an attracting set A is the open set
of points X whose forward trajectories (set of suc-
cessive images of X) converge towards A. When
the map is invertible the basin D is simply con-
nected, and D is invariant by application of T , and
under backward iteration T−1 of T . If the map is
noninvertible D is invariant under backward itera-
tion T−1 of T, but not necessarily invariant by T :
T−1(D) = D, T (D) ⊆ D. Here, the strict inclusion
holds iff D contains points of Z0, i.e. points without
rank-one preimages. Such a basin may be simply
connected as in the invertible case, but also non-
connected, and multiply connected, in the noninvert-
ible case. These relations hold also for the closure of
D. ∂D denotes the boundary of D. This boundary
satisfies: T−1(∂D) = ∂D and T (∂D) ⊆ ∂D.

2.3(C). Absorbing areas and chaotic areas in
two-dimensional noninvertible maps

The notion of chaotic area generated by a nonin-
vertible map needs previously the definition of ab-
sorbing area. These notions were firstly introduced
in [Gumowski & Mira, 1977] (cf. also p.356 [Gu-
mowski & Mira, 1980]), and developed in [Barugola
A., Cathala J.C. & Mira, 1986, 1995; Barugola A.,
& Cathala J.C., 1992; Cathala J.C., 1989; Gardini,
1992; Mira et al., 1996c].

Critical curves are at the basis of the definition
of absorbing area, and chaotic area (cf. more in-
formation in [Mira et al., 1996] and its references).
Roughly speaking an absorbing area (d′) (of non-
mixed type) is a region bounded by critical curves
segments of different rank, such that from a finite
number of iterations the successive images of all
points of a neighborhood U(d′) enter into (d′) and
cannot get away after entering. Except for some
bifurcation cases, a chaotic area is an invariant ab-
sorbing area, the points of which give rise to iter-
ated sequences (or orbits) having the property of
sensitivity to initial conditions. In general it con-
tains infinitely many unstable cycles of increasing
period, the corresponding limit sets, and the preim-
ages of increasing rank of all these points.

In numerical simulations of a chaotic area, a
critical set appears as a place of higher concentra-
tion of iterated points if the map is smooth, or as

a separation of regions with different densities of
iterated points if the map is not smooth. This is
directly related to properties of local extrema of
the map.

The notion of absorbing area, and chaotic area
is extended to mixed absorbing area, mixed chaotic
area (cf. [Mira et al., 1996] and its references).
These last areas differ from the non mixed ones by
the fact that their boundaries are now made up of
the union of critical curves segments, and segments
of the unstable set of a saddle fixed point, or a sad-
dle cycle (periodic point), or even segments of sev-
eral unstable sets associated with different cycles.
With respect to a ”simple” (non mixed) absorbing,
or chaotic area, these areas are such that successive
images of almost all points of a neighborhood enter
into the area from a finite number of iterations and
cannot get away after entering. The successive im-
ages of the points, which do not enter into the area,
are those belonging to one of the two segments of
the stable set of saddle points on the area bound-
ary. Though not entering the area, these images
tend toward the boundary saddle point.

About chaotic areas, or mixed chaotic areas, it
is important to emphasize that the study of such
areas has only the purpose of obtaining the macro-
scopic properties of the attracting set leading to
the considered area. In particular, these properties
are those appearing in a first step from a numeri-
cal simulation of the iterated sequences generated
by the map. The microscopic properties, i.e. the
nature of closed invariant sets generated by such
maps, or the internal structure of an attractor (if
it exists), implies further studies and are more dif-
ficult to identify. So results in this field are rare
and concern degenerated cases of two-dimensional
noninvertible maps.

For p = 3, the hypotheses (H) of sec.1 is com-
pleted by: the embedded two-dimensional nonin-
vertible map generates only absorbing, or chaotic,
areas of nonmixed type, and not mixed ones.

Considering the microscopic point of view, it is
worth noting that in 1979 Newhouse stated a very
important result. It states that in any neighbor-
hood of a Cr-smooth (r ≥ 2) dynamical system,
in the space of dynamical systems (or a parameter
space), there exist regions for which systems with
homoclinic tangencies (then with structurally un-
stable, or nonrough homoclinic orbits) are dense.
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Domains having this property are called Newhouse
regions. This result is completed in [Gonchenko et
al., 1993] which asserts that systems with infinitely
many homoclinic orbits of any order of tangency,
and with infinitely many arbitrarily degenerate pe-
riodic orbits, are dense in the Newhouse regions of
the space of dynamical systems. This has the fol-
lowing important consequence : systems belonging
to a Newhouse region are such that a complete study
of their dynamics and bifurcations is impossible. In-
deed in many smooth cases, due to the finite time of
a simulation, what numerically appears as a chaotic
(strange) attractor contains a ”large” hyperbolic
subset in presence of a finite or an infinite number of
stable periodic solutions. Generally such stable so-
lutions have large periods, and narrow ”oscillating”
tangled basins, which are impossible to exhibit nu-
merically due to the finite time of observation, and
unavoidable numerical errors. So it is only possible
to consider some of the characteristic properties of
the system, their interest depending on the problem
nature [Shilnikov, 1997]. Such complex behaviors
occur for p-dimensional flows, p > 2, and thus for
p ≥ 2 invertible and noninvertible maps.

From a macroscopic point of view the union of
the numerous, and even infinitely many stable so-
lutions, which are stable cycles for a map, forms an
attracting set A in the sense of definition 2. A nu-
merical simulation of the map iterated sequences is
always made from a limited number of iterations.
Consider the case of a noninvertible map numeri-
cally giving rise to a chaotic area, that is after elimi-
nation of a transient, made up of a sufficiently large
set of initial iterations. Then the numerical simu-
lation (a) either reproduces points belonging to a
strict strange attractor in the mathematical sense,
(b) or represents a transient toward an attracting
set A including many stable cycles of large period.
The first case (a) for example is that of some piece-
wise smooth maps (i.e. with isolated points of non-
smoothness), not permitting stable cycles (i.e. the
Jacobian determinant cannot be sufficiently small).
In the second case (b), supposing numerical iter-
ations without error, the transient would be that
toward a stable cycle having a period either larger
than the number of iterations, or less than this num-
ber but this transient occurring inside a very narrow
basin, tangled with similar basins of the other stable
cycles of large period. In presence of unavoidable

numerical errors, the iterate points cannot remain
inside the same narrow basin. They sweep across
the narrow tangled basins of cycles of the attracting
set A. Then they reproduce a chaotic area bounded
by segments of critical curves. This means that the
chaotic area boundary is that observed numerically,
in the smooth case as a transient toward an attract-
ing set located inside the area, in the nonsmooth
case as the boundary of a strange attractor. Such a
property constitutes an important characteristic of
the system dynamics. This shows the high interest
of the notion of chaotic area and critical sets, even
if in the smooth case it is impossible to discrimi-
nate numerically a situation of a strange attractor
in the mathematical sense, from that of an attract-
ing set made up of many stable cycles with very
large period.

Then a chaotic area is considered in a strict
sense, when the noninvertible maps is nonsmooth
in a situation which does not permit the existence of
stable cycles. This means that the Jacobian deter-
minant cannot be sufficiently small. In the smooth
case, as indicated above, generally it is impossible
to prove that inside the chaotic area, stable cycles
cannot exist. This ”chaotic area” (chaotic tran-
sient toward a cycle of very large period and narrow
basin) is said defined in a nonstrict sense.

2.3(D). Strange attractor induced by the fold-
ing generated by a p-dimensional in-
vertible map

Strange attractors are characterized by a dimen-
sion that is a noninteger number. This situation
results from a stretching in some directions, accom-
panied by a contraction in another ones, applied
to a p-dimensional set (area if p = 2, volume if
p = 3). These directions are given by the eigen-
vectors of saddle fixed points, or cycles. The eigen-
values having a modulus less (resp. higher) than
one give the contraction (resp. stretching) effect.
The p-dimensional set is stretched and at the same
time folded over itself by successive iterations of
the map. Then the existence of a chaotic behavior
generated by the map (3), or (6), implies that the
commutation set S0 gives rise to a folding in the
sense of definitions 7, 8, and. 9.

Consider the map (3) (i.e. p = 2), with the pa-
rameter b tending toward zero, which implies that
one of the two multipliers of saddle points tends
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toward zero, because the Jacobian of (3) is J =
−b. Then the unstable manifold of each saddle
point tends toward y = 0, i.e. it is crushed on
this line at the limit. The fold points of this man-
ifold tend toward the critical points of rank 1, 2,
3, ... (pages 291-296 of [Mira, 1987]). For the map
(6) (i.e. p = 3) an equivalent behavior occurs. If
a saddle unstable manifold is two-dimensional, it
tends toward z = 0, and crushed on this plane at
the limit. The folded arcs tend toward the critical
arcs of rank 1, 2, 3, .... So strange attractors of the
p-dimensional invertible map turn into chaotic ar-
eas of the (p−1) embedded noninvertible map when
b → 0, if some conditions of chaotic behavior preser-
vation are satisfied, which is obtained by choosing
the other parameters correctly. Such properties will
appear in the examples of secs. 3 & 4.

3. Embedding of a one-dimensional nonin-
vertible map into a two-dimensional in-
vertible one (p = 2)

3.1. Reminders of results on stable and un-
stable manifolds of a fixed point

The first results dealing with both stable and un-
stable manifolds of a saddle point were obtained
for p = 2 in [Mira, 1978, 1979, 1987] [Gumowski &
Mira, 1980]. They can be summarized as follows.
Tb=0 is regarded as a degenerate two-dimensional
map (J = 0), obtained from (1), which behaves as
T0 for n ≥ 1, but is different from T0 with the ini-
tial condition (x0, y0), y0 �= 0 for n = 0. Let q be
a saddle fixed point of the map Tb with b �= 0, q0

(x = α, y = 0) the corresponding fixed point of the
map Tb=0 defined by (1), and the initial condition
(x0, y0 �= 0). After one iteration, the iterated se-
quence (x, y) belongs to y = 0. Suppose that q0 is
unstable for the one-dimensional noninvertible map
T0. Then q0 is a saddle (S2 = 0, |S1| > 1).

Let (c0) be the curve y = α−f(x, a) in the(x, y)
plane. Using (1) with b = 0, i.e. Tb=0, it is easy to
verify that the set of the points belonging to (c0)
has the same point q0 as rank-one image. Let α−1

be the rank-one preimage of q0, different from q0,
T−1

0 (q0) = q0
⋃

α−1. Let α−p
i1,...,ip−1

, p= 2,3,..., be
the sequence of rank-n preimages of q0, obtained
from the inverse map T−p

0 . Let (cp
i1,...,ip−1

) be the
curve: y = α−p

i1,...,ip−1
− f(x, a). The set (Γ)=

c0
⋃

p>1,is(c
p
i1,...,ip−1

) is the degenerate stable man-
ifold W s(q0) of the fixed point q0 of the map (1)
with b = 0, [Mira, 1978, 1979, 1987] [Gumowski
& Mira, 1980]. This degenerate stable manifold,
made up of non connected arcs, is associated with
the multiplier S2 = 0. The other multiplier S1 is re-
lated to the fixed point of the one-dimensional map
(2). In the case of the map (1) with b �= 0 and
f(x, a) ≡ 1− ax2, (Γ) is used as a germ in [Mira et
al., 1999] for obtaining an approximate implicit ana-
lytical representation of the stable manifold W s(q)
related to the saddle fixed point q (S2 �= 0) be-
longing to the basin boundary of the attracting set
generated by this map.

Remind that a rank-n critical point of T0, de-
fined by (2) is the rank-n image of an extremum
of the function f(x, a). For simplifying consider
f(x, a) ≡ 1 − ax2, for a > −1/4 T0 has two fixed
points: q1 (S > 1), q2 (S < 1). Let C be the
rank-one critical point of T0. The degenerate un-
stable manifold W u(q1) of the saddle q1 of Tb=0 be-
longs to y = 0, and it is made up of the segment
−∞ ≤ x < x(C). When a > 3/4, for Tb=0 the de-
generate unstable manifold W u(q2) of the saddle q2

(S < −1) is made up of a segment bounded by C
and the rank-two critical point C1, that is defined
by 1−a ≤ x ≤ 1, y = 0. When b → 0, each of these
two segments is the limit of the unstable manifold
W u(qi), i = 1, 2. It was seen numerically that the
bending back points of W u(qi) with b �= 0 (con-
sidered roughly as points with a local minimum of
curvature radius) tends toward the set of the criti-
cal points Cn of T0 (C0 ≡ C) with increasing ranks,
when b → 0. This means that each of the degener-
ate unstable manifolds of qi, located on y = 0, re-
sults from the crushing of W u(qi) loops on y = 0 for
b → 0. Each unstable manifold can be considered
as a piling up of segments bounded by increasing
ranks critical points on y = 0 [Mira, 1978, 1979,
1987] [Gumowski & Mira, 1980]. As indicated in
[Sharkovskij, 1969], for the one-dimensional nonin-
vertible map T0, the stable set W s(qi) of qi is made
up of qi and its arborescent sequences of preimages.
Then the homoclinic points W u(qi)

⋂
W s(qi), gen-

erated by T0 and related to qi supposed unstable,
i = 1, 2, naturally appear as the limit of those gen-
erated by Tb when b → 0.

It is known that W s(qi) may belong to the basin
boundary of an attractor (when it exists). Due to
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the fact that the one-dimensional map T0 is nonin-
vertible, this basin may be non connected, but for
the two-dimensional map Tb with b �= 0, the invert-
ibility implies that the basin (and so W s(qi)) must
be connected. This means that the disconnected
arcs of the set (Γ), defined above, must join. As in-
dicated in [Mira, 1979] and [Mira, 1987], for b �= 0,
but small in absolute value, these arcs join at ab-
solute y-values, the larger as | b | is small, the sad-
dle multiplier S2 becoming different from zero. The
saddle unstable set is a curve of the two-dimensional
space, turning into a curve of the (x, y) plane.

These ancient results were presented without
using the notion of commutation set. Such a notion
is now used in order to improve and extend them.

3.2. Conditions of folding

We consider the map T (1) in the recurrence form,
that is: xn+1 = f(xn, a) + yn, yn+1 = bxn.

Let pn = dyn/dxn , be the slope of an arc γn

at the point (xn, yn). Let [df((x)/dx]n be the value
of df((x)/dx at the point (xn, yn). From (1) the
slope pn+1 = dyn+1/dxn+1 of γn+1 at the point
(xn+1, yn+1), point belonging to the image γn+1 of
γn, is given by the recurrence relationship:

pn+1 = b/{[df((x)/dx]n + pn} (9)

Let qn = d2yn/d2xn , related to the arc γn

at the point (xn, yn). From (1) qn+1, at the point
(xn+1, yn+1), is given by the recurrence relation-
ship:

qn+1 = −b{[d2f((x)/dx2]n+2qn]/{[df((x)/dx]n+pn}2

(10)
Under the hypotheses (H) the equation of S0 is

x = x0e, abscissa of the extremum of f((x, a), the
equation of S1 is y = bx0e. Let γ0 be a sufficiently
small arc crossing through S0, γ0 ∩ S0 = a0, a1 =
Tb(a0), a1 ∈ S1, γ1 = Tb(γ0).

(a) Nonsmooth map at S0

Let [df((x)/dx]+0 and [df((x)/dx]−0 be respec-
tively the values of df((x)/dx for x = x0e + ε and
x = x0e − ε,ε > 0 being infinitely small. The nor-
mal N1 to S1 (y = bx0e) at a1 being a vertical line,
then from (9) the necessary and sufficient condition
of folding is:

Condition C1 For the nonsmooth map (1)
consider an arc γ0 crossing through S0, γ0∩S0 = a0.

Let p0 be the slope of γ0 at a0. If [df((x)/dx]+0 + p0

and [df((x)/dx]−0 + p0 have opposite signs, then a
folding occurs for γ1 = Tb(γ0) at the point a1 =
Tb(a0), a1 ∈ S1.

(b) Smooth map at S0

Let p0 = dy0/dx0 be the slope of an arc γ0 at
the point (x0e, y0). At the point γ0

⋂
S0 = a0 one

has [df((x)/dx]0e = 0. Now a folding does not occur
for γ1 = Tb(γ0) at the point a1 = Tb(a0), a1 ∈ S1.
It takes place at a point r1 belonging to the line
M1 parallel to N1, and located in a neighborhood
of N1, mentioned in definition 7. This line M1 is
the vertical tangent to γ1, that is the slope of γ1

at r1 is p1f = b/{[df((x)/dx]0f + p0f} = ∞. Here
[df((x)/dx]0f is the value of df((x)/dx at the point
r0 ∈ γ0, r0 /∈ S0, r1 = Tb(r0), p0f is the slope of γ0

at r0.
The following condition results from above:
Condition C2 Consider a smooth map (1),

and an arc γ0 crossing through the commutation
set S0, γ0

⋂
S0 = a0. If in a neighborhood of a0

there exists a point r0 ∈ γ0 giving rise to a folding
at r1 = Tb(r0), r1 ∈ γ1 = Tb(γ0), then this point is
defined by the relation: [df((x)/dx]0f = −p0f (x),
the lower index ”0f” being related to the value at
r0.

3.3. Nonsmooth maps as piecewise linear
ones.

3.3(A). Properties of commutation curves re-
lated to the map

A simple example is sufficient to show the basic
properties of Tb, f(x, a) being such as the hypothe-
ses (H) are satisfied. Let the map Tb the map
(3)given by:

x′ = f(x, a) + y, y′ = bx
f(x, a) = 2x, x ≤ 1/2
f(x, a) = −ax + 1 + a/2, x ≥ 1/2, a > 0

(11)
The commutation set S0 is given by x = 1/2,

its image S1 by y = b/2. The commutation set S2,
made up of two segments of straight lines is defined
by the relations:

y = b(x − b/2)/2, for y ≤ b/2, y = b(1 +
a/2 + b/2 − x)/a, for y ≥ b/2

S1 ∩ S2 = E(x = 1 + b/2, y = b/2).

Property 1 Consider the map (11) with a > 0,
b > 0. Let γ0 be an arc crossing through
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the commutation straight line S0 (x = 1/2),
γ0

⋂
S0 = a0, a1 = Tb(a0), a1 ∈ S1, γ1 =

Tb(γ0). The arc γ1 undergoes a fold by cross-
ing through S1, if the γ0 slope p0 at a0 is
−2 < p0 < a.

From the condition (9) the slope p−1 of the
image of the γ0 arc (x < 1

2) at the point a1 is
p−1 = b/(2 + p0). The slope p+

1 of the image of the
γ0 arc (x > 1

2) at the point a1 is p+
1 = b/(−a + p0).

Condition (C1) gives a folding of γ1 at a1 when
−2 < p0 < a. The boundaries of folding are:
p0 = −2 (S1 is perpendicular to p−1 ), p0 = a (S1

is perpendicular to p+
1 ).

Definition 3.1. Let E = S1 ∩ S2, then En =
Tn

b (E) = Sn+1 ∩ Sn+2, n = 0, 1, ..., is called prin-
cipal S-fold point of Sn+2. The other fold points
of Sn+2 resulting from Tb[Sn+1 ∩Sk], k = 0, 1, ..., n,
are called secondary S-fold points of Sn+2, if the
segment of Sn+2, in the neighborhood of a point
[Sn+2 ∩ Sk+1], is located on the same side of the
normal to Sk+1at this point.

Property 2 Consider the map (11) with a > 1,
0 < b < 1. The commutation set S2 = Tb(S1)
undergoes a principal folding at the point
E belonging to S1. The commutation set
Sn = Tn

b (S1) undergoes a principal folding at
the point En−2 = Tn−2

b (E) belonging to Sn−1.
S3 undergoes two secondary foldings on S1 at
Tb(S2 ∩ S0). Sn undergoes secondary foldings
on S1 at points Tb(S0∩Sn−1). Sn does not al-
ways undergo secondary foldings on Sj , j < n,
for all the points Tb(Sj−1 ∩ Sn−1).

The proof of this property implies very long
analytical developments. It is established from the
relation (9) with the condition −2 < p0 < a, the
hypothesis a > 1, 0 < b < 1, taking into account
the slope of S1 (p0 = 0), a S2 folding occurring at E
because −2 < p0 < a. It can be verified numerically
in the worst parametric conditions (a = b = 1).
Analytically the first secondary foldings of Sn =
Tn

b (S1) on S1 can be proved. So the slope of S2 at
the two points S2 ∩ S0 is p1

0 = b/2 (for y ≤ b/2),
p2
0 = −b/a (for y ≥ b/2). Due to the relations

−2 < pi
0 < a, i = 1, 2, a folding occurs at the points

Tb(S2 ∩ S0) on S1. The slopes of S3 at S3 ∩ S0 are
p1−
0 = 2b/(4+ b) > 0, p1+

0 = 2b/(b− 2a) < 0, p2−
0 =

S0
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E
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Fig. 3. Map (11), a = 1.4, b = 0.6384. Commuta-
tion sets Sk, k = 0, ..., 4. En (E0 ≡ E), n = 0, 1, 2,
are principal fold points. Points of S1 ∩Sm, m > 2,
different from E, and their successive images are
secondary fold points. Points F−1, G−1 are the
rank-one preimages of F and G belonging to S1.

ab/(2a − b) > 0, p2+
0 = −ab/(a2 + b) < 0. The

relation −2 < pi±
0 < a, i = 1, 2, is satisfied.

Let C be the rank-one critical point of the one-
dimensional non invertible map T0 obtained from
(11) with b = 0, that is the rank-one image of the
extremum (x = 1

2) of f(x, a), x(C) = 1.

Property 3 When b → 0, (a) the commutation
sets Sn, n ≥ 2, are crushed on the axis y = 0,
and lim(S2) = [y = 0,−∞ < x ≤ x(C)] =
lim(Sn), (b) the principal S-fold points are
such that lim(En) = Cn, Cn = Tn

b (C) rank-
(n−1) critical point (C ≡ C0) of T0 on y = 0.

From the equation of the two S2 segments
(given above) and S1 ∩ S2 = E(x = 1 + b/2,
y = b/2), one has lim(S2) = [y = 0, in the in-
terval −∞ < x ≤ x(C)]. The other points of the
proposition results from the iteration of S2.

Figure 3 (a = 1.4, b = 0.6384) shows the com-
mutation sets Sk, k = 0, ..., 4, with the principal
fold points En (E0 ≡ E), n = 0, 1, 2. Points of
S1 ∩Sm, m > 2, different from E, and their succes-
sive images are secondary fold points. Points F−1,
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G−1 are the rank-one preimages of F and G belong-
ing to S1.

3.3(B). Properties of commutation curves re-
lated to the inverse map

The inverse map T−1
b is defined by the relations

x = y′/b, y = x′ − f(y′/b)
f = 2y′/b if y′ ≤ b/2 (12)
f = 1 + a/2 − ay′/b if y′ ≥ b/2

The commutation set S′
0 is given by y = b/2,

its image S′
1 by x = 1/2. The commutation set S′

2,
made up of two segments of straight lines is defined
by the relations:

y = 1/2−2x, for x ≤ 1/2, y = a(x−1/2)−
1/2, for x ≥ 1/2, with S′

1 ∩ S′
2 = E−(x = 1/2,

y = −1/2).
The points E−

n = Tn
b (E−) = S′

n+1 ∩ S′
n+2, n =

0, 1, ..., are the principal S′-fold point of S′
n+2. The

other fold points of S′
n+2 resulting from Tb[S′

n+1 ∩
S′

k], k = 0, 1, ..., n, are secondary S′-fold points of
S′

n+2, if the segment of S′
n+2, in the neighborhood

of a point [S′
n+2∩S′

k+1], is located on the same side
of the normal to S′

k+1at this point.
Figure 4 (a = 1.4, b = 0.6384) shows the com-

mutation sets S′
k, k = 0, ..., 4, with the principal

fold points E−
n (E0 ≡ E), n = 0, 1, 2. Points of

S′
1 ∩ S′

m, m > 2, different from E−, and their suc-
cessive images are secondary fold points.

3.3(C). Unstable manifolds of the fixed points

The fixed points of (11) are q1 (x = y = 0), and q2

[x = (1 + a/2)/(1 − b + a), y = bx]. The multipli-
ers (eigen values) of q1are: S1(q1) = 1 − √

1 + b,
S2(q1) = 1 +

√
1 + b. The slope of the eigen-

vector related to the unstable manifold W u(q1) of
q1 is s2(q1) =

√
1 + b − 1. The multipliers of q2

are: S1(q2) = [−a − a
√

1 + 4b/a2]/2, S2(q2) =
[−a + a

√
1 + 4b/a2]/2. The slope s1(q2) of the

eigenvector related to unstable manifold W u(q2) of
q2 is s1(q2) = [a − a

√
1 + 4b/a2]/2.

We define the local unstable manifold W u
loc(q1)

of q1 as the segment y = s2(q1)x, −∞ < x ≤ x(B),
bounded by the point B = [y = s1(q1)x] ∩ S1,
x(B) = b/[2s1(q1)], y(B) = b/2. The local un-
stable manifold W u

loc(q2) of q2 is a segment of the
straight line (d2) y = s1(q2)x + q, q = (1 + a/2)[b−

S’1

S’0

S’4

S’4

S’2

S’3

S’3

E-

S’1

S’0

S’4

S’4

S’2

S’3

S’3

E-

Fig. 4. Inverse of the map (11), with a = 1.4, b =
0.6384. Commutation sets S′

k, k = 0, ..., 4, with
the principal fold points E−

n (E0 ≡ E), n = 0, 1, 2.
Points of S′

1 ∩ S′
m, m > 2, different from E−, and

their successive images are secondary fold points.

s1(q2)]/(1+a−b), bounded by the point D = (d2)∩
S1, and the point D1 = Tb(D), x(D) = (b/2− q)/p,
y(D) = b/2, p = s1(q2). The unstable manifold
of the fixed point qi is W u(qi) = limTn

b [W u
loc(qi)],

when n → ∞, i = 1, 2.

Definition 3.2. The points Bn = Tn
b (B) ∈

W u(q1), Bn ∈ Sn+1, and Dn = Tn
b (D) ∈ W u(q2),

Dn ∈ Sn+1, n = 0, 1, ...., (B0 ≡ B, D0 ≡ D),
are called principal fold points of each unstable
manifold. The other fold points resulting from
Tb[W u(qi) ∩ Sk], k = 0, 1, ..., i = 1, 2, are called
secondary fold points of W u(qi).

Property 4 When b → 0, the principal fold points
of W u(qi), i = 1, 2, are such that lim(Bn) =
lim(Dn) = Cn, Cn = Tn

b (C) rank-(n−1) crit-
ical point of T0 on y = 0, with B0 ≡ B, D0 ≡
D, C0 ≡ C. Moreover lim[S1 ∩ W u(qi)] = C.

This results from the above equations of
W u

loc(qi), the coordinates of the points B and D
and their iterates.

Figure 5 (a = 1.4, b = 0.6384) shows W u(q1)
and the commutation sets Sk, k = 0, ..., 4.. In this
figure B ∈ S1∩W u(q2) (the first intersection of this
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Fig. 5. Map (11), a = 1.4, b = 0.6384. Unstable
manifolds W u(q1) (red colored) with the commuta-
tion sets S′

k, k = 0, ..., 4.

unstable manifold from q1), and Bn = Tn
b (B). The

points set S1 ∩ W u(q2) different from B, and their
successive images are secondary fold points. Points
B−1, R−1 are the rank-one preimages of B and R
belonging to S1.

3.3(D). Stable manifolds of the fixed points

The slope of the eigenvector related to the stable
manifold W s(q1) of q1 is s2(q1) = −√

1 + b − 1.
The slope s2(q2) of the eigenvector related to the
unstable manifold W u(q2) of q2 is s1(q2) = [a +
a
√

1 + 4b/a2]/2.
We define the local stable manifold W s

loc(q1) of
q1 as the segment y = s1(q1)x, −∞ < x ≤ x(B−),
bounded by the point B− = [y = s1(q1)x] ∩ S′

1,
x(B−) = 1/2, y(B) = s1(q1)/2. The local sta-
ble manifold W s

loc(q2) of q2 is a segment of the
straight line (d′2) y = s2(q2)x + q, q = (1 +
a/2)[b − s2(q2)]/(1 + a − b), bounded by the point
D− = (d′2) ∩ S′

1, and the point D−
1 = T−1

b (D−),
x(D−) = 1/2, y(D−) = p/2 + q, p = s2(q2). The
stable manifold of the fixed point qi is W s(qi) =
limT−n

b [W u
loc(qi)], when n → ∞, i = 1, 2.

Figure 6 (a = 1.4, b = 0.6384) shows W s(q1)
(red colored) W s(q2) (blue colored), and the com-
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Fig. 6. Map (11), a = 1.4, b = 0.6384. Stable
manifolds W s(q1) (red colored), and W s(q2) (blue
colored), with the commutation sets S′

k, k = 0, ..., 4.

mutation sets S′
k, k = 0, ..., 4.. The points B− ∈

S′
1∩W s(q1) (the first intersection of this stable man-

ifold from q1), B−
n = T−n

b (B−), D− ∈ S′
1 ∩ W s(q1)

(the first intersection of this stable manifold from
q1), and D−

n = T−n
b (D−) are principal fold points.

The points set S′
1 ∩ W u(q1) different from B−,

S′
1 ∩ W s(q2) different from D−, and their succes-

sive images are secondary fold points.

Property 5 When b → 0, the stable manifolds
W s(qi), i = 1, 2, tends toward the degenerate
stable manifolds defined in sec. 3.1. These
manifolds are made up of non connected arcs,
associated with the multiplier S2 = 0 of the
fixed point qi related to the map Tb=0.

3.4. Quadratic map

3.4(A). Properties of the commutations sets re-
lated to the map

We consider the map (3) with: f(x, a) = ax(1−x):

x′ = ax(1 − x) + y
y′ = bx, 2 < a < 4, 0 < b < 1

(13)

The extremum of f(x, a) is obtained for x =
1/2. The commutation set S0 is x = 1/2, S1 is
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y = b/2, S2 is the parabola: x = ay/b−ay2/b2+b/2,
and S1∩S2 = E, the coordinates of E being x(E) =
(a/2 + b)/2, y(E) = b/2, E = Tb(E−1), E−1 =
S0 ∩ S1, x(E−1) = 1/2, y(E−1) = b/2].

Let E = S1∩ S2, the points En = Tn
b (E) =

Sn+1 ∩ Sn+2, n = 1, 2, 3, ..., give rise to principal
S-fold points (in the sense of part (b) of the def-
inition 7) E′

n (E ≡ E′, En �= E′
n) of Sn+2 in the

neighborhood of En. The other fold points of Sn+2

resulting from Tb[Sn+1 ∩ Sk], k = 0, 1, ..., n − 1, are
the secondary S-fold points of Sn+2.

Property 6 Consider the part (b) of the defini-
tion 7 with b → 0. (a) The commutation sets
Sn, n ≥ 2, are crushed on the axis y = 0,
and lim(S2) = [y = 0,−∞ < x ≤ x(C)] =
lim(Sn). (b) The principal S-fold points are
such that lim(En) = Cn, Cn = Tn

b (C) rank-
(n−1) critical point (C ≡ C0) of T0 on y = 0.
(c) The secondary fold points on S1 tend to-
ward the rank-one critical point C.

The axis of the parabola S2 is y = b/2, and its
vertex is the point E (x = a/4+b/2, y = b/2), with
x ≤ a/4+b/2. The rank-one critical point C of the
one-dimensional noninvertible map T0, x′ = ax(1−
x), is located on y = 0, with x(C) = T0(1/2) = a/4.
From the equation of S2 one has lim(S2) = [y =
0,−∞ < x ≤ x(C)], when b → 0, and the same
for lim(Sn). When b → 0 the coordinates of the
point E1 = Tb(E) tend toward [x = a2/4 − a3/16,
y = 0], which are the coordinates of the point C1 =
Tb(C), and the point (b) occurs for the iterates of C.
The point (c) is satisfied considering the parametric
equation of S3, x = af(t)[1 − f(t)] + t, y = bf(t),
f(t) = at/b− at2/b2 + b/2, and the two points S1 ∩
S3, which are such than they tend toward the point
C on y = 0.

Figure 7 (a = 2.2, b = 0.7) shows the commu-
tation sets Sk, k = 0, ..., 4, the folding occurring
according the part (b) of definition 7. The tangent
to S2 at the point E = S1∩S2 is vertical, so that this
point is a principal fold, but the successive images
of E give rise to principal fold points E′

n, n > 0,
only in a neighborhood of these images. In this fig-
ure the points set S1∩Sn, n > 2, has secondary fold
points in its neighborhood if the condition (C2) of
section 3.2 is satisfied. It is the case of the points M
and N , and L (fold points in their neighborhood:
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Fig. 7. Map (13), a = 2.2, b = 0.7. Commutation
sets Sk, k = 0, ..., 4, the folding occurring according
to the part (b) of definition 7.

M ′, N ′, L′), but not of the point K, considering the
slopes of the related arcs when they intersect S0.

3.4(B). Unstable manifolds of the fixed points

The fixed points of (13) are q1 (x = y = 0) and
q2: x(q2) = (a + b − 1)/a, y(q2) = bx(q2). The pa-
rameters (a, b) are chosen such that the two fixed
points are saddles, and W s(q1) ∩ W u(q1) = ∅, i.e.
no homoclinic point from q1(but heteroclinic points
from q1 to q2 may exist). When b → 0 this con-
dition is satisfied for 3 < a < 4.The multipli-
ers of q1are: S1(q1) = [a − √

a2 + 4b]/2, S2(q1) =
[a +

√
a2 + 4b]/2, due to 3 < a ≤ 4, 0 < b < 1, it

is a saddle with −1 < S1(q1) < 0, S2(q1) > 1. The
slope of the eigenvector related to W u(q1) at q1 is
s1(q1) = 2b/S2(q1) = 2b/[a+

√
a2 + 4b]. The multi-

pliers of q2 are S1(q2) = [2−2b−a−√
Δ]/2, S2(q2) =

[2− 2b−a+
√

Δ]/2, Δ = (a+2b)2 +4(1−a− b), it
is a saddle with S1(q2) < −1, 0 < S2(q2) < 1. The
slope of the eigenvector related to W u(q2) at q2 is :
s1(q2) = 2b/S1(q2).

The unstable manifolds W u(qi), i = 1, 2, are
determined as particular solutions of the functional
equation Λ[ax(1− x) + y, bx] = Λ(x, y). It is possi-
ble to obtain a series expansion of such a solution



14 C. Mira and C. Gracio.

S0

S1

S2

D’

D

D’1

D1

D2

D3

D4

Wu(q2)

P

R

S4

Q

S3

R-1

D-1

E

E1

S0

S1

S2

D’

D

D’1

D1

D2

D3

D4

Wu(q2)

P

R

S4

Q

S3

R-1

D-1

E

E1

S0

S1

S2

D’

D

D’1

D1

D2

D3

D4

Wu(q2)

P

R

S4

Q

S3

R-1

D-1

E

E1

Fig. 8. Map (13), a = 2.2, b = 0.7. Unsta-
ble manifold W u(q2) and the commutation sets Sk,
k = 0, ..., 4, the folding occurring according to the
part (b) of definition 7.

in a parametric form x = ϕ(t), y = ψ(t), using
an iterative method inspired from a Picard’s result
[Gumowski & Mira, 1980a], which permits to attain
high degrees in the expansion. Another method,
based on Lattes’ results, locally gives the series ex-
pansion in the form y = θ(x) = β1x + β2x

2 + ...,
when the fixed point is at the origin. So for W u(q1)
β1 is the slope s1 of the eigenvector, and β2 is given
by β2 = as1/[s1 + (a + s1)2 − b]. The first terms of
the series expansion gives a germ on a sufficiently
small segment, the iteration of which leads to a nu-
merically computed points of the unstable manifold
with the corresponding slope and second derivative,
and precision checks [Gumowski & Mira, 1980b].

Figure 8 (a = 2.2, b = 0.7) shows W u(q2) and
the commutation sets Sk, k = 0, ..., 4, the folding
occurring according the part (b) of definition 7. In
the figure near D ∈ S1

⋂
W u(q2) (the first intersec-

tion of this unstable manifold from q2) is located a
principal fold point D′ (the tangent to W u(q2) is
normal to S1). Principal fold points D′

n in a neigh-
borhood of Dn = Tn

b (D) are defined (at the fig-
ure scale D′

n cannot be distinguished from Dn for
n > 1). A neighborhood of a subset of S1

⋂
W u(q2)

contains secondary fold points. It is the case of the

points set P and the set Q resulting from infinitely
many W u(q2) arcs intersecting S1, because the con-
dition (C2) of sec. 3.2 is satisfied. It is not the case
for the points set R (R = T (R−1), R−1 ∈ S0) be-
longing to S1 (no point with a vertical tangent ex-
ists in its neighborhood). For W u(q1) an equivalent
figure is obtained. Near the point B ∈ S1

⋂
W u(q1)

(the first intersection of this unstable manifold from
q1) is located a principal fold point B′ (the tangent
to W u(q1) is normal to S1). Principal fold points
B′

n in a neighborhood of Bn = Tn
b (B) are defined.

When b → 0 properties equivalent to those of the
piecewise linear map (11) are obtained from numer-
ical computations leading to the determination of
W u(qi), i = 1, 2.

Property 7 Consider the piecewise linear map Tb

(11). When b → 0 the principal fold points
of W u(qi), i = 1, 2, are such that lim(Bn) =
lim(B′

n) = lim(Dn) = lim(D′
n) = Cn, Cn =

Tn
b (C) rank-(n−1) critical point of T0 on y =

0, with B0 ≡ B, D0 ≡ D, C0 ≡ C. Moreover
lim[S1 ∩ W u(q1)] = C.

3.4(C). Commutations sets related to the in-
verse map and stable manifolds

The inverse map T−1
b is defined by the relations:

x = y′/b, y = x′ + ay′(1 − y′/b)/b (14)

Let S′
0 be the line y = b/2, which is given by

J” = 0 as indicated in the definition 6 applied
to (14). The commutation curves are defined as
S′

n = T−n
b (S′

0). They give rise to fold points if the
part (b) of definition 7 is satisfied. The stable man-
ifolds W s(qi), i = 1, 2, behave like for the piecewise
linear map, but with fold points in a neighborhood
of the S′

n. In particular when b → 0, the stable
manifolds W s(qi), i = 1, 2, tend toward the degen-
erate stable manifolds defined in sec. 3.1. These
manifolds are made up of non connected arcs of
parabola, associated with the multiplier S2 = 0 of
the fixed point qi related to the map Tb=0.
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4. Embedding of a two-dimensional nonin-
vertible map into a three-dimensional in-
vertible one (p=3)

4.1. Three-dimensional invertible map and
its degenerate form

Let Tb be the invertible map defined by:

x′ = y,

y′ = f(x, y, λ) + z, (15)
z′ = b(x + y)

The Jacobian determinant is constant, J = b.
It is supposed that, when the parameter of embed-
ding is b = 0, the function f(x, y, λ) is such as (15)
turns into a two-dimensional noninvertible map T0:

x′ = y, y′ = f(x, y, λ), (16)

Starting from an initial condition (x, y, z �= 0), after
one iteration step the iterated sequences belong to
the plane (x, y). The map (15), with b = 0, and an
initial condition z0 �= 0, is considered as a ”degen-
erate three-dimensional map”. It is easy to verify
that the locus of points (x, y, z �= 0), having a given
rank-one image (ξ, η, 0), i.e. located in the (x, y)
plane, is the curve:

y = ξ, z = η − f(x, y, λ) (17)

4.2. Commutation sets

The commutation sets Sn are surfaces characterized
by definition 9, and satisfy properties equivalent to
those of the case p = 2. S2 undergoes a folding
along (resp. in a neighborhood of) ζE , if the map
is nonsmooth (resp. smooth). The symbolism is
equivalent, so ζE = S1∩ S2, and (ζE)n = Tn

b (ζE) =
Sn+1 ∩ Sn+2, n = 0, 1, ..., is called principal S-fold
curve of Sn+2, (ζE)0 ≡ ζE . Sn undergoes a fold-
ing along the curve (ζE)n−2 = Tn−2

b (ζE). The other
fold curves of Sn+2, resulting from Tb[Sn+1 ∩ Sk],
k = 0, 1, ..., n, are called secondary S-fold curves of
Sn+2, if the surface piece of Sn+2 is locally located
on the same side of the surface normal to Sk+1along
a fold arc in the neighborhood of [Sn+2 ∩ Sk+1].

Let LC be the critical curve of the two-
dimensional noninvertible map T0, separating the
(x, y) plane into the regions Z0 and Z2. When
b → 0: (a) the commutation sets Sn, n ≥ 2, are

crushed on the plane z = 0, and lim(S2) = [z =
0, (x, y) ∈ Z2] = lim(Sn); (b) the principal S-fold
arcs are such that lim(ζE)n = LCn, LCn = Tn

b (LC)
rank-(n− 1) critical sets (LC ≡ C0) of T0 on z = 0.
A subset of the secondary S-fold lines tends toward
(ζE)n and thus toward LCn. Contrary to the case
p = 2, due to difficulties of representation in the
three-dimensional space, the commutation sets will
not be represented by figures.

When p = 3, the commutation sets of defini-
tion 6 permit to obtain the folding properties of
two-dimensional stable (or unstable) manifolds of
saddle fixed points, and the one-dimensional sta-
ble (or unstable) manifolds. The one-dimensional
manifolds are characterized by definition 8, the
two-dimensional manifods by definition 9. In the
case of a two-dimensional stable manifold of sad-
dle, the fixed point is characterized by two multi-
pliers (eigenvalues) |S1| < 1, |S2| < 1, the third
multiplier being such that |S3| > 1. More pre-
cisely the fixed point is either of saddle-node (S1

and S2 being real) or saddle-focus (S1 and S2 being
complex conjugate) type. The unstable manifold
of the saddle is one-dimensional. In the case of a
one-dimensional stable manifold of saddle, the fixed
point is characterized by two multipliers (eigen-
values) |S1| > 1, |S2| > 1, the third multiplier being
such that |S3| < 1. The fixed point is also either of
saddle-node (S1 and S2 being real) or saddle-focus
(S1 and S2 being complex conjugate) type. The
stable manifold of the saddle is one-dimensional.

4.3. Stable set of a saddle fixed point

4.3(A). One-dimensional stable set

With the hypotheses (H) and b = 0, the func-
tion f(x, y, λ) leads to a map (16) having the type
(Z0 − Z2). Consider an unstable focus, or an
unstable node, fixed point A (u, v) generated by
the two-dimensional noninvertible map (16), and
A−1 (u−1, v−1) its rank one preimage different from
A. For the degenerate three-dimensional map, this
fixed point becomes a focus-saddle (or a node-
saddle), the unstable manifold W u(A) of A is two-
dimensional (it belongs to the plane z = 0). If
A−1 ∈ Z0, the one dimensional degenerate sta-
ble manifold W s(A) is made up of two non con-
nected arcs: the curve given by (17) with ξ = u,
η = v (which intersects the plane z = 0 in two
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Fig. 9. Embedded two-dimensional map (16). Sta-
ble set W s(P ) of the map T0 with f(x, y, λ) ≡
y − λx + x2, λ = 1.3785. The domain of bounded
orbits is simply connected. W s(P ) is the boundary
∂D between the blue and white regions.

points), and the curve with ξ = u−1, η = v−1

(which does not intersect z = 0). If A−1 ∈ Z2,
the degenerate stable set W s(A) is made up of
infinitely non connected arcs given by (17) with
(ξ, η) = T−n(u−1, v−1), n = 1, 2, 3, .... The mul-
tiplier associated with this stable set is S3 = 0,
those (S1, S2) related to the unstable set are such
as | S1 |> 1, | S2 |> 1.

The map (15) is invertible for b �= 0, then
W s(A) must be connected. This means that the
non connected arcs of W s(A), obtained when b = 0,
must communicate for b �= 0. When | b | is small,
these arcs join for | z |-values, the larger as | b |
is small, the multiplier S3 becoming different from
zero.

In order to illustrate the preceding points, we
consider the map (15) with f(x, y, λ) ≡ y−λx+x2,
with λ = 1.3785 [Mira et al., 1996]. The embedded
two-dimensional non invertible map (16) has a fixed
point: O (x = y = 0) (an unstable focus point) in-
side the domain bounded by a stable closed invari-
ant curve (Γ). The rank-one preimage O−1 (λ; 0)
different from O, belongs to Z0 the region with-
out preimage. The map has a second fixed point P
(λ; λ), a saddle with its multiplier related to W s(P )
being −1 < S1 < 0, if −1/4 < λ < 2, the multiplier
related to W u(P ) being S2 > 1. The unstable man-
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Fig. 10. Map (15), with f(x, y, λ) ≡ y − λx + x2,
λ = 1.3785. Qualitative representation of the stable
sets W s(P ) and W s(O) related to the degenerated
three-dimensional map Tb=0.

ifold W u(O) of O is the closed domain bounded by
(Γ). The stable manifold W s(P ) is the boundary
∂D of the basin D of (Γ), blue colored in Fig. 9.

This figure also represents the critical curve
LC, and the locus of merging preimages LC−1,
T (LC−1) = LC, LC

⋂
∂D = a

⋃
b, LC−1

⋂
∂D =

a−1
⋃

b−1. Considering (17) with ξ = 0, η = 0, the
stable manifold W s(O) of the three-dimensional de-
generate map Tb=0, is the union of two parabolae
[y = 0, z = λx−x2−y] and [y = λ, z = λx−x2−y].
The map (15) is invertible for b �= 0, then the saddle
stable set W s(O) must be connected. This means
that the two arcs of W s(O) must join. For b �= 0,
but small in absolute value, they join with z < 0
at absolute z-values, the larger as | b | is small, and
the third saddle multiplier becomes different from
zero.
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4.3(B). Two-dimensional stable set

Consider the two-dimensional noninvertible map
(16) generating an attractor with a basin D which
can be either simply connected, or non connected,
or multiply connected [Mira et al., 1996]. The basin
boundary ∂D contains the stable set of saddle fixed
(or periodic) points, when they exist. Let ∂D0 be
the boundary of the immediate basin (that contains
the attractor) if this basin is simply connected, or
the external boundary if it is multiply connected.
Suppose that ∂D0 is parametrized by ξ = ξ(t),
η = η(t). Then (17) generates a surface in the
(x, y, z) space, when t describes the (ξ, η) points of
∂D0. This surface belongs to the stable set of a sad-
dle when it exists. Doing the same for each non con-
nected part (island) if the basin is not connected,
and each hole (lake) of D0 if D0 is multiply con-
nected, (17) generates a well-defined tube for each
of these components. The surface generated from
∂D0 and all these tubes are non-intersecting, and do
not communicate. Their union, associated with the
given total basin (the boundary of which contains a
saddle P ), constitutes the two-dimensional degen-
erate stable set of S, and one of the three multipliers
of P is equal to zero (the one related to the z-axis).
All these non connected sets have an asymptotic
direction x = y = 0 (the z-axis).

The map (15) being invertible, for b �= 0 the
saddle stable set of Tb must be connected. This
means that the surface generated from ∂D0 and all
the tubes generated by the islands and the lakes
must communicate. For b �= 0, but small in absolute
value, the surface and the tubes of a given basin,
generated by Tb=0, now must join, and communi-
cate, the third saddle multiplier becoming different
from zero. Such a communication occurs at abso-
lute z-values, the larger as | b | is small. The sad-
dle unstable set is a curve of the three-dimensional
space, turning into a curve of the (x, y) plane when
b = 0.

With such a process it is possible to interpret
some of the complex structures of saddle sets gen-
erated by three-dimensional invertible maps, from
those of two-dimensional noninvertible maps [Mira
et al., 1996]. So a basin boundary generated by
a two-dimensional non invertible map, whatever
the complexity of the basin structure, associated
with the union of the above surface and tubes (as
two-dimensional degenerated saddle stable set), is a
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Fig. 11. Embedded two-dimensional map (16). Sta-
ble set W s(P ) of the map T0 with f(x, y, λ) ≡
y − λx + x2, λ = 1.5475. The domain of bounded
orbits is multiply connected. W s(P ) (yellow col-
ored)is the boundary ∂D between the blue and
white regions.

germ of the saddle stable set of Tb when | b | is suf-
ficiently small. In order to illustrate the preceding
points, let (15) be the three-dimensional invertible
map Tb, b �= 0, with f(x, y, λ) ≡ y − λx + x2. Con-
sider the parameter value λ = 1.3785, giving the
Fig. 9 situation for the embedded two-dimensional
non invertible map T0. The blue colored region
is the basin D of the stable closed invariant curve
(Γ), the white one being the domain of divergence,
i.e. W s(P ) is the boundary ∂D between these
two regions. The stable set W s(P ) of the degen-
erate three-dimensional map Tb=0 is made up of
all the parabolae (17) generated when the point
(ξ, η) moves along ∂D (Fig. 9). The arc ∂D

⋂
Z2

gives rise to a set of parabolae, which intersect the
plane z = 0, the limit situation corresponding to
the two parabolae Ca and Cb (Fig. 10), tangent
to z = 0, at the points a−1

⋃
b−1 = LC−1

⋂
∂D,

(a
⋃

b = LC
⋂

∂D). The arc ∂D
⋂

Z0 gives rise to
a set of parabolae (grey colored), which does not
intersect the plane z = 0. One of them Cm has
a maximum with the smallest possible value of z,
zm = λ2/4 − max(η − ξ), (ξ, η) ∈ ∂D

⋂
Z0.

Now consider the parameter value λ = 1.5475,
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giving the multiply connected basin of Fig. 11 re-
lated to the attracting set generated by the embed-
ded two-dimensional non invertible map T0. The
lakes H1, H2 and H ′

2, T−1(H1) = H2
⋃

H ′
2, are the

first of an infinite sequence [Mira et al., 1996], the
limit points of which are the fixed point O (0;0)
(an unstable focus point) and its rank-one preimage
O−1 (λ; 0), which is different from O, and belongs
to Z0 the region without preimage. When b = 0,
W s(P ), i.e. the basin boundary of the attracting set
generated by Tb=0, has an ”external” part generated
by the boundary of the Fig. 11 blue region deprived
of the ”tubes” generated by the above infinite se-
quence of lakes. The ”internal” part of W s(P ) is
made up of all the ”tubes” generated from this infi-
nite sequence of lakes. When b �= 0, all these tubes
are connected, giving rise to an unique ”oscillating”
tube (”internal” part of W s(P )).

Fig. 12 (b > 0) shows W s(P ), i.e. the basin
boundary of the attracting set generated by Tb. The
”external” part of this manifold (i.e. the part with-
out the ”tube” resulting from the connection of in-
finitely many ones) of this stable manifold is blue
colored, and an opening permits to see inside it. So
this opening shows how the non connected lakes of
T0 give rise to the ”internal oscillating tube” be-
longing to W s(P ), permitting a connected commu-
nication with the domain of divergence. The arrow
F indicates that the following part of the tube is-
sued from H2, non represented (for avoiding a too
complex figure), goes forward intersecting z = 0
infinitely many times. The limit set of the ”inter-
nal oscillating tube” is the stable manifold W s(O).
Figure 12 shows some sections, and the part inside
the tube which is yellow colored. The intersection
of the ”tube” and the ”external” part of W s(O), i.e.
the ”opening” corresponds to the yellow colored re-
gion noted (V ). When b → 0, this intersection is
associated with the bay H0 [Mira et al., 1996] in Fig.
11. We remind that a bay is the region, bounded
by a segment of LC and an arc of the ”external”
basin boundary ∂D, such as T (H1) = H0. The lakes
are generated by the successive preimages (with in-
creasing rank) of the bay H0, and when b → 0, one
has z(V ) → ∞.

Important remark. With the parameter
value λ = 1.5475, the multiply connected basin of
Fig. 11 is such that the lakes structure, generated
by T0, is not fractal. Nevertheless they are map

examples leading to a fractalization of the lakes
structure (see. Fig. 5.66 of [Mira et al., 1996]
for example). For Tb, b �= 0, from this situation
results a fractal structure of the set made by the
”internal tube” with its ”loops”. This ”internal”
fractal structure belongs to the stable set of a sad-
dle, this point being located on the ”external” part
of the stable set. It also may occur that a sim-
ply connected basin, generated by T0, has a fractal
boundary ∂D (see Fig.5.21 of [Mira et al., 1996] for
example). In this case, for Tb, b �= 0, the corre-
sponding basin boundary in the three-dimensional
space is fractal in the sense that the sections z =
constant give a fractal set. The same situation oc-
curs for islands, i.e. non connected parts of a to-
tal basin, out of the immediate basin. One has an
higher degree of complexity for the tubes organiza-
tion, when the noninvertible map T0 generates em-
bedded structures of ”islands in a lake” type [Mira
et al., 1996], these islands containing a lake, which
contains islands, etc ... (for example see [Kitajima
et al., 2000]).

4.4. Unstable saddle manifolds in the case
of piecewise linear maps

4.4(A). One-dimensional unstable manifold of a
fixed point

Consider the map (6) and a saddle fixed point Q,
the situation dim[W u(Q)] = 1 takes place when the
multipliers (eigenvalues) of Q are such as |S1| < 1,
|S2| < 1, with the third multiplier satisfying |S3| >
1. The unstable manifold W u(Q) is defined as in
the case p = 2, i.e. from a segment of straight line
W u

loc(Q) corresponding to the eigen vector related
to the multiplier S3. One end of this segment is B,
the first intersection of W u(Q) with the commuta-
tion set S0. The points Bn = Tn

b (B) ∈ W u(Q),
Bn ∈ Sn+1, n = 0, 1, ...., are called principal fold
points of W u(Q). The other fold points of W u(Q),
resulting from Tb[W u(Q) ∩ Sk], k = 0, 1, ..., n, are
called secondary fold points of W u(Q). When
b → 0, the principal fold points of W u(Q) are such
that lim(Bn) ∈ LCn, LCn = Tn

b (LC) rank-(n − 1)
critical line of T0, located on z = 0. A subset of the
secondary fold points tends toward each Bn and
thus toward points of LCn.
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Fig. 12. Map (15), with f(x, y, λ) ≡ y − λx + x2,
λ = 1.5475. Qualitative representation of the sta-
ble set W s(P ) of the three-dimensional map Tb, b
being sufficiently small.The white part is a window
opened toward the inside of the volume.

4.4(B). Two-dimensional unstable manifold of a
fixed point

Let Tb be the map (6) and Q a saddle fixed point
with dim[W u(Q)] = 2. This situation takes place
when the Q multipliers (eigenvalues) are such as
|S1| > 1, |S2| > 1, with the third multiplier satis-
fying |S3| < 1. Now the determination of W u(Q)
presents higher difficulties with respect to the case
of a one-dimensional unstable manifold. This is due
to the fact that the local unstable manifold W u

loc(Q)
cannot be defined from a maximum of two inter-
sections with the first commutation sets (S1) and
(S2). Consider the case when W u(Q) is bounded
(i.e. its points cannot tend toward infinity). Let
P 0

W ⊃ W u
loc(Q) be the plane defined by the eigenvec-

tors related to |S1| > 1, |S2| > 1, it can be limited
into a half plane P 1

W ⊃ W u
loc(Q) from P 0

W

⋂
(S1) =

δ1. Continuing the consideration of intersections of
P 0

W with correctly chosen pieces of the commuta-
tion sets (Sn), n = 1, 2, ..., k, it may be possible
to determine a subset P k

W of P 0
W , bounded by a

closed curve made up of segments δn = P 0
W

⋂
(Sn),

n = 1, ..k, such as P k
W represents W u

loc(Q). This
process looks like the one defining an invariant ab-
sorbing area generated by a two-dimensional non-
invertible map [Mira et al., 1996], but without the
invariance, because T h

b , h = 1, 2, ..., maps W u
loc(Q)

with foldings in directions which vary at each iter-
ation.

Example
In order to illustrate the above points, let Tb be

another form of (6), the piecewise linear invertible
map (d = 1, e = −1):

x′ = y (18)
y′ = g(x, y, λ) + z

z′ = b(x − y)

with

g(x, y, λ) = αy − λx, x ≤ 6
g(x, y, λ) = αy + 2x − 6(2 + λ), x ≥ 6/λ

The commutation set S0 is the plane x = 6, S1

is the plane z = b(6−x), S0
⋂

S1 is the straight line
[z = 0, x = 6]. S2 is made up of two half-planes
intersecting on S1,:S1

⋂
S2 is the straight line ζE

defined by [z = b(6 − x), y = αx − 6λ].
The fixed points are O (x = y = z = 0), and

P (z = 0, x = y = 6(2 + λ)/(1 + α). With the
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parameter values α = 0.1, λ = 1.5, | b | being suf-
ficiently small, O is a saddle-focus, its stable mani-
fold being one-dimensional, the unstable one being
two-dimensional.

The two-dimensional noninvertible map T0 gen-
erates a chaotic area (d) (red colored part in Fig.
13), bounded by six segments of critical curves
LCn, n = 0, 1, 2, 3, 4, LC0 ≡ LC, LCq = T q

0 (LC),
q = 1, 2, .... The chaotic area (d) basin is yellow
colored. The equation of LC is y = αx − 6λ, i.e.
y = x/10−9. In order to be more clear, Fig. 13 lim-
its the critical curves until those of rank four, but
infinitely many of them intersect inside and outside
(d). Each LCq is a line of folding for sheets of the
(x, y) plane, each sheet being associated with a well
defined rank-(q + 1) preimage [Mira et al., 1996].

When b → 0, S1∩ S2 = ζE , defined by [z =
b(6 − x), y = αx − 6λ], tends toward the critical
curve LC, and thus (ζE)n = Tn

b (ζE) = Sn+1∩Sn+2,
n = 0, 1, ..., principal S-fold curve of Sn+2, tends
toward LCn. It results that the commutation sets
(Sn) crush on the plane z = 0, and tend toward the
sheets, associated with a well defined preimage of a
given rank, these sheets being folded along critical
curves

When b → 0 the equation of the plane P 0
W

tends toward (15 − 10b)z + 10by + 14bx = 0. Then
P 0

W (O)
⋂

(S1) → [y = x/10 − 9], which is the
LC equation. It is the same for P 0

W (O)
⋂

(Sq),
q = 2, 3, 4, which tends toward segments of LCq.
It results that W u(O), made up of infinitely many
sheets folded in directions fixed by the intersec-
tions with the commutation sets (Sn), n = 1, 2, ...,
crushes on the plane z = 0, with W u(O) → W u

loc →
(d), when b → 0. So the critical curves LCq ap-
pear as the limits of the fold lines (definition 9 and
the remark which follows) of the commutation sets.
Fig. 13 gives a view of the first folds.

5. Conclusion

The points presented in this paper can be summa-
rized as follows:

(a) When b → 0, the stable manifold of a saddle
point of the p-dimensional invertible map Tb tends
toward a non connected set, the degenerate stable
set of this saddle (with a multiplier equal to zero),
generated by the map Tb=0. After one iteration the
map Tb=0 turns into the (p− 1)-dimensional nonin-
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Fig. 13. Map (18). The two-dimensional noninvert-
ible map T0 generates a chaotic area (d) (red colored
part), bounded by six segments of critical curves
LCn, n = 0, 1, 2, 3, 4, LC0 ≡ LC, LCq = T q

0 (LC),
q = 1, 2, .... The chaotic area (d) basin is yellow
colored.

vertible map T0. The degenerate saddle stable set
(of the p-dimensional space) intersects the (p − 1)-
dimensional space at the(p− 2)-dimensional saddle
stable set (the fixed point and its successive preim-
ages if p = 2) of T0.

(b) When b → 0, the unstable manifold of a
saddle point, generated by the two-dimensional in-
vertible map Tb, tends toward segments bounded
by increasing rank critical points of the map T0.
The two-dimensional unstable manifold of a sad-
dle point, generated by a three-dimensional invert-
ible map Tb, tends toward an area (belonging to
z = 0) bounded by segments of increasing rank
critical curves of the map T0. The one-dimensional
unstable manifold of a saddle point, generated by a
three-dimensional invertible map Tb, tends toward
arcs bounded by points belonging to increasing rank
critical curves of the map T0.

(c) When b → 0, the intersections of two com-
mutation sets of the p-dimensional invertible map
Tb tends toward a critical set with a fixed rank,
generated by the (p − 1)-dimensional noninvertible
map T0.

(d) By embedding, the (p−1)-dimensional non-
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invertible map T0 generates a germinal view of the
singularities structure, and of the bifurcations, pro-
duced by the p-dimensional invertible map, for suf-
ficiently small values of | b |.

Even if these results are shown here for par-
ticular simple examples, they might be verified for
more general cases. So the elementary view of the
embedding problem of a (p − 1)-dimensional non
invertible map into a p-dimensional invertible one,
given in this paper, has the purpose to furnish the
bases of more elaborate and more complete studies.
Such studies concern not only a better understand-
ing of the (Z0 − Z2) particular case when the two-
dimensional non invertible map is embedded into
a three-dimensional invertible map, but also exten-
sions by consideration of situations which do not
satisfy the hypotheses (H) of sec. 1. In this con-
text, the publication [Mira et al., 1996], with the
description of many situations of complex basins,
invariant absorbing areas, and their bifurcations,
gives the germs of a lot problems to be solved.
So it is the case of contact bifurcations (between
a critical curve and a stable, or unstable set) which
may give rise to a tangled fan of various homoclinic,
or heteroclinic bifurcations. More particularly the
fundamental global contact bifurcation described in
[Millerioux & Mira, 1997], and in sec. 4.3 of [Mira et
al., 1996], which separates two very different struc-
tures of stable sets of the map (15) with f(x, y, λ) ≡
y − λx + x2, leads to interesting problems by em-
bedding into a three-dimensional invertible map.

Another general problem concerns the em-
bedding of (p − k) noninvertible map into a p-
dimensional invertible one, p = 3, 4, ..., k = 2, 3, ...,
from the Valiron’s results [Valiron, 1948], which can
be also dealt in the same way. This is a source of
open problems.

The embedding problem of a (p − 1)-
dimensional non invertible map, into a p-
dimensional noninvertible one, can be studied in
a similar way, the (p − 1)-dimensional situation
giving a germinal state for understanding the p-
dimensional case. In the case p = 3, this is a first
step to understand the structure of two-dimensional
critical sets, invariant absorbing volumes, chaotic
volumes (natural extension of the notions of ab-
sorbing area and chaotic area, for p = 2), of basins,
and their bifurcations, from an embedding of a
two-dimensional noninvertible map into a three-

dimensional noninvertible map.
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Gonchenko V.S., Turaev D.V. & Shilnikov L.P.
[1993] “On models with a non-rough homoclinic
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