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Abstract In this talk I provide a short overview of applications of theso-called Covariant Spectator Theory
to two- and three-nucleon systems. It is a quasi-potential formalism based on relativistic quantum field theory,
and can be derived from a reorganization of the complete Bethe-Salpeter series. In this framework, we con-
structed two one-boson-exchange models, called WJC-1 and WJC-2, for the neutron-proton interaction that
fit the 2007 world data base, containing several thousands ofneutron-proton scattering data below 350 MeV,
with a χ2/Ndata close to 1. The close fit to the observables implies that the phase shifts derived from these
models can be interpreted as new phase-shift analyses, which can be used also in nonrelativistic frameworks.
Both models have a considerably smaller number of adjustable parameters than are present in realistic nonrel-
ativistic potentials, which shows that the inclusion of relativity actually helps to achieve a realistic description
of the interaction between nucleons. This became also evident in calculations of the three-nucleon bound
state, where the correct binding energy is obtained withoutadditional irreducible three-body forces which are
needed in nonrelativistic calculations. In addition, calculations of the electromagnetic form factors of helium-
3 and of the triton in complete impulse approximation also give very reasonable results, demonstrating the
Covariant Spectator Theory’s ability to describe the structure of the three-nucleon bound states realistically.

Keywords Relativistic few-body systems· Nuclear interaction

1 Covariant Spectator Theory of Two- and Three-Nucleon Systems

The purpose of this talk is to give a brief overview of recent results we obtained in relativistic calculations of
two-nucleon (2N) and three-nucleon (3N) systems in the framework of the covariant spectator theory(CST).
As will be demonstrated, we found simple one-boson-exchange (OBE) models of the nucleon-nucleon (NN)
interaction that provide a more efficient description of theNN observables than nonrelativistic models. This
efficiency applies also to the 3N bound state, which can be well described without 3N forces. The obtained
simplification depends crucially on relativity.

One way of introducing the two-body CST is to start from the manifestly covariant Bethe-Salpeter (BS)
equation for the scattering amplitudeM of two particles with massesm1 andm2, which can be written in the
general formM = VBS+VBSGBSM, whereVBS is a complete kernel consisting of an infinite number of two-
body-irreducible boson-exchange diagrams. The propagator GBS is the product of the propagators of the two
particles. This equation can then be recast into another equivalent form,M = VCST+VCSTGCSTM, in which a
different propagatorGCST and an accordingly modified kernelVCST is used. For the case of spin-1/2 particles,
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Fig. 1 On the left, a diagrammatic representation of the CovariantSpectator equation (2) with particle 1 on-shell (the on-shell
particle is indicated with a×). The second line shows the definition of the antisymmetrized kernelV 12, with ηI = (−)I , where
I is theNN isospin. On the right, a diagramatic representation of the Covariant Spectator equation for the 3N bound state vertex
functionΓ with particles 1 and 2 on-shell (labeled with a×). Here particle 1 is the spectator to the last two-body interaction
between particles 2 and 3, described by the scattering amplitudeM with particle 3 off-shell.

the replacement is

GBS =
1

m1− /p1

1
m2− /p2

−→ GCST = 2πiδ+(m2
1− p2

1)(m1 + /p1
)

1
m2− /p2

, (1)

which places particle 1 in intermediate states on its mass shell [1–3]. This reduces the dimension of the
integration over intermediate momenta from four to three, while maintaining the manifest covariance of the
equation. The new kernelVCST contains again an infinite number of diagrams, which are now two-body
irreducible with respect to the propagatorGCST. What originally motivated this choice of propagator was—
apart from the simplification of the integrations—the existence of cancellations between ladder and crossed-
ladder diagrams in scalar theories ofφ3-type, where two heavier particles with unequal masses exchange a
third lighter one. Truncation of the kernelVCST to OBE level is therefore expected to converge faster than the
corresponding “ladder approximation” in the BS equation with VBS.

Also, unlike the BS equation in ladder approximation, the CST two-body equation has the correct one-
body limit: when one particle becomes infinitely massive, the two-body equation reduces to a relativistic
one-body equation for the light particle moving in an effective potential created by the massive particle.

For systems with more than two particles, the CST procedure places all particles but one on mass shell,
which leads to a consistent description. For instance, the CST three-body equation satisfies the property of
cluster-separability, without which a two-body CST amplitude could not be used consistently in the kernel of
a three-body equation. For a brief recent review of the CST see Ref. [4].

In our applications toNN scattering, the specific form of the CST equation for the scattering amplitude of
two nucleons with massm, with particle 1 on-shell in both the initial and final state,is [5]

M12(p, p′;P) = V 12(p, p′;P)−

∫

d3k
(2π)3

m
Ek

V 12(p,k;P)G2(k,P)M12(k, p′;P) , (2)

whereP is the conserved total four-momentum, andp, p′, andk are relative four-momenta related to the
momenta of particles 1 and 2 byp1 = 1

2P + p, p2 = 1
2P− p, andM12 is the matrix element of the Feynman

scattering amplitude between positive energy Dirac spinors of particle 1. The covariant kernelV 12 (which is
also referred to as the “potential“) is explicitly antisymmetrized, ensuring that the amplitudesM12 satisfy the
generalized Pauli principle. The propagator for the off-shell particle 2 is

G2(k,P) ≡ Gββ ′ (k2) =
(m+/k2)ββ ′

m2− k2
2− iε

h2(k2) , (3)

with k2 = P−k1, k2
1 = m2. It is dressed by the off-shell nucleon form factorh(k2), which can be related to the

self-energy of the off-shell nucleon, and which is normalized to unity whenk2
2 = m2.

The propagator of an off-shell particle can be decomposed into positive and negative energy contributions,
which separates the CST equations into positive- and negative-energy channels. Negative-energy states are
related to the “Z-graphs” of time-ordered perturbation theory. In this sense, the solutions of (2) automatically
include Z-graphs to all orders.

The CST equations for the 3N bound state were formulated in a way suitable for a practicalsolution
in Ref. [6]. One obtains a homogeneous equation for the vertex function Γ of the 3N bound state, shown
graphically in Fig. 1. All relativistic effects can be calculatedexactly in CST, and the full Dirac structure of
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the nucleons is also taken into account. The CST 3N equation was solved numerically for the first time in
Ref. [7], for a family of older OBE potentials. Since then, much progress has been made in the development
of more accurate CSTNN interaction models, which will be described in the following section.

2 High-Precision np Kernels

The first covariantNN OBE kernels in CST, based on the exchange of either four or sixmesons, were pub-
lished in 1992 [5]. Since then, the applied numerical techniques and the structure of the kernels were gradually
improved, and thenp data base considerably enlarged. The two new models WJC-1 and WJC-2 [8] represent
the most recent worldnp data with a precision that is on par with all commonly used “realistic” potentials.

The kernels are sums of OBE contributions. For bosons with incoming (outgoing) momentaki (pi), the
individual boson contributions are of the form

V b
12(p,k;P) = εbδ

Λ b
1 (p1,k1)⊗Λ b

2(p2,k2)

m2
b + |q2|

f (Λb,q) . (4)

Here,b = {s, p,v,a} denotes the boson type (scalar, pseudoscalar, vector, axial vector),q = p1− k1 = k2−
p2 = p− k the momentum transfer,mb the boson mass,εb a phase factor,δ = 1 for isoscalar bosons and
δ = τ1 · τ2 = −1−2(−)I for isovector bosons, andf (Λb,q) a boson form factor depending on a form factor
massΛb. The axial vector bosons are treated as contact interactions, with a structure as in (4), but with the
propagator replaced by a constant.

For example, the boson-nucleon vertex for scalar mesons is of the general form

Λ s
i (pi,ki) = gs −νs

[

m− /pi

2m
+

m−/ki

2m

]

, (5)

wheregs andνs are coupling constants. Note that terms proportional toνs contribute only if the nucleon is off
mass shell on at least one side of the vertex. These terms are therefore called “off-shell couplings.” Similar
couplings are included for vector and pseudoscalar meson exchanges. In the case of pseudoscalar exchange,
the offshell coupling strength parametrizes a mixing between pseudoscalar and pseudovector coupling. For
the detailed forms of all numerator functionsΛ b

1 ⊗Λ b
2 see Ref. [8].

The replacement ofq2 by−|q2| in the propagators and form factors is a covariant redefinition in the region
q2 > 0 that removes all singularities and can be justified by a detailed study of the structure of the exchange
diagrams [8].

WJC-1 is our model with the best fit, whereas WJC-2 uses the smallest number of parameters without
significantly deteriorating the quality of the fit. Table 1 shows that we achieved excellent fits for the most
complete data base ofnp scattering, and with a considerably smaller number of adjustable parameters than
other realistic potential models. In fact, in view of theχ2/Ndata= 1.06 of model WJC-1, the corresponding
phase shifts can be considered a new phase shift analysis which includes many more data than the “standard”
Nijmegen 93 analysis [9] to which all realistic potential models were fitted. Note that our phase shifts, shown
in Fig. 2, can be used outside the framework of CST, just like any other phase shift analysis.

Table 1 Comparison of precisionnp models and the 1993 Nijmegen phase shift analysis. The first column specifies the model,
the second the number of adjustable parameters (in the case of the first four models for bothnp andpp data), and the third the
year of the data base (data prior to this year are included). Columns four to six are the obtainedχ2/Ndata for various data bases
(identified by their year), where the number of included datais given in parentheses. Our calculations are in bold face.

Model χ2/Ndata(Ndata)

Reference Npars Year 1993 2000 2007

PWA93 39 1993 0.99(2514) — —
1.09(3011) 1.12(3336) 1.13(3788)

Nijm I 41 1993 1.03(2514) — —
AV18 40 1995 1.06(2526) — —
CD-Bonn 43 2000 — 1.02(3058) —
WJC-1 27 2007 1.03(3011) 1.05(3336) 1.06(3788)
WJC-2 15 2007 1.09(3011) 1.11(3336) 1.12(3788)
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Fig. 2 Phase shifts ofnp scattering for partial waves withJ ≤ 2. The solid and dashed lines respresent the results of models
WJC-1 and WJC-2, respectively. The dotted line shows the Nijmegen multienergy phase shift analysis of 1993[9].

The deuteron binding energy was used as a constraint during the fitting of the CSTNN kernels, and
therefore they reproduce the experimental binding energy of Ed = 2.2246 MeV automatically. The deuteron
vertex functions can be related to the well-known nonrelativistic S- and D-state deuteron wave functions
u(p) andw(p), respectively. In addition one obtains spin singlet and triplet P-waves,vs(p) andvt(p), which
are of relativistic origin. Tables with the numerical values, and convenient parameterizations using analytic
functions, both in momentum and coordinate space, are givenin Ref. [10].

3 Three-Nucleon Binding Energies and Electromagnetic Form Factors

An interesting problem in few-nucleon physics is the inability of realisticNN potentials to explain the ex-
perimental triton binding energyEt = 8.48 MeV. The potentials with the lowestχ2/Ndata fits of theNN data
produce binding energies between 7.6 and 8 MeV. A possible explanation is that 3N forces are not negligible.
However, models for 3N forces introduce additional parameters which are usually adjusted to reproduce the
triton binding energy, and therefore the calculations loose predictive power.

The CST calculations of Ref. [7] showed that the scalar off-shell coupling terms of Eq. (5) in a relativistic
NN kernel not only improve the fit to theNN data, but the model with the best fit, called W16, also predicts
the correct triton binding energy without 3N forces. These terms are not present in nonrelativistic theories
because they require nucleons to go off mass shell. Surprisingly, both new high-precision models WJC-1
and WJC-2—withEt = 8.48 MeV andEt = 8.50 MeV, respectively—again predict the experimental binding
energy very closely, even though their detailed structure and their parameters differ quite significantly from
each other and from the old model W16. It appears unlikely that this is a mere coincidence. Figure 3 shows
the changes inχ2/NdataandEt whenνσ is held fixed at certain values while all other potential parameters are
refitted, confirming the importance of this mechanism in ourNN kernels.

Note that in a true relativistic OBE theory for theNN interaction, no additional irreducible 3N forces,
which might spoil the nice agreement with the experimental value forEt , can be derived from the basic vertices
of the theory. However, it is important to remember that the concept of 3N forces is framework-dependent.
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Fig. 3 Results for calculations ofχ2/Ndata(solid circles on curved line and left scale) to a 2007np data base, and triton binding
energyEt (solid squares on straight line and right scale) for WJC-1 family (left panel) and for WJC-2 family of models (right
panel). The points with the lowestχ2/Ndata are models WJC-1 and WJC-2, respectively. The other models of the two families
were obtained by fixingνσ at different values and refitting all other parameters. The curves are fits through the actually calculated
points.

Figure 4 illustrates that vertices with off-shell terms together with off-shell propagators can transform into
contact vertices and take the form of 3N forces. But in the framework of the CST they arecompletely deter-
mined from the NN interaction and automatically included through the OBE kernel. Our calculations provide
true predictions of the triton binding energy and of the structure of the 3N bound state in the form of the 3N
vertex function.

To test these vertex functions, we derived the conserved CST3N current in [11], and calculated the elec-
tromagnetic form factors of the 3N bound states in “Complete Impulse Approximation“ (CIA), first for an
older family ofνs-dependentNN potentials [12], and then also for the new high-precision models [13]. The
term “impulse approximation” can be misleading because theCIA in CST includes contributions that in non-
relativistic frameworks appear as interaction currents (pair terms related to Z-graphs). A good description
of the data over a large range ofQ cannot be expected in CIA, because interaction currents give important
contributions to the 3N form factors. Therefore, we compare to calculations by the Pisa-Jlab collaboration,
described in Ref. [14] and labeled “IARC” below. The IARC calculations use a nonrelativistic impulse ap-
proximation with a one-nucleon current and wave functions obtained from the Argonne AV18NN and Urbana
IX 3N potentials, and also include first-order relativistic corrections. The Coulomb interaction is not included
in the IARC and CST calculations presented here.

Figure 5 shows the isoscalar and isovector charge and magnetic 3N form factors for models WJC-1 and
WJC-2 in CIA-0 [13] (an approximation to CIA in which the 3N vertex function with two off-shell nucleons is
replaced by a vertex function with only one nucleon off mass shell), W16 both in CIA and CIA-0, and IARC
for the AV18/UIX interaction. Clearly, CIA-0 is an excellent approximation to CIA for W16. All models
reproduce the correct 3N binding energy, and the form factors remain close to each other. Only WJC-1 shows
some deviations already at relatively smallQ. The reason for this behavior is instructive: WJC-1 is the only
model with a mixed pseudoscalar-pseudovectorπNN coupling. Its pseudoscalar part induces strong Z-graph-
type currents, which are not present in the other cases.

The 3N electromagnetic form factors obtained with our relativistic kernels exhibit a very reasonable be-
havior. We can conclude that CST not only predicts the 3N binding energy correctly, but also yields a sound
description of the structure of the 3N bound states.

νσ(/p − m) gσ

1
/p−m

gσνσ

Fig. 4 Boson-nucleon vertices with off-shell coupling can generate ef-
fective 3N forces. In this example, an off-shell nucleon consecutively ex-
changes a scalarσ meson with two different nucleons. When a scalar off-
shell vertex is multiplied with the nucleon propagator, thetwo separate
boson-nucleon vertices shrink to a single contact vertex, and the whole
diagram takes on the form of a 3N force.
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Fig. 5 Isoscalar (first row) and isovector (second row) charge formfactors of the 3N bound states. In each case, the form factor
is divided by a common scaling functionFscale(Q) [13]. The solid line is the result forNN model W16 in CIA, the dotted line is
the approximation CIA-0 for the same model. The dashed line is model WJC-1, and the dash-dotted line is model WJC-2, both
in CIA-0. For comparison, the solid line with theoretical error bars is the result of an IARC calculation by Marcucci based on
the AV18/UIX potential. All calculations employ the on-shell single-nucleon current. The full circles represent the experimental
data [15].
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