
Constraint-Based Local Search

for the Costas Array Problem

Daniel Diaz1, Florian Richoux2, Philippe Codognet2,
Yves Caniou3, and Salvador Abreu4

1 University of Paris 1-Sorbonne, France
Daniel.Diaz@univ-paris1.fr

2 JFLI, CNRS / UPMC / University of Tokyo, Japan
{richoux,codognet}@is.s.u-tokyo.ac.jp

3 JFLI, CNRS / NII, Japan
Yves.Caniou@ens-lyon.fr

4 Universidade de Évora and CENTRIA FCT/UNL, Portugal
spa@di.uevora.pt

Abstract. The Costas Array Problem is a highly combinatorial problem
linked to radar applications. We present in this paper its detailed mod-
eling and solving by Adaptive Search, a constraint-based local search
method. Experiments have been done on both sequential and parallel
hardware up to several hundreds of cores. Performance evaluation of
the sequential version shows results outperforming previous implemen-
tations, while the parallel version shows nearly linear speedups w.r.t. the
sequential one, for instance 120 for 128 cores and 230 for 256 cores.

1 Introduction

During the last decade, the family of Local Search methods and Metaheuristics
has been quite successful in solving large real-life problems.

A generic Constraint-based Local Search method named Adaptive Search was
proposed in [4,5]. It is a metaheuristic that takes advantage of the structure
of the problem to guide the search and that can be applied to a large class
of constraints (e.g., linear and non-linear arithmetic constraints and symbolic
constraints). Moreover, it intrinsically copes with over-constrained problems.

A parallel version with a multi-start approach requiring no communication
between processes has been defined in [7,3]. On classical CSP benchmarks from
CSPLib, this simple parallelization scheme gives good results, with a factor 50-70
speedup for 256 cores, but this is far from ideal speedup (e.g., factor 256 speedup
for 256 processors), even for large problem instances. It is thus an open question
to know whether this is due to the classical (structured) CSP benchmarks used
or if this is a limitation of the method. In this paper we address the problem
of modeling a very combinatorial problem, with a low density of solutions the
Costas Array Problem (CAP) in the sequential version and we further investigate
if it scales up to a large number of processors and exhibits better speedups.
The CAP is an abstract problem that was motivated by a sonar application in

Y. Hamadi and M. Schoenauer (Eds.): LION 6, LNCS 7219, pp. 378–383, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Científico da Universidade de Évora

https://core.ac.uk/display/62451735?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Constraint-Based Local Search for the Costas Array Problem 379

the 1960’s but still has practical interest in radar and software-defined radio
applications [2]. Experiments in solving the CAP by Adaptive Search on two
parallel platforms, the Hitachi HA8000 supercomputer at University of Tokyo
and Grid’5000, the French national Grid for the research, show nearly linear
speedups w.r.t. the sequential version, for instance 120 for 128 cores and 230 for
256 cores.

The rest of this paper is organized as follows. Section 2 presents the Costas
Array Problem. Section 3 presents the modeling of the Costas Array Problem
within the Adaptive Search formalism. Section 4 details the experiments up to
256 cores on the HA8000 supercomputer and the Grid’5000 platform. Section 5
concludes the paper and briefly discusses about future work.

2 The Costas Array Problem

A Costas array is an n×n grid containing nmarks such that there
is exactly one mark per row and per column and the n(n− 1)/2
vectors joining the marks are all different. We give here an ex-
ample of Costas array of size 5. It is convenient to see the Costas
Array Problem (CAP) as a permutation problem by considering

an array of n variables (V1, . . . , Vn) which forms a permutation of {1, 2, . . . , n}.
The Costas array above can thus be represented by the array [3, 4, 2, 1, 5].

Historically, these arrays have been developed in the 1960’s to compute a set
of sonar and radar frequencies avoiding noise [6]. The problem to find a Costas
array of size n is very complex since the required time grows exponentially with
n. In the 1980’s, several algorithms have been proposed to build a Costas array
given n, such as the Welch construction and the Golomb construction [9], but
these methods cannot built Costas arrays of size 32 and some higher non-prime
sizes. Nowadays, after many decades of research, it remains unknown if there
exist any Costas arrays of size 32 or 33. Another difficult problem is to enumerate
all Costas arrays for a given size. Using the Golomb and Welch constructions,
Drakakis et. al present in [8] all Costas arrays for n = 29. They show that among
the 29! permutations, there are only 164 Costas arrays, and 23 unique Costas
arrays up to rotation and reflection. There are constructive methods known to
produce Costas arrays of order 24 to 29.

The Costas array problem has been proposed as a challenging combinatorial
problembyKadioglu andSellmann in [10].Theypropose a local searchmetaheuris-
tic, Dialectic Search, for constraint satisfaction and optimization, and show its
performance for several problems. Clearly this problem is too difficult for
propagation-basedsolvers, even formedium size instances (i.e.,withn around18−
20). Let us finally note that we do not pretend that using local search is better than
constructive methods in order to solve the CAP. We rather consider the CAP as a
very good benchmark for testing local search and constraint-based systems and to
investigate how they scale up for large instances and parallel execution.

In [12], Rickard and Healy studied a stochastic search method for CAP and
concluded that such methods are unlikely to succeed for n > 26. Although

380 D. Diaz et al.

their conclusion is true for their stochastic method, it cannot be extended to all
stochastic searches: their method uses a restart policy which is too simple and
they also used an approximation of the Hamming distance between configura-
tions in order to guide the search which they recognized themselves not be be
a very good indicator. However, they studied in this paper the distribution of
solutions in the search space and shown that clusters of solutions tend to spread
out from n > 17, which justify our multi-walk approach presented in Section 4
to reach linear speedup for high values of n.

3 Solving the CAP with Adaptive Search

The CAP can be modeled as a permutation problem by considering an array of
n variables (V1, . . . , Vn) which forms a permutation of {1, 2, . . . , n} (i.e., implicit
alldifferent constraint on variables Vi). A variable Vi = j iff there is a mark at
column i and row j. To take into account constraints on vectors between marks
(which must be different) it is convenient to use the so-called difference triangle.

3 4 2 1 5
d = 1 1 -2 -1 4
d = 2 -1 -3 3
d = 3 -2 1
d = 4 2

This triangle contains n−1 rows, each row cor-
responding to a distance d. The dth row of the
triangle contains the differences Vi+d−Vi for all
i = 1, . . . , n− d (i.e., the difference of values at
a distance d). Ensuring all vectors are different
comes down to ensure the triangle contains no
repeated values on any given row (i.e., alldifferent constraint on each row).
Here is the difference triangle for the Costas array given as example in Section 2.

In the Adaptive Search (AS) method, the way to define a constraint is done via
error functions [4]. At each new configuration, the difference triangle is checked
to compute the global cost and the cost of each variable Vi. Each row d of the
triangle is checked one by one. Inside a row d, if a pair (Vi, Vi+d) presents a
difference which has been already encountered in the row, the error is reported
as follows: increment the global cost and the cost of both variables Vi and Vi+d by
ERR(d) (a strictly positive function). For a basic model we can use ERR(d) = 1
(to simply count the number of errors). Obviously a solution is found when the
global cost equals 0. Otherwise AS selects the most erroneous1 variable and will
try to improve it.

Our AS sequential version has been tested over the CAP and compared to
Dialectic Search (DS). AS outperforms DS on the CAP: for small instances AS
is five times faster but the speedup seems to grow with the size of the problem,
reaching a factor 8.3 for n = 18. [10] does not provide results for instances with
n > 18.

CAP has also been used as a benchmark in the Constraint Programming
community and we can compare with a CP Comet program made by Laurent
Michel and based on the modeling in MiniZinc by Barry O’Sullivan2. As could

1 i.e. the variable with the highest total error.
2 http://www.g12.cs.mu.oz.au/mzn/costas_array/CostasArray.mzn

http://www.g12.cs.mu.oz.au/mzn/costas_array/CostasArray.mzn

Constraint-Based Local Search for the Costas Array Problem 381

be expected, CP is much less efficient than local search, and this Comet program
is about 400 times slower than AS for CAP19.

4 Parallel Implementation and Performance Analysis

We implemented a parallel version of AS using OpenMPI, an implementation
of the MPI standard. Experiments and performance results on classical CSP
benchmarks are described in [3]. The parallelization is straightforward and based
on the idea of multi-starts and independent multiple-walks: fork a sequential AS
method on every available cores. But on the opposite of the classical fork-join
paradigm, parallel AS shall terminate as soon as a solution is found, not wait
until all the processes have finished (since some searches initialized with ”bad”
initial configurations can take some time). Thus, some non-blocking tests are
involved every c iterations to check if there is a message indicating that some
other processes has found a solution; in which case it terminates the execution
properly. This results in a high number of independent work units, a high CPU
to I/O ratio, and no inter-process communication Three different testbeds were
used on two platforms: The supercomputer HA8000 at the University of Tokyo
(with a maximum of nearly 16000 cores) and the French national grid for research
Grid’5000 (on two nodes at Sophia-Antipolis: Suno with 360 cores and Helios
with 224 cores). Tables 1 & 2 show the execution times of the parallel executions
on the HA8000 supercomputer andGrid’5000. Timings are given in seconds and
are the average of 50 executions for each benchmark; they do not include the
deployment time, negligible on big benchmarks.

Table 1. Speedups on HA8000, Suno and Helios for small instances of CAP

Platform Problem Time on Speedup on k cores
1 core 32 64 128 256

HA8000 CAP 18 6.76 27.0 29.4 28.2 26.0
CAP 19 54.54 29.6 54.5 75.7 99.2
CAP 20 367.2 26.6 42.4 98.2 168

Suno CAP 18 5.28 33.0 63.6 94.3 139
CAP 19 49.5 36.1 83.9 121 226
CAP 20 372 30.5 63.5 139 208
CAP 21 3743 21.9 72.8 107 218

Helios CAP 18 8.16 34.0 74.2 136 -
CAP 19 52.0 22.6 59.8 130 -
CAP 20 444 31.0 58.2 98.2 -

Behaviors on all three platforms are similar and exhibit very good speedups
for larger instances. For n = 21 on Suno we have a 218 times speedup on 256
cores w.r.t. sequential execution. For the bigger instances CAP21 and CAP22,
we present in Table 2 results for executions from 32 to 256 cores only, because
the sequential time becomes prohibitive (e.g., more than one hour on average

382 D. Diaz et al.

Table 2. Speedups on HA8000, Suno and Helios for large instances of CAP

Platform Problem Time on Speedup on k cores
32 cores 64 128 256

HA8000 CAP21 160.4 1.96 4.16 10.0
CAP22 501.2 2.01 3.90 8.24

Suno CAP21 171 3.32 4.90 9.94
CAP22 731 1.92 3.66 7.09

Helios CAP21 153 1.51 4.17 -
CAP22 1218 2.34 5.53 -

for CAP21 and more than 10 hours for CAP22 on HA8000). We can see that
on all platforms, execution times are halved when the number of cores
is doubled, thus achieving ideal speedup. As a final result, we can now solve
n = 22 in about one minute on average with 256 cores on HA8000.

Up to now, we focused on the average execution time in order to measure the
performance of the method, but a more detailed analysis could be done. In [1,11],
a method is introduced to represent and compare execution times of stochastic
optimization methods by using so-called time-to-target plots. Observe that, for
the CAP, the target value to achieve is obviously zero, meaning that a solution is
found. It is then easy to check if runtime distributions could be approximated by
a (shifted) exponential distribution of the form: 1− e−(x−μ)/λ. Then, according
to [13], it is possible to achieve linear speedups by multiple independent walks
if we have an exponential runtime distribution.

The following figure presents time-to-target plots for CAP 21 in order to
compare runtime distributions over 32, 64, 128 and 256 cores.

Points represent execution times
obtained over 200 runs and lines
correspond to the best approxima-
tion by an exponential distribution.
It can be seen that the actual run-
time distributions are very close to
exponential distributions. Time-to-
target plots also give a clear vi-
sual comparison between instances
of the same method running on a
different number of cores. For in-
stance it can be seen that we have
around 50% chance to find a solu-
tion within 100 seconds using 32 cores, and around 75%, 95% and 100% chance
respectively with 64, 128 and 256 cores.

5 Conclusion and Future Work

The CAP is a hard combinatorial problem for medium and large instances,
too difficult to solve with classical propagation-based solver and we thus used

Constraint-Based Local Search for the Costas Array Problem 383

a constraint-based local search solver. We proposed a parallel version based on
the idea of multi-starts and independent multiple-walks which naturally provides
Pleasantly Parallel computations and appears viable as it exhibits a nearly lin-
ear speedup behavior. We are currently continuing our experiments by tackling
larger instances and using more cores.

Future work will focus on more complex parallel execution methods with inter-
processes communication, i.e., in the dependent multiple-walk scheme, in order
to further improve performance. The communication mechanism will be designed
with the goals of (1) minimizing data transfers as much as possible, as we aim at
massively parallel machines with no hierarchical memory, and (2) re-using some
common computations and/or recording previous interesting crossroads in the
resolution, from which a restart can be operated.

References

1. Aiex, R., Resende, M., Ribeiro, C.: Ttt plots: a perl program to create time-to-
target plots. Optimization Letters 1, 355–366 (2007)

2. Beard, J., Russo, J., Erickson, K., Monteleone, M., Wright, M.: Combinatoric col-
laboration on costas arrays and radar applications. In: Proceedings of the IEEE
Radar Conference, Philadelphia, USA, pp. 260–265 (2004)

3. Caniou, Y., Codognet, P., Diaz, D., Abreu, S.: Experiments in parallel constraint-
based local search. In: EvoCOP 2011, 11th European Conference on Evolutionary
Computation in Combinatorial Optimisation, Italy. Springer (2011)

4. Codognet, P., Dı́az, D.: Yet Another Local Search Method for Constraint Solv-
ing. In: Steinhöfel, K. (ed.) SAGA 2001. LNCS, vol. 2264, pp. 73–90. Springer,
Heidelberg (2001)

5. Codognet, P., Diaz, D.: An efficient library for solving CSP with local search. In:
Ibaraki, T. (ed.) MIC 2003, 5th International Conference on Metaheuristics (2003)

6. Costas, J.: A study of detection waveforms having nearly ideal range-doppler am-
biguity properties. Proceedings of the IEEE 72(8), 996–1009 (1984)

7. Diaz, D., Abreu, S., Codognet, P.: Parallel Constraint-Based Local Search on the
Cell/BE Multicore Architecture. In: Essaaidi, M., Malgeri, M., Badica, C. (eds.)
Intelligent Distributed Computing IV. SCI, vol. 315, pp. 265–274. Springer, Hei-
delberg (2010)

8. Drakakis, K., Iorio, F., Rickard, S., Walsh, J.: Results of the enumeration of costas
arrays of order 29. Advances in Mathematics of Communications 5(3), 547–553
(2011)

9. Golomb, S., Taylor, H.: Constructions and properties of Costas arrays. Proceedings
of the IEEE 72(9), 1143–1163 (1984)

10. Kadioglu, S., Sellmann, M.: Dialectic Search. In: Gent, I.P. (ed.) CP 2009. LNCS,
vol. 5732, pp. 486–500. Springer, Heidelberg (2009)

11. Ribeiro, C., Rosseti, I., Vallejos, R.: Exploiting run time distributions to com-
pare sequential and parallel stochastic local search algorithms. Journal of Global
Optimization 17, 1–25 (2011) (published online August 17, 2011)

12. Rickard, S., Healy, J.: Stochastic search for costas arrays. In: Proceedings of the
40th Annual Conference on Information Sciences and Systems, Princeton, NJ, USA
(March 2006)

13. Verhoeven, M., Aarts, E.: Parallel local search. Journal of Heuristics 1(1), 43–65
(1995)

	Constraint-Based Local Search for the Costas Array Problem
	Introduction
	The Costas Array Problem
	Solving the CAP with Adaptive Search
	Parallel Implementation and Performance Analysis
	Conclusion and Future Work

