
TLP 12 (1–2): 253–282, 2012. C© Cambridge University Press 2011

doi:10.1017/S1471068411000470 First published online 12 December 2011

253

On the implementation of GNU Prolog

DANIEL DIAZ

University of Paris 1, 90 rue de Tolbiac, 75013 Paris, France

(e-mail: Daniel.Diaz@univ-paris1.fr)

SALVADOR ABREU
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Abstract

GNU Prolog is a general-purpose implementation of the Prolog language, which distinguishes

itself from most other systems by being, above all else, a native-code compiler which produces

stand-alone executables which do not rely on any bytecode emulator or meta-interpreter. Other

aspects which stand out include the explicit organization of the Prolog system as a multipass

compiler, where intermediate representations are materialized, in Unix compiler tradition.

GNU Prolog also includes an extensible and high-performance finite-domain constraint

solver, integrated with the Prolog language but implemented using independent lower-level

mechanisms. This paper discusses the main issues involved in designing and implementing

GNU Prolog: requirements, system organization, performance, and portability issues as well as

its position with respect to other Prolog system implementations and the ISO standardization

initiative.

KEYWORDS: Prolog, logic programming system, GNU, ISO, WAM, native code compilation,

finite-domain constraints

1 Introduction

GNU Prolog’s roots go back to the start of the 1990s at the Logic Programming

research team at INRIA Rocquencourt, in Paris. Philippe Codognet planned on

implementing a low-level version of his intelligent backtracking techniques and

opted to do so on the state-of-the art SICStus Prolog system, for which he obtained

the source code. This task was handed down to Daniel Diaz, at that time an

M.Sc. student. However, at the time SICStus Prolog was already a very large-

scale and complex system: version 2.1 had about 70,000 lines of highly tuned and

optimized C and Prolog code: clearly not the easiest platform on which to carry
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out independent, low-level experiments. So we took it upon ourselves to develop yet

another implementation of Prolog which would meet the following requirements:

• The system ought to serve as the basis for several research-oriented extensions

such as intelligent backtracking, co-routining (freeze was a hot topic back

then), concurrency, constraints, etc.

• The system would be made available freely to all researchers.

• The system would be portable by design, not tied to any particular architecture.

• The core of the system must be simple and lightweight, unlike SICStus.

• The base system performance should be good. The rationale being that a

system designed to be extended needs to provide good base performance. We

targeted performance close to that of SICStus Prolog native code.

The last two points (simplicity and performance) were hard to reconcile. This was

particularly true at a time where research on WAM optimization was a hot topic –

choice points, backtracking, unification, indexing, register allocation, etc. – all aspects

of the WAM were the object of published research on optimizations thereof. The

goals we had set for ourselves seemed difficult to reach and rather ambitious:

performance with a simple implementation, all done with little or no optimizations.

At the time, most Prolog systems were based on bytecode emulators, written in C

or assembly language. We decided we would need to compile to native code in order

to recoup the relative performance loss due to the inherent simplicity of the WAM

model we were to adopt. It remained to be seen how we would go about producing

native code. At the time, producing native code seemed to be the best thing one

could possibly do: see BIM-Prolog, SICStus Prolog, Aquarius Prolog, to name a

few. The SICStus approach was to retain its usual emulated bytecode and only

present the option of producing native code for select architectures,1 which could

be transparently mixed with emulated predicates. The approach followed by Peter

van Roy with Aquarius Prolog was different and more traditional: compilation was

separate from execution, as in regular programming languages (van Roy and Despain

1992). A “command line” compiler would translate a Prolog program into a native-

code executable. Unfortunately, simplicity was apparently not a goal of the exercise:

Aquarius’ abstract machine, the BAM, was lower level and finer-grained than the

WAM and comprised more than 100 instructions, some of which were specializations

created on-the-fly by the compiler using abstract interpretation techniques. Other

“native code generation” approaches were surfacing, which would generate C rather

than an actual assembly language: these included Janus (Gudeman, de Bosschere

and Debray 1992) which translated Prolog to C, KL/1 (Chikayama et al. 1994)

which compiled a language different from Prolog (a committed-choice language,

with don’t-care nondeterminism) or Erlang (Hausman 1993), a functional language

only loosely related to Prolog. A significant difficulty that compilers to C had to deal

with was the orthogonal control dimension due to backtracking, which complicates

stack frame management beyond what C can normally do.

1 Sparc under SunOS was the chosen one.
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Our choice was to translate to C via the WAM, decorating the generated code

with direct assembly language instructions, to handle native jumps which correspond

to Prolog control transfers, such as the call, execute, or proceed instructions. The

system we built was called wamcc (Codognet and Diaz 1995) and most WAM

instructions were directly replaced by the equivalent C code, inlined at compile-time

via a set of C Preprocessor macros. More complex instructions result in library

function calls, which was the case with unification instructions, for example. Lastly,

wamcc was the first documented Prolog system to rely on the hardware (MMU)

to detect stack or heap overflows, by placing unmapped pages at the limits of the

dynamic memory areas: accessing these would raise an exception and interrupt

the normal flow of execution. This approach resulted in a clear performance gain

when compared with bounds checks being performed on every allocation and was

innovative at the time.2 Our choices clearly paid off, as wamcc got a 60% performance

gain w.r.t. emulated SICStus and about 30% performance loss w.r.t. SICStus native,

the agreed-upon references of the time.

Since then, wamcc has been used as a teaching tool in several universities

and, outside INRIA, as the starting point for research work (e.g., Ferreira and

Damas 1999). The next step ought to have been the implementation of intelli-

gent backtracking in wamcc. This was not to happen: our interest shifted to the

blooming area of Constraint Logic Programming (Jaffar and Lassez 1987), which

was suddenly and for the first time enabling Logic Programming for large-scale

industrial applications. There is little doubt that Pascal Van Hentenryck’s PhD

thesis work and the implementation of a Finite Domain (FD) solver in the CHIP

language (Van Hentenryck 1989) were instrumental in CLP’s success. The CLP

mechanisms underlying CHIP were touted as highly optimized, totalling 50K lines

of C code and shrouded in wraps of secrecy – a very useful and interesting black

box. It took a few years for the work describing cc(FD) (Van Hentenryck et al.

1994) to provide hints as to how an effective CLP system could be implemented.

The following move for wamcc was clear: it would become clp(FD) and introduce

a simple extension to the WAM to integrate FD constraints (Diaz and Codognet

1993; Codognet and Diaz 1996). clp(FD) was about four times faster than CHIP.

The worst problem we had with wamcc (and consequently clp(FD)) was the

excessively long time it took GCC to compile the generated C code. Even for

moderately sized programs, the time quickly became overwhelming and even our

attempts to banish most inlining in favor of library function calls were insufficient

to bring the times down to acceptable levels.

On closer inspection, the C language was being used as a machine-independent

assembly language, which we had to fool in order to do jumps. This went against the

regular operation of a C compiler, which expects regular function entry and exit to

be the norm: as a consequence the compiler was trying to do its task over programs

which were really too devious and too large for it to properly cope. As we did not

really need all that C could express, we started looking for alternative languages to

2 These days, this functionality is available off-the-shelf, in the form of the libsigsegv library, on
http://libsigsegv.sourceforge.net/.
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compile into. One possibility which looked very interesting was C-- (Jones, Nordin

and Oliva 1997). Unfortunately this system was not developed to the point where

it would be actually useful for our purpose: it remains bound to a limited set of

back-ends.3 We then set out to specify and implement an intermediate language

of our own. Our “Mini-Assembly” (MA) language would have to meet very basic

requirements: to directly handle WAM control and be able to call C functions would

be sufficient. This simplicity was meant to promote the easy porting to common

architectures.

At that time, the Prolog standardization effort was in full swing, which lead to the

emergence of the specification document known as ISO Core 1 (ISO-Part1 1995). We

then committed to develop a completely new, standard-compliant implementation of

Prolog, which would use the MA intermediate language instead of C in the compiler

pipeline. So was GNU Prolog born, under the code name Calypso.

The Prolog language was not very popular (euphemism alert!) outside the research

community, and, in particular, no implementation of the language was present in

the GNU organization catalogue, whereas others, similarly exotic languages such as

Scheme, were. We took it upon ourselves to defend our case with GNU in late 1998

and the first official release of GNU Prolog saw the light of day in April 1999. GNU

Prolog is presently directly available for most Linux distributions.

The remainder of this paper is structured as follows: Section 2 discusses the

structure of the GNU Prolog compiler pipeline with fully fleshed-out examples. In

Section 3, we present GNU Prolog’s Constraint Logic Programming design and

implementation. Section 4 tackles the positioning of GNU Prolog in the Prolog

landscape and its relation to the ISO standardization initiative. Finally, in Section 5,

we draw conclusions from the experience acquired over the last years and lay out

possible plans for further developments, some of which are actively being pursued

by the authors of the present paper as well as other researchers.

2 Compilation scheme

In this section, we detail the compilation scheme adopted in GNU Prolog. As

previously stated, the main design decision was to use a simple WAM and to

compensate for the lack of optimizations by producing native code, thereby avoiding

the overhead of an emulator. The compilation process is then the key point of GNU

Prolog. In wamcc, GNU Prolog’s ancestor, we produced native code via C: a Prolog

file was translated into a WAM file, itself translated to C and finally to object

code, by the C compiler. This approach had a major drawback: the time needed to

compile the C file; even for medium-sized Prolog sources, the time needed by the C

compiler was quickly dominating the entire compilation process. In GNU Prolog we

decided to sidestep the issue by not compiling to C but, instead, to directly generate

assembly code. The direct translation from the WAM to assembly code turns out to

be a significant effort as a translator must be written for each target architecture. We

3 For a long time C-- was restricted to 32-bit x86, and even though this situation has evolved, the set of
target architectures is still smaller than what we have attained with the MA tool.
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simplified this problem by defining an intermediate language called Mini-Assembly

(or MA), which can be viewed as a machine-independent assembly language well

suited to be the target of a WAM translator. This language will be detailed below,

in Sections 2.2 and 2.3.

One of the design goals for GNU Prolog was to offer a system which can easily

be extended by other research teams. This requirement led us to split the compiler

into several passes, with distinct executables for which the respective intermediate

representations must be materialized as plain text files or streams. The passes are

pl2wam which compiles a Prolog source file into WAM code.

wam2ma which converts the WAM code to the MA language.

ma2asm that translates the abstract MA code to architecture-specific machine

instructions: its output is an assembly language program.

fd2c compiles FD constraint definitions into C functions which perform con-

straint propagation at run-time. See Section 3 for more on this.

In addition to those GNU Prolog-specific compiler components, the compilation

process also involves the standard tools:

as the assembler for the target architecture.

cc the C compiler

ld the link editor: to bind together all objects/libraries and provide a machine-

dependent executable.

All of these are depicted in Figure 1. The general compiler driver, called gplc,

manages all appropriate passes and intermediate files, according to the provided

input files and the desired output. For instance, the user can mix input file types

(Prolog, WAM, MA, object files, libraries, etc.) as well as ask the compiler to stop

after any intermediate stage. The type of a file is determined using the suffix of its

file name and is used to select its processor in the toolchain.

2.1 Compiling Prolog to WAM

Compiling Prolog to WAM is a well-known and documented subject. GNU Prolog

is based on the original WAM (Warren 1983; Äıt-Kaci 1991) but uses a simple

one-level indexing mechanism instead. As previously mentioned, the WAM variant

we are compiling to is not very sophisticated, for instance, the code for structure

unification does not handle read and write modes separately, shallow backtracking

is not implemented, there is no separate choice stack (choice-points reside in the

local stack), to name but a few known techniques which are not used, for the sake

of simplicity. Nevertheless, a few simple optimizations did get implemented, namely:

improved register allocation, unification instruction reordering, inlining for some

built-in predicates, last call, and last subterm (Carlsson 1990) optimizations.

It is possible to disable any or all of these optimizations using gplc command

line flags, a possibility which is particularly interesting for people wishing to become

familiar with the WAM (e.g., students taking declarative programming language

implementation courses.)
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Fig. 1. Compilation scheme.

1 conc([], L, L).
2 conc([X|L1], L2 , [X|L3]) :-
3 conc(L1 , L2 , L3).

1 file_name(’/home/diaz/tmp/myprog.pl ’).
2

3 predicate(conc/3,1,static ,private ,user ,[
4 switch_on_term (1,2,fail ,4,fail),
5 label(1),
6 try_me_else (3),
7 label(2),
8 get_nil (0),
9 get_value(x(1),2),

10 proceed ,
11 label(3),
12 trust_me_else_fail ,
13 label(4),
14 get_list (0),
15 unify_variable(x(3)),
16 unify_variable(x(0)),
17 get_list (2),
18 unify_value(x(3)),
19 unify_variable(x(2)),
20 execute(conc /3)]).

Fig. 2. Predicate conc/3 and its WAM representation.

As an example let us consider a simple program with the canonical “concatenate”

predicate. pl2wam takes as input the source on the left of Figure 2 and produces

the file on the right. This code is very similar to that presented in Warren (1983),

encoded as Prolog facts. The fact for file name/1 provides the name of the Prolog

source file which applies to the subsequent predicate definitions. Note that several

instances of file name/1 may occur, as a result of include/1 directives. The fact

for predicate/6 contains the code for the predicate conc/3, as a list of WAM
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instructions. Several predicate properties are also stated here: static (as opposed

to dynamic), private (as opposed to public) and user (as opposed to built-in).

This code can be easily read and understood by humans (useful for student use)

and it can also directly serve as input for a Prolog program like an emulator, a

source-to-source optimizer or another back-end as was done in the Prolog-to-EAM

compiler, reported on in André and Abreu (2010). The drawbacks of this choice

are: a not very compact representation (see the length of the instruction names, for

instance) and the need for a nontrivial parser for the next stage which, in the case

of GNU Prolog, is handled by wam2ma.

As previously mentioned, the GNU Prolog WAM is not very optimized. Consider

the clause: p(a, X) :- q(a, X), r(X). Compiling it results in the following

suboptimal code (2 WAM instructions could be avoided):

1 predicate(p/2,7,static ,private ,user ,[
2 allocate (1),
3 get_atom(a,0),
4 get_variable(y(0),1),
5 put_atom(a,0), % useless instruction !
6 put_value(y(0),1), % useless instruction !
7 call(q/2),
8 put_value(y(0),0),
9 deallocate ,

10 execute(r/1)]).

A WAM instruction cache could solve this as explained in Carlsson (1990). Basically,

the cache remembers the current values of the WAM registers. When a put

instruction occurs, if the cache detects the wanted data is already present in a

register it replaces the put instruction by a register move instruction (hoping the

register optimizer will delete this move instruction). Optimizations such as this are

not included in our current compiler, which remains simple – about 3,000 lines of

Prolog code – yet adequately efficient. Consider file bool.pl and the corresponding

bool.wam shown in Figure 3: the generated WAM code is, in this case, close to

optimal. Observe how cut is handled: with the first instruction (line 4), the cut level

is stored in WAM temporary register X(1).4 Afterwards, it is treated as any other

Prolog variable: it only gets copied into a permanent variable – Y(0) at label(6)

– because its value is needed after the first chunk, for the cut.

In short, pl2wam is a simple and portable Prolog-to-WAM compiler, written in

Prolog, which produces text files with a representation of WAM programs. The

quality of the generated code, while not outstanding, is adequate for our purpose.

2.2 From the WAM to mini-assembly

The next stage in the GNU Prolog compiler pipeline translates WAM instructions

to our MA intermediate language. This language has been designed specifically for

the execution of Prolog based on our experience with wamcc when compiling down

to C: in wamcc most WAM instructions finally ended up as a C function call which

performed the associated task. Only a few instructions were inlined (via C macros)

4 In fact, this would actually be the first available X register, i.e., X(arity) since we count from zero. This
technique is similar to that used in XSB (Rao et al. 1997) or SICStus (Carlsson 1990).
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1 is_true(true).
2

3 is_true(not(E)) :-
4 is_true(E), !,
5 fail.
6 is_true(not(_)).
7

8 is_true(and(E1, E2)) :-
9 is_true(E1),

10 is_true(E2).

1 file_name(’/home/diaz/tmp/bool.pl ’).
2

3 predicate(is_true /1,1,static ,private ,user ,[
4 load_cut_level (1),
5 switch_on_term (3,4,fail ,fail ,1),
6 label(1),
7 switch_on_structure ([( not/1,2),(and/2,10)]),
8 label(2),
9 try(6),

10 trust(8),
11 label(3),
12 try_me_else (5),
13 label(4),
14 get_atom(true ,0),
15 proceed ,
16 label(5),
17 retry_me_else (7),
18 label(6),
19 allocate (1),
20 get_structure(not/1,0),
21 unify_variable(x(0)),
22 get_variable(y(0),1),
23 call(is_true /1),
24 cut(y(0)),
25 fail ,
26 label(7),
27 retry_me_else (9),
28 label(8),
29 get_structure(not/1,0),
30 unify_void (1),
31 proceed ,
32 label(9),
33 trust_me_else_fail ,
34 label (10),
35 allocate (1),
36 get_structure(and/2,0),
37 unify_variable(x(0)),
38 unify_variable(y(0)),
39 call(is_true /1),
40 put_value(y(0),0),
41 deallocate ,
42 execute(is_true /1)]).

Fig. 3. Predicate is true/1 Prolog and WAM code.

because the size of the resulting code would have been prohibitive for the available

C compilers. In fact, C was being used as a sort of machine-independent assembler

but

(1) the C compiler was unaware of the situation and spent a lot of time analyzing

and optimizing the code and;

(2) C is not truly an assembler and its control model is based on function definition

and calls, making the efficient handling of Prolog backtracking very difficult.

These problems drove us to design an intermediate representation, the Mini-Assembly

with the following features:

• It handles the control of Prolog well: WAM instructions such as call, execute,

return, and fail result in native jumps.

• It can call a C function with a wide variety of arguments and can use the

return value in several ways:

— To store it in memory or in a WAM register.

— To test its value and, to fail if zero (such as fail).
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— To branch to the address specified by the return value (e.g., the address

returned by switch on term.)

• It has a small instruction set (to facilitate the mapping to concrete machines)

and only knows about a subset of the WAM, mainly that which is necessary

for execution control.5

• It is possible to declare scalar variables and arrays (only of type long).
• It is possible to declare initializer code, which will be automatically executed

at run-time. This issue is further discussed in Section 2.3.

The next section discusses and details the MA instruction set architecture.

2.3 The MA instruction set

Here is a description of each MA instruction:

pl jump pl label : continue execution at the predicate whose symbol is pl label .

This symbol is an identifier whose construction is explained in later on. This

corresponds to the WAM instruction execute.
pl call pl label : continue execution at the predicate whose symbol is pl label ,

after having set the continuation register CP to the address of the very next

instruction. This corresponds to the WAM instruction call.
pl ret: continue execution at the address given by the continuation pointer CP.

This corresponds to the WAM instruction proceed.
pl fail: continue execution at the address given by the last alternative, i.e., the ALT

cell of the last choice point, itself given by the WAM register B. This corresponds

to the WAM instruction fail.
jump label : continue execution at the symbol label , which can be any (predicate

local) label. This instruction is used when translating WAM indexing instructions

(e.g., try, retry or trust) to perform local control transfer, i.e., branching within

the same predicate. This specialized version of pl jump exists because, in some

architectures, local jumps can be optimized.

call c f name (arg ,...): call the C function f name with arguments arg ,... Each

argument can be an integer, a floating point number (C double), a string, the

address of a label, the address or contents of a memory location, the address or

contents of a WAM X register or Y permanent variable. This instruction is used to

translate most WAM instructions. The return value of the function call can only

be accessed by one of the * ret instructions which follow.

fail ret: perform a Prolog fail (such as pl fail) only if the value returned by

the preceding C function call is 0. This instruction is used after a C function call

returning a boolean to indicate its outcome, typically unification success.

jump ret: continue execution at the address returned by the preceding C function

call. This instruction makes it possible to use C functions to determine where to

transfer control to. For instance, the WAM indexing instruction switch on term

is implemented by a C function returning the address of the selected code.

5 For instance, the fail instruction needs to know about the B register and a displacement from it to
get the alternative address to backtrack to.
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move ret target : copy the value returned by the previous C function call into

target which can be either a memory location or a WAM X or Y variable.

c ret: C return. This instruction is used at the end of the initialization function

(see below) to give the control back to the caller.

move reg1 , reg2 : copy the contents of the WAM X or Y variable reg1 into reg2 .

The extreme simplicity of the MA language is noteworthy. Observe, however, the

presence of the move instruction which performs a copy operation on WAM X

registers or on permanent variables: while not strictly necessary,6 moves between

variables are very frequent and the invocation of a C function would be costly

in terms of execution time. This reflects a tradeoff between the minimality of the

instruction set and acceptable performance. It would be possible to extend the

instruction set (e.g., adding arithmetic instructions) but doing so would complicate

writing the architecture-specific back-ends with little expected gain.

In addition to the above instructions, MA also supports declaration statements.

In what follows, the keyword local is used for a local symbol (only visible within

the current object file) while global allows others to see that symbol.

pl code global pl label : define a Prolog predicate with name pl label . At

present all predicates are tagged global (i.e., visible by all other Prolog objects),

but local will be used when implementing a module system.

c code local/global/initializer label : define a function that can be called

from C. The use of initializer ensures that this function will be executed early,

before the Prolog engine is started. At most, one initializer function may be

declared per file.

long local/global id = value : allocate the space for a long variable whose

name is id and initialize it with the integer value . The initialization is optional.

long local/global id (Size ): allocate the space for an array of Size longs

whose name is id .

The WAM to MA translation done by wam2ma is performed in linear time w.r.t. the

size of the WAM file (the translation is performed on the fly as the WAM file is

being read). This is the behavior that we sought in generating MA rather than C.

Like with the pl2wam phase, the result of wam2ma is a text file that can be easily

used as input for another program.

We now present the MA code obtained for our bool.pl example (we have added

the corresponding WAM instruction as comments):

1 pl_code global X69735F74727565_1
2 call_c Pl_Load_Cut_Level(&X(1)) ; load_cut_level (1)
3 ; switch_on_term(3,4,fail ,fail ,1)
4 call_c Pl_Switch_On_Term_Var_Atm_Stc(& Lpred1_3 ,&Lpred1_4 ,& Lpred1_1)
5 jump_ret
6 Lpred1_1:
7 call_c Pl_Switch_On_Structure(st(0) ,2) ; switch_on_structure (...)
8 jump_ret
9 Lpred1_2:

10 call_c Pl_Create_Choice_Point2 (& Lpred1_sub_0 ); try(6)

6 Instead, we could easily invoke a C function to copy the data, using the call c instruction and an
extra library function.
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11 jump Lpred1_6
12 Lpred1_sub_0:
13 call_c Pl_Delete_Choice_Point2 () ; trust (8)
14 jump Lpred1_8
15 Lpred1_3:
16 call_c Pl_Create_Choice_Point2 (& Lpred1_5) ; try_me_else (5)
17 Lpred1_4:
18 call_c Pl_Get_Atom_Tagged(ta(0),X(0)) ; get_atom(true ,0)
19 fail_ret
20 pl_ret ; proceed
21 Lpred1_5:
22 call_c Pl_Update_Choice_Point2 (& Lpred1_7) ; retry_me_else (7)
23 Lpred1_6:
24 call_c Pl_Allocate (1) ; allocate (1)
25 call_c Pl_Get_Structure_Tagged(fn(0),X(0)) ; get_structure(not/1,0)
26 fail_ret
27 call_c Pl_Unify_Variable() ; unify_variable(x(0))
28 move_ret X(0)
29 move X(1),Y(0) ; get_variable(y(0) ,1)
30 pl_call X69735F74727565_1 ; call(is_true /1)
31 call_c Pl_Cut(Y(0)) ; cut(y(0))
32 pl_fail ; fail
33 Lpred1_7:
34 call_c Pl_Update_Choice_Point2 (& Lpred1_9) ; retry_me_else (9)
35 Lpred1_8:
36 call_c Pl_Get_Structure_Tagged(fn(0),X(0)) ; get_structure(not/1,0)
37 fail_ret
38 call_c Pl_Unify_Void (1) ; unify_void (1)
39 pl_ret ; proceed
40 Lpred1_9:
41 call_c Pl_Delete_Choice_Point2 () ; trust_me_else_fail
42 Lpred1_10:
43 call_c Pl_Allocate (1) ; allocate (1)
44 call_c Pl_Get_Structure_Tagged(fn(1),X(0)) ; get_structure(and/2,0)
45 fail_ret
46 call_c Pl_Unify_Variable() ; unify_variable(x(0))
47 move_ret X(0)
48 call_c Pl_Unify_Variable() ; unify_variable(y(0))
49 move_ret Y(0)
50 pl_call X69735F74727565_1 ; call(is_true /1)
51 move Y(0),X(0) ; put_value(y(0) ,0)
52 call_c Pl_Deallocate () ; deallocate
53 pl_jump X69735F74727565_1 ; execute(is_true /1)
54

55 long local at(4) ; array to store atoms
56 long local ta(1) ; array to store tagged atom words
57 long local fn(2) ; array to store tagged functor/arity words
58 long local st(1) ; array to store switch tables
59

60 c_code initializer Object_Initializer
61 call_c Pl_New_Object (& Prolog_Object_Initializer ,
62 &System_Directives ,& User_Directives)
63 c_ret
64

65 c_code local Prolog_Object_Initializer
66 call_c Pl_Create_Atom ("/ home/diaz/tmp/bool.pl")
67 move_ret at(0)
68 call_c Pl_Create_Atom ("and")
69 move_ret at(3)
70 call_c Pl_Create_Atom (" is_true ")
71 move_ret at(1)
72 call_c Pl_Create_Atom ("not")
73 move_ret at(2)
74 call_c Pl_Create_Atom_Tagged(" true")
75 move_ret ta(0)
76 call_c Pl_Create_Functor_Arity_Tagged("and",2)
77 move_ret fn(1)
78 call_c Pl_Create_Functor_Arity_Tagged("not",1)
79 move_ret fn(0)
80 call_c Pl_Create_Pred(at(1),1,at(0),1,1,& X69735F74727565_1)
81 call_c Pl_Create_Swt_Table (2)
82 move_ret st(0)
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83 call_c Pl_Create_Swt_Stc_Element(st(0),2,at(2),1,& Lpred1_2)
84 call_c Pl_Create_Swt_Stc_Element(st(0),2,at(3),2,& Lpred1_10)
85 c_ret
86 c_code local System_Directives
87 c_ret
88 c_code local User_Directives
89 c_ret

From this example, one can observe that most WAM instructions map to a C

function call, following the subroutine-threading pattern. As previously mentioned,

control instructions are directly translated to their corresponding MA counterparts.

Another exception concerns moves between WAM registers and permanent variables

(e.g., lines 29 and 51). After further analysis of this example, several remarks can be

made:

Line 1: (predicate label, load cut level . . .) this is the start of the code associated to

predicate is true/1. As the MA language is to be mapped to the assembly language

of an actual target machine, we decided that only “classical” identifiers can be used (a

letter followed by letters, digits or the underscore character). In particular, it is necessary

to associate such an identifier to each predicate (referenced as pl label in Section 2.3).

Since the syntax of assembly identifiers is more restrictive than the syntax of Prolog

atoms (which may include any character using quotes) GNU Prolog uses a normalized

hexadecimal-based representation for identifiers, where each predicate name is translated

into a symbol beginning with an X, followed by the hexadecimal notation of the code of

each character in the name, followed by an underscore and the arity. For example, predicate

symbol is true/1 is encoded as the symbol X69735F74727565 1 (69 is the hexadecimal

representation of “i,” 73 of “s,” and so on).

The linker is responsible for resolving external references (e.g., calls to built-in or user

predicates defined in another object). The output of the linker is filtered by GNU Prolog

to descramble hexadecimal symbol encodings, in case there are errors (e.g., an undefined

predicate, multiple definitions for a predicate).

Line 4: (switch on term . . .) the switch on term WAM instruction maps to a C call to a

specialized function Pl Switch On Term Var Atm Stc which takes only three arguments (it

checks if the first argument is a variable, an atom or a structure). This is more efficient

than calling the general C function with all five arguments (integer and list) as the call is

cheaper (fewer arguments are passed) and faster (fewer cases to test).

Line 7: a switch on structure in the WAM code results in the creation of a switch table

(done in the initializer part). At execution time, this table is passed to the C function (the

other argument is the size of the table – in this case, two elements: not/1, and/2). A hash

table with only two elements is not very efficient, a nested if would be better: clearly, there

is room for improvement.

Lines 10–16: functions handling choice points are also specialized (here the functions are for

a choice point with two arguments: the first argument in X(0) and the cut level in X(1).

Such specialized functions exist for arity < 4. For greater arities, the arity must be passed

as a parameter to the generic function.

Line 18: the get atom WAM instruction maps to a C function call to Pl Get Atom Tagged.

This function takes as first argument a tagged atom, i.e., a WAM word. This value is created

by the initializer function and stored in module-local array ta at index zero.7 Doing so

avoids having to call the tag/untag function at run-time. Here it is used to dereference

X(0) and unify its value with ta(0).

7 ta stands for “tagged atom.”
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The same occurs on lines 25, 36, and 44 where the get structure instructions get mapped

to calls to Pl Get Structure Tagged which takes a single-word encoding of the functor

and arity. These are created by the initializer and stored in a module-local array fn(...).

Lines 55–58: several arrays are declared to store atoms, tagged atoms, tagged functor/arity,

and switch tables.

Line 60: the initializer is declared. It simply calls a C function to register this new object (an

object file generated by the compilation process). It passes three function pointers:

• Prolog Object Initializer: the initializer function for the object. This function

creates the atoms, the switch tables, the tagged words, etc.

• System Directives: executes system directives, such as op/3 or char conversion/2.

• User Directives: is the entry point for the procedure which executes the user startup

code (defined with Prolog initialization directives).

It is worth noting that the code needed to install the object (i.e., the code in the body

of Prolog Object Initializer) cannot be directly executed in the initializer (i.e., in

Object Initializer) because that code is executed very early: when the OS loads and

runs the executable, i.e., before the main function is called. At this time, the required global

Prolog data structures (e.g., atom hash table) are not yet allocated. We therefore limit

ourselves to registering the object and, only when all Prolog data areas are ready do the

Prolog initializer functions get executed.

Line 64–84: the object initialization function creates the objects required by the code: atoms,

tagged atoms, tagged functor/arity words, switch tables, and stores these in the object’s

local arrays. Atoms are classically hashed and thus can only be known at run-time (since

we can have multiple files linked together). The initializer registers all needed atoms and

stores them in local variables (e.g., in the ta array). Notice that this could be optimized

since once this information is created it remains constant during the execution of the

program. One could imagine a two-pass optimizer: only execute all initialization functions

to detect the values of all involved atoms, then recompile the whole using integer constants

instead of MA array variables. The impact of this optimization would be very important

if atoms are very used since it is much faster to pass an integer than loading it from the

memory. Another benefit of this optimization would be the reduction of the startup time

in applications which have a large number of atoms. Finally, note that the initializer also

registers the predicate is true/1 with the Pl Create Pred function (line 79): this is only

needed for meta-calls to work, because we need to associate an address (given here by the

linker-resolved symbol X69735F74727565 1) to the predicate symbol. Other arguments are

the file name and the line number where it is defined, and a mask containing the properties

of the predicate.

To summarize, the Mini-Assembly language has a few control-flow instructions,

pseudo-ops to control constants and data areas, the C function invocation operation

and register movement instructions. Predicate names are hashed into linker-friendly

names. These features make it sufficient as the target for compiling WAM code.

2.4 From mini-assembly to actual assembly

The next stage consists of mapping the MA language generated in the previous

section to the target machine’s actual instructions. Since MA is based on a very

small instruction set, the writing of such a translator is inherently simple. However,

producing machine instructions is not an easy task. The first MA-to-assembly

language mapper was written with the help of snippets taken from a C file produced

by wamcc: indeed, compiling a Prolog file to assembly by means of gcc gave us a
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starting point for the translation, as the MA instructions correspond to a subset of

the C code. We then generalized this approach by defining a C file, each portion of

which corresponds to an MA instruction: the study of the assembly code produced

by gcc was our reference. This provided preliminary information about register use

conventions, C calling conventions, etc. However, in order to complete the assembly

code generator, we need to refer to the technical documentation of the processor

together with the ABI (Application Binary Interface) used by the operating system.

We now show portions of the assembly code for the previous example, using

the linux/i86 64 target.8 We focus on the code for the last clause of is true/1,

annotated with the corresponding WAM & MA code:

1 fail: # fail (WAM inst)
2 jmp *-8(%r14) # pl_fail (MA inst)
3

4 X69735F74727565_1: # predicate is_true /1
5 ...
6 Lpred1_10:
7 # allocate (1)
8 movq $1 ,%rdi # call_c Pl_Allocate (1)
9 # get_structure(and/2,0)

10 call Pl_Allocate # call_c Pl_Get_Structure_Tagged(fn(1),X(0))
11 movq fn+8(% rip),%rdi
12 movq 0(%r12),%rsi
13 call Pl_Get_Structure_Tagged
14 # fail_ret
15 test %rax ,%rax
16 je fail
17 # unify_variable(x(0))
18 call Pl_Unify_Variable # call_c Pl_Unify_Variable()
19 movq %rax ,0(% r12) # move_ret X(0)
20 # unify_variable(y(0))
21 call Pl_Unify_Variable # call_c Pl_Unify_Variable()
22 movq 2064(% r12),%rbx # move_ret Y(0)
23 movq %rax , -32(%rbx)
24 # call(is_true /1)
25 movq $.Lcont1 ,2056(% r12) # pl_call X69735F74727565_1
26 jmp X69735F74727565_1
27 .Lcont1:
28 # put_value(y(0) ,0)
29 movq 2064(% r12),%rbx # move Y(0),X(0)
30 movq -32(%rbx),%rdx
31 movq %rdx ,0(% r12)
32 # deallocate ,
33 call Pl_Deallocate # call_c Pl_Deallocate ()
34 # execute(is_true /1)
35 jmp X69735F74727565_1 # pl_jump X69735F74727565_1
36

37

38 Object_Initializer:
39 pushq %rbx
40 subq $256 ,%rsp
41 movq $Prolog_Object_Initializer +0,%rdi # call_c Pl_New_Object (...)
42 movq $System_Directives +0,%rsi
43 movq $User_Directives +0,%rdx
44 call Pl_New_Object
45 addq $256 ,%rsp # c_ret
46 popq %rbx
47 ret
48

49 .section .ctors ,"aw",@progbits
50 .quad Object_Initializer

8 We are still using the same example, meaning this is file bool.s.
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A few observations:

Line 1: a label is defined to perform a WAM fail. Each time a fail is needed, a jump is

performed to this label (e.g., Line 16 for the MA instruction fail ret). We can see that

the last choice point frame (B) is stored in the x86 64 register %r14 and the alternative

(ALTB) is the first 64 bits cell just below the address pointed by B. An indirect jump does

the work.

Line 12 and 13: a call to a C function yields an assembly call instruction, respecting the

x86 64 ABI: the arguments are passed via the registers %rdi, %rsi, %rdx, . . . . Line 12

also reveals that the address of the bank of WAM temporaries (X(...) variables) is kept

in the register %r12. Other used registers are %r13 for the top of the trail (TR) and %r15

for the top of the heap (H).

Lines 25 and 26: a WAM call instruction gives produces two assembly instructions. The

first one stores the next address (a local label) in the CP register (accessed as an offset from

%r12). The second instruction simply jumps to the called predicate.

Lines 38–47: the initializer which calls a C function to register this object.

Lines 49 and 50: fill the CTORS sections (“constructors”) with a new entry: Object -

Initializer. At run-time, the contents of this section is interpreted as an array of

addresses, all of which are executed as functions (see Section 2.5).

Assembling bool.s produces a relocatable object file called bool.o which can be

linked with the Prolog library and other modules to form an executable image file.

2.5 The link phase

The last stage consists of linking all objects resuling from Prolog sources (as

explained above) with objects stemming from other sources (e.g., foreign C code),

the GNU Prolog libraries and other objects (system or third-party libraries.) One

design goal was to rely on standard compiler tools to retain only what is necessary:

the linker (ld under Unix) links to an object library, from which only the required

modules are taken, thereby keeping the size of the final executable down. Since

a Prolog source results in a classical object file, several objects can be grouped

in a library (e.g., using ar under Unix). The Prolog and FD built-in libraries are

created in this way (and users can also define their own libraries). Defining a

library allows the linker to extract only the object files that are necessary (i.e., those

containing referenced functions/data). For this reason, GNU Prolog can generate

small executables by avoiding the inclusion of most unused built-in predicates. On

the other hand, the linker cannot guess which built-in predicates will be called

by a meta-call. To deal with this problem, GNU Prolog provides the directive

ensure linked which guarantees that a given predicate will be linked (in fact, all it

does is to create a simple reference to the predicate in the assembly file, to force the

linker to pull the desired predicate in from the library).

As previously stated, each linked object includes initialization code in which

various housekeeping functions are performed. This function gets executed before

any compiled Prolog code. The ELF format allows the specification of global Object-

Oriented constructor code, which gets executed at the start and is collected from

several object modules. We use this mechanism to initialize GNU Prolog objects.
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2.6 GNU Prolog executable behavior

From the user point of view, the behavior of an executable produced by GNU Prolog

consists of executing all intialization/1 directives. If several initialization/1

directives appear in the same file they are executed in the order of appearance. If

several initialization/1 directives appear in different Prolog files (i.e., in different

objects) the order in which they are executed is implementation-defined. However,

on most machines the order will turn out to be the reverse of the order in which

the associated files have been linked. The traditional Prolog interactive top-level

interpreter is optionally linked with the rest of the executable. Should it be present,

it gets executed after all the other initialization/1 directives have finished. This

default behavior is provided as a main function defined in the GNU Prolog library.

So in the absence of a user-defined main function the default function is executed.

Here is its definition:

1 int main (int argc , char *argv []) {
2 int nb_user_directive;
3 Bool top_level;
4

5 nb_user_directive = Pl_Start_Prolog(argc , argv);
6 top_level = Pl_Try_Execute_Top_Level ();
7 Pl_Stop_Prolog ();
8

9 if (top_level || nb_user_directive)
10 return 0;
11

12 fprintf(stderr , NOINITGOAL );
13 return 1;
14 }

Line 5: the Pl Start Prolog allocates all data areas (stacks, tables, etc.) and, for each

registered object, in reverse order, invokes its Prolog Object Initializer, System Dir-

ectives, and User Directives. It returns the number of directives actually executed.

Line 6: if the top level is linked then execute it.

Line 7: free all allocated areas.

Lines 12 and 13: warn the user that nothing has been executed, i.e., there is no user directive

and the top level is not present in the executable.

The user can provide another main function, to customize this behavior.

2.7 Bootstrapping the system

Being written in Prolog, GNU Prolog – and the pl2wam compiler in particular – relies

on its own availability in order to recompile itself. We now discuss some aspects of

the bootstrap process.

The parts of the Prolog compiler written in Prolog9 are expected to be compilable

by GNU Prolog. As a consequence, the .pl source files need to be compiled using

the GNU Prolog compiler pipeline, as described in Figure 1: in particular, there will

have to be a .wam file for each .pl source. These files are then further compiled by

the non-Prolog parts of the system (wam2ma, ma2asm, the assembler and link editor.)

9 Actually, the entire compiler is written in Prolog.
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Note that a running Prolog system is only needed to get to the .wam representation:

from that point on, all compiler passes are implemented as C programs. In order

to bootstrap GNU Prolog on a particular machine, one does not actually need any

working Prolog compiler, as the .wam files for the pl2wam executable are provided

with the source.

Another aspect worth mentioning involves quality assurance for the Prolog-to-

WAM compiler: a new version of the compiler should hit a fixpoint for the contents

of the .wam files: the files produced by the compiler should converge to be identical

to those which make up the compiler itself. The initial .wam files may be produced

from the Prolog sources either by GNU Prolog or by another Prolog system. The

integrity of the generated Prolog compiler is automatically verified by comparing

the resulting .wam files to the ones originally provided.

2.8 Different code representations

The primary goal of GNU Prolog is to compile to native code and thus to provide

standalone executables, in the sense that references within the program are statically

resolved by the linker and the code is directly available for execution. Emulator-based

systems appear to provide similar functionality by bundling the program bytecodes

with an emulator. However, GNU Prolog has also to handle dynamic Prolog clauses.

Generally speaking, GNU Prolog simply has to be able to meta-interpret. This is

the case when the programmer uses the asserta or assertz built-in predicates:

the clause will be stored and (meta-)interpreted. The compiler will try to do a bit

better than this, in some situations: suppose, for instance, that a Prolog source file

contains a :- dynamic directive for some predicate: the native code for all defined

clauses is generated. At run-time, even though the predicate is dynamic, it is the

native code that gets executed: this ceases being so when the clause is removed with

retract/1. Clauses added at run-time will only be meta-interpreted, i.e., they will

have no native code counterpart. In the case of dynamic predicates, in addition to

the native code, the compiler also emits a system directive which records the term

associated to the clause (to be inspected using clause/2).

It can be argued that standardization efforts could have differentiated among the

two situations: to have one “assert for code only” and another for “data only.”

Out of respect for Prolog tradition, GNU Prolog also offers an interactive top level.

A major problem GNU Prolog has to face is the implementation of the (in)famous

consult(FILE) and reconsult(FILE) predicates. Several possibilities exist in a

native-code system:

(1) Read FILE, assert the code and have it meta-interpreted.

(2) Compile FILE to bytecodes, which will be interpreted by a WAM bytecode

emulator.

(3) Compile FILE to native code and find a solution to dynamically load it into the

running process.

The first solution is simple to implement but obviously not very efficient. For the

time being, we settled for the second solution: we have developed a simple emulator
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to execute a binary representation of the code provided by pl2wam. This emulator

is not optimized at all but provides a speedup of about three when compared to

meta-interpreted code.

We plan on moving to the third approach, which is becoming feasible in a

portable way by resorting to native shared libraries, which can be dynamically

loaded or released from the running process memory. Following this route frees

us from having to use the bytecode interpreter. On the downside, the production

of native code that can be dynamically loaded is a bit more demanding because

the machine code has to be position-independent, which requires rewriting of the

architecture-specific back-ends for ma2asm.

To summarize, GNU Prolog currently manages three kinds of code:

• interpreted code for meta-call and dynamically asserted clauses;

• emulated (byte-)code for consulted predicates;

• native code for statically compiled predicates.

As a result, these three ways of representing and executing Prolog programs need

to be integrated, which turned out to be a demanding requirement, as these models

differ quite a bit. GNU Prolog has by no means the exclusivity as far as this aspect

is concerned: other Prolog systems need to represent programs in more than two

ways (BIM-Prolog and SICStus for instance.)

2.9 Discussion

This concludes the presentation of the GNU Prolog compilation scheme. Some goals

or aspects of the system are comparable to other systems, for instance, the native

code implementation for SICStus Prolog of Haygood (1994) or Aquarius (van Roy

and Despain 1992) which also aim at compiling Prolog to interpreterless native code

for real architectures.

With respect to the direct generation of native code as opposed to going through C,

the latter has the advantage that it is easier to set up, more portable and maintainable.

The downsides include high compilation times (as a result of using a general-purpose,

optimizing C compiler), relatively low performance when generating standard C code

and, should one strive to improve performance by using nonstandard extensions to

the C language, the maintenance effort of the C compiler itself. Our option of direct

native code generation benefits from much better compilation times and potentially

very high performance at run-time. The main drawback of this approach is its

maintainability: new targets must be explicitly programmed and adding new cross-

cutting features to the language or model requires an adaptation of all the back

ends (e.g., threads or dynamic linking.)

Native code generation is usually aimed at high performance. The potential is high:

absolute control over hardware register usage,10 optimal tagging schemes, precise

control flow, to name but a few aspects. However, in order to tap into this potential,

10 Being able to use hardware registers favors a register-based abstract machine such as the WAM, as
opposed to other approaches.
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rich intermediate representations need to be devised. Such was the option in Aquarius

Prolog, which defined the BAM (van Roy and Despain 1992), significantly different

from the WAM, including several “realistic” low-level fine-granularity instructions.

Likewise, native code generation within SICStus Prolog led to the definition of an

intermediate language, the SAM (SICStus Abstract Machine) which was translated

into M68K assembler or, alternatively, further compiled into yet another low-level

representation (RISS) which was then mapped to a specific machine language (Sparc

or MIPS). Neither survived: the Aquarius compiler remained unusably slow and

native code generation was dropped from SICStus because of its maintenance

requirements.

It can be argued that most efforts in designing and implementing lower-level

abstract machines for Prolog were targeting RISC architectures. For instance, it

used to be a challenge to effectively use the fine-grained control of pipeline and

instruction flow that was typical of, say, MIPS or Sparc processors. Nowadays,

most available microprocessors implement a common architecture (x86 or x86-64)

but specific hardware implementations have sufficiently differing pipeline structures

that it becomes very difficult to optimize for any one of these. Besides, dynamic

instruction reordering also makes static instruction scheduling a largely moot point.

Performance in modern architectures is heavily dependent on making good use

of the memory cache hierarchies; Prolog compiler writers stand to gain a lot from

making good use of cache organizations, possibly more so than what can be bought

by other optimization techniques. The problem is that there is a lot of variation

across systems that must be accounted for to extract optimal performance.

It turns out that the more sophisticated approaches to native code generation

for Prolog have somehow vanished in the long run, while GNU Prolog remains up-

to-date and has been ported to several low-level architectures. We feel we have

achieved a good balance between simplicity, maintainability, and performance.

To pursue performance gains without sacrificing simplicity, we are investigating

a replacement for the MA level in GNU Prolog: we are presently evaluating tools

such as LLVM (Lattner and Adve 2004) which can be thought of as a typed,

machine-independent assembly language.

3 Finite-domain constraints

The main extension built on top of wamcc was arguably clp(FD), which added

constraint solving over Finite Domains (FD). GNU Prolog compiles FD constraints

in a way similar to its predecessor clp(FD), the approach being described in

Codognet and Diaz (1996) and Diaz and Codognet (1993). It is based on a so-called

“RISC approach” which consists of translating, at compile-time, all complex user-

constraints (e.g., disequations, linear equations, or inequations) into simple, primitive

constraints (the FD constraint system) which operate at a lower level and which

really embody the propagation mechanism for constraint solving. We shall first

present the basic ideas of the FD constraint system and then detail the extensions

to this framework implemented in GNU Prolog.
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The FD Constraint System was originally proposed by Pascal Van Hentenryck

in the concurrent constraint setting (Van Hentenryck et al. 1994), and an efficient

implementation in the clp(FD) system is described in Codognet and Diaz (1996)

and Diaz and Codognet (1993). FD is based on a single primitive constraint with

which complex constraints are encoded: for example, constraints such as X = Y or

X � 2Y are defined by means of FD constraints, instead of having to be explicitly

built into the theory. Each constraint is made of a set of propagation rules describing

how the domain of each variable is related to the domain of the other variables, i.e.,

rules for describing node and arc consistency propagation (see, for instance, Tsang

1993 for more details on CSPs and consistency algorithms.)

A constraint is a formula of the form X in r where X is a variable and r is a

range. A range in FD is a nonempty finite set of natural numbers. Intuitively, a

constraint X in r enforces that X belongs to the range denoted by r. Such a range

can be a constant range (e.g., 1..10) or an indexical range, when it contains one or

more of the following:

• dom(Y ) which represents the whole current domain of Y ;

• min(Y ) which represents the minimal value of the current domain of Y ;

• max(Y ) which represents the maximal value of the current domain of Y .

• val(Y ) which represents the final value Y (i.e., the domain of Y has been

reduced to a singleton). A constraint involving such an indexical is delayed

until Y is determined.

Obviously, when Y is instantiated, all indexicals evaluate to its value. When an

X in r constraint uses an indexical term depending on another variable Y it

becomes store-sensitive and must be checked each time the domain of Y is updated.

This is how consistency checking and domain reduction is achieved.

Complex constraints such as linear equations or inequations, as well as symbolic

constraints can be defined in terms of FD constraints (see Codognet and Diaz 1996

for more details). For instance, the constraint X � Y , is translated as follows:11

X � Y ≡ X in 0..max(Y) ∧ Y in min(X)..∞

Notice that this translation also has an operational flavor and specifies, for a given

n-ary constraint, how the domain of a variable may be updated in terms of the other

variables. For example, consider the FD constraint X in 0..max(Y): whenever the

largest value of the domain of Y changes (i.e., decreases), the domain of X must

be reduced. If, on the other hand, the domain of Y changes but its largest value

remains the same, then the domain of X does not change. One can therefore consider

those primitive X in r constraints as a low-level language in which to express the

propagation scheme. Indeed, it is possible to express in the constraint definition

(i.e., the translation of a high-level user constraint into a set of primitive constraints)

the propagation scheme chosen to solve the constraint: forward-checking, full or

partial look-ahead, according to the use of dom or min/max indexical terms.

11 In this discussion, we are not using the GNU Prolog concrete syntax for constraint goals.
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3.1 The constraint definition language

For GNU Prolog, we designed a specific language to define FD constraints which is

both flexible and powerful. The basic X in r is sufficient to define simple arithmetic

constraints but too restrictive to handle constraints such as min(X,Y ) = Z or reified

constraints, both of which need some form of delay mechanism. Another limitation

is that it is not possible to explicitly indicate the triggers for a particular propagator:

these are deduced from the indexical used in the X in r primitives. The GNU

Prolog constraint definition language, FD, has then been designed to allow the user

to define complex constraints and proposes various constructs to overcome these

limitations. FD programs are compiled into C by the fd2c translator. The resulting

C program is then compiled and the object fits into the compilation scheme shown

in Figure 1. We present the main features of the constraint definition language by

means of a few examples.

3.1.1 Arithmetic constraint definition

Consider a constraint X + C = Y (X and Y are FD variables, C is an integer):

1 x_plus_c_eq_y (fdv X, int C, fdv Y) {
2 start X in min(Y) - C .. max(Y) - C /* X = Y - C */
3 start Y in min(X) + C .. max(X) + C /* Y = X + C */
4 }

Constraints are defined in a C-like syntax. The head declares the name of the

constraint (x plus c eq y) and for each argument its type (fdv, int) and its name.

The keyword start activates an X in r primitive. The first states that the bounds

of X must be between min(Y ) − C and max(Y ) − C . Similarly, the second rule

indicates how to update Y from X.

Take a more complex example, which defines min(X,A) = Z (where X and Z are

FD variables and A an integer):

1 min_x_a_eq_z (fdv X, int A, fdv Z) {
2 start (c1) Z in Min(min(X),A).. max_integer /* Z >= min(X,A) */
3 start (c2) Z in 0 .. max(X) /* Z <= X */
4 start (c3) X in min(Z) .. max_integer
5 start Z in 0 .. A /* Z <= A */
6

7 wait_switch
8 case A>max(Z) /* case A != Z */
9 stop c1

10 stop c2
11 stop c3
12 start Z in min(X) .. max(X) /* Z = X */
13 start X in min(Z) .. max(Z)
14 }

The first X in r constraint uses a C macro Min to compute the minimum of min(X)

and A. The keyword max integer represents the greatest integer that an FD variable

can take. Note the use of the wait switch instruction to enforce X = Z (and to

stop the constraints c1, c2, c3) as soon as the case A �= Z is detected.
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3.1.2 Reified constraint definition

The facility offered by the language to delay the activation of an X in r constraint

makes it possible to define reified constraints: the basic idea of a reified constraint is

to consider the truth value of a constraint as a first-class object, which is given the

form (“reified”) of a boolean value. This allows the user to make assumptions about

the satisfiability of constraints in a given store in order to conditionally require that

other constraints be met. It is feasible to use this mechanism, for instance, to define

disjunctive constraints, which can be very useful to model complex problems.

The following example illustrates how to define X = C ⇔ B where X is an FD

variable, C an integer and B a boolean variable (i.e., an FD variable whose domain

is 0..1) which captures the truth value of the constraint X = C . The definition below

waits until either the truth of X = C or the value of B is known:

1 truth_x_eq_c (fdv X,int C,fdv B) {
2 wait_switch
3 case max(B) == 0 /* case B = 0 */
4 start X in ~{ C } /* X != C */
5 case min(B) == 1 /* case B = 1 */
6 start X in { C } /* X = C */
7 case min(X) > C || max(X) < C /* case X != C */
8 start B in { 0 } /* B = 0 */
9 case min(X) == C && max(X) == C /* case X = C */

10 start B in { 1 } /* B = 1 */
11 }

Each constraint results in a C function returning a boolean depending on the

outcome of the addition of the constraint to the store. The link between Prolog and

a constraint is done by the Prolog built-in predicate fd tell/1. For instance, to use

the previous constraint one could define the following predicate:

1 ’x=c <=> b’(X,C,B) :-
2 fd_tell(truth_x_eq_c(X,C,B)).

3.1.3 Global constraints

Global constraints allow the user to specify patterns that are frequently encountered

in problems. A global constraint can often be decomposed into simple (local)

constraints. However, the pruning obtained with such a decomposition is less

efficient than that provided by specialized propagation algorithms. The GNU Prolog

constraint language is not expressive enough to describe any filtering procedure

which has to be written in C. An API is provided to the C programmer for handling

FD variables, ranges, etc. To simplify the interface between Prolog and C for

constraints, the FD language offers the following facilities:

• It handles lists of FD variables and/or integers (types l fdv and l int). At

run-time, a corresponding Prolog list is expected and it is passed to the C code

as a C array (of pointers to FD variables or of integers).

• It implicitly wakes up the constraints suspended on indexicals occurring in the

lists (but the user can define another triggering strategy).

• It can invoke a user-defined C function to compute a range in a X in r

primitive or outside any primitive.
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Consider the element(I, L, V ) constraint which says that the Ith element of integer

list L is equal to V (I and V are FD variables). It is defined as follows:

1 pl_fd_element (fdv I, l_int L, fdv V) {
2 start I in Pl_Fd_Element_I(L)
3 start V in Pl_Fd_Element_I_To_V(dom(I), L)
4 start I in Pl_Fd_Element_V_To_I(dom(V), L)
5 }

The first constraint is executed only once to set the initial domain of i to 1..length(L).

The second constraint is woken up each time the domain of I is modified, in order to

compute the new domain of V . To this effect, the C function Pl Fd Element I To V

is called. It mostly iterates over each value j from the domain of I , accumulating

the jth element of the list L. The simplified C code of this function looks such as

1 void Pl_Fd_Element_I_To_V (Range *v, Range *i, WamWord *l) {
2 int j;
3

4 Vector_Allocate(v->vec);
5 Pl_Vector_Empty(v->vec);
6

7 VECTOR_BEGIN_ENUM(i->vec , j);
8 Vector_Set_Value(v->vec , l[j]);
9 VECTOR_END_ENUM;

10 }

Line 1: The function accepts i (the current domain of the variable I) and l[] (the array

associated to the list of integers L) and computes v, the new domain of the variable V

(this will be stored in the first argument of the function). Note: the tell of Vinv is not done

here but by the X in r primitive at the return of the function).

Line 4 and 5: A bit-vector is allocated and cleared (v).

Line 7–9: Using C macros, the values of the domain of I are scanned. For each value j, the

corresponding element in L (l[j]) is accumulated in v.

Conversely, the third constraint is triggered each time the domain of V is modified

to compute the new domain of I . To this end, the C function Pl Fd Element V To I

iterates over all values in L which are also present in V , accumulating their indexes.

GNU Prolog offers a variety of high-level constraints in the built-in library.

Low-level definitions of constraints as illustrated here are, however, open to the

expert programmer who needs to customize or enrich the constraint solver for

some practical application. At the moment, the ultimate customization is achieved

by writing C code. This smoothly integrates into the native-compilation scheme

adopted by GNU Prolog. We do plan, however, to extend the expressive power of

the language to be able to describe some global constraints without adding any C

code.

3.2 Integrating constraints into the WAM

We here recall the main points of the integration of FD constraints into the

WAM (see Codognet and Diaz 1996 for more detailed information). To understand

the necessary data structures one needs to study the basic consistency procedure.

When a X in r constraint is added, the range r is evaluated and the domain of X is

updated accordingly (the new domain of X being the intersection between its current

domain and r). Once this is done, propagation may occur: every constraint on Y
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which depends on X (e.g., Y in min(X)+10..max(X)+10) needs to be reevaluated.

Doing so will potentially modify Y and all constraints depending on Y also need to

be reconsidered. The process finishes either when a failure occurs (the new domain of

a variable is empty) or when a fix-point is reached (no more variables are modified).

In case of failure, Prolog backtracking occurs. It is then important to be able to

undo all modifications that have been done on the FD data structures.

Adding constraints over finite domains to the GNU Prolog WAM required the

introduction of a new term type (FD Variable, with the FDV tag) which, besides

contributing to tag space depletion, needs to be distinct from the regular REF term.

An FDV term has two distinct parts:

(1) Its domain: the set of allowable values, represented as the extrema of the

containing interval or as discrete individual values, encoded as a bitmap, possibly

multiword. Using a bitmap greatly speeds up computation on sparse domains.

(2) The dependencies: the set of constraints which depend on the variable, i.e., those

which need to be recomputed each time the variable is modified. In order to

optimize the triggering of these constraints, several distinct chains are maintained

(e.g., it is useless to reexecute a constraint depending on min(X) when only

max(X) is changed).

Classically, a value-trail mechanism is used to save an FD variable before its

modification (domain and/or dependencies). On backtracking, trailed values are

used to restore the FD variable. In order to avoid unnecessary trailings (for each FD

variable, at most one trailing is necessary per choice-point) a timestamp technique is

used: a sequential integer is used to number each choice-point and an FD variable

records the choice-point number associated to its last trailing. This is important

since FD variables are refined step by step by the propagation algorithms which

potentially compute several intermediate domains before reaching the fix-point.

The two parts of an FD variable (domain and dependencies) are generally not

modified at the same time during the execution of a constraint program. The

dependency chains are created and updated when the constraints are installed,

typically at the start of program execution, whereas the domains are more intensely

modified later on, for instance, during the labeling phase which tries to find a solution

through backtracking. For this purpose, each part of an FD variable (domain and

dependencies) maintains its own independent timestamp. In particular, when doing

labeling, we only trail the domain of the FD variables.

The other important data structure is the constraint frame, which stores the

information needed for constraint (re)evaluation. For an X in r primitive we need:

• A pointer to the constrained variable X.

• The address of the C function evaluating the range r (this is produced by fd2c

from the definition written in the constraint definition language).

• A pointer to the environment in which the function evaluating r executes:

basically the function parameters, built by the constraint installation code.

We chose a dedicated stack in which to store all these data structures, called

the constraint stack. As for other Prolog data strucutures, the stack is used in
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backtracking: the top of the constraint stack is saved in choice-points and restored

when backtracking occurs. This was not the case in clp(FD) where all FD data

structures were located in the heap. In the tests we conducted, the performance

impact of having a constraint stack was negligible on programs which did not use

FD.

From the above propagation algorithm it appears that the evaluation of a

constraint leads to the reevaluation of other constraints. Theoretically, the order

in which constraints are woken up is not relevant (since the process stops when

the fix-point is reached). The easiest way to implement this consists of a depth-first

evaluation (recursively calling each constraint depending on the variable which has

just been updated). However, this blind recursive descent is not efficient in practice

and misses some important optimizations. It is thus better to explicitly handle a

queue of constraints. A first optimization consists of considering a queue of variables

instead of a queue of constraints. When a constraint needs to be reevaluated, it is as

consequence of the modification of some FD variable. It is easier to record just this

modified variable (a pointer) than to copy in the queue all depending constraints. In

GNU Prolog we go even further: the queue is not separately represented: instead, all

FD variables present in the queue are linked together. To this end, an FD variable

(see above) includes a third part which is devoted to the queue. It consists of:

• A link to the next enqueued variable (linked-list).

• A mask describing which dependencies need to be reconsidered (to avoid useless

reevaluations).

• A timestamp to know whether a variable is already present in the queue. There

is a general counter which is incremented each time the (above) propagation

procedure is run. When a variable is modified, if its timestamp is different

from the counter then the variable is not yet in the queue (it is then linked),

otherwise only its mask of dependencies is updated.

Note that our choice for the representation of the queue associated with the

timestamp technique described above results in an optimization: the constraints

depending on one variable are only present once in the queue. On a set of

benchmarks, this optimization saves an average 17% of the execution time (it

is particularly effective on arithmetic constraints) with no overhead. Detecting this

case with a separate queue would be much more time-consuming.

Another optimization which works well in practice for many constraints is that

an X in r primitive does not need to be evaluated if X has been instantiated

before the start of the propagation procedure. This can be detected reusing the same

counter described above. On some examples this optimizations saves up to 72% of

the execution time (in particular, when many disequalities are involved).

We have shown that GNU Prolog smoothly integrates an efficient FD solver,

proposing a simple yet powerful language in which to describe high-level constraints

and propagators. Those constraints are compiled down to C code, which in turn is

integrated into the GNU Prolog executable build flow of Figure 1. More constraints

can then easily be added thanks to the description language and if needed with the

help of dedicated user-defined C functions. The compilation of high-level constraints
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is based on a limited set of primitives which are well optimized. These optimizations

are “general” (versus “ad-hoc optimizations” of black-box solvers). So all high-level

constraints can benefit from them.

4 GNU Prolog and the Prolog standard

From the outset, GNU Prolog has aimed to comply with common practice in Prolog

implementations, while retaining its characteristic architectural organization: to fit

into a regular native code compiler system, in which executables are produced by

linking object modules.

GNU Prolog was developed at the same time as the ISO Core 1 standard (ISO-

Part1 1995), which led us to take the standard proposal into account from the outset.

GNU Prolog therefore became the first Prolog system to closely comply with the ISO

standard. This meant supplying not only the standard built-in predicates but also

the related error behaviors (e.g., exceptions), the logical database update view for

dynamic predicates, meta-calls (the ISO standard requires a term to be transformed

into a goal before execution), directives, etc.12

We took compatibility one step further by providing a classical Prolog top-level

interpreter, with all the expected facilities operational, including goal execution,

source display (the listing/0 predicate), a trace-mode 4-port debugger, program

consult and reconsult, Prolog state manipulation operations (character classification,

operator definitions, etc.) We do think that a top-level interpreter is a primitive

form of Integrated Development Environment (IDE): it makes historic sense, but it

would be better to integrate stripped-down compiler-like tools into a graphical IDE

such as Eclipse, NetBeans, or Xcode by means of a plug-in.

It can be argued that the DEC-10 Prolog compiler was influential in many ways

and some aspects of its design persist in today’s Prolog systems. Its operating

environment set a model which would be emulated by most Prolog systems which

came thereafter: the interactive top level with a “workspace” concept, which contains

the whole of the program, all seamlessly integrated, regardless of the representation

used for Prolog code: clausal form suitable for a meta-interpreter, lower-level

instructions adapted to a bytecode interpreter or even executable native code.

This model holds, among others, for DEC-10 Prolog, C-Prolog, Quintus, SICStus,

MU-Prolog and Nu-Prolog, YAP, XSB, SWI, Ciao, BinProlog, ECLiPSe, and B-

Prolog. With such a heritage, GNU Prolog was almost compelled to follow suit and

establish itself around the concept of a top-level interpreter managing goals executed

in the context of a dynamically adjustable workspace, comprising all the Prolog

modules and equipped with a 4-port debugger, familiar to Prolog programmers,

although not strictly part of the language.

The functional enrichment of Prolog systems, and in particular those features

that stem from the language’s meta-programming capabilities, went forth basically

12 It is worth noting that GNU Prolog has kept up with the proposed revisions to the standard, including
features such as call/N, conditional compilation directives and evaluable functors, among others.
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unaware of the distinction between “compile time” and “execution time” environ-

ments. This mingling is such that executing one query may influence a subsequent

consult operation, in ways that may completely alter its semantics (for instance,

operator definitions.)

For a system such as GNU Prolog, which does independent static compilation to

native code and clearly separates the compilation from the execution environments,

providing a top-level interpreter similar to other systems was a challenge which

required a large development effort. This requirement prompted the addition of a

bytecode emulator to GNU Prolog, similar to what is done in other Prolog imple-

mentations, to provide a not-too-inefficient means of implementing the culturally-

accepted development cycle for Prolog programs: edit/reconsult/run. The grief

over compile-time versus run-time environments is not confined to GNU Prolog

though: this is a prominent issue in all systems that do static analysis or program

transformation, such as mode or type analyzers or even simple pretty-printers.

We feel that the ISO standard missed a good opportunity to disentangle this

situation and separate compile from execution environments. In particular:

(1) The :- initialization directive was meant for an interpreted environment,

where one expects it to have an immediate effect on the rest of the program,

whether it is simply being compiled or actually being loaded. The semantics

of this directive are unclear when the driving goal is, for instance, something

such as consult([f1, f2]), in which the initialization directives from f1 may

influence the loading of f2. A possible way around this issue is to separate

the execution of the initialization directives from the loading of the modules:

GNU Prolog only executes the initializers once all modules have been loaded.

The execution order is, in terms of the ISO standard, “implementation

dependent.”

(2) Another ISO directive which causes grief is multifile/1: one problem is the

order in which the multiple batches of clauses get collected. This is not an issue

in an interpreted environment, in which the loading is explicitly controlled by

the programmer whereas in a statically compiled set of Prolog files the order is

largely unpredictable, because it is left to the linker’s criteria.

(3) One unfortunate feature of the Prolog language, legacy of the interpreter tradi-

tion, is the lack of distinction between code and data-only (database) dynamic

predicates. The ISO standard missed the opportunity to clearly distinguish

between these two traditional uses for dynamic predicates: persistent data and

dynamic code manipulation.

These were but a few of the difficulties which hit us when developing GNU Prolog;

nevertheless, we strived to provide a fair rendering of an expected set of built-in

predicates. The “standard” Prolog library is nowhere near as complex as that of other

languages so the extent of this requirement is limited. We also behave conservatively

w.r.t. extra-logical aspects of Prolog, such as the handling of directives.
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5 Conclusions and directions for future work

We have presented the most significant aspects of the implementation of GNU Prolog

for which the key issues were simplicity, extensibility, and maintainability without

sacrificing performance. This led us to the native-code generation approach which

has been described in this paper. We applied the same requirements for the design

and the development of the finite domain constraint solver. One might say that,

overall, the GNU Prolog experience has been successful. The GNU Prolog “family,”

which includes wamcc and clp(FD) has been used in teaching and as the basis of

several extensions, most notably by other research teams: this fulfills one of our

design goals which was to establish a system sufficiently simple for it to be easily

extended by other people.

Several architectural ports and some extensions have been provided by the

user community, as acknowledged in the GNU Prolog distributed documentation.

Modified versions of GNU Prolog have been used for prototyping systems, featuring

module systems, threads, attributed variables, CLP(R), RDBMS integration, Java

interfaces, a MacOSX IDE, to name but a few. The community-supplied extensions

are referenced on the main site at http://www.gprolog.org/#contribs.

In what concerns dissemination, the GNU Prolog distribution had been down-

loaded well over 100,000 times from the development FTP site, over a period of

four years. We no longer keep statistics, as GNU Prolog is part of several Linux

distributions and there is no way to account for downloads from the main GNU

FTP site nor from other mirrors.

Performance-wise, GNU Prolog scores honorably, barely below YAP (da Silva and

Santos Costa 2006) which is continually being tuned for performance. We compared

GNU Prolog 1.4.0 and YAP 5.1.3 on 64-bit Linux. On the average, YAP is faster by

factor of 1.3 with peaks up to 2. However, on some benchmarks GNU Prolog can

outperform YAP by a factor of up to 1.4. With respect to wamcc we clearly gained

in usability, as a consequence of the more realistic compile times. GNU Prolog is

currently being worked on in various directions, including:

• Modules: GNU Prolog initially did not implement any module system, stay-

ing within the bounds of ISO Prolog Core 1, awaiting the ISO Modules

specification. Reaching a consensus on modules took a long time and the

resulting specification is still not very satisfactory. We initially opted for

the implementation of a cleaner alternative mechanism, Contextual Logic

Programming (Abreu and Diaz 2003). Nevertheless, as there is a clear need

for an interoperable module system, we are finishing a minimal-functionality

module system as part of the Prolog Commons initiative, which brings GNU

Prolog at par with the other implementations.

• Other ISO Prolog features: ISO compliance has been foremost in the design

and implementation of GNU Prolog; the work being carried out by the ISO

standization committee is being actively followed. For instance, one aspect that

needs to be accounted for is the handling of Unicode characters.

• Attributed variables: Even though GNU Prolog has a very efficient, convenient

and easily extensible FD constraint solver, it makes sense to include other
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constraint domains. Attributed variables are a mechanism which can be used

to effectively implement constraints and propagation over other domains.

• Tabling: Using tabling allows one to write programs which are more expressive

because the system takes care of memoizing for us. More programs terminate

which would otherwise loop and this can be a very effective programming

device. This extension to Prolog was introduced in XSB (Rao et al. 1997) and

has since been included in other systems, namely, YAP (Rocha et al. 2000,

2005) and B-Prolog (Zhou et al. 2008).

• A garbage collector: GNU Prolog has gotten by without GC. While reasonable

for short-lived processes13 it is a limiting factor for larger executions.

• Improved compiler: The GNU Prolog Prolog-to-WAM compiler is rather simple.

This is an obvious area for improvements.

• Compilation pipeline: Because it is made up of a succession of filters, GNU

Prolog is amenable to the substitution of some of these: we are presently

working on a few, for instance, one which manages EAM-style executions from

the WAM code. A longer-term goal is to rework the GNU Prolog back-end and

improve its integration into an existing compiler scheme: LLVM (Lattner and

Adve 2004) is an interesting target, as it is essentially a machine-independent,

typed assembly language which could take over the MA and Assembly language

steps.
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