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Chapter 2

PARAMETRIC I NTEREST RATE RISK
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Jorge Miguel Bravo∗

University ofÉvora, Department of Economics
Largo dos Colegiais, N.o 2, 7000-803,́Evora/Portugal

Abstract

In this chapter we develop a new immunization model based on aparametric spec-
ification of the term structure of interest rates. The model extends traditional duration
analysis to account for both parallel and non-parallel termstructure shifts that have an
economic meaning. Contrary to most interest rate risk models, we formally analyse
both first-order and second-order conditions for bond portfolio immunization, empha-
sizing that the key to successful immunization will be to build up a portfolio such
that the gradient of its future value is zero, and such that its Hessian matrix is posi-
tive semidefinite. We provide explicit formulae for new parametric interest rate risk
measures and present alternative approaches to implement the immunization strategy.
Additionally, we develop a more accurate approximation forthe price sensitivity of
a bond based upon new parametric interest rate risk measuresand revise both classic
and modern approaches to convexity in order to highlight therisks of convexity when
changes other than parallel shifts in the term structure areconsidered. Furthermore, we
provide useful expressions for the sensitivity of interestrate risk measures to changes
in term structure shape parameters.

1. Introduction

Interest rate risk immunization, which may be defined as the protection of the nominal value
of a portfolio (or the net value of a firm) against changes in the term structure of interest
rates, is a well-known area of portfolio management. The term “immunization” describes
the steps taken by a bond manager to build up and manage a bond portfolio in such a way
that this portfolio reaches a predetermined goal. That goal can be either toguarantee a set
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of future payments, to obtain a certain rate of return for the investment or, incertain cases,
to replicate the performance of a bond market index.

Immunization models (also known in the literature as interest-rate risk or durationmod-
els) control risk through duration and convexity measures. These measures capture the sen-
sitiveness of bond-returns to changes in one or more interest rate risk factors. For a given
change in the yield curve, the estimate of the change in bond price is typically approximated
by multiplying the duration (and eventually the convexity) by the change in the yield curve
factor.

The classical approach to immunization employs duration measures derived analytically
from prior assumptions regarding specific changes in the term structure of interest rates. For
instance, the duration measure developed by Fisher and Weil (1971) assumes that a parallel
and instantaneous shift in the term structure of interest rates occurs immediately after the
bond portfolio is build up. In this case, the recipe was basically to build up a portfolio
such that its duration was equal to the investor’s horizon. In order to takeinto account the
fact that interest rates do not always move in a parallel way, a number ofalternative models
considering non-parallel shifts were proposed by Bierwag (1977), Khang (1979) and Babbel
(1983) or, in an equilibrium setting, by Coxet al. (1979), Ingersollet al. (1978), Brennan
and Schwartz (1983), Nelson and Schaefer (1983) and Wu (2000),among many others.

This approach has several drawbacks. The earliest and most widespread refers to the
fact that the investment is protected only against the particular type of interest rate change
assumed. In this sense, the need to identify correctly the “true” stochastic process becomes
obvious. If identified incorrectly, the effectiveness of the strategy is compromised and the
investor is subject to a new type of risk - stochastic process (or immunization)risk. The
second drawback concerns the nature of the interest rate uncertainty that can be described
by a single factor model. In effect, in this case the changes in all interest rates along the
term structure must be perfectly correlated, an assumption frequently rejected in empirical
studies. Moreover, the existence of non-parallel movements in the yield curve limits the use
of single factor models.

Fong and Vasicek (1983, 1984) developed the M-Squared model in order to minimize
the immunization risk due to non-parallel (slope) shifts in the term structure of interest
rates. The authors show in particular that by setting the duration of a bond portfolio equal
to its planning horizon and by minimizing a quadratic cash flow dispersion measure, the
immunization risk due to adverse term structure shifts can be reduced.1 More recently,
new immunization risk (dispersion) measures were proposed by Nawalkha and Chambers
(1996), Balb́as and Ib́añez (1998) and Balb́as et al. (2002).

In recent years researchers have redirected their attention towards the development of
alternative formulations which try to capture more effectively the interest rate risk faced
by fixed-income portfolios, without relying on any particular assumptions asto the type of
stochastic process which governs interest rate movements. A popular approach is to as-
sume that interest rate changes can be accurately described by shifts in the level of a limited
number of segments (vertices or yield curve drivers) into which the term structure is sub-
divided, generalizing then the concepts of duration and convexity to a multivariate context
by considering the portfolio’s joint exposure to these key rates. Specifically, we refer to the

1Nawalkha and Chambers (1997) and Nawalkha, Soto and Zhang (2003) derive a multiple-factor extension
to the M-Squared model termed M-Vector Model.
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directional duration and to the partial duration models of Reitano (1990, 1991a,b, 1992), to
the key-rate duration model of Ho (1992) and to the reshaping duration model suggested
by Klaffky et al.. (1992). In these models, the direction of interest rate shifts can be set on
an a priori basis or can be based on real data. In the later case, the historical movements in
the term structure of interest rates are used to identify a limited number of state variables,
observable or not, which govern the yield curve.2

An alternative line of attack to the problem of immunization involves the use of para-
metric duration models. In this kind of formulation, which has its roots in the work of
Cooper (1977), all that is assumed is that at each moment in time the term structure of
interest rates adheres to a particular functional form, which expressesitself as a function
of time and a limited number of shape parameters. In this line of thought, providedthat
the mathematical function fits accurately most yield curves all interest rate movements can
be expressed in terms of changes in one or more shape parameters that characterize this
function. In other words, it is apparent that in this kind of models the interest rate risk un-
certainty is reflected by the unknown nature of future parameter values. Differentiating the
bond price with respect to each shape parameter we obtain a vector of parametric interest
rate risk measures. Choosing a particular functional form involves obviously some pricing
errors. The difference is that in this case the errors can be quantified and controlled system-
atically, as long as we are able to choose the appropriate specification for the yield curve,
where by appropriate we mean the one that minimizes immunization risk.

After the work of Cooper there has been little research in this area. Garbade (1985),
Chambers et al. (1988) and Prisman and Shores (1988) assume that a polynomial may be
used to fit the term structure of interest rates as a first step to derive a vector of interest
rate risk measures - termed duration vector -, in which each element corresponds, basically,
to the moment of orderk of a bond3. Although simple, the use of polynomial functions
to estimate the yield curve has been subject to great criticism since it can lead toforward
curves that exhibit undesirable (and unrealistic) properties for long maturities, namely high
instability. In Willner (1996) the actual yield curve risk exposure of a bondportfolio is
decomposed using the Nelson and Siegel (1987) parametrization of the yieldcurve, a math-
ematical function that expresses interest rates in terms of four parametersand is compatible
with standard increasing, decreasing, flat and inverted yield curve shapes.

Another major issue in the duration literature refers to the importance of portfolio de-
sign in immunization performance. In constructing a bond portfolio that immunizesthe
investment against changes in the term structure of interest rates, investors normally select
the portfolio’s composition so that its duration measures match the length of the planning
period. When the number of bonds available is large enough, there are multiple solutions
which satisfy the immunization constraints. Fong and Vasicek (1983, 1984) developed the
M-Squared Model to minimize the stochastic process risk due to non-parallelshifts in the

2See, for example, Gultekin and Rogalski (1984), Elton et al. (1990), Garbade (1986), Litterman and
Scheinkman (1991), Knez et al. (1994), D’Ecclesia and Zenios (1994), Barber and Copper (1996) and Bravo
and Silva (2005).

3The moment of orderk of a bond is defined as the weighted average of thekth power of its times of
payments, the weights being the shares of the bond’s cash flows in present value in the bond’s present value.
Chambers et al. (1988) perform immunization tests for the U.S. marketover single and multiperiod horizons
and conclude that the improvement in the immunization performance is considerable with the addition of at
least four interest rate risk measures.
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yield curve, providing at the same time a method to select the best duration-matching port-
folio from the set of potential portfolios.

Fooladi and Roberts (1992) and Bierwaget al. (1993) extended the research into the
importance of portfolio design by comparing the performance of duration-matching port-
folios constrained to include a bond maturing near the end of the holding period, the so-
called maturity bond, with that of traditional duration-matching portfolios, or withthat of
duration-matching portfolios which minimize or equate to zero the risk measure ofFong
and Vasicek (1983, 1984). In their simulations for the Canadian market – using different
term-structure estimation procedures, different investment horizons anddifferent duration
measures – Fooladi and Roberts (1992) report that “. . . a constraintforcing the duration-
matching portfolio to include a bond with maturity equal to the time remaining in the hori-
zon appears to add significantly to hedging performance”. This result is often referred to as
the “duration puzzle”. Furthermore, contrary to Fong and Vasicek, theirresults suggest that
forcing the duration-matching portfolio to include a maturity bond is a better design crite-
rion than choosing a bullet portfolio, although the bullet portfolio has lower .By the same
token, Bierwag et al. (1993) conclude that “. . . minimum portfolios fail to hedge as effec-
tively as portfolios including a bond maturing on the horizon date”, offeringmore evidence
in favor of using the maturity bond.

More recently, Bravo and Silva (2006) and Soto (2001, 2004) investigated the immu-
nization performance of alternative single- and multiple-factor duration-matching strategies
and other models, using Portuguese and Spanish government bond data,, in order: (i) to
evaluate whether the success of duration-matching strategies is primarily attributable to the
particular model chosen to explain term structure movements, or to the number of inter-
est rate risk factors considered and (ii) to confirm the importance of portfolio design in
immunization performance. The results obtained by Bravo and Silva (2006) suggest that
immunization models (single- and multi-factor) remove most of the interest rate riskun-
derlying a more näıve maturity strategy, and that duration-matching portfolios constrained
to include the maturity bond and formed using a single-factor model provide thebest im-
munization performance overall, particularly in highly volatile term structure environments
and shorter holding periods. Soto (2004) argues that for multiple-factormodels, the num-
ber of risk factors considered in immunization strategies is definitely more important than
the particular model chosen, but also warn that the addition of duration constraints to the
immunization program beyond the third might impair the performance.

In this this chapter we develop a new immunization model based on the Svensson(1994)
specification of the yield curve. The model is parametric by nature, i.e., the interest rate
risk factors correspond to the parameters of the mathematical function usedto represent the
yield curve, and adopts a multivariate setting, being compatible with both paralleland non-
parallel term structure shifts. Since we do not impose any previous assumptions about the
way yield curve changes the model is applicable in virtually all yield curve environments.
In addition, the model is intuitive and relatively easy to apply.

This chapter is related to Willner (1996), but there are some important differences. First,
we adopt Svensson’s parametrization instead of Nelson and Siegel’s mathematical function.
As shown by Svensson (1994) the extended form allows more flexibility in theyield curve
estimation, in particular in the short-term end of the yield curve. In addition, themodel
assumes that every movement in the term structure of interest rates can be approximated by
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changes in a small number of factors and that these factors can be directlyinterpreted as
representing parallel, slope and curvature shifts in the yield curve.

Previous research on duration models was not able to establish a link between first-
and second order conditions for immunization.In this sense, contrary to Willner and most
interest rate risk models we formally analyse both first-order and second-order conditions
for bond portfolio immunization, emphasizing that the key to successful immunization will
be to build up a portfolio such that the gradient of its future value is zero, and such that its
Hessian matrix is positive semidefinite. In addition, we provide explicit formulaefor new
parametric interest rate risk measures and present alternative approaches to implement the
immunization strategy.

Finally, we extend previous analysis on the sensitivity of a bond’s durationto changes
in the yield to maturity by developing useful expressions for the sensitivity of parametric
interest rate risk measures to changes in term structure shape parameters.

The outline of the remaining part of the chapter is as follows. In Section 2, webriefly
characterize Svensson’s specification of the yield curve, and theoretically justify its use in
the context of the immunization problem. In Section 3 we introduce the concepts of para-
metric duration and parametric convexity and formally derive first-order and second-order
conditions for immunization. We show that it is impossible to achieve immunization simply
by meeting first-order conditions and that second-order conditions must be addressed con-
veniently. In Section 4 we develop a more accurate approximation for the price sensitivity
of a bond based upon new definitions for parametric interest rate risk measures and revise
both classic and modern approaches to convexity. In particular, we demonstrate that impor-
tant negative effects of convexity are revealed when changes other than parallel shifts in the
term structure are considered. In Section 5 we provide simple expressions for the sensitiv-
ity of parametric interest rate risk measures to changes in term structure shape parameters.
Section 6 summarizes the main conclusions of this chapter.

2. Term Structure Specification

Svensson (1994) proposed a mathematical characterization of the yield curve based on the
following parametric specification of the instantaneous forward rate,f(t,a):

f(t,a) = a0 + a1e
−

t
a4 + a2

(

t

a4
e
−

t
a4

)

+ a3

(

t

a5
e
−

t
a5

)

, (1)

wheref(t,a) is a function of both the time to maturityt and a (line) vector of parame-
tersa = (a0, a1, a2, a3, a4, a5) to be estimated, with(a0, a4, a5) > 0. To increase the
flexibility of the curves and to improve the fit, Svensson extended the Nelson and Siegel’s
functional form by adding a potential extra hump in the forward curve. Itis well known
that the Nelson-Siegel method admits the existence of only one extremum and one point
of inflection in the concavity. This means that when there are disturbances inthe money
market that lead to curves with two local extrema, the fit in the short segment of the yield
curve turns out to be very poor. Given its higher adjustment capacity, theSvensson model
has proven to be more adequate in estimating the term structure of interest rates and it is
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widely used by practitioners and major central banks.4

The parameters in the forward rate function are estimated by solving a non-linear opti-
mization procedure to data observed on a trade day, which consists in minimizingthe sum
of squared yield (or price) deviations between observed and theoretical yields (or prices)
as estimated with the model. The optimization problem can be solved using either a grid
search procedure or a partial estimation technique5. In most practical applications fitting
was found relatively insensitive to changes in parametersa4 anda5 (e.g. Barrett et al.,
1995, Willner, 1996 and Diebold and Li, 2003). This means that, without loss of generality,
we can follow standard practise and assume at any stage that these parameters are fixed at
prespecified values. Note also that by settinga3 equal to zero in (1) we obtain the Nelson
and Siegel forward rate function.

Regardless of their popularity, the Nelson-Siegel-Svensson family of curves has been
criticized because of two theoretical shortcomings. The first, pointed out by Björk and
Christensen (1999) and Filipovic (1999, 2000), is that models fitted sequentially to cross-
sectional data are not intertemporally consistent with the dynamics of a giveninterest rate
model. Bj̈ork and Christensen (1999) prove, for instance, that the Nelson-Siegel family of
curves is inconsistent with the Ho-Lee interest rate model and with the Hull-White exten-
sion of the Vasicek model. This feature weakens the validity of the model for applications
that involve a time-series context. It can be shown, however, that a simple manifold ex-
pansion (i.e. the addition of appropriate functions of maturity) is sufficient tomake the
Nelson and Siegel model consistent with given interest rate models,, namely with the gen-
eralized Vasicek short rate model.6 These adjustments impose, nonetheless, additional con-
straints on the estimation of the models to cross-sectional data leading thus to a non-trivial
deterioration of the fitting performance when compared with that provided bythe Nelson-
Siegel-Svensson family of curves. On the other hand, it is not obvious to us that the use
of arbitrage-free models is necessary or desirable for accomplishing good immunization
performance. As a matter of fact, if the theoretical superiority of equilibriumterm structure
models is unquestionable, when compared to traditional immunizing duration models, the
truth is that a number of papers, such as Ingersoll (1983), Nelson andSchaefer (1983) and
Brennan and Schwartz (1983), have show that their immunization performance is rather
similar. In addition, Brandt and Yaron (2003) prove that typical no-arbitrage models are ac-
tually time-inconsistent because their parameters are assumed constant forpricing purposes
even though the parameters change each time the model is recalibrated to data observed on
a given date. Moreover, recent studies (e.g. Duffie, 2002 and Dai and Singleton, 2002) have
shown that affine no-arbitrage models can produce poor forecasts.

The second theoretical shortcoming is that these models apparently lack a fundamental
economic foundation, which leaves researchers cautious about interpreting the parameters
in conjunction with economic variables, and may explain why their use has beenlimited
to cross-sectional applications, namely yield-curve fitting and interest raterisk manage-

4Bank of International Settlements (1999) notes that ten Central Banks (of twelve surveyed) routinely use
either the Nelson and Siegel (1987) and/or the Svensson (1994) modelas their primary method for analysing
the yield curve. See Bravo (2001), Barrett et al. (1995), Diebold andLi (2003) for other uses of the NS model.

5For more details on the estimation process see, for example, Nelson and Siegel (1987), BIS (1999) and
Bolder and Stŕeliski (1999).

6See Bj̈ork and Christensen (1999), Filipovic (2000) and Krippner (2005a).
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ment. An exception is given by Diebold and Li (2003) who use variations onthe Nelson-
Siegel framework to model the entire yield curve on an intertemporally basis, as a three-
dimensional parameter evolving dynamically.7 The authors prove, first, that the model is
consistent with standard stylized facts regarding the yield curve and, second, that the three-
time varying parameters may be roughly interpreted as factors corresponding to level, slope
and curvature, a result consistent with previous studies on this subject.8

From (1) the continuously compounded zero-coupon curver(t,a) can be derived noting
thatr(t,a) = 1

t
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whereas the discount functiond(t,a) is defined as:

d(t,a) = exp [−r(t,a)t] . (3)

Each parameter in (1) has a particular impact on the shape of the forward rate curve.
Parametera0, which represents the asymptotic value off(t,a) (i.e., limt→∞ f(t,a) = a0),
can actually be regarded as a long-term (consol) interest rate. Parameter a1 defines the
speed with which the curve tends towards its long-term value. The yield curve will be
upward sloping ifa1 < 0 and downward-sloping ifa1 > 0. The higher the absolute value
of a1 the steeper the yield curve. Notice also that the sum ofa0 anda1 corresponds to the
instantaneous forward rate with an infinitesimal maturity (limt→0f(t,a) = a0 + a1), i.e., it
defines the intercept of the curve. Parametersa2 anda3 have similar meaning and influence
the shape of the yield curve. They determine the magnitude and the direction ofthe first
and second humps, respectively. For example, ifa2 is positive, a hump will occur ata4

whereas, ifa2 is negative, a U-shape value will emerge ata4. Parametersa4 anda5, which
are always positive, have similar roles and define the position of the first and second humps,
respectively.

The Svensson model is very intuitive since parametersa0, a1, a2 anda3 (the interest
rate factors) can directly be linked to parallel displacements, slope changes and curvature
shifts in the yield curve, given that scale coefficients are fixed. To perceive this behaviour,
Figure 1 displays the sensitivitySk = ∂f(t,a)

∂ak
of forward rates to each parameterak, for

k = 0, ..., 3.
As can be seen, the sensitivity of forward rates with respect to the consol rate is con-

stant across the whole maturity spectrum, which means that it can actually be regarded as
a level factor. In other words, the level factorS0 fundamentally represents a parallel dis-
placement in the term structure of interest rates. The sensitivity of interestrates to changes
in parametera1 shows a descending shape, first larger for shorter maturities, then declining
exponentially toward zero as maturity increases. In this sense, factorS1 is a slope factor
and represents changes in the steepness of the yield curve. Finally, factorsS2 andS3 have

7See also Krippner (2005b).
8See, for instance, Litterman and Scheinkman (1991), Barber and Copper (1996), Knez et al. (1994),

D’Ecclesia and Zenios (1994) and Bravo and Silva (2005).
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Figure 1. Sensitivity of forward rates to the parameters of the Svensson mathematical func-
tion; these sensitivities are obtained by fixing parameter values equal toa4 = 3 anda5 = 5.

different impacts on intermediate rates as opposed to extreme maturities (shortand long),
reaching a maximum on those points (a4 anda5, respectively) where the yield curve has
humps. Hence, these factors may be interpreted as curvature factors. In brief, the Svensson
model assumes that: (i) every movement in the term structure of interest ratescan be ap-
proximated by changes in only four factors; (ii) these factors take familiar shapes, namely
parallel shifts, changes in steepness, and changes in the curvature ofthe yield curve.

3. Constructing Immunized Portfolios

Consider an investor who has a position in a numberL of default-free bonds. Letclt denote
the nominal cash flow (in monetary units) received from bondl (l = 1, ..., L) at time t
(t = 1, ..., N). Let t = 0 be the current date, andH a known, finite investment horizon,
measured in years. Assuming that the initial term structure is known and described by the
parametric function (2), which assigns a spot rate to each payment datet, the present value
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of bondl, Bl
0(a), is given by:
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where we have stressed the functional relationship between the bond price Bl(a) and the
initial vectora = (a0, a1, a2, a3, a4, a5)

T of parameters of the forward rate function. Let
nl represent the number of typel bonds in the portfolio. In this case, the present value (at
time 0) of this bond portfolio,P0(a), is given by:
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For simplicity of exposition, consider now that the investor is interested only in his
wealth position at some future timeH (whereH might represent, for example, the due date
on a single liability payment). The value of this portfolio at timeH, under the expectations
hypothesis of the term structure assuming no change in the yield curve,PH(a), will be:

PH(a) = P0(a) exp [r(H,a)H]

=

[

L
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N
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nlclt exp [−r(t,a)t]

]

exp [r(H,a)H] (6)

Suppose now that at timeτ , immediately after the investor purchased the portfolio, the
spot rate function has undergone a variation, which may be viewed here as a vectordA of
multiple random shifts and represent both parallel and nonparallel shifts,such that the new
term structure, represented again by Svensson’s model, isrτ (t,A) = r(t,a + dA ):
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whereA = (A0, ..., A5)
T denotes the new vector of coefficients of the spot rate function

estimated at timeτ . The new terminal value of the portfolio,PH(A), keeps the same form
as above, except that vectorA now replaces the initial vector of parametersa:

PH(A) =

[

L
∑

l=1

N
∑

t=1

nlclt exp [−r(t,A)t]

]

exp [r(H,A)H] (8)

The traditional definition of immunization (e.g. Fisher and Weil, 1971) for the case of
a single liability establishes that a portfolio of default-free bonds is said to be immunized
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against any type of interest rate shifts if its accumulated value at the end of the planning
horizon is at least as great as the target value, where the target value isdefined as the
portfolio value at the horizon date under the scenario of no change in the spot (and forward)
rates. Stated more formally, by immunization we mean selection of a bond portfolio such
that the actual future value of the income streamPH(A) at timeH will exceed the initially
expected valuePH(a), i.e.,PH(A) ≥ PH(a) (or equivalently,∆PH = PH(A)−PH(a) ≥
0), if the interest ratesr(t,A) shift to their new valuerτ (t,A).

Under the assumption that interest rates only change by a parallel shift, themain con-
clusion of Fisher and Weil was that immunization is achieved when the duration of the
portfolio is set equal to the length of the investment horizon. The assumption that interest
rates can change only by a parallel shift is very restrictive and can carry serious risks. In this
chapter we offer a more generalized approach to immunization by deriving the conditions
under which the investment is protected against both parallel and non-parallel yield curve
shifts.

3.1. First-Order Conditions

Let PH(A) be a multivariate price function, assumed to be twice continuously differen-
tiable. The idea is to use a Taylor series expansion ofPH(A) around the initial vector of
parameters in order to evaluate the necessary and sufficient conditions for a local minimum
of PH(A) atA = a. For most practical applications, an expansion up to the second order
is sufficient to obtain a reasonable approximation. The quadratic approximation for (8) is
then given by:9

dPH(A) = PH(A)−PH(a) = ∇PH(a)T ·da+
1

2
daT ·∇2PH(a) ·da+R2(a,dA), (9)

wheredA = (dai)
T
i=0,...,5 denotes the (column) vector of variations of parametersa, ·

denotes the inner product of two vectors andR2(a,dA) represents the remaining terms of
the series. Terms∇PH(A) and∇2PH(A) represent, respectively, the gradient vector and
the Hessian matrix ofPH(A) at A = a. Alternatively, if we divide (9) byPH(A) we
obtain the percentage change in the terminal value of the bond portfolio
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cash flows received by the holder of the portfolio at timet. To determine the nature of
the horizon value near the origin we compute the first-order partial derivative of (8) with
respect toAk (k = 0, ..., 5). This yields the generic element of the gradient vector∂PH(A)
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9Note that the change in the portfolio value resulting from the passage of time isignored here due to its
deterministic nature.
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which, after dividing byPH(A), can be written as

1

PH(A)

∂PH(A)

∂Ak

= H
∂r(H,A)

∂Ak

−
1

P0(A)

[

N
∑

t=1

tcte
−r(t,A)t ∂r(t,A)

∂Ak

]

(12)

In anticipation of combining (12) and (10) we introduce new definitions for parametric
interest rate risk measures.

Definition 1 The parametric duration of a bond is a measure of first-order sensitivity of
bond prices to changes in interest rates as given by modifications in parametersAk (k =
0, ..., 5). For bond l, the parametric duration is denotedD(l)(k,A), and is defined, for
Bl

0(A) 6= 0, as follows:

D(l)(k,A) = −
1

Bl
0(A)

∂Bl
0(A)

∂Ak

=
1

Bl
0(A)

[

N
∑

t=1

tclte
−r(t,A)t ∂r(t,A)

∂Ak

]

. (13)

Definition 2 Let wl =
nlB

l
0(A)

P0(A) denote the percentage of portfolio invested in bondl, such

that
∑L

l=1 wl = 1. The parametric duration of a bond portfolio is a measure of first-
order sensitivity of a bond portfolio to changes in interest rates as given by modifications
in parametersAk (k = 0, ..., 5). It is calculated as the weighted average of the parametric
durations of the bonds making up the portfolio, the weights being the shares of each bond
in the portfolio. DenotedD(P )(k,A), it is defined, forP0(A) 6= 0, as follows:

D(P )(k,A) = −
1

P0(A)

∂P0(A)

∂Ak

=
L

∑

l=1

wlD
(l)(k,A). (14)

Each equation in (13) represents a bond’s interest rate risk measure for a particular type
of shift in the yield curve. For instance, the first element,D(l)(0,A), is defined as

D(l)(0,A) =
1

Bl
0(A)

[

N
∑

t=1

tclte
−r(t,A)t

]

(15)

and corresponds to the traditional Fisher-Weil duration measure. It is defined as the
weighted average the times of payment of all the cashflows generated by thebond, the
weights being the shares of the bond’s cashflows in the bond’s presentvalue, and captures
the sensitivity of bond returns to changes in the consol factora0, i.e., the responsiveness
of bond returns to height shifts in the term structure of interest rates. Thesecond element,
D(l)(1,A), is defined as

D(l)(1,A) =
1

Bl
0(A)

[

N
∑

t=1

clte
−r(t,A)t

(

1 − e
−

t
a4

)

a4

]

(16)
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and captures the sensitivity of bond returns to changes in parametera1, that is, to changes
in the slope of the yield curve. The third,D(l)(2,A), and fourth,D(l)(3,A), elements of
the duration vector summarize the sensitivity of bond returns to changes in thecurvature
parametersa2 anda3, and are defined as

D(l)(2,A) =
1

Bl
0(A)

{

N
∑

t=1

clte
−r(t,A)t

[

1 − e
−

t
a4

(

1 +
t

a4

)]

a4

}

(17)

and

D(l)(3,A) =
1

Bl
0(A)

{

N
∑

t=1

clte
−r(t,A)t

[

1 − e
−

t
a5

(

1 +
t

a5

)]

a5

}

(18)

respectively. Finally, The fourth,D(l)(4,A), and fifth,D(l)(5,A), elements of the duration
vector summarize the sensitivity of bond returns to changes in the location parametersa4

anda5, and are defined as

D(l)(4,A) =
1

Bl
0(A)

{

N
∑

t=1

clte
−r(t,A)t

[

(a1

t
+

a2

t

)

(1 − e
−

t
a4 ) −

(

a1

a4
+

a2

a4

)

e
−

t
a4 − a2

t

a2
4

e
−

t
a4

]

}

(19)
and

D(l)(5,A) =
1

Bl
0(A)

{

N
∑

t=1

clte
−r(t,A)t

[

a3

t

(

1 − e
−

t
a5

(

1 +
t

a5
−

t2

a2
5

))]

}

(20)

respectively. Taking this into account, the generic element of the gradientvector (12) can
be simplified to

1

PH(A)

∂PH(A)

∂Ak

= H
∂r(H,A)

∂Ak

− D(P )(k,A) (21)

Let us now address first-order conditions for bond portfolio immunization.For simplic-
ity of exposition, we assume that parametersa4 anda5 are fixed at prespecified values.10

We know from standard optimization theory that if a function partial differentiable has an
extremum at an interior point then all first-order derivatives are required to be zero.11 In
other words, setting the gradient vector equal to zero is a necessary (but clearly not suf-
ficient) condition for an interior local minimum. From (21) this is equivalent to a fourth-
dimensional vector of the form

D(P )(k,A) = H
∂r(H,A)

∂Ak

(k = 0, . . . , 3). (22)

Each of the conditions in (22) defines an immunization condition for a different type
of yield curve shift. For instance, selecting a bond portfolio such that itsD(P )(0,A) is set
equal to the planning horizonH protects the investment against a parallel shift in the yield
curve. In other words, the traditional approach to immunization can be considered, to some
extend, a particular case of the parametric model. Similarly, immunization against slope

10The approach can easily be expanded to admit changes in the location of the humps of the forward curve.
11See, for example, Apostol (1969).
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shifts is attained if the conditionD(P )(1,A) = a4

[

1 − exp(−H
a4

)
]

is fulfilled. Finally,

appropriate protection against changes in the curvature of the term structure is obtained by
choosing a portfolio’s composition such that

D(P )(2,A) = a4

[

1 − e
−

H
a4

(

1 + H
a4

)]

andD(P )(3,A) = a5

[

1 − e
−

H
a5

(

1 + H
a5

)]

.

To sum up, from equation (22) two implications follow immediately. First, the vectorof
parametric duration measures is determined only by the structure of the bond portfolio and,
therefore, can be controlled by the portfolio manager. Second, given that convexity condi-
tions are respected and a sufficient number of bonds are available (i.e.L ≥ 4 or L ≥ 5,
if we include the initial self-financing constraint), complete immunization against interest
rate changes (both parallel and non-parallel) can be achieved by selecting a bond portfolio
such that all of the first-order immunization constraints are satisfied. Note that the investor
can always adopt a more active role in the immunization strategy by choosing,deliberately,
to satisfy only some of the conditions in (22). He can, for example, use the principal com-
ponents analysis to select those interest rate shifts that are more likely or account most for
the volatility of the yield curve and then engage in the appropriate immunization strategy.
Alternatively, investors may try to obtain a yield pick-up and at the same time to be risk
neutral against a change in the level and/or the yield curve by engaging inbutterfly trades.

In those cases where there is more than one bond portfolio satisfying all ofthe im-
munization constraints, a particular objective function might be considered.For example,
Chambers et al. (1988) argue that an acceptable portfolio construction criteria would be to
minimize the sum of squared weights, i.e.,Min

∑L
l=1 w2

l . According to them, this will lead
to a diversified portfolio that minimizes the impact of unsystematic risk caused bytransitory
pricing errors.

Finally, note that similar to Prisman and Shores (1988), except for the trivial case where
a single zero coupon bond maturing on the planning horizon composes the portfolio12, the
solution to the immunization constraints given in equation (22) requires short positions in
some bonds, i.e., any immunized portfolio must have both positive and negativecash flows.
The non-monotone nature of the cash flow structure makes the existence oflocal minima at
A = a more problematic. In particular, we will see below that ’most’ first-order immunized
portfolios yield a horizon value which is not locally convex with respect to perturbations in
the yield curve parameters.

3.2. Second-Order Conditions

We know from standard optimization theory that setting the gradient vector∇PH(A) equal
to zero is a necessary but not sufficient condition for a minimum ofPH(A) atA = a. Let us
now address second-order conditions and their implications for portfolio construction. For a
local minimum ofPH(A) atA = a, second-order conditions stipulate that to equations (22)
we have to add those corresponding to a positive semidefinite Hessian matrix for PH(A).

The generic element of the Hessian matrix,γkm(A) = ∂2PH(A)
∂Ak∂Am

, is derived from (11) by

12Paradoxically, the existence of such a bond would mean that the immunization strategy is unnecessary.
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taking the partial derivative with respect toAm (m = 0, ..., 3).13

γkm(A) =
∂

∂Am

{

N
∑

t=1

cte
[r(H,A)H−r(t,A)t]

[

H
∂r(H,A)

∂Ak

− t
∂r(t,A)

∂Ak

]

}

(23)

=

N
∑

t=1

cte
[r(H,A)H−r(t,A)t]

[

H
∂r(H,A)

∂Ak

− t
∂r(t,A)

∂Ak

] [

H
∂r(H,A)

∂Am

− t
∂r(t,A)

∂Am

]

To simplify notation, let

qt = ct exp [r(H,A)H − r(t,A)t] (t = 1, ..., N) (24)

represent the cash flow received from portfolio at timet expressed in future value. From
(23)γkm(A) is then

γkm(A) =
N

∑

t=1

qt

[

H2 ∂r(H,A)

∂Ak

∂r(H,A)

∂Am
− H

∂r(H,A)

∂Ak

t
∂r(t,A)

∂Am

−H
∂r(H,A)

∂Am
t
∂r(t,A)

∂Ak

+ t2
∂r(t,A)

∂Ak

∂r(t,A)

∂Am

]

with (k, m = 0, ..., 3), or equivalently

γkm(A) = H2

(

∂r(H,A)

∂Ak

)(

∂r(H,A)

∂Am

) N
∑

t=1

qt − H
∂r(H,A)

∂Ak

N
∑

t=1

tqt
∂r(t,A)

∂Am

−H
∂r(H,A)

∂Am

N
∑

t=1

tqt
∂r(t,A)

∂Ak

+
N

∑

t=1

t2qt
∂r(t,A)

∂Ak

∂r(t,A)

∂Am
(25)

Dividing both term in (23) byPH(A) we get

1

PH(A)

∂2PH(A)

∂Ak∂Am
= H2

(

∂r(H,A)

∂Ak

)(

∂r(H,A)

∂Am

)

(26)

−H
∂r(H,A)

∂Ak

{

1

P0(A)

[

N
∑

t=1

tcte
−r(t,A)t ∂r(t,A)

∂Am

]}

−H
∂r(H,A)

∂Am

{

1

P0(A)

[

N
∑

t=1

tcte
−r(t,A)t ∂r(t,A)

∂Ak

]}

+
1

P0(A)

[

N
∑

t=1

t2cte
−r(t,A)t

(

∂r(t,A)

∂Ak

)(

∂r(t,A)

∂Am

)

]

where in (26) we have made use of the fact that
∑N

t=1 qt = PH(A) = P0(A)er(H,A)H .
We are now in conditions to introduce the essential definitions of parametric convexity of a
bond and of a bond portfolio.

13In Equation (23) we have made use of the fact that all second-order cross partial derivatives are zero, i.e.,
∂

∂Am �∂2r(·,A)
∂Ak � = 0, m = 0, ..., 3.
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Definition 3 The parametric convexity of a bond is a measure of second-order sensitivity
of bond prices to changes in interest rates as given by modifications in parametersAk and
Am (k, m = 0, ..., 3). For bondl, the parametric convexity is denotedC(l)(k, m,A), and
is equal, forBl

0(A) 6= 0, to:

C(l)(k, m,A) =
1

Bl
0(A)

∂2Bl
0(A)

∂Ak∂Am

=
1

Bl
0(A)

[

N
∑

t=1

t2clte
−r(t,A)t

(

∂r(t,A)

∂Ak

)(

∂r(t,A)

∂Am

)

]

(27)

Definition 4 Let wl =
nlB

l
0(A)

P0(A) denote the percentage of portfolio invested in bondl, such

that
∑L

l=1 wl = 1. The parametric convexity of a bond portfolio is a measure of second-
order sensitivity of a bond portfolio to changes in interest rates as given by modifications
in parametersAk andAm (k, m = 0, ..., 3). It is calculated as the weighted average of the
parametric convexities of the bonds making up the portfolio, the weights beingthe shares
of each bond in the portfolio. DenotedC(P )(k, m,A), is equal, forP0(A) 6= 0, to:

C(P )(k, m,A) =
1

P0(A)

∂2P0(A)

∂Ak∂Am

=
L

∑

l=1

wlC
(l)(k, m,A) (28)

To simplify notation letC(l)
k,m(A) = C(l)(k, m,A). Each equation in (27) measures

second-order effects for a particular type of shift in the term structure. For instance, the
equation forC(l)

0,0(A) is defined as:

C
(l)
0,0(A) =

1

Bl
0(A)

∂2Bl
0(A)

∂A2
0

=
1

Bl
0(A)

[

N
∑

t=1

t2clte
−r(t,A)t

]

. (29)

Surprisingly, or not, the parametric model provides a second-order sensitivity measure
of bond’s price to changes in the level coefficient of the yield curve thatis similar to the
traditional (continuously compounded) definition of convexity.14 We can then conclude,
once again, that the traditional approach to immunization can be considered aparticular
case of the parametric model. Second-order effects caused by shifts in the slope parameter
a1 only can now be quantified by using:

C
(l)
1,1(A) =

1

Bl
0(A)

[

N
∑

t=1

clte
−r(t,A)t

(

1 − e
−

t
a4

)2
a2

4

]

, (30)

14See, for example, Lacey and Nawalkha (1993).
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and so on. The complete set of definitions can be found in theAppendix. Substituting (28)
and (14) in (26) yields

1

PH(A)

∂2PH(A)

∂Ak∂Am
= H2

(

∂r(H,A)

∂Ak

)(

∂r(H,A)

∂Am

)

− H

(

∂r(H,A)

∂Ak

)

D(P )(k,A)

−H

(

∂r(H,A)

∂Am

)

D(P )(m,A) + C(P )(k, m,A) (31)

From the first order conditions (22) for bond portfolio immunization we knowthat

D(P )(k,A) = H
∂r(H,A)

∂Ak

(k = 0, ..., 3) (32)

which is also valid whenk is replaced bym (m = 0, ..., 3). Substituting this expression in
(31), the generic element of the Hessian matrix atA = a becomes(k, m = 0, ..., 3):

1

PH(A)

∂2PH(A)

∂Ak∂Am
= H2

(

∂r(H,A)

∂Ak

)(

∂r(H,A)

∂Am

)

−2H2

(

∂r(H,A)

∂Ak

)(

H
∂r(H,A)

∂Am

)

+ C(P )(k, m,A)

= C(P )(k, m,A) − H2

(

∂r(H,A)

∂Ak

)(

∂r(H,A)

∂Am

)

(33)

Let ωkm denote the difference

ωkm(A) = C(P )(k, m,A) − H2

(

∂r(H,A)

∂Ak

)(

∂r(H,A)

∂Am

)

(34)

Each element in (34) has a clear interpretation since it defines the difference between the
parametric convexity of a bond portfolio and the sensitivity of the perfect immunization as-
set (i.e. of a zero coupon maturing on the horizon date) to changes in the yield curve shape
parameters.15 That is, each element in (34) represents the extent to which second-order
interest rate risk measures deviate from the target. This is not surprising since from equa-
tion (33) we observe that all elementsγkm(A) of the Hessian matrix∇2PH(A) are those
of the matrixΠ = [ωkm]3k,m=0. This means that the discussion of the positive semidefi-
niteness of∇2PH(A) reduces to that of the symmetric matrixΠ. At least two alternative
methodologies can be used to determine the sign definiteness of the Hessian matrix: The
determinantal test approachand theeigenvalue test approach. We will show how can
both be used in the context of immunization.

3.2.1. Determinantal Test Approach

Let us focus first on the use of the determinantal test approach. LetΠ be a square(n × n)
symmetric matrix of the form

Π =









ω00 ω01 ... ω0k

ω10 ω11 ... ω1k

... ... ...
ωk0 ωk1 ... ωkk









, ωij = ωji, i 6= j

15Note also that we can interpretwkm(A) as a sort of ”generalized variance” since its expression is analogous
to the formulaV ar(X) = E(X2)− (E(X))2.
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with n = 4. The jth order leading principal minors of the matrixΠ, denotedDj (j =
1, ..., 4), are the determinants of the submatrices formed by deleting the entries in the last
n − j rows and columns ofΠ. GivenΠ, we may also define thejth order principal minors
of Π, denoted|Dj |, as the determinants of the submatrices formed by deleting the entries
in then − j rows and the correspondingn − j columns ofΠ. Following these definitions,
the criteria for semidefiniteness requires that forΠ to be positive semidefinite, all of its
principal minors of orderj must be non-negative, i.e.,|Dj | ≥ 0.16 Let us consider now the
implications of this result for bond portfolio immunization. The first-order principal minors
of Π,

∣

∣Di
1

∣

∣ (i = 1, ..., 4) are:
∣

∣D1
1

∣

∣ = ω00 and
∣

∣D2
1

∣

∣ = ω11 and
∣

∣D3
1

∣

∣ = ω22 and
∣

∣D4
1

∣

∣ = ω33, (35)

which must be all positive or zero. From the definitions ofω00, ω11, ω22 andω33 above we
can observe that its sign is determined by the portfolio structure and cannot,unfortunately,
be determined without ambiguity. The task is even more difficult when we recapthat match-
ing first-order conditions requires short positions in some bonds. Consequently, since the
positive definiteness of∇2PH(A) cannot be guaranteed by first-order conditions, we are
forced to conclude that setting the gradient vector∇PH(A) equal to zero is not sufficient
to protect the investment against changes in the yield curve. This means thatsecond-order
conditions play an important role in the immunization problem and need to be addressed in
a convenient way.

To ensure the positive semidefiniteness ofΠ we need then to impose certain restrictions
on portfolio’s composition. Assume, for instance, thatω00 = ω11 = ω22 = 0. The second-
order principal minors ofΠ,

∣

∣Di
2

∣

∣ (i = 1, ..., 6), are defined as:

∣

∣D1
2

∣

∣ =

∣

∣

∣

∣

ω00 ω01

ω10 ω11

∣

∣

∣

∣

=

∣

∣

∣

∣

0 ω01

ω01 0

∣

∣

∣

∣

and
∣

∣D2
2

∣

∣ =

∣

∣

∣

∣

ω00 ω02

ω20 ω22

∣

∣

∣

∣

=

∣

∣

∣

∣

0 ω02

ω02 0

∣

∣

∣

∣

∣

∣D3
2

∣

∣ =

∣

∣

∣

∣

ω00 ω03

ω30 ω33

∣

∣

∣

∣

=

∣

∣

∣

∣

0 ω03

ω03 ω33

∣

∣

∣

∣

and
∣

∣D4
2

∣

∣ =

∣

∣

∣

∣

ω11 ω12

ω21 ω22

∣

∣

∣

∣

=

∣

∣

∣

∣

0 ω12

ω12 0

∣

∣

∣

∣

∣

∣D5
2

∣

∣ =

∣

∣

∣

∣

ω11 ω13

ω31 ω33

∣

∣

∣

∣

=

∣

∣

∣

∣

0 ω13

ω13 ω33

∣

∣

∣

∣

and
∣

∣D6
2

∣

∣ =

∣

∣

∣

∣

ω22 ω23

ω32 ω33

∣

∣

∣

∣

=

∣

∣

∣

∣

0 ω23

ω23 ω33

∣

∣

∣

∣

.

(36)
From (36) we observe that the determinants

∣

∣D1
2

∣

∣,
∣

∣D2
2

∣

∣ and
∣

∣D3
2

∣

∣ are equal to− (ω01)
2,

− (ω02)
2 and− (ω03)

2, respectively, which are all negative, violating thus the conditions
for positive semidefiniteness. For these minors to be positive or zeroω01, ω02 andω03 must
be all set equal to zero. Similarly, from (36) we note that the values of

∣

∣D4
2

∣

∣,
∣

∣D5
2

∣

∣ and
∣

∣D6
2

∣

∣ are all negative and equal to− (ω12)
2, − (ω13)

2 and− (ω23)
2, respectively. Using

the same argument, to ensure the positive semidefiniteness ofΠ, we need to select a bond
portfolio such that the entriesω12, ω13 andω23 are all equal to zero. Let us turn now to the
third-order principal minors ofΠ,

∣

∣Di
3

∣

∣ (i = 1, ..., 4). They can be written as:

∣

∣D1
3

∣

∣ =

∣

∣

∣

∣

∣

∣

ω00 ω01 ω02

ω10 ω11 ω12

ω20 ω21 ω22

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

0 0 0
0 0 0
0 0 0

∣

∣

∣

∣

∣

∣

16See Takayama (1990) and references therein for an extensive discussion of the determinantal test for
second-order necessary conditions for a minimum.
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∣

∣D2
3

∣

∣ =

∣

∣

∣

∣

∣

∣

ω00 ω01 ω03

ω10 ω11 ω13

ω30 ω31 ω33

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣
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∣

∣

∣

∣

∣

∣
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∣

∣

∣

∣

∣

∣

ω00 ω02 ω03
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∣

∣

∣

∣

∣

∣

=

∣

∣
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∣
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0 0 0
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0 0 ω33

∣

∣

∣

∣

∣

∣
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∣D4
3
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∣

∣
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∣

∣
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∣

∣

∣

=

∣

∣

∣

∣

∣

∣

0 0 0
0 0 0
0 0 ω33

∣

∣

∣

∣

∣

∣

, (37)

and, as can be seen above, their values are all equal to zero. Finally, by definition the
fourth-order principal minor ofΠ, |D4|, is equal to the determinant ofΠ. Therefore, we
have

|D4| =
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∣

∣

∣

∣

∣

∣

∣

, (38)

which is also equal to zero. To sum up, to guarantee the positive semidefiniteness ofΠ
we need to select a bond portfolio such that all entriesωkm are equal to zero, except one,

equal toω33 = C(P )(3, 3,A)−
{

a5

[

1 − e
−

H
a2

(

1 + H
a5

)]}2

, which must be set to an ar-

bitrary positive valueU . Accordingly, whereas first-order conditions for bond portfolio
immunization imply the followingk + 1 (k = 0, ..., 3) restrictions

D(P )(k,A) = H
∂r(H,A)

∂Ak

,

second-order conditions entail the subsequent equations

C(P )(k, m,A) =







H2
(

∂r(H,A)
∂Ak

) (

∂r(H,A)
∂Am

)

+ U , k = m = 3

H2
(

∂r(H,A)
∂Ak

) (

∂r(H,A)
∂Am

)

, other cases
, (39)

to which the self-financing constraint may be added. The solution to the above immuniza-
tion problem requires a considerable number of different bonds (L ≥ 14 or L ≥ 15, if we
include the initial self-financing constraint) in the portfolio. Given that a sufficient number
of bonds are available, it is theoretically possible to immunize a bond portfolio against both
parallel and non-parallel interest rate shifts. Standard optimization techniques may be used
to determine the immunizing portfolio. Let us now come back to the Hessian matrix. From
(39) it reduces to:

∇2PH(A)

PH(A)
=









0 ... 0
... ...

0 0
0 ... 0 U









. (40)
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The associated quadratic form is then

dAT









0 ... 0
... ...

0 0
0 ... 0 U









dA =U · (dA3)
2. (41)

Taking into account both first-order and second-order conditions forimmunization, the
percentage change in the terminal value of the bond portfolio can be expressed in the fol-
lowing manner:

dPH(A)

PH(A)
=

1

2
U · (dA3)

2 + R∗

2(a,dA), (42)

whereR∗
2(a,dA) represents again the remaining terms of the Taylor series. Given that

by definition R∗
2(a,dA) → 0 as dA → 0, we can always choose a valueU such that

dPH(A)
PH(A) > 0, i.e., we can always choose a valueU such thatdPH(A)

PH(A) is convex ata whatever
the magnitude of the displacement ofA, dA.

3.2.2. Eigenvalue Test Approach

As we mentioned before, the solution to the immunization problem requires a consider-
able number of different bonds in the portfolio. If for large investment banks this is not a
major problem, since they usually hold and manage many different bonds in several mar-
kets, for small investors based on emerging markets this may pose a serious obstacle when
it comes to implement the strategy. In these cases, the investor may opt to selecta bond
portfolio that matches first-order conditions for immunization and then evaluatethe suffi-
ciency of these conditions on a particular basis using an alternative test to determine the
sign-definiteness of the quadratic form: The Eigenvalue Test. Recap thatat a stationary
point we have∇PH(A)

PH(A) = 0, which means that the Taylor expansion in (10) reduces to:

dPH(A)

PH(A)
=

1

2
dAT ·

∇2PH(A)

PH(A)
· dA + R∗

2(a,dA) (43)

Let S = ∇
2PH(A)
PH(A) be an × n symmetric matrix. From standard linear algebra we

know that becauseS is symmetric, is has real eigenvalues,{λn}, andn independent unit
eigenvectors,{νn}, which are mutually orthogonal. LetV denote the an × n matrix
with {νn} as column vectors. By construction,V is an orthogonal matrix,VT = V−1.
Changing coordinates to the{νn} basis, letdA = Vy. Substituting into (43) we obtain:

dATSdA = yT (VT
SV)y

=
4

∑

n=1

λny2
n, (44)

We also know thatS is positive-definite (resp. negative definite) iff all its eigenvalues
are positive (resp. negative). In other words, ifS is positive-definite (resp. negative defi-
nite) we can conclude thatdPH(A)

PH(A) has a minimum (resp. maximum) at the stationary point.
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In Section 3.2.1 we were able to conclude that unless additional restrictions on portfolio
structure are imposed we cannot guarantee that the hessian matrix is positive semidefinite.
As a result, the possibility of getting both positive and negative eigenvalues from the spec-
tral decomposition of matrixS cannot be disregarded. In other words, the possibility of
obtaining negative eigenvalues means that for certain ’directions’ (interest rate shifts) the
portfolio’s horizon value will not be convex atA = a and the investor is, thus, exposed to
interest rate risk.

Taking this into account, the solution to the immunization problem must be evaluated
on a particular basis. For that, we now propose a three step procedure tofind bond portfolios
that satisfy both first-order and second-order immunization conditions.

Step 1- Select a bond portfolio that matches the gradient conditions for immunization,
as defined in (22);

Step 2- Calculate the eigenvalues ofS in order to assess if first-order conditions are
sufficient to guarantee thatdPH(A)

PH(A) has a minimum at the stationary point derived. First-
order conditions will be sufficient iff all of the eigenvalues of the hessianmatrix are positive;

Step 3- If first-order conditions are not sufficient, i.e., if not all of the eigenvalues of the
Hessian matrix are positive, we recommend a sort of ”second-best” strategy. Since there is
usually more than one bond portfolio satisfying first-order conditions, repeat Steps 1 and 2
for all of the candidate solutions and select the bond portfolio that most closely matches the
conditions for a minimum. Since negative eigenvalues represent yield curvedisplacements
for which the portfolio’s horizon value is not convex, we think that a reasonable criteria
for selecting an acceptable portfolio will be to minimize the impact of those yield curve
directions. In this sense, we recommend to choose the candidate solution forwhich the
sum of the absolute value of the negative eigenvalues is minimum, i.e., the one forwhich
the quantity

∑

λn<0 |λn| is minimum. To implement the procedure standard optimization
algorithms may be used.

4. Bond Price Sensitivity and the Risks of Convexity

In this section we develop a more accurate approximation for the price sensitivity of a bond
based upon the new definitions for parametric interest rate risk measures given above. In
addition, we revise both classic and modern approaches to convexity and demonstrate that
important negative effects of convexity are revealed when changes other than parallel shifts
in the term structure are considered.

Consider again the present value of bond at timet = 0, B0(a), as given by (4). If
we ignore the effects of the passage of time, the price sensitivity around theinitial vector
of parameters can be approximated by the two first terms of a Taylor series expansion as
follows:

dB0(A)

B0(A)
'

1

B0(A)
∇B0(a)T · da +

1

2
daT ·

1

B0(A)
∇2B0(a) · da (45)

where∇B0(A) and∇2B0(A) represent, respectively, the gradient vector and the Hessian
matrix of B0(A) at A = a, and the remaining variables keep their previous meaning. If
we substitute the definitions of parametric duration and parametric convexity asstated in



Parametric Interest Rate Risk Immunization 55

(13) and (27), the approximation for the bond price sensitivity can be written in terms of
duration and convexity as follows:

dB0(A)

B0(A)
' −D(A) · da +

1

2
daT · C(A) · da (46)

where

D(A) = [D(0,A), . . . , D(k,A)]

C(A) =







C0,0(A) · · · C0,m(A)
...

. ..
...

Ck,0(A) · · · Ck,m(A)







Assume now the term structure experiences only level shifts. A simple characteriza-
tion of level shifts is given by assuming that the height coefficienta0 experiences a non-
infinitesimal, instantaneous change, and all other coefficients (i.e.a1, a2, etc.) in equation
(1) remain constant. From (46), the total instantaneous change in bond price due this addi-
tive shift is given simply by:

dB0(A)

B0(A)
' −D(0,A) · ∆a0 +

1

2
C0,0(A) · (∆a0)

2 (47)

The termC0,0(A) has been traditionally defined as the convexity of a bond. Convexity
captures most of the change in the bond price not captured by traditional Fisher-Weil du-
ration. Because(da0)

2 is always positive, convexity is always beneficial for level shifts in
the term structure.

A similar result holds when considering percentage changes in the reinvested terminal
value of a bond at a given planning horizonH. Following steps similar to equations (45)
and (46), we get the change in the terminal value of a bond caused by a change ina0 at
planning horizonH given as:

dBH(A)

BH(A)
' [H − D(0,A)] · ∆a0 +

1

2

[

C0,0(A) − 2HD(0,A) + H2
]

· (∆a0)
2 (48)

Under additive term structure shifts a bond’s reinvested value is immunized when the
duration of the bond equals its planning horizon. Therefore the above equation can be
simplified to:

dBH(A)

BH(A)
'

1

2

[

C0,0(A) − H2
]

· (∆a0)
2 (49)

In the above equation, the expressionC0,0(A) − H2 is higher wheneverC0,0(A) (or
the convexity) of a bond is higher. Since a higher value of the expressionC0,0(A)−H2 im-
plies higher return to the terminal value in equation (49), a higher convexity should always
be preferred for additive term structure shifts. Consequently, for additive shifts, maximiz-
ing convexity is always an appropriate immunization objective. This conclusion corre-
sponds basically to the traditional approach to convexity (see, e.g. Fabozzi (2000), Garbade
(1985a), Milgrow (1985), Bierwag et al. (1988), Grantier (1988)).
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The traditional approach to convexity assumes that interest rate shifts areadditive and
that convexity is a desirable feature in a bond portfolio. We argue that important negative
aspects of convexity are revealed when the stochastic process underlying term structure
is richer and allows for both parallel and non-parallel shifts.17 In our case, by allowing
a1, a2 and the other coefficients in equation (1) to change randomly and simultaneously
with coefficienta0, term structure movements will no longer be restricted to any specific
stochastic process.

Consider a simple case of a simultaneous change in botha0 anda1. Allowing both the
level coefficienta0 and slope parametera1 to change implies a non-infinitesimal and non-
parallel term structure shift. For this kind of shift, the change in the bond’sterminal value
at the planning horizon can be approximated by:

dBH(A) '
∂BH(A)

∂a0
∆a0 +

∂BH(A)

∂a1
∆a1 +

1

2

∂2BH(A)

∂a2
0

(∆a0)
2 (50)

+
1

2

∂2BH(A)

∂a2
1

(∆a1)
2 +

∂2BH(A)

∂a0∂a1
(∆a0) (∆a1)

The magnitudes of the last two terms are small when compared to the magnitude of
the first three terms, and therefore can be ignored for simplicity. Dividing by BH(A) and
expressing this equation in terms of duration and convexity yields:

dBH(A)

BH(A)
' [H − D(0,A)] · ∆a0 +

1

2

[

C0,0(A) − 2HD(0,A) + H2
]

· (∆a0)
2

+
[

a4

(

1 − e
−

H
a4

)

− D(1,A)
]

· ∆a1 (51)

Since first order conditions for bond portfolio immunization against level shifts require
D(0,A) be equal to the planning horizonH, the above equation can be simplified to:

dBH(A)

BH(A)
'

1

2

[

C0,0(A) − H2
]

· (∆a0)
2 +

[

a4

(

1 − e
−

H
a4

)

− D(1,A)
]

· ∆a1 (52)

The above equation redefines the meaning of convexity which is significantlydiffer-
ent from its traditional usage. Traditionally, convexity has been associatedwith the bond
value change caused by a non-infinitesimal shift in the level of the term structure. Though
equation (52) is consistent with this view, it introduces an additional link between bond
value change and slope shifts(∆a1) in the term structure. Therefore, provided that first
order conditions for bond portfolio immunization against slope shifts are notmet, when-
ever a simultaneous shift in the level and the slope of the term structure occurs, the effect
of traditional convexity (i.e.C0,0(A)) on the terminal value of the bond at the planning
horizon becomes uncertain. Lacey and Nawalkha (1993) call this additional link risk effect,
contrasting with theconvexity effectunderlying the classical approach to convexity.

In other words, whenever we consider more realistic term structure shiftsmaximizing
convexity may no longer be considered a suitable immunization objective. In addition, the
modern approach to convexity is consistent with equilibrium non-arbitrage conditions in
bond markets (see e.g. Lacey and Nawalkha (1993)).

17Similar conclusions can be found in Kahn and Lochoff (1990), Lacey and Nawalkha (1993) and Reitano
(1993), among others.
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5. Interest Rate Sensitivity of Bond Risk Measures

In this section we derive a simple expression for the sensitivity of parametricdurations
to changes in term structure shape parameters. Portfolio managers are often required to
maintain target levels of interest rate risk exposure, both for assets and liabilities. From
standard duration theory we know that the duration of a bond changes astime passes, not
only because the bond approaches maturity but mainly due to changes in the yield curve. In
volatile interest rate environments interest rate risk measures can change rapidly as a result
of modifications in the shape of the term structure of interest rates. For portfolio managers
this is a subject of major interest since maintaining the portfolio exposure up to adesired
level requires frequent portfolio rebalancing. To do so, it is of greatinterest to understand
how interest rate risk measures themselves change with modifications in the yieldcurve.

The sensitivity of a bond’s duration to changes in the bond’s yield to maturity has been
extensively analysed in the literature (e.g. Bierwag, 1987). In spite of this, it is well know
that the usefulness of this analysis is limited when yield curves are not flat and non-parallel
term structure shifts may occur. In this section we extend previous research by investigation
the sensitivity of parametric duration measures to a wider a range of yield curve movements.

Consider again the definition of parametric duration presented in (13):

D(l)(k,A) =
1

Bl
0(A)

N
∑

t=1

tcte
−r(t,A)t ∂r(t,A)

∂Ak

(k = 0, ..., 3). (53)

Differentiating with respect toAm (m = 0, ..., 3) yields:

∂D(k,A)

∂Am
=

∂

∂Am

{

1

Bl
0(A)

N
∑

t=1

tcte
−r(t,A)t ∂r(t,A)

∂Ak

}

=
1

Bl
0(A)2

{

∂

∂Am

[

N
∑

t=1
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−r(t,A)t ∂r(t,A)

∂Ak

]

Bl
0(A)

−

[

N
∑

t=1

tcte
−r(t,A)t ∂r(t,A)

∂Ak

]

∂Bl
0(A)

∂Am

}

(54)

=
1

Bl
0(A)2

{

−

[

N
∑

t=1

t2cte
−r(t,A)t

(

∂r(t,A)

∂Ak

)(

∂r(t,A)

∂Am

)

]

Bl
0(A)

−Bl
0(A)2

[

1

Bl
0(A)

N
∑

t=1
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−r(t,A)t ∂r(t,A)

∂Ak

]

1

Bl
0(A)

∂Bl
0(A)

∂Am

}

= −
1

Bl
0(A)

[

N
∑

t=1

t2cte
−r(t,A)t

(

∂r(t,A)

∂Ak

)(

∂r(t,A)

∂Am

)

]

+
1

Bl
0(A)

[

N
∑

t=1

tcte
−r(t,A)t ∂r(t,A)

∂Ak

]

(

−
1

Bl
0(A)

∂Bl
0(A)

∂Am

)

Substituting the definitions of parametric duration and parametric convexity in equation
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(54) yields:

∂D(k,A)

∂Am
= D(k,A)D(m,A) − C(k, m,A) (k, m = 0, ..., 3) (55)

Equation (55) provides a general expression for the sensitivity of interest rate risk mea-
sures (parametric duration measures) to changes in interest rates as given by modifications
in yield curve parameters. For any combination of term structure shifts the sensitivity of
parametric duration is computed as a product of two duration measures minus the corre-
sponding parametric convexity. Two have a broader understanding of the significance of
equation (55) consider the following cases of interest.

Case 1: Let k = 0 andm = 0. From (55) we have

∂D(0,A)

∂A0
= [D(0,A)]2 − C0,0(A) (56)

Therefore, the sensitivity of traditional Fisher-Weil duration to changesin the level of
the yield curve is equal to duration squared minus the traditional convexity measure. Note
also that if gradient conditions for immunization against shifts inA0 are satisfied (i.e., if
D(0,A) = H), the sensitivity∂D(0,A)

∂A0
can be written as the negative of the popular M-

squared dispersion measure(M2) proposed by Fisher and Weil (1983, 1984), i.e.,

∂D(0,A)

∂A0
= −

[

C0,0(A) − (D(0,A))2
]

= −M2 (57)

Case 2: Let k = 0 andm = 1. Then,

∂D(0,A)

∂A1
= D(0,A)D(1,A) − C0,1(A) (58)

Hence, the sensitivity of traditional Fisher-Weil duration to changes in the slope param-
eter of the yield curve is equal to the product of duration andD(1,A) minusC0,1(A). Gen-
eralising the above examples we can estimate the combined effects produced by changes
in the term-structure level, slope and curvature on interest rate risk measures using the the
concept of total differential

∆D(k,A) ≈
3

∑

m=0

∂D(k,A)

∂Am
∆Am

≈
3

∑

m=0

[D(k,A)D(m,A) − C(k, m,A)] ∆Am (59)

6. Conclusion

Traditionally, the study of the interest-rate sensitivity of the price of a portfolio of assets
or liabilities has been performed using single factor models from which simple expressions
for duration and convexity have been derived. In general, the ability ofsuch models to
predict price sensitivity or to achieve immunization is dependent on the validity of yield
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curve assumptions. In this sense, the classical duration analysis can greatly understate price
sensitivity when non-parallel term structure shifts occur.

In this chapter, we have developed a general multivariate duration and convexity anal-
ysis that does not depend on previous statements about the way in which theyield curve
moves. Differently, the model links interest rate risk factors to the parameters of the Svens-
son specification of the yield curve and is valid in virtually all yield curve environments.
The model extends classical duration and convexity analysis to include yieldcurve shifts
that are not parallel. The concepts of parametric duration and parametric convexity pro-
vide, in this context, natural first-order and second-order sensitivity measures of bond or
bond portfolio prices to changes in interest rates. Moreover, the interest rate risk measures
derived quantify the sensitivity of the portfolio to yield curve shifts that have an economic
meaning, namely changes in the level, slope and curvature of the yield curve.

Contrary to most interest rate risk models we emphasize the importance of second-order
conditions for bond portfolio immunization. In concrete, we show that it is impossible to
achieve immunization simply by meeting first-order conditions and that the key to success-
ful immunization will be to build up a portfolio such that the gradient of its future value is
zero, and such that its Hessian matrix is positive semidefinite. We present twoalternative
methods to determine the sign definiteness of the Hessian matrix: the determinantaltest and
the eigenvalue test, emphasizing the advantages and shortcomings of both methods.

We have developed a more accurate approximation for the price sensitivity of a bond
based upon new definitions for parametric interest rate risk measures. Inaddition, we exam-
ine the advantages and disadvantages of traditional convexity under realistic term structure
shifts and prove that whenever we consider more realistic yield curve shifts, other than
simply parallel shifts, maximizing convexity may no longer be considered a suitable immu-
nization objective.

Finally, we analyse the sensitivity of parametric interest rate risk measures tochanges
in term structure shape parameters, offering fixed-income portfolio managers a new pow-
erful tool to assess the combined effects of changes in the term-structurelevel, slope and
curvature on interest rate risk measures.

Future research should investigate the empirical performance of the parametric model
when compared with that obtained with alternative single- and multiple-factor duration
matching strategies.

Appendix: Formulae for Parametric Convexity

First recall that

r(t,A) = a0+a1
a4

t

(

1 − e
−

t
a4

)

+a2
a4

t

[

1 − e
−

t
a4

(

1 +
t

a4

)]

+a3
a5

t

[

1 − e
−

t
a5

(

1 +
t

a5

)]

.

(60)

The general expression for the parametric convexity of a bond,C(l)(k, m,A), is given
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by

C(l)(k,m,A) =
1

Bl
0(A)

∂2Bl
0(A)

∂AkAm

=
1

Bl
0(A)

[

N
∑

t=1

t2clte
−r(t,A)t

(

∂r(t,A)

∂Ak

)(

∂r(t,A)

∂Am

)

]

, k,m = 0, ..., 3.(61)

Differentiating equation (60) with respect toAk (k = 0, ..., 3) and substituting in (61)
we obtain the following complete set of formulas for parametric convexity:

Table 1. Formulae for Parametric Convexity

k m C(l)(k, m,A)
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