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PARAMETRIC INTEREST RATE RISK
| MMUNIZATION

Jorge Miguel Bravo*
University of Evora, Department qf Economics
Largo dos Colegiais, N.2, 7000-803Evora/Portugal

Abstract

In this chapter we develop a new immunization model basedpamametric spec-
ification of the term structure of interest rates. The mod#mrds traditional duration
analysis to account for both parallel and non-parallel tstnucture shifts that have an
economic meaning. Contrary to most interest rate risk ngpded formally analyse
both first-order and second-order conditions for bond pbaimmunization, empha-
sizing that the key to successful immunization will be tolthuip a portfolio such
that the gradient of its future value is zero, and such tlsat&ssian matrix is posi-
tive semidefinite. We provide explicit formulae for new paedric interest rate risk
measures and present alternative approaches to implehssinttnunization strategy.
Additionally, we develop a more accurate approximationtfer price sensitivity of
a bond based upon new parametric interest rate risk measndagvise both classic
and modern approaches to convexity in order to highlightigies of convexity when
changes other than parallel shifts in the term structure@msidered. Furthermore, we
provide useful expressions for the sensitivity of interast risk measures to changes
in term structure shape parameters.

1. Introduction

Interest rate risk immunization, which may be defined as the protection of thimabvalue
of a portfolio (or the net value of a firm) against changes in the term steicfuinterest
rates, is a well-known area of portfolio management. The term “immunizatiosCriles
the steps taken by a bond manager to build up and manage a bond portfolahia s@ay
that this portfolio reaches a predetermined goal. That goal can be eitheatantee a set
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of future payments, to obtain a certain rate of return for the investment ceriain cases,
to replicate the performance of a bond market index.

Immunization models (also known in the literature as interest-rate risk or duratidn
els) control risk through duration and convexity measures. These mesasapture the sen-
sitiveness of bond-returns to changes in one or more interest rataciskd. For a given
change in the yield curve, the estimate of the change in bond price is typicphyamated
by multiplying the duration (and eventually the convexity) by the change in the gigve
factor.

The classical approach to immunization employs duration measures deralgtically
from prior assumptions regarding specific changes in the term strudtimter@st rates. For
instance, the duration measure developed by Fisher and Weil (191hesshat a parallel
and instantaneous shift in the term structure of interest rates occurs imeheditier the
bond portfolio is build up. In this case, the recipe was basically to build upréopo
such that its duration was equal to the investor’s horizon. In order toitddkeccount the
fact that interest rates do not always move in a parallel way, a numia¢teafative models
considering non-parallel shifts were proposed by Bierwag (1977ani§ (1979) and Babbel
(1983) or, in an equilibrium setting, by Cet al. (1979), Ingersolet al. (1978), Brennan
and Schwartz (1983), Nelson and Schaefer (1983) and Wu (280@y,g many others.

This approach has several drawbacks. The earliest and most véddsefers to the
fact that the investment is protected only against the particular type of shtate change
assumed. In this sense, the need to identify correctly the “true” stochastiegs becomes
obvious. If identified incorrectly, the effectiveness of the strategy ispromised and the
investor is subject to a new type of risk - stochastic process (or immunizaisin) The
second drawback concerns the nature of the interest rate uncertaihtathbe described
by a single factor model. In effect, in this case the changes in all intertest abong the
term structure must be perfectly correlated, an assumption frequentiye@jie empirical
studies. Moreover, the existence of non-parallel movements in the yield lionits the use
of single factor models.

Fong and Vasicek (1983, 1984) developed the M-Squared model & twaninimize
the immunization risk due to non-parallel (slope) shifts in the term structureterfeist
rates. The authors show in particular that by setting the duration of a lmifdlw equal
to its planning horizon and by minimizing a quadratic cash flow dispersion measer
immunization risk due to adverse term structure shifts can be redudédre recently,
new immunization risk (dispersion) measures were proposed by Nawatkh@lambers
(1996), Ballas and lbfez (1998) and Babs et al. (2002).

In recent years researchers have redirected their attention towardswhlopment of
alternative formulations which try to capture more effectively the interdstniak faced
by fixed-income portfolios, without relying on any particular assumptiorts &ése type of
stochastic process which governs interest rate movements. A populaaabpps to as-
sume that interest rate changes can be accurately described by shiétsevettof a limited
number of segments (vertices or yield curve drivers) into which the tewmtate is sub-
divided, generalizing then the concepts of duration and convexity to a @ugtie context
by considering the portfolio’s joint exposure to these key rates. Spabjfisve refer to the

!Nawalkha and Chambers (1997) and Nawalkha, Soto and Zhang)(@e@ a multiple-factor extension
to the M-Squared model termed M-Vector Model.
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directional duration and to the partial duration models of Reitano (19901,a891992), to
the key-rate duration model of Ho (1992) and to the reshaping duratiomlrsaggested
by Klaffky et al.. (1992). In these models, the direction of interest raifesstan be set on
an a priori basis or can be based on real data. In the later case, thichistmvements in
the term structure of interest rates are used to identify a limited number of ar&bles,
observable or not, which govern the yield cufve.

An alternative line of attack to the problem of immunization involves the use @fpar
metric duration models. In this kind of formulation, which has its roots in the wérk o
Cooper (1977), all that is assumed is that at each moment in time the term mrattu
interest rates adheres to a particular functional form, which expréss#fsas a function
of time and a limited number of shape parameters. In this line of thought, prothdéd
the mathematical function fits accurately most yield curves all interest ratemamis can
be expressed in terms of changes in one or more shape parametersathatearize this
function. In other words, it is apparent that in this kind of models the inteats risk un-
certainty is reflected by the unknown nature of future parameter valutfsredtiating the
bond price with respect to each shape parameter we obtain a vectoaaigidac interest
rate risk measures. Choosing a particular functional form involves abljiGcome pricing
errors. The difference is that in this case the errors can be quantifiecbatrolled system-
atically, as long as we are able to choose the appropriate specificatiore fpietti curve,
where by appropriate we mean the one that minimizes immunization risk.

After the work of Cooper there has been little research in this area. G=ai285),
Chambers et al. (1988) and Prisman and Shores (1988) assume tthat@mal may be
used to fit the term structure of interest rates as a first step to deriveter o interest
rate risk measures - termed duration vector -, in which each elementmondss basically,
to the moment of ordek of a bond. Although simple, the use of polynomial functions
to estimate the yield curve has been subject to great criticism since it can l&awéod
curves that exhibit undesirable (and unrealistic) properties for longritias namely high
instability. In Willner (1996) the actual yield curve risk exposure of a bpodfolio is
decomposed using the Nelson and Siegel (1987) parametrization of thewyred] a math-
ematical function that expresses interest rates in terms of four pararaetkiscompatible
with standard increasing, decreasing, flat and inverted yield curngesha

Another major issue in the duration literature refers to the importance of porntfe-
sign in immunization performance. In constructing a bond portfolio that immurtiees
investment against changes in the term structure of interest rates, insvestmally select
the portfolio’s composition so that its duration measures match the length of taina
period. When the number of bonds available is large enough, there arelengtilptions
which satisfy the immunization constraints. Fong and Vasicek (1983, 1@84)aped the
M-Squared Model to minimize the stochastic process risk due to non-pastaiffed in the

2See, for example, Gultekin and Rogalski (1984), Elton et al. (199@yp&le (1986), Litterman and
Scheinkman (1991), Knez et al. (1994), D’Ecclesia and Zenios4)l ®arber and Copper (1996) and Bravo
and Silva (2005).

3The moment of ordek of a bond is defined as the weighted average ofttepower of its times of
payments, the weights being the shares of the bond’s cash flows impuvasge in the bond’s present value.
Chambers et al. (1988) perform immunization tests for the U.S. maxetsingle and multiperiod horizons
and conclude that the improvement in the immunization performance @dmrable with the addition of at
least four interest rate risk measures.
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yield curve, providing at the same time a method to select the best durationHmgacint-
folio from the set of potential portfolios.

Fooladi and Roberts (1992) and Bierwepal. (1993) extended the research into the
importance of portfolio design by comparing the performance of duraticichimgy port-
folios constrained to include a bond maturing near the end of the holdingdpéhi® so-
called maturity bond, with that of traditional duration-matching portfolios, or whtkt of
duration-matching portfolios which minimize or equate to zero the risk measufernaf
and Vasicek (1983, 1984). In their simulations for the Canadian markeing dlifferent
term-structure estimation procedures, different investment horizonditierent duration
measures — Fooladi and Roberts (1992) report that “...a constoagig the duration-
matching portfolio to include a bond with maturity equal to the time remaining in the hori-
zon appears to add significantly to hedging performance”. This resuteis eferred to as
the “duration puzzle”. Furthermore, contrary to Fong and Vasicek, tegirts suggest that
forcing the duration-matching portfolio to include a maturity bond is a better desitg-
rion than choosing a bullet portfolio, although the bullet portfolio has lowiy the same
token, Bierwag et al. (1993) conclude that “... minimum portfolios fail tddeeas effec-
tively as portfolios including a bond maturing on the horizon date”, offenge evidence
in favor of using the maturity bond.

More recently, Bravo and Silva (2006) and Soto (2001, 2004) invastighe immu-
nization performance of alternative single- and multiple-factor durationfmmgstrategies
and other models, using Portuguese and Spanish government bondidadeder: (i) to
evaluate whether the success of duration-matching strategies is primarilytathiéto the
particular model chosen to explain term structure movements, or to the nurniméere
est rate risk factors considered and (ii) to confirm the importance ofgbortfiesign in
immunization performance. The results obtained by Bravo and Silva (200§est that
immunization models (single- and multi-factor) remove most of the interest rateimisk
derlying a more nia&e maturity strategy, and that duration-matching portfolios constrained
to include the maturity bond and formed using a single-factor model provideetsteim-
munization performance overall, particularly in highly volatile term structuvirenments
and shorter holding periods. Soto (2004) argues that for multiple-factoiels, the num-
ber of risk factors considered in immunization strategies is definitely more inmpdhizn
the particular model chosen, but also warn that the addition of duraticstreamts to the
immunization program beyond the third might impair the performance.

In this this chapter we develop a new immunization model based on the Sv¢hS89di
specification of the yield curve. The model is parametric by nature, i.e., theshtate
risk factors correspond to the parameters of the mathematical functionaussgaiesent the
yield curve, and adopts a multivariate setting, being compatible with both paatlelon-
parallel term structure shifts. Since we do not impose any previous aisampbout the
way Yyield curve changes the model is applicable in virtually all yield curvéremmnents.
In addition, the model is intuitive and relatively easy to apply.

This chapter is related to Willner (1996), but there are some importantetitfes. First,
we adopt Svensson’s parametrization instead of Nelson and Siegel’smasitted function.
As shown by Svensson (1994) the extended form allows more flexibility igigie curve
estimation, in particular in the short-term end of the yield curve. In additionptbeel
assumes that every movement in the term structure of interest rates gaprorimated by
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changes in a small number of factors and that these factors can be dinéetpreted as
representing parallel, slope and curvature shifts in the yield curve.

Previous research on duration models was not able to establish a link befivate
and second order conditions for immunization.In this sense, contrary to Wahtemost
interest rate risk models we formally analyse both first-order and semalet-conditions
for bond portfolio immunization, emphasizing that the key to successful immiiorizaill
be to build up a portfolio such that the gradient of its future value is zewsanh that its
Hessian matrix is positive semidefinite. In addition, we provide explicit formidaaew
parametric interest rate risk measures and present alternative apggadadmplement the
immunization strategy.

Finally, we extend previous analysis on the sensitivity of a bond’s durttichanges
in the yield to maturity by developing useful expressions for the sensitivityacdmetric
interest rate risk measures to changes in term structure shape parameters

The outline of the remaining part of the chapter is as follows. In Section Zyrigéy
characterize Svensson’s specification of the yield curve, and theadhejicstify its use in
the context of the immunization problem. In Section 3 we introduce the concepésa
metric duration and parametric convexity and formally derive first-orddrs@eond-order
conditions for immunization. We show that it is impossible to achieve immunization simply
by meeting first-order conditions and that second-order conditions relesddiressed con-
veniently. In Section 4 we develop a more accurate approximation for the sgitsitivity
of a bond based upon new definitions for parametric interest rate riskunesasnd revise
both classic and modern approaches to convexity. In particular, we dératathat impor-
tant negative effects of convexity are revealed when changes o#irep#nallel shifts in the
term structure are considered. In Section 5 we provide simple expregsiatie sensitiv-
ity of parametric interest rate risk measures to changes in term structyre ghmmeters.
Section 6 summarizes the main conclusions of this chapter.

2. Term Structure Specification

Svensson (1994) proposed a mathematical characterization of the yweédmsed on the
following parametric specification of the instantaneous forward ifdtea):

_t t _t t _t
f(t,a) =ap+are “ +ay (e ”4)+a3 <e “5>, 1)

a4

where f(¢,a) is a function of both the time to maturityand a (line) vector of parame-
tersa = (ag,a1,az,as,aq,as) to be estimated, witliag, as,a5) > 0. To increase the
flexibility of the curves and to improve the fit, Svensson extended the Netsb®i@gel's
functional form by adding a potential extra hump in the forward curveés ¥ell known
that the Nelson-Siegel method admits the existence of only one extremum anmbiom
of inflection in the concavity. This means that when there are disturband¢bke money
market that lead to curves with two local extrema, the fit in the short segrém gield
curve turns out to be very poor. Given its higher adjustment capacitggubasson model
has proven to be more adequate in estimating the term structure of intereshmeté is
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widely used by practitioners and major central bahks.

The parameters in the forward rate function are estimated by solving a rear-tpti-
mization procedure to data observed on a trade day, which consists in minirttigisgm
of squared yield (or price) deviations between observed and thedrngttds (or prices)
as estimated with the model. The optimization problem can be solved using eithdr a gr
search procedure or a partial estimation techrigue most practical applications fitting
was found relatively insensitive to changes in parameigrandas (e.g. Barrett et al.,
1995, Willner, 1996 and Diebold and Li, 2003). This means that, without logsrerality,
we can follow standard practise and assume at any stage that thesetpesarefixed at
prespecified values. Note also that by settiggequal to zero in (1) we obtain the Nelson
and Siegel forward rate function.

Regardless of their popularity, the Nelson-Siegel-Svensson family gésuras been
criticized because of two theoretical shortcomings. The first, pointed y@jérk and
Christensen (1999) and Filipovic (1999, 2000), is that models fitted séiglig to cross-
sectional data are not intertemporally consistent with the dynamics of a igiterest rate
model. Bprk and Christensen (1999) prove, for instance, that the NelsomrSayily of
curves is inconsistent with the Ho-Lee interest rate model and with the HulbieVEkten-
sion of the Vasicek model. This feature weakens the validity of the modepfuications
that involve a time-series context. It can be shown, however, that a simpldoidaex-
pansion (i.e. the addition of appropriate functions of maturity) is sufficiemhaée the
Nelson and Siegel model consistent with given interest rate models,, nartielhe gen-
eralized Vasicek short rate modeThese adjustments impose, nonetheless, additional con-
straints on the estimation of the models to cross-sectional data leading thusrdraviab
deterioration of the fitting performance when compared with that providetidXelson-
Siegel-Svensson family of curves. On the other hand, it is not obvious tbat the use
of arbitrage-free models is necessary or desirable for accomplishing) igimunization
performance. As a matter of fact, if the theoretical superiority of equilibtiemm structure
models is unquestionable, when compared to traditional immunizing duration mtiaels
truth is that a number of papers, such as Ingersoll (1983), NelsoSemakfer (1983) and
Brennan and Schwartz (1983), have show that their immunization penficeria rather
similar. In addition, Brandt and Yaron (2003) prove that typical nateape models are ac-
tually time-inconsistent because their parameters are assumed conspaitifgy purposes
even though the parameters change each time the model is recalibrated tosgateed on
a given date. Moreover, recent studies (e.g. Duffie, 2002 andrigigbsangleton, 2002) have
shown that affine no-arbitrage models can produce poor forecasts.

The second theoretical shortcoming is that these models apparently lac#fearfantal
economic foundation, which leaves researchers cautious about ettegpthe parameters
in conjunction with economic variables, and may explain why their use haslineiéed
to cross-sectional applications, namely yield-curve fitting and interestrisitenanage-

“Bank of International Settlements (1999) notes that ten Central Bahksdlve surveyed) routinely use
either the Nelson and Siegel (1987) and/or the Svensson (1994) amtietir primary method for analysing
the yield curve. See Bravo (2001), Barrett et al. (1995), DieboldLa2i003) for other uses of the NS model.

SFor more details on the estimation process see, for example, Nelsoriegal @987), BIS (1999) and
Bolder and Stliski (1999).

®See Bprk and Christensen (1999), Filipovic (2000) and Krippner (2005a).
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ment. An exception is given by Diebold and Li (2003) who use variationtherNelson-
Siegel framework to model the entire yield curve on an intertemporally bass tlree-
dimensional parameter evolving dynamicdllyfhe authors prove, first, that the model is
consistent with standard stylized facts regarding the yield curve amhdgthat the three-
time varying parameters may be roughly interpreted as factors correéagdadevel, slope
and curvature, a result consistent with previous studies on this sdbject.

From (1) the continuously compounded zero-coupon criftea) can be derived noting
thatr(t,a) = 1[5 f(t,a)dt:

t _t t
r(t,a) = ao—l—ala— (1—6 “4>—|—a2% [1—6 = <1+>}

t a4

s [iet (1)) 0
t as

whereas the discount functiatit, a) is defined as:
d(t,a) = exp [~r(t,a)]. @3)

Each parameter in (1) has a particular impact on the shape of the foratardurve.
Parameteu, which represents the asymptotic valueféf, a) (i.e., lim,—. f(t,a) = aop),
can actually be regarded as a long-term (consol) interest rate. Parametefines the
speed with which the curve tends towards its long-term value. The yield cuill be
upward sloping ifa; < 0 and downward-sloping i#; > 0. The higher the absolute value
of a; the steeper the yield curve. Notice also that the suay@nda; corresponds to the
instantaneous forward rate with an infinitesimal maturity (ligf (¢,a) = ag + a1), i.e., it
defines the intercept of the curve. Parametgrandas have similar meaning and influence
the shape of the yield curve. They determine the magnitude and the directiba fifst
and second humps, respectively. For exampleg ifs positive, a hump will occur ad,
whereas, ifas is negative, a U-shape value will emergeiat Parametera, andas, which
are always positive, have similar roles and define the position of theridstecond humps,
respectively.

The Svensson model is very intuitive since parameigrs.;, a2 andas (the interest
rate factors) can directly be linked to parallel displacements, slope chamglecurvature
shifts in the yield curve, given that scale coefficients are fixed. Togperchis behaviour,
Figure 1 displays the sensitivitys, = %t:‘) of forward rates to each parametay, for
k=0,..,3.

As can be seen, the sensitivity of forward rates with respect to the lcaisds con-
stant across the whole maturity spectrum, which means that it can actuallgdreed as
a level factor. In other words, the level factsg fundamentally represents a parallel dis-
placement in the term structure of interest rates. The sensitivity of intettestto changes
in parameter; shows a descending shape, first larger for shorter maturities, thenidgclin
exponentially toward zero as maturity increases. In this sense, féctera slope factor
and represents changes in the steepness of the yield curve. FinabysfacandS; have

"See also Krippner (2005b).
8See, for instance, Litterman and Scheinkman (1991), Barber ange€¢p996), Knez et al. (1994),
D’Ecclesia and Zenios (1994) and Bravo and Silva (2005).
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Figure 1. Sensitivity of forward rates to the parameters of the Svenssoemaibal func-
tion; these sensitivities are obtained by fixing parameter values equaH® andas = 5.

different impacts on intermediate rates as opposed to extreme maturitiesgistidoing),
reaching a maximum on those points, @ndas, respectively) where the yield curve has
humps. Hence, these factors may be interpreted as curvature fantbrgf| the Svensson
model assumes that: (i) every movement in the term structure of interesteatd® ap-
proximated by changes in only four factors; (ii) these factors take famhiapes, namely
parallel shifts, changes in steepness, and changes in the curvatiesy@dld curve.

3. Constructing Immunized Portfolios

Consider an investor who has a position in a nunibef default-free bonds. Let; denote
the nominal cash flow (in monetary units) received from béritl = 1,..., L) at timet
(t =1,...,N). Lett = 0 be the current date, and a known, finite investment horizon,
measured in years. Assuming that the initial term structure is known andlsoy the
parametric function (2), which assigns a spot rate to each payment, da¢epresent value
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of bondl, Bl(a), is given by:

N

Bl(a) = cht exp [—r(t, a)t] 4)

t=1

at ll4 - (lt t a‘5 — - Et t
ag+a1 t —e % )tax—+ l—e %4 1+—a4 ‘a3 l—e %5 1+a5 t
= E Clt€

where we have stressed the functional relationship between the bord3(i) and the

initial vectora = (ag, a1, as, as, ay, a5)T of parameters of the forward rate function. Let
n; represent the number of typéonds in the portfolio. In this case, the present value (at
time 0) of this bond portfolioP,(a), is given by:

L

L
Z mBl(a) = Z Z nycy exp [—r(t, a)t] (5)
=1

=1 t=1

— _t —_t
L X —{ otai 2t 7 (1 e “4)-&-@2&74[1—6 @4 (1+;—’4):|+¢13%|:1—e 5 (1+% ]}t
E E nicite

=1 t=1

Py(a)

For simplicity of exposition, consider now that the investor is interested onlyisin h
wealth position at some future tinié (whereH might represent, for example, the due date
on a single liability payment). The value of this portfolio at titHe under the expectations
hypothesis of the term structure assuming no change in the yield ddive,), will be:

Pu(a) = Po(a)exp[r(H, a)H]

L N
Zanclt exp [—r(t, a)t]] exp [r(H,a)H] (6)

=1 t=1

Suppose now that at time immediately after the investor purchased the portfolio, the
spot rate function has undergone a variation, which may be viewed sere@ectord A of
multiple random shifts and represent both parallel and nonparallel shifth,that the new
term structure, represented again by Svensson’s model(tisA) = r(t,a + dA ):

rr(t,A) = A0+A1i(1— )—i—AgA— [l—e En (1—1—2)]
4

+A3% {1—eAts <1+25>] @)

whereA = (A, ..., A5)" denotes the new vector of coefficients of the spot rate function
estimated at time. The new terminal value of the portfoli®; (A ), keeps the same form
as above, except that vectArnow replaces the initial vector of parametars

lzznlclt exp [~7(t, A) ]] exp [r(H, A)H] (8)

=1 t=1

The traditional definition of immunization (e.g. Fisher and Weil, 1971) for thse cd
a single liability establishes that a portfolio of default-free bonds is said to be imzexl
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against any type of interest rate shifts if its accumulated value at the ené pfahning
horizon is at least as great as the target value, where the target valeéined as the
portfolio value at the horizon date under the scenario of no change ipathéasd forward)
rates. Stated more formally, by immunization we mean selection of a bond portfichio s
that the actual future value of the income streBm(A) at time H will exceed the initially
expected valué’y; (a), i.e., Py (A) > Py(a) (or equivalentlyA Py = Py (A)— Py (a) >
0), if the interest rates(t, A ) shift to their new value . (¢, A).

Under the assumption that interest rates only change by a parallel shifyaihecon-
clusion of Fisher and Weil was that immunization is achieved when the duratitire o
portfolio is set equal to the length of the investment horizon. The assumptbinterest
rates can change only by a parallel shift is very restrictive and cay gaious risks. In this
chapter we offer a more generalized approach to immunization by derivéncptiditions
under which the investment is protected against both parallel and naltebgield curve
shifts.

3.1. First-Order Conditions

Let Py (A) be a multivariate price function, assumed to be twice continuously differen-
tiable. The idea is to use a Taylor series expansioR®fA) around the initial vector of
parameters in order to evaluate the necessary and sufficient conddrantal minimum

of Py(A) at A = a. For most practical applications, an expansion up to the second order
is sufficient to obtain a reasonable approximation. The quadratic appriciniar (8) is

then given by?

dPg(A) = Py(A) — Py(a) = VPy(a)T -da+ %daT -V?Py(a)-da+ Ry(a,dA), (9)

wheredA = (ciai);fr:om5 denotes the (column) vector of variations of parametgrs
denotes the inner product of two vectors aRgla,dA) represents the remaining terms of
the series. Term¥ Py (A) andV2Pg(A) represent, respectively, the gradient vector and
the Hessian matrix oPy(A) at A = a. Alternatively, if we divide (9) byPy(A) we
obtain the percentage change in the terminal value of the bond portfolio

dPg(A) 1

Pu(A) — Pu(A) Py (A)
whereRj(a,dA) = Ry(a,dA)/Py(A). Letnowe; = Y1, mjcy; denote the total nominal
cash flows received by the holder of the portfolio at titneTo determine the nature of
the horizon value near the origin we compute the first-order partial disgvaf (8) with
respecttod; (k =0, ..., 5). This yields the generic element of the gradient ve&%‘%

VP(a)" - da + %daT V2Py(a) - da+ Rj(adA), (10)

N
oPu(A) S el (A rE.AY] [Hﬁr(H,A) tar(hA)} (11)
t=1

0A 0Ay B 0A;

_ Or(H,A) r(H,A) H-r(t,a)) O7 (8, A)
= Pu(A) [H A, ] [Z teel” A,

®Note that the change in the portfolio value resulting from the passage of tilgedeed here due to its
deterministic nature.
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which, after dividing byPy (A), can be written as

1 9Pg(A) _ o

or(H,A) 1 A or(t,A)
Pu(A) 04, oA, Ztc

12

A (12)

In anticipation of combining (12) and (10) we introduce new definitions &sametric
interest rate risk measures.

Definition 1 The parametric duration of a bond is a measure of first-order sensiti¥ity o
bond prices to changes in interest rates as given by modifications in jetessnl;, (k =
0,...,5). For bond!, the parametric duration is denote®?®)(k, A), and is defined, for
Bl(A) # 0, as follows:

l 1 9BY(A)
DOk, A) = " Bi(A) 04
N
1 r(t,A)t 67’(t A)
B(l](A Ztc e oA, | (13)

Definition 2 Letw; = ”}fég‘) denote the percentage of portfolio invested in bgrglich

that 7, w; = 1. The parametric duration of a bond portfolio is a measure of first-
order sensitivity of a bond portfolio to changes in interest rates as givendujfications

in parametersd; (k =0, ...,5). Itis calculated as the weighted average of the parametric
durations of the bonds making up the portfolio, the weights being the shieaxio bond

in the portfolio. Denoted ") (k, A), it is defined, forPy(A) # 0, as follows:

1 0Py(A)
" Ry(A) 04,

DP)(k A) =

L
= > wDY(k,A). (14)
=1

Each equation in (13) represents a bond’s interest rate risk measarpddicular type
of shift in the yield curve. For instance, the first elemem@,)(o, A), is defined as

N
L[S teper A (15)
O

and corresponds to the traditional Fisher-Weil duration measure. Itfisedeas the
weighted average the times of payment of all the cashflows generated Ibpride the
weights being the shares of the bond’s cashflows in the bond’s preslest and captures
the sensitivity of bond returns to changes in the consol fagipr.e., the responsiveness
of bond returns to height shifts in the term structure of interest ratess@¢end element,
DW(1, A), is defined as

DB, A) = e

DO, A)

[}:qw (A (1) 4 (16)
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and captures the sensitivity of bond returns to changes in parametiat is, to changes
in the slope of the yield curve. The thir)")(2, A), and fourth,D(")(3, A), elements of
the duration vector summarize the sensitivity of bond returns to changes autyeture

parameterss, andas, and are defined as

- e
{2%6 L b (1+> a4} (17)
I as ) |

DO(2,A) =

and

N _ _
1 . _t t
D(l) (37 A) — m {chte (t,A)t 1—e a3 (1 + a5> a5} (18)
0 t=1 o -

respectively. Finally, The fourtd)®) (4, A), and fifth, DY) (5, A ), elements of the duration
vector summarize the sensitivity of bond returns to changes in the locatiamptars:,
andas, and are defined as

t _ ot t t
it {2 (5 %) am ey - (20 2 ]

(19)

DW(4,A)

and

O] 1 - —r(t,A)t | 43 -t t ot
D (5, A) = Bl (A) Z Clt€ ’ 7 1—e 95 1 + g — ? (20)
0 t=1 5

respectively. Taking this into account, the generic element of the gradietdr (12) can
be simplified to

L OPu(A) _, Or(H.A)
Py(A) 04, 04,

Let us now address first-order conditions for bond portfolio immunizaton simplic-
ity of exposition, we assume that parametersandas are fixed at prespecified valu&s.
We know from standard optimization theory that if a function partial difféedahe has an
extremum at an interior point then all first-order derivatives are reduio be zerd! In
other words, setting the gradient vector equal to zero is a necessdargl€arly not suf-
ficient) condition for an interior local minimum. From (21) this is equivalent toarth-
dimensional vector of the form

— D)k, A) (21)

or(H, A)

DP)(k A) = o
k

(k=0,...,3). (22)
Each of the conditions in (22) defines an immunization condition for a diffayge

of yield curve shift. For instance, selecting a bond portfolio such thdﬂf@(o, A) is set

equal to the planning horizoH protects the investment against a parallel shift in the yield

curve. In other words, the traditional approach to immunization can bedsryed, to some

extend, a particular case of the parametric model. Similarly, immunization aghipst s

1%The approach can easily be expanded to admit changes in the locati@hefrtips of the forward curve.
Hsee, for example, Apostol (1969).
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as
appropriate protection against changes in the curvature of the ternusérisobtained by

choosing a portfolio’s composition such that
H

DP)(2,A) = a4 [1 e (1 + g)} andD(P)(3, A) = as [1 — e (1 + g)]

To sum up, from equation (22) two implications follow immediately. First, the veaftor
parametric duration measures is determined only by the structure of the buafalip and,
therefore, can be controlled by the portfolio manager. Second, giatrcdmvexity condi-
tions are respected and a sufficient number of bonds are availabld.(ixe4 or L > 5,
if we include the initial self-financing constraint), complete immunization agaimbstdsat
rate changes (both parallel and non-parallel) can be achieved byirsgladond portfolio
such that all of the first-order immunization constraints are satisfied. Ndtéhthavestor
can always adopt a more active role in the immunization strategy by chodsilitggrately,
to satisfy only some of the conditions in (22). He can, for example, use theigal com-
ponents analysis to select those interest rate shifts that are more likelgoomaienost for
the volatility of the yield curve and then engage in the appropriate immunizatidegtra
Alternatively, investors may try to obtain a yield pick-up and at the same time tske r
neutral against a change in the level and/or the yield curve by engagitarfly trades.

In those cases where there is more than one bond portfolio satisfying #ilé ai-
munization constraints, a particular objective function might be considé@dexample,
Chambers et al. (1988) argue that an acceptable portfolio construditieriacwould be to
minimize the sum of squared weights, i.&{;jn Zle wf. According to them, this will lead
to a diversified portfolio that minimizes the impact of unsystematic risk causedtsitory
pricing errors.

Finally, note that similar to Prisman and Shores (1988), except for the tasa where
a single zero coupon bond maturing on the planning horizon composesrtf@ip®?, the
solution to the immunization constraints given in equation (22) requires sbsitigns in
some bonds, i.e., any immunized portfolio must have both positive and negasivelows.
The non-monotone nature of the cash flow structure makes the existdocalaohinima at
A = amore problematic. In particular, we will see below that 'most’ first-order immeghiz
portfolios yield a horizon value which is not locally convex with respect tbysbations in
the yield curve parameters.

shifts is attained if the conditio®(”) (1, A) = ay [1 — exp(— H)} is fulfilled. Finally,

3.2. Second-Order Conditions

We know from standard optimization theory that setting the gradient v&tkyr(A) equal

to zero is a necessary but not sufficient condition for a minimuipfA) atA = a. Letus
now address second-order conditions and their implications for portimtistouction. For a
local minimum of P (A) at A = a, second-order conditions stipulate that to equations (22)
we have to add those corresponding to a positive semidefinite Hessian roatfix fA).

The generic element of the Hessian matrix,,(A) = gzpkfé%‘:, is derived from (11) by

12paradoxically, the existence of such a bond would mean that the immunisatinegy is unnecessary.
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taking the partial derivative with respecttg,, (m = 0, ..., 3).3

N
’Ykm(A) = 0 {Z Cte[r(H’A)H_T(t’A)t |: Br(H A) — tar(t’A)] } (23)
t=1

N
= ZC P (H A H—r(t,A)1] | Or(H,A) .
t aA’nL aAnL

(. argz ?)} [Hér(H, A) tar(t,A)}

t=1
To simplify notation, let
g =crexp[r(H,A)H — r(t, A)t] (t=1,...,N) (24)

represent the cash flow received from portfolio at titvexpressed in future value. From
(23) Y4, (A) is then

N
(&) = Pa [ (2 0r(H A) Or(H.A)  Or(H,A) Or(t A)

OA 0A, OA 0An,
_HOT(H, A)tar(t, A) g or(t,A) or(t, A)
DA, 0A 0A,  0Anm

with (k,m =0, ..., 3), or equivalently

v (A) = B <8r(H,A)> (amH,A))i% or(H,A) EN:

DA, Ay ) & 04y,
or(H,A) <~ Or(t,A) <=, Or(t,A)or(t,A)
—H—— 2
94, ;t(h DA, +;t “TA, oA, (25)
Dividing both term in (23) byPy (A) we get
1 8°Py(A) e or(H,A)\ [0r(H,A) (26)
Py (A) 0AL0A,, DA, A,

o or(HA) | 1 tA)tar (t,A)

H 0, { Ztc

_,Or(H,A) —r(t, A Or(t, A)
B4, { [Z bece oAy

1 2 77‘(t,A)t 8T(t, A 67" t A
A) L;t cee oA,

where in (26) we have made use of the fact theft , ¢; = Py (A) = Py(A)e (HAH,
We are now in conditions to introduce the essential definitions of paramemexity of a
bond and of a bond portfolio.

131n Equation (23) we have made use of the fact that all second-ordss partial derivatives are zero, i.e.,

o) 22r(,A)\ _ B
0Am ( 0Ay ) _07m—0,...,3.
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Definition 3 The parametric convexity of a bond is a measure of second-ordsitiség
of bond prices to changes in interest rates as given by modifications anpersA; and
Ay, (k,m = 0,...,3). For bondl, the parametric convexity is denotét’) (k,m, A), and
is equal, forB)(A) # 0, to:

1 9°Bi(A)
cW(k,m,A) = 0
(ko A) = BIA) 904,
N
1 2 —r(t,A)t 8T(t7 A) <8T(t7 A))
= t ' 27
BL(A) ; e DAL 9 A, @7)
Definition 4 Letw; = ”;f%g‘) denote the percentage of portfolio invested in bérslich

that Zle w; = 1. The parametric convexity of a bond portfolio is a measure of second-
order sensitivity of a bond portfolio to changes in interest rates as givenduijfications

in parametersd; and 4,, (k,m =0, ..., 3). Itis calculated as the weighted average of the
parametric convexities of the bonds making up the portfolio, the weights terghares

of each bond in the portfolio. Denoted”) (k,m, A), is equal, forPy(A) # 0, to:

1 0?Py(A)
Py(A) 9AL0A,,
L
= Y wCY(k,m,A) (28)
=1

CP)(k,m, A)

To simplify notation IetC,gl) (A) = CW(k,m,A). Each equation in (27) measures

m

second-order effects for a particular type of shift in the term structBor instance, the
equation forC(()f()](A) is defined as:

1 92BL(A) 1 [
Cih(A) = 0~ = t2eye TEA | (29)
0o = 5wy odg ~ ByA) &

Surprisingly, or not, the parametric model provides a second-ordsitigséyp measure
of bond’s price to changes in the level coefficient of the yield curve ithaimilar to the
traditional (continuously compounded) definition of conveXftyWe can then conclude,
once again, that the traditional approach to immunization can be consideadicular
case of the parametric model. Second-order effects caused by shifésslogie parameter
a1 only can now be quantified by using:

N
1 o tN\2
O A) = — o | D ene 0N (1 — 720 )l 30
1,1( ) B(l)(A) L:1 Cite ( e 4) ay (30)

14see, for example, Lacey and Nawalkha (1993).
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and so on. The complete set of definitions can be found iM\Eendix. Substituting (28)
and (14) in (26) yields

L &Pu(A) _ (fﬁ(Ha A>> (WHv A)) e (aT(H’A)) DP(k, A)

Py (A) 0AR0A,, 0A 0A, 0Ay
~H (W) DP)(m, A) + CP)(k,m, A) (31)
From the first order conditions (22) for bond portfolio immunization we kiost
DP)(k A) = g T, A) (k=0,...,3) (32)
OA

which is also valid wherk is replaced byn (m = 0, ..., 3). Substituting this expression in
(31), the generic element of the Hessian matriAat a becomegk, m =0, ..., 3):

1 0?Pg(A) _ HQ(@T(H,A)) <8r(H,A)>

Py (A) 0ALOA,, DA 0An,
—om? (aréi’kA)> (HaréiA)> + 0P (k,m, A)
= P (k,m,A) — H? <8Tgi’kA)> <8r(§Z;IA)> (33)
Let wy,, denote the difference
A (S0 (B

Each element in (34) has a clear interpretation since it defines the ddéebetween the
parametric convexity of a bond portfolio and the sensitivity of the perfect inination as-
set (i.e. of a zero coupon maturing on the horizon date) to changes in theyige shape
parameters® That is, each element in (34) represents the extent to which secoed-ord
interest rate risk measures deviate from the target. This is not surpriszgfsom equa-
tion (33) we observe that all elements,,(A) of the Hessian matriX’? P (A) are those
of the matrixII = [wkm]i,mzo- This means that the discussion of the positive semidefi-
niteness ofV2 Py (A) reduces to that of the symmetric matfix At least two alternative
methodologies can be used to determine the sign definiteness of the Hessian Tinegr
determinantal test approachand theeigenvalue test approach We will show how can
both be used in the context of immunization.

3.2.1. Determinantal Test Approach

Let us focus first on the use of the determinantal test approacHlI beta squarén x n)
symmetric matrix of the form

woo wWo1 . Wok

w1 WwWi1 ... Wik . .
Ir= ,Wij:wj‘i,Z?é]

wWro WE1r o ... Wkk

®Note also that we can interpret.., (A) as a sort of "generalized variance” since its expression is analogous
to the formulaVar(X) = E(X?) — (E(X))%
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with n = 4. The jth order leading principal minors of the matiik, denotedD; (j =
1,...,4), are the determinants of the submatrices formed by deleting the entries in the last
n — j rows and columns dfl. GivenII, we may also define thgh order principal minors

of II, denoted D, as the determinants of the submatrices formed by deleting the entries
in then — j rows and the corresponding— j columns ofll. Following these definitions,

the criteria for semidefiniteness requires thatibto be positive semidefinite, all of its
principal minors of ordej must be non-negative, i.);| > 0.16 Let us consider now the
implications of this result for bond portfolio immunization. The first-order ggatminors

of IL, | Di| (i = 1, ...,4) are:

‘DH = wq and ‘D%‘ =wy; and ‘Dﬂ = wgy and ‘Dﬂ = w33, (35)

which must be all positive or zero. From the definitionsugf, w11, wee andwss above we
can observe that its sign is determined by the portfolio structure and camfotiunately,
be determined without ambiguity. The task is even more difficult when we thaamatch-
ing first-order conditions requires short positions in some bonds. Qaesdy, since the
positive definiteness 072 Py (A) cannot be guaranteed by first-order conditions, we are
forced to conclude that setting the gradient ve&idr;; (A ) equal to zero is not sufficient
to protect the investment against changes in the yield curve. This mearsetoaid-order
conditions play an important role in the immunization problem and need to beszeédrin
a convenient way.

To ensure the positive semidefinitenes§lofe need then to impose certain restrictions
on portfolio’s composition. Assume, for instance, thgg = w11 = waso = 0. The second-
order principal minors ofl, |Dj| (i = 1,...,6), are defined as:

‘Dl\ _lwoo wor | | 0 wor and ‘D2’ _lwoo wo2 | | 0 wpe

207wy w T w 0 207 Wey w T w 0
10 Wil 01 20 W22 02

31 | woo wo3 | | 0 wos 4 | wir wiz2 | | 0 w2

‘DZ‘ T way w T woes w and ‘Dz‘ T we w Tl w 0
30 w33 03 w33 21 W22 12

51 | wir wiz | | 0 wig 6] | wa2 woz | | 0 wag

’D2| N ‘ w31 w33 ‘ N ’ w13 w33 and ‘D2‘ | w2 w3z | | waz wss

(36)

From (36) we observe that the determindd®3 |, | D3| and| D3| are equal to- (wo1)?,
— (wo2)? and — (wo3)?, respectively, which are all negative, violating thus the conditions
for positive semidefiniteness. For these minors to be positive orzgra,ge: andwyz must
be all set equal to zero. Similarly, from (36) we note that the valugsiéf, | D3| and
|D§| are all negative and equal to (w12)*, — (w13)* and— (wa3)?, respectively. Using
the same argument, to ensure the positive semidefinitend$ssvoé need to select a bond
portfolio such that the entries; s, w13 andw-g are all equal to zero. Let us turn now to the
third-order principal minors ofl, }Dg\ (i =1,...,4). They can be written as:

wop wolr  Wo2 0 00
’D%} = | W10 W11 W12 =10 0 O
w20 W21 W22 0 00

16See Takayama (1990) and references therein for an extensivessiise of the determinantal test for
second-order necessary conditions for a minimum.
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woo wol  wo3 00 O
}D%‘ = | W10 W11 W13 | = 0 0 0
w30 w3l w33 0 0 wss
woo wo2 Wwo3 00 0
}Dg" =] woy wo woy |=|0 0 O
w30 w32 w33 0 0 wss
Wil wiz w13 00 O
‘Dg‘ = | W21 W22 W23 =10 O 0 y (37)
w31 w32 w33 0 0 wss

and, as can be seen above, their values are all equal to zero. Firyathgfihition the
fourth-order principal minor ofl, |D,|, is equal to the determinant &f. Therefore, we

have

woo Wo1 Wwo2  Wo3 000 O
_|wipo wir w2 wiz | [0 0 0 O

D4l = wy wa w2 wa | |0 0 0 0 | (38)
w30 W31 W32 w33 0 0 0 wss

which is also equal to zero. To sum up, to guarantee the positive semidedssatefl]
we need to select a bond portfolio such that all enttigg are equal to zero, except one,

H 2
equal towsz = CF)(3,3,A)— {a5 [1 —e @ <1 + %)]} , which must be set to an ar-
bitrary positive valuel/. Accordingly, whereas first-order conditions for bond portfolio
immunization imply the following: + 1 (k = 0, ..., 3) restrictions

or(H, A)

DOk A) = g
(k,A) A,

second-order conditions entail the subsequent equations

2 (8r(H,A)> <8T(H,A)) +U, k=m=3

CP)(k,m,A) = DAL D Am | )
( ) H? (aTéIZ;A)> (8%(5;?)) , other cases

to which the self-financing constraint may be added. The solution to thesabmoruniza-
tion problem requires a considerable number of different bohds (14 or L > 15, if we
include the initial self-financing constraint) in the portfolio. Given that disieht number
of bonds are available, it is theoretically possible to immunize a bond portfdimstgooth
parallel and non-parallel interest rate shifts. Standard optimization tagmsigay be used
to determine the immunizing portfolio. Let us now come back to the Hessian matom Fr
(39) it reduces to:
) 0 .. 0
V*Pg(A) | | (40)
Pr(A) 0 0
. 0 U
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The associated quadratic form is then

0 .. 0
dAT | 00 dA =U - (dA3)?. (41)
0 .. 00U

Taking into account both first-order and second-order conditionisrimunization, the
percentage change in the terminal value of the bond portfolio can bessegrén the fol-

lowing manner:

dPy(A) 1 9

—— = =-U-(dA 5>(a,dA 42

PH(A) 2U ( 3) +R2(a> )a ( )
where R3(a,dA) represents again the remaining terms of the Taylor series. Given that
by definition R(a,dA) — 0 asdA — 0, we can always choose a val@esuch that

dP H( ) > 0,i.e., wecan always choose a valiiesuch that% is convex ak whatever

the magnltude of the displacementAf dA.

3.2.2. Eigenvalue Test Approach

As we mentioned before, the solution to the immunization problem requires &@eons
able number of different bonds in the portfolio. If for large investmemiksahis is not a
major problem, since they usually hold and manage many different bondserasenar-
kets, for small investors based on emerging markets this may pose a sdrébasi® when
it comes to implement the strategy. In these cases, the investor may opt toasktaud
portfolio that matches first-order conditions for immunization and then evalhatsuffi-
ciency of these conditions on a particular basis using an alternative testeonine the
sign-definiteness of the quadratic form: The Eigenvalue Test. Recaptthastationary

point we haveVPH—(()) — 0, which means that the Taylor expansion in (10) reduces to:

dPy(A) LoAT V2Py(A)

PulA) ~ 20 Tpyay dATHa(adA) @)

LetS = Vppf&)) be an x n symmetric matrix. From standard linear algebra we
know that becausB is symmetric, is has real eigenvalugs,, }, andn independent unit
eigenvectors{v, }, which are mutually orthogonal. L& denote the a» x n matrix
with {v,,} as column vectors. By constructioW, is an orthogonal matrixV? = v—1,

Changing coordinates to tHe,, } basis, leldA = Vy. Substituting into (43) we obtain:

dATSdA = yT(V'sV)y

4
= > Ay, (44)
n=1

We also know thas$ is positive-definite (resp. negative definite) iff all its eigenvalues
are positive (resp. negative). In other wordsSifs positive-definite (resp. negative defi-
nite) we can conclude th ;((ﬁ‘)) has a minimum (resp. maximum) at the stationary point.
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In Section 3.2.1 we were able to conclude that unless additional restrictiopertfolio
structure are imposed we cannot guarantee that the hessian matrix isepeesitidefinite.
As a result, the possibility of getting both positive and negative eigenvaloesthe spec-
tral decomposition of matri$8 cannot be disregarded. In other words, the possibility of
obtaining negative eigenvalues means that for certain 'directions’ (interesshifts) the
portfolio’s horizon value will not be convex & = a and the investor is, thus, exposed to
interest rate risk.

Taking this into account, the solution to the immunization problem must be evaluated
on a particular basis. For that, we now propose a three step procedinettiond portfolios
that satisfy both first-order and second-order immunization conditions.

Step 1- Select a bond portfolio that matches the gradient conditions for immunization,
as defined in (22);

Step 2- Calculate the eigenvalues Bfin order to assess if first-order conditions are
sufficient to guarantee thgfffi has a minimum at the stationary point derived. First-
order conditions will be sufficient iff all of the eigenvalues of the hessialtrix are positive;

Step 3- If first-order conditions are not sufficient, i.e., if not all of the eigdoes of the
Hessian matrix are positive, we recommend a sort of "second-best’ggtr&mce there is
usually more than one bond portfolio satisfying first-order conditiongatfteps 1 and 2
for all of the candidate solutions and select the bond portfolio that moslglosatches the
conditions for a minimum. Since negative eigenvalues represent yield digplacements
for which the portfolio’s horizon value is not convex, we think that a osable criteria
for selecting an acceptable portfolio will be to minimize the impact of those yieldecur
directions. In this sense, we recommend to choose the candidate solutihitbr the
sum of the absolute value of the negative eigenvalues is minimum, i.e., the onbiébr
the quantity) 5, _ |A,| is minimum. To implement the procedure standard optimization
algorithms may be used.

4. Bond Price Sensitivity and the Risks of Convexity

In this section we develop a more accurate approximation for the price siépsifia bond
based upon the new definitions for parametric interest rate risk measueesappove. In
addition, we revise both classic and modern approaches to convexityeamzhdtrate that
important negative effects of convexity are revealed when changestbtim parallel shifts
in the term structure are considered.

Consider again the present value of bond at time 0, By(a), as given by (4). If
we ignore the effects of the passage of time, the price sensitivity arounditilaévector
of parameters can be approximated by the two first terms of a Taylor sgdaason as
follows:

dBo(A) 1
Bo(A) — Bo(A)

1
VBy(a)l - da + 5daT V2By(a) - da (45)

" Bo(A)
whereV By(A) andV2B,(A) represent, respectively, the gradient vector and the Hessian
matrix of By(A) at A = a, and the remaining variables keep their previous meaning. If
we substitute the definitions of parametric duration and parametric convexstaiasl in
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(13) and (27), the approximation for the bond price sensitivity can be writtéerms of
duration and convexity as follows:

Cm ~ —D(A)-da+ %daT -C(A) - da (46)
where
D(A) = [D(0,A),...,D(k,A)]
Coo(A) -+ Com(A)
CA) = : :
Cro(A) -+ Crm(A)

Assume now the term structure experiences only level shifts. A simpleatbera-
tion of level shifts is given by assuming that the height coefficigngxperiences a non-
infinitesimal, instantaneous change, and all other coefficientsafi,ew, etc.) in equation
(1) remain constant. From (46), the total instantaneous change in biceddpe this addi-
tive shift is given simply by:

dBy(A)
Bo(A)

~ —D(O, A) - Aag + %CQ(KA) . (Aa0)2 (47)

The termCy o(A) has been traditionally defined as the convexity of a bond. Convexity
captures most of the change in the bond price not captured by tradititstearfVeil du-
ration. Becausedag)2 is always positive, convexity is always beneficial for level shifts in
the term structure.

A similar result holds when considering percentage changes in the reidviesminal
value of a bond at a given planning horizéh Following steps similar to equations (45)
and (46), we get the change in the terminal value of a bond caused yngecing, at
planning horizonH given as:

‘;BHW ~ [H — D(0,A)] - Aag + E [Coo(A) —2HD(0,A) + H?] - (Aag)®  (48)
H(A) 2

Under additive term structure shifts a bond’s reinvested value is immunibed the
duration of the bond equals its planning horizon. Therefore the abavatieq can be
simplified to:

Tt = S [Coo(A) - 7] - (Ao (49)

In the above equation, the expressiGso(A) — H? is higher wheneve€ o(A) (or
the convexity) of a bond is higher. Since a higher value of the expre€gigfA) — H? im-
plies higher return to the terminal value in equation (49), a higher convexiylgd always
be preferred for additive term structure shifts. Consequently, fditiad shifts, maximiz-
ing convexity is always an appropriate immunization objective. This conclusiore-
sponds basically to the traditional approach to convexity (see, e.g. H4BO20), Garbade
(1985a), Milgrow (1985), Bierwag et al. (1988), Grantier (1988)).
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The traditional approach to convexity assumes that interest rate shifislditere and
that convexity is a desirable feature in a bond portfolio. We argue that tangtanegative
aspects of convexity are revealed when the stochastic process umgleédgym structure
is richer and allows for both parallel and non-parallel sHiftsn our case, by allowing
a1, as and the other coefficients in equation (1) to change randomly and simulspeou
with coefficientag, term structure movements will no longer be restricted to any specific
stochastic process.

Consider a simple case of a simultaneous change indyocéimda, . Allowing both the
level coefficientay and slope parameter to change implies a non-infinitesimal and non-
parallel term structure shift. For this kind of shift, the change in the baedainal value
at the planning horizon can be approximated by:

OBp(A) OBu(A) 1
8@0 8@1 2
19°Bu(A) 0?By(A)
2 8a% 8&08&1

The magnitudes of the last two terms are small when compared to the magnitude of

the first three terms, and therefore can be ignored for simplicity. Dividingh(A) and
expressing this equation in terms of duration and convexity yields:
dBr(A)

Bu(A) ~ [H - D(0,A)]- Aag +% [Co0(A) —2HD(0,A) +H2] - (Aap)?

10?By(A)

A) ~

Aag + Aaj + (Aag)? (50)

(Aay)* + (Aag) (Aay)

+ [a4 (1 - 6_%) - D(l,A)} - Aay (51)

Since first order conditions for bond portfolio immunization against levifisstequire

D(0, A) be equal to the planning horizdi, the above equation can be simplified to:
H

‘m ~ % [Coo(A) — H?] - (Aag)® + [a4 (1 - e*a) - D(1,A>} Aar (52)

The above equation redefines the meaning of convexity which is significdiffey-
ent from its traditional usage. Traditionally, convexity has been assoaiitedhe bond
value change caused by a non-infinitesimal shift in the level of the terrotsteu Though
equation (52) is consistent with this view, it introduces an additional link bertweond
value change and slope shiftda;) in the term structure. Therefore, provided that first
order conditions for bond portfolio immunization against slope shifts aremabt when-
ever a simultaneous shift in the level and the slope of the term structuresptioel effect
of traditional convexity (i.e.Cyo(A)) on the terminal value of the bond at the planning
horizon becomes uncertain. Lacey and Nawalkha (1993) call this adalitiok risk effect
contrasting with theonvexity effeainderlying the classical approach to convexity.

In other words, whenever we consider more realistic term structure shéftimizing
convexity may no longer be considered a suitable immunization objective diticag the
modern approach to convexity is consistent with equilibrium non-arbitragéditions in
bond markets (see e.g. Lacey and Nawalkha (1993)).

1Similar conclusions can be found in Kahn and Lochoff (1990), Lacey/Mawalkha (1993) and Reitano
(1993), among others.
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5. Interest Rate Sensitivity of Bond Risk Measures

In this section we derive a simple expression for the sensitivity of parandirations
to changes in term structure shape parameters. Portfolio managerdesreenfuired to
maintain target levels of interest rate risk exposure, both for assets &ildidis. From
standard duration theory we know that the duration of a bond changeseapasses, not
only because the bond approaches maturity but mainly due to changes ieltheuyve. In
volatile interest rate environments interest rate risk measures can chaidjg as a result
of modifications in the shape of the term structure of interest rates. Ffojpmmanagers
this is a subject of major interest since maintaining the portfolio exposure upédsised
level requires frequent portfolio rebalancing. To do so, it is of grgatrest to understand
how interest rate risk measures themselves change with modifications in theynedd
The sensitivity of a bond’s duration to changes in the bond’s yield to matuagybleen
extensively analysed in the literature (e.g. Bierwag, 1987). In spite qfitligswell know
that the usefulness of this analysis is limited when yield curves are not dat@nparallel
term structure shifts may occur. In this section we extend previous oeskainvestigation
the sensitivity of parametric duration measures to a wider a range of yield movements.
Consider again the definition of parametric duration presented in (13):

N

DOk, A) Z 67“6(2:*) (k=0,..3). (53)
=1

Differentiating with respect tel,,, (m =0, ..., 3) yields:

SN
_ BélA)Q{ Ztc a0 R )
Lﬁ; teye™ a’”a(;?) agﬁ:)} (54)
g (- [ () () s
—Bj(A)? Bg)(A)itcte_r(m)tara(Z? ) B{)EA) 8?&1(: )}

B 1 [ &Ko eay (Ot A) (0r(t,A)
_ _Bé(A [ztzcte o (AY) (00 )]
rean Or(t, A) 1 9Bi(A)
lth . (“ & ot )

0A
Substituting the definitions of parametric duration and parametric convexityiatien
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(54) yields:

dD(k, A)

51 =Dk A)D(m A) = Clkm,A)  (km=0,...3) (55)

Equation (55) provides a general expression for the sensitivity oeistteate risk mea-
sures (parametric duration measures) to changes in interest ratesmbygmodifications
in yield curve parameters. For any combination of term structure shifts tisstiséy of
parametric duration is computed as a product of two duration measures menasrti-
sponding parametric convexity. Two have a broader understanding afighificance of
equation (55) consider the following cases of interest.

Case 1 Letk = 0 andm = 0. From (55) we have

aD(0, A)

ai — DOA)N = Coo(A) (56)

Therefore, the sensitivity of traditional Fisher-Weil duration to changdke level of
the yield curve is equal to duration squared minus the traditional convexitgurezaNote
also that if gradient conditions for immunization against shiftsijnare satisfied (i.e., if
D(0,A) = H), the sensitivity%?f‘) can be written as the negative of the popular M-
squared dispersion meas\fe/?) proposed by Fisher and Weil (1983, 1984), i.e.,

0D(0, A
ODOA) _ _[ch0(A) - (D(0,A))?] = 02 (57)
0Ag
Case 2 Letk = 0andm = 1. Then,
aDa(ijA) =D(0,A)D(1,A) — C’071(A) (58)
1

Hence, the sensitivity of traditional Fisher-Weil duration to changes inltpe param-
eter of the yield curve is equal to the product of duration Bxd, A ) minusCjy ;(A). Gen-
eralising the above examples we can estimate the combined effects proguckanges
in the term-structure level, slope and curvature on interest rate risk nesassing the the
concept of total differential

3
D(k, A
AD(k,A) = Zaa(j’ )AAm
m=0 m
3
~ [D(k, A)D(m,A) — C(k,m, A)] AA,, (59)
m=0

6. Conclusion

Traditionally, the study of the interest-rate sensitivity of the price of a plotfaf assets
or liabilities has been performed using single factor models from which simplegsions
for duration and convexity have been derived. In general, the abilisuoh models to
predict price sensitivity or to achieve immunization is dependent on the valitijietal
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curve assumptions. In this sense, the classical duration analysis edly grelerstate price
sensitivity when non-parallel term structure shifts occur.

In this chapter, we have developed a general multivariate duration awexty anal-
ysis that does not depend on previous statements about the way in whigieltheurve
moves. Differently, the model links interest rate risk factors to the parameténe Svens-
son specification of the yield curve and is valid in virtually all yield curve emvinents.
The model extends classical duration and convexity analysis to includecyiele shifts
that are not parallel. The concepts of parametric duration and parametrexity pro-
vide, in this context, natural first-order and second-order sensitivigsares of bond or
bond portfolio prices to changes in interest rates. Moreover, the ihtatesrisk measures
derived quantify the sensitivity of the portfolio to yield curve shifts thateham economic
meaning, namely changes in the level, slope and curvature of the yield curve

Contrary to most interest rate risk models we emphasize the importance nélsexter
conditions for bond portfolio immunization. In concrete, we show that it is irsitdes to
achieve immunization simply by meeting first-order conditions and that the kegtesst
ful immunization will be to build up a portfolio such that the gradient of its futuakig is
zero, and such that its Hessian matrix is positive semidefinite. We preseattemoative
methods to determine the sign definiteness of the Hessian matrix: the deterntestraad
the eigenvalue test, emphasizing the advantages and shortcomings of baidsneth

We have developed a more accurate approximation for the price sensifiatpand
based upon new definitions for parametric interest rate risk measuiddition, we exam-
ine the advantages and disadvantages of traditional convexity undisticéarm structure
shifts and prove that whenever we consider more realistic yield curve,sbifter than
simply parallel shifts, maximizing convexity may no longer be considered a siitamu-
nization objective.

Finally, we analyse the sensitivity of parametric interest rate risk measuoksihges
in term structure shape parameters, offering fixed-income portfolio neasi@agnew pow-
erful tool to assess the combined effects of changes in the term-strieteteslope and
curvature on interest rate risk measures.

Future research should investigate the empirical performance of the@@i@amodel
when compared with that obtained with alternative single- and multiple-factatidar
matching strategies.

Appendix: Formulae for Parametric Convexity

First recall that

_t _t t _t t
r(t,A) :ao—i-al% (1 —e “4)+a2% [1—6 a4 (1—1— )]—Fagcf |:1—6 a5 <1+>] .
a4

as
60)

The general expression for the parametric convexity of a boffd(k, m, A), is given
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by

1
CO(k,m, A)

Sy

9”BY(A)

L(A) 0ALA,,
1

al or(t,A) or(t, A)
_T( :A) ? ) —
T(A) Lg_l t2eye T A ( DA, ) ( DA ) , kkm=0,...,861)

Differentiating equation (60) with respect t, (k = 0, ..., 3) and substituting in (61)
we obtain the following complete set of formulas for parametric convexity:

Table 1. Formulae for Parametric Convexity

k| m CO(k,m, A)
0 0 C(()f()) = B&A) [Zivﬂ t2clteiT(t’A)t]
J
0 1 ch =0 = Bé}A) [Ei\’zl teme A (1 ¢ a4) a4]
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