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a b s t r a c t

Salinization and nitrate leaching are two of the leading threats to the environment of the

European Mediterranean regions. Inefficient use of water and fertilizers has led to a nitrate

increase in the aquifers and reduction in crop yields caused by salts. In this study, a triple

emitter source irrigation system delivers water, salt (Na+), and fertilizer (N) applications to

maize (Zea mays L.). The objective of the study was to evaluate the combined effect of saline

water and nitrogen application on crop yields in two different textured soils of Alentejo

(Portugal) and to assess if increasing salinity levels of the irrigation water can be compen-

sated by application of nitrogen while still obtaining acceptable crop yield. Maximum yield

was obtained from both soils with an application of 13 g m�2 of nitrogen. Yield response to

Na+ application was different in the two studied soils and depended on the total amount of

Na+ or irrigation water applied. No significant interaction was found between nitrogen and

sodium, but a positive effect on maize yield was observed in the medium textured soil for

amounts of Na+ less than 905 g m�2 when applied in the irrigation water.

# 2008 Elsevier B.V. All rights reserved.
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1. Introduction

In the Portuguese southern region of Alentejo, irrigated

agriculture is the most important farm enterprise. Water is

the key factor limiting crop production. Mediterranean

conditions prevail with hot summers and scarce rainfall,

and with mild and rainy winters. Because of arid conditions,

hundreds of thousands of hectares have been converted to

irrigation in the last years. Improving crop productivity by

using water and nutrients more efficiently has been the

leading research approach for the region. Field experiments

were conducted to measure the effects and interaction of

water and fertilizer input on grain yields of major crops such

as maize (Zea mays L.), sugar beet (Beta vulgaris L.), tomato
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(Lycopersicum esculentum Miller), potato (Solanum tuberosum L.),

and lettuce (Lactuca sativa L.) (Ramos et al., 1996; Beltrão et al.,

2002a).

Inefficient usage of water and fertilizers has led to an

increase in nitrate (NO3
�) levels in the aquifers of the region.

Since the 1970s, a steady increase in nitrate levels has been

recorded at shallow depths. Currently, the European legisla-

tion 91/676/CEE limits the level of nitrate permissible in waters

used for human consumption. Waters from aquifers of some

irrigated areas have reached threshold values. As a result,

such water can no longer be used for human consumption.

Furthermore, a considerable degree of caution must be

exercised when using such waters for irrigation (Duque and

Almeida, 1998). As a result, only limited fertilizer application is
d.
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permissible in some of the most important agricultural areas

of Alentejo.

Compounding the problem, electrical conductivity (EC)

values of 0.4–2.6 dS m�1 have been recorded in collective

irrigation water reservoirs of the region in the past years. In

addition, values between 0.7 and 3.0 dS m�1 have commonly

been found in the small private water reservoirs located in the

farmers’ fields throughout the region (Oliveira and Varela,

2005). Waters that are generally classified according to the U.S.

Salinity Laboratory (Richards, 1954) as medium (C2) to high (C3)

salinity and of low sodification (S1) risk present a soil

salinization hazard and may cause significant reduction in

yield for a large number of crops, especially vegetables and

fruits (Ayers and Westcot, 1985; Mass, 1990; Steppuhn et al.,

2005). Salinization by irrigation water is a process whereby

soluble salts from the irrigation water accumulate in the soil

due to inadequate leaching, high water tables and/or high

evaporation rates. Soil salinity affects plants directly through

osmotic effects, which limit the ability of the plants to absorb

water from the soil solution. Specific ion effects and changes

in soil physical and chemical properties can have long-term

detrimental effects on crop production (Keren, 2000). If the

salts are primarily sodic salts, as is frequently the case, their

accumulation increases the concentration of sodium ions in

the soil exchange complex, affecting soil properties and

behaviour. Thus, salinity can also have an indirect effect on

plant growth through deleterious modification of soil proper-

ties such as swelling, and porosity, water retention and

permeability changes (Hillel, 1998).

Currently, protecting the natural resources is of more

concern than optimising crop production. Soil and water

resource conservation are the key priorities of agricultural

research for European regions like Alentejo. Soil salinization/

sodification and nitrate leaching to aquifers are two of the

leading threats to the environment of the region. Study of the

combined effects of saline water and nitrogen application on

the yield function could give answers about how to overcome

the soil salinization/sodification process and how to reduce

nitrate leaching in areas where irrigation water is of poor

quality. Crop yield–water consumption relationships at

certain fertility levels have been widely examined in a variety

of water management studies (Ramos et al., 1996; Kipkorir

et al., 2002; Brumbelow and Georgakakos, 2007; Liu and Zhang,

2007; Igbadun et al., 2007). However, many production

function studies have been limited to non-saline water. Very

few studies exist for crop response under saline conditions. In

cases of poor water quality, the level of sodium content in

water should be considered as a third factor because sodium

content strongly affects crop production (Dinar et al., 1991;

Datta et al., 1998; Beltrão et al., 2002a).

Despite a large number of studies demonstrate that salinity

reduces nutrient uptake and affects nutrient partitioning

within the plant, little evidence exists that adding nutrients at

levels above the optimal levels in non-saline environments

improves crop yield (Grattan and Grieve, 1999). In fact, several

studies show that at high-salinity levels, increasing N is

ineffective in counteracting adverse effects of increased salt

concentrations on growth and yield (Papadopoulos and

Rending, 1983; Makus, 2003; Villa-Castorena et al., 2003).

However, other studies also show that N applications can be
beneficial in reducing the detrimental effects of salinity by

partial substitution of NO3
� with NH4

+. Furthermore N

applications can be beneficial due to the lower energy cost

of N assimilation with NH4
+ as compared to NO3

� adminis-

tration (Sandoval-Villa et al., 1999; Flores et al., 2001; Kant

et al., 2007).

The objective of this study was to evaluate the combined

effects of saline water and nitrogen application on maize (Zea

mays L.) yield function in two different soils of Alentejo

(Portugal) and to assess if increased salinity levels of the

irrigation water can be compensated by application of

nitrogen while still obtaining acceptable yields.
2. Materials and methods

2.1. Site description

Field plot experiments were conducted at the Alvalade

Experimental Station (3785604800N and 882304000W), and at the

Herdade da Mitra of the University of Évora (3883105500N and

880005900W), both located in southern Portugal, in the Alentejo

region. The soil chemical, physical and hydraulic properties of

both soils were measured in the beginning of the experiments.

In Alvalade, the experiments were performed on a field with

Eutric Fluvisol soil (WRB, 2006). In the top 30 cm, particle sizes

between 2000 and 200 mm (coarse sand), 200 and 20 mm (fine

sand), 20 and 2 mm (silt), and less than 2 mm (clay) were,

according to the Atterberg scale, 8.3, 52.4, 26.3, and 13.0 wt.%,

respectively, corresponding to a loam soil. Dry bulk density (r)

was 1.49 g cm�3, total porosity was 39.2 vol.%, the field capacity

and wilting point were 31.0 and 9.8 vol.%, respectively, and the

saturated hydraulic conductivity was 14.2 cm d�1. The pH (H2O)

was 7.0, the average organic matter was 26.5 g kg�1, and total

nitrogen, available phosphorus, and potassium were, respec-

tively, 1.15 g kg�1, and 131 and 100 mg kg�1. Cation exchange

capacity (CEC) was 13.59 cmolc kg�1, Electrical conductivity of

the saturation extract was 0.42 dS m�1, and the exchangeable

sodium percentage (ESP) was 2.06%.

In Mitra, the field experiments were carried out on a Hortic

Antrosol (WRB, 2006). Also in the top 30 cm, particle sizes

between 2000 and 200 mm, 200 and 20 mm, 20 and 2 mm, and

less than 2 mm were 46.1, 35.9, 10.1, and 7.9 wt.%, respectively,

thus classifying the soil as a sandy loam textural class. Dry

bulk density (r) was 1.51 g cm�3, total porosity was 36.0 vol.%,

the field capacity and wilting point were 22.3 and 9.9 vol.%,

respectively, and the saturated hydraulic conductivity was

42.3 cm d�1. The pH (H2O) was 6.6, the average organic matter

was 33.3 g kg�1, and total nitrogen, available phosphorus and

potassium were, respectively, 1.28 g kg�1, and 458 and

118 mg kg�1, respectively. CEC was 13.72 cmolc kg�1, EC of

the saturation extract was 0.48 dS m�1, and ESP was 0.63%.

2.2. Climate and water application

The experiments were conducted from 2004 to 2006. Fig. 1

shows the monthly precipitation collected at Alvalade and

Mitra meteorological stations, and the reference evapotran-

spiration rate (ET0) determined from the collected meteor-

ological data by the Penman–Monteith method (Allen et al.,



Fig. 1 – Monthly precipitation (mm), and monthly reference

evapotranspiration rate (mm), for the period of 2004–2006.

Sd and H correspond to the sowing and harvest dates,

respectively.
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1998) during the 3 years of the experiment. The climate in both

experimental areas is mostly dry sub-humid, with hot dry

summers, and mild winters with irregular rainfall. ET0 in

Alvalade presented values between 859 and 873 mm during

the growing seasons (May–September) of the 3 years period,

while in Mitra the ET0 varied between 801 and 1181 mm.

In the 3 years of the experiment, precipitation was very low

during the crop cycle, which corresponded with the time of the

year when the evaporative demands of the atmosphere were

higher and crop water needs had to be fulfilled by irrigation, as

it is common in the summer season under Mediterranean

conditions. Years 2004 and 2005 were extremely dry with

higher reference evapotranspiration values than average,

especially in the most water sensitive stages of crop devel-

opment, in late July and August. The total amount of water

applied during the 3 years of the experiment is presented in

Table 1. Experimental fields were irrigated three times per

week between June and September. In Alvalade, application

amounts averaged 23 mm per irrigation event while in Mitra

the mean application amount was 18 mm per irrigation event.

In July, nitrogen fertilization was applied in both experimental

fields in five irrigation events during the vegetative stage.
Table 1 – Total amount of water applied in Alvalade, and
Mitra during the three irrigation seasons of the experi-
ment.

Experimental field Water applied (mm)

2004 2005 2006

Alvalade 997 1012 1028

Mitra 1067 725 729
2.3. Experimental design and treatments

Multifactorial experiments require complex designs and large

experimental areas. Such experiments are very time consum-

ing and expensive. To significantly reduce the cost and size of

the experimental area, sprinkler single-line (Hanks et al., 1976;

Lauer, 1983; Magnusson et al., 1989; Levy et al., 1999), double-

line (de Malach et al., 1996), crossed triple-line (Magnusson

and Ben Asher, 1990), and triple-line source methods (Beltrão

et al., 2002b) have been used instead. The layouts of these

systems were tested in salinity and fertilization experiments

on several crops and in small areas to produce mixing between

the maximal and minimal concentrations of the required

production factors. When the mixing gradations were

arranged in a sequential order, the results showed that

gradual changes of salinity were well distributed throughout

the experimental layout.

A triple emitter source irrigation system was used in this

experiment to deliver water, salt (Na+), and fertilizer (N)

applications to the crop. This system, adapted from Beltrão

et al. (2002b), consists of three trickle laterals connected

together in order to form a triple joint lateral. The first of the

laterals was connected to the salt stock solution while the

second one was connected to the nitrogen reservoir. The third

lateral delivered fresh water and was used to obtain a constant

water application rate for each dripping point along the triple

joint lateral. Gradients of applied salt (Na+) and nitrogen (N)

concentration were produced by placing different emitters

along the laterals and varying their discharge rate to obtain

various mixtures between the three lines. A constant

application rate was maintained at each dripping point.

Each experimental field (Fig. 2) was divided into four groups

(I–IV) with three triple joint laterals each, establishing a N

gradient decreasing from groups I–IV. Each group was then

divided into three treatment areas, A–C, each with surface

area of 6.75 m2 (2.25 m wide � 3 m long), and with the Na+

gradient decreasing from A–C. The dripping points were

spaced 1 m apart, with a total of nine emitters in each of the 12

treatment areas. Two laterals of fresh water bordered the

different groups. Each treatment area was bordered with

earthen ridges, which prevented surface runoff from crossing

over during rainfall and irrigation.

The overall discharge of a dripping point Qi, at different

locations of the jth triple joint lateral (where i = m and j = n)

was maintained constant, at 18 L/h in all 12 treatments, but

with variations in the discharge of the emitters located at each

single triple point line of salt qSi,j (Na+), nitrogen qNi,j (N) and

fresh water qWi,j, delivering system as:

Qi; j ¼ qSi; j þ qNi; j þ qWi; j (1)

The mass of each solute MSi,j (Na+) and MNi,j (N) applied at each

ith dripping point located at the jth triple joint lateral is

obtained as:

MSi; j ¼ qSi; j CSi; j (2)

MNi; j ¼ qNi; j CNi; j (3)



Fig. 2 – Layout of the triple emitter source design. The salt gradient decreases from Treatments A–C and the fertilizer

gradient decreases from groups I–IV.
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where CSi,j and CNi,j, the Na+ and N concentrations at each ith

dripping point and jth triple joint lateral, respectively, were

calculated as:

CSi; j ¼
MSi; j

Qi; j
(4)

CNi; j ¼
MNi; j

Qi; j
(5)

The discharges of the emitters along the triple joint laterals are

presented in Table 2.

The concentration of saline and the applied fertilizer

waters in all salt and nitrogen laterals was constant in each

year. However, different emitter discharges from the

laterals resulted in different applied amounts of N

and Na+ in all plots of the four groups. The amount of

applied N and Na+ in all groups and treatments is described

in Table 3.
Table 2 – Discharge rates of the laterals applying salt (Na+), ni
emitters on the three coupled lines have different discharges,
constant cumulative discharge rate of 18 L/h was used at each

Treatment Appli

Group I Group II

Na+ N W Na+ N

A 12 6 0 12 4

B 6 6 6 6 4

C 0 6 12 0 4
2.4. Relationship between applied factors and yield
function analysis

At the end of each crop cycle, grain yield and interrelationship

with applied factors (nitrogen and sodium) were evaluated. By

multiple stepwise regression analysis, it was determined that at

Alvalade and Mitra grain yield was related to the totalamount of

salt (Na+), nitrogen (N) and water (W) applied during the

irrigation cycles. In the process, two dummy variables were

introduced as orthogonal polynomial coefficients to take into

account the two types of soil (Soil) and each year of the

experiment (Year). The results from the two experimental fields

were analysed in cluster as well as separately by field plot.
3. Results

Mean grain yield of the individual treatments and the standard

deviations of the three repetitions for each experimental field

are presented in Table 4.
trogen (N) and fresh water (W) in experimental plots. The
resulting in different salt and nitrogen concentrations. A
dripping point.

cation rates (L/h)

Group III Group IV

W Na+ N W Na+ N W

2 12 2 4 12 0 6

8 6 2 10 6 0 12

14 0 2 16 0 0 18



Table 3 – Total amount of salt (Na+), and nitrogen (N) applied in Alvalade (Alv.) and Mitra (Mit.), in each group and
treatment (Tr.), during the three irrigation seasons of the experiment.

Group Tr. Salt (g m�2) Nitrogen (g m�2)

2004 2005 2006 2004 2005 2006

Alv. Mit. Alv. Mit. Alv. Mit. Alv. Mit. Alv. Mit. Alv. Mit.

I A 1365 1352 2055 962 2792 1229 19 9 20 15 22 21

B 683 676 1027 481 1396 614 19 9 20 15 22 21

C 0 0 0 0 0 0 19 9 20 15 22 21

II A 1365 1352 2055 962 2792 1229 13 6 13 10 15 14

B 683 676 1027 481 1396 614 13 6 13 10 15 14

C 0 0 0 0 0 0 13 6 13 10 15 14

III A 1365 1352 2055 962 2792 1229 6 3 7 5 7 6

B 683 676 1027 481 1396 614 6 3 7 5 7 6

C 0 0 0 0 0 0 6 3 7 5 7 6

IV A 1365 1352 2055 962 2792 1229 0 0 0 0 0 0

B 683 676 1027 481 1396 614 0 0 0 0 0 0

C 0 0 0 0 0 0 0 0 0 0 0 0
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3.1. Yield response curves at Alvalade

From the result of the multiple stepwise regression analysis

between grain yield (Y) and the input factors nitrogen (N), salt

(Na+),water (W),and their interactionsatAlvaladefor the period

of 2004–2006 (Year), the following relationship was established:

YAlvalade ¼ 804:98þ 43:46 Yearþ 43:35 N� 1:6075 N2

þ 0:1575 Naþ � 0:000087ðNaþÞ2 (6)

The analysis of variance for Eq. (6) indicates a sum of squares

due to regression (SSR) of 8.187 � 105, a sum of squares due to

error (SSE) of 4.950 � 105, a determination coefficient (R2) of

0.623, a F-value of 9.92, and P < 0.0001 for n = 36 observations.

Fig. 3 shows the response curves of yield to different levels of N

and Na+ at Alvalade.
Table 4 – Average maize grain production (g mS2) at Alvalade an
standard deviation of the three repetitions.

Groups Treatments Aver

2004a

Alvalade Mitra Alvala

I A 1008.9 1184.4 778.4 (0.

B 927.3 902.0 1069.9 (23

C 1223.2 866.7 1093.8 (2.

II A 1388.5 970.6 866.3 (13

B 1270.6 1180.7 1103.4 (12

C 1244.8 1128.9 1023.3 (12

III A 1353.9 1116.1 772.7 (22

B 1140.1 976.7 1014.6 (30

C 821.1 683.7 947.2 (91

IV A 1063.4 538.6 773.2 (11

B 734.8 705.1 728.5 (18

C 715.5 758.7 780.2 (96

a The standard deviation values of the 2004 maize production are not

together. In the following years they were harvested separately.
3.2. Yield response curves at Mitra

From the result of the multiple stepwise regression analysis

between grain yield (Y) and the input factors nitrogen (N),

salt (Na+), water (W), and their interactions at Mitra for the

period of 2004–2006 (Year), the following relationship was

established

YMitra ¼ 572:73þ 89:45 Yearþ 51:55 N� 1:9562 N2

� 0:5898 Naþ þ 0:000649 W Naþ (7)

The analysis of variance for Eq. (7) shows a SSR of

1.430 � 106, a SSE of 0.562 � 106, a R2 of 0.718, a F-value of

15.25, and P < 0.0001 for n = 36 observations. Fig. 4 shows the

response curves of yield to different levels of N and Na+ at

Mitra.
d Mitra experimental fields. The values in brackets are the

age grain production (g m�2)

2005 2006

de Mitra Alvalade Mitra

0) 471.8 (72.4) 818.8 (45.9) 892.1 (80.4)

9.1) 566.1 (55.5) 1212.1 (76.2) 866.8 (172.2)

2) 681.8 (103.2) 911.2 (150.4) 758.2 (136.0)

0.2) 467.1 (91.3) 830.2 (54.3) 886.1 (37.2)

6.0) 583.6 (97.9) 1103.2 (101.8) 1051.9 (65.4)

0.6) 634.2 (87.7) 1212.5 (244.2) 1028.9 (91.6)

2.8) 563.8 (65.2) 822.9 (64.1) 759.3 (128.8)

8.6) 630.2 (63.1) 1022.1 (139.0) 654.3 (101.6)

.6) 663.0 (62.3) 1116.9 (139.2) 988.5 (93.1)

5.6) 375.2 (40.3) 722.5 (82.8) 394.7 (55.6)

7.5) 471.5 (66.4) 897.5 (44.4) 428.7 (16.5)

.6) 516.3 (39.6) 823.4 (41.4) 484.9 (0.0)

presented because in the first year, the three lines were harvested



Fig. 3 – Grain production curves with decreasing returns to

nitrogen (a), and to sodium (b), at Alvalade. Response

measured while maintaining all other input factors

constant.

Fig. 4 – Grain production curves with decreasing returns to

nitrogen (a), and to sodium (b), at Mitra. Response

measured while maintaining all other input factors

constant.
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3.3. Yield response curves on both locations

The result of the multiple stepwise regression analysis

between grain yield (Y) and the input factors nitrogen (N),

salt (Na+), water (W), and their interactions for all experi-

mental data set (Alvalade and Mitra) for the period of 2004–

2006 was established as:

Y ¼ 681:87þ 66:91 Yearþ 46:63 N� 1:7382 N2 � 0:5353 Naþ

� 0:000102ðNaþÞ2 þ 0:000719 W Naþ � 100:62 Soil (8)

The analysis of variance for Eq. (8) presents a SSR of

3.145 � 106, a SSE of 1.165 � 106, a R2 of 0.730, a F-value of

24.67, and P < 0.0001 for n = 72 observations. Fig. 5 shows the

response curves of yield to different levels of N and Na+

considering all data from both experimental fields.
4. Discussion

4.1. Analysis of yield response curves at Alvalade

For the field experiment carried out in the textured medium

Eutric Fluvisol of Alvalade, the adjustments to Eq. (6) were

statistically significant. The model explains 62% of the
observed variations, with a total of 36 observations analysed.

The effect of different years was only significant in the

variability of mean annual yield. No significant interaction

was found between nitrogen and sodium indicating that yield

response to one of the input factors is not dependent on the

other factor. Beltrão et al. (1993) studying the combined effects

of N and salinity on sweet corn growth also found no

interaction between these two input factors, when applying

combined gradients of salinity (1–6.2 dS m�1) and N fertiliza-

tion (0–6.4 g m�2). Pang and Letey (1998) using a combined

plant–N–salinity–water response model (ENVIRO-GRO) and

similar irrigation rates as in this study (1050 mm), also found

no interactions between N and salinity due to high levels of

deep percolation resulting in higher salt and nitrogen

leaching. With more moderate irrigation rates (630 mm), they

found a significant interaction between salinity and nitrogen,

with high-salinity waters affecting N uptake and crop yield.

Shenker et al. (2003) reported that N and salinity were

inversely related (when salinity increases N uptake decreases).

Regression analysis shows that the yield response curves to

N and Na+ are quadratic, with diminishing response for each

incremental change of the analysed variable factor. Each

additional unit of input adds less to the total output than the

previous unit does. Taking the partial derivate of the multiple

regression equation (6) with respect to nitrogen (N) yields:



Fig. 5 – Grain production curves with decreasing returns to

nitrogen (a), and to sodium (b), in production fields at

Alvalade and Mitra. Response measured while

maintaining all other input factors constant.
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@Y
@N
¼ 43:35� 3:215 N (9)

Eq. (9) shows the decrease in yield per unit increase in nitrogen

levels. The data shows that increasing nitrogen application

indefinitely will not result in a direct increase in production. By

equating nitrogen application to zero and solving for N, the

maximum yield (Y) was determined to be obtained for

13.48 g m�2 of N. This value is considerably lower than the

29.59 g m�2 of N obtained by Ramos et al. (1996) for the same

soil and the same amount of water. When using only good

quality waters and a N range of 26.0–30.0 g m�2, as recom-

mended by the Portuguese Ministry of Agriculture (Dias, 2000),

an acceptable crop yield was achieved in the same soil unit.

Similarly Shenker et al. (2003) analysed different models

describing the relationships between N fertilization and water

salinity on yield response of sweet corn plants. The resultant

response curves suggest lower demand for N at increasing

salinity levels.

Likewise, taking the partial derivate of the multiple

regression equation (6) with respect to sodium (Na+) yields

@Y
@Naþ

¼ 0:1575� 0:000174 Naþ (10)

Eq. (10) shows that total yield increases at a decreasing rate per

unit increase in the Na+ level. The maximum yield is obtained
when the total applied Na+ equals 905.17 g m�2. Adding more

sodium to the irrigation water will lead to yield reductions.

Possible exchange reactions between N–NH4
+ and Na+ in the

exchange complex cation of the soil may help explaining why

the maximum yield was obtained when the total applied Na+

was of 905.17 g m�2 instead of 0 g m�2. This phenomenon

seems to be associated with the gradual exchange of adsorbed

ion NH4
+ in the soil for a monovalent cation provided with the

irrigation water. This observation is in agreement with the

reports of Nommik and Vahtras (1982), Drury and Beauchamp

(1991), and Green et al. (1994). These authors studied fixation

and release of NH4
+ in different soils when adding K+ to the soil

solution. Singh et al. (1969) suggested that depending on the

existing salt concentration the effects of adding Na+ was

similar to K+. According to those studies and the obtained

results in this study, N-NH4 fixation in clay minerals provides

protection against its lixiviation and provides a gradual release

to plants throughout the vegetation cycle, at a rate dependent

on the exchange of Na+ with NH4
+:

Clay NaþNH4
þ$Clay NH4 þNaþ (11)

The exchange relation, expressed in Eq. (11), explaining the

importance of low sodium content in irrigation waters on

yields, is only briefly mentioned in the literature (Evangelou,

1998; Evangelou and Lumbanraja, 2002) and needs further

study. However, previous studies suggest that fixation and

release of NH4
+ within a growing season is important in many

agricultural soils (Green et al., 1994). The rate of fixation and

release of NH4
+ in the Eutric Fluvisol of Alvalade should be

studied in the future. Another possible explanation is a reduc-

tion of nitrification of N-NH4 to N-NO3 due to the increase of

salinity as described by McClung and Frankenberger (1987) and

Irshad et al. (2005, 2008) with consequent N losses through

leaching.

4.2. Analysis of yield response curves at Mitra

In the field experiment conducted in the coarse textured

Hortic Anthrosol of Mitra, the adjustments to Eq. (7) were

statistically significant with the model explaining 72% of the

observed variation with a total of 36 observations analysed.

Interactions between years and treatments also were not

statistically significant in the experimental field data. The

effect of the different years was again only significant in the

variability of the mean annual yield. At Mitra the interaction

between N and Na+ was also not statistically significant,

indicating that nitrogen was ineffective in counteracting the

adverse effects on yield from high concentrations of sodium in

the irrigation water.

Regression analysis results show that yield response curves

are quadratic for N indicating diminishing yield returns for

this factor. Taking the partial derivate of the multiple

regression equation (7) with respect to nitrogen (N) yields:

@Y
@N
¼ 51:55� 3:9124 N (12)

Eq. (12) shows the decrease in yield per unit increase in

nitrogen levels. The results are similar to Alvalade. Yield

decreases with each unit increase in the level of nitrogen.

Maximum yield is obtained for a level of N of 13.18 g m�2. This
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value is slightly lower than the 17.14 g m�2 of N found by

Ramos et al. (1996) for a similar soil and the same amount

of water, but using fresh water. The maximum yield is also

lower than the range of 17.0–22.0 g m�2 N recommended by

the Portuguese Ministry of Agriculture as an amount for an

acceptable crop yield in this type of soil also when using

waters of good quality (Dias, 2000). The model obtained at

Mitra suggests a lower demand for N at increasing salinity

levels, in accordance with Shenker et al. (2003). Similarly, no

interaction (positive or negative) was found between those

two input factors.The results from Mitra were different from

Alvalade, in that yield was not affected by changes in the level

of Na+. Yield was only responsive to water as the partial

derivate of the multiple regression equation (7) expressed with

respect to sodium (Na+), demonstrate:

@Y
@Naþ

¼ �0:5898þ 0:000649 W (13)

Eq. (13) suggests that the sandy loam textural class of the

Hortic Antrosol at Mitra, with its lower water retention capa-

city and higher saturated hydraulic conductivity, was favour-

able to sodium leaching with each irrigation event. This

resulted in a low sodium concentration in the soil profile

throughout the irrigation seasons and did not negatively affect

yield. Nevertheless, the results also show that a substantial

increase in the concentration of sodium in the irrigation water

would require an ever-increasing depth of water to maintain

the same yields. Letey et al. (1985), Bresler (1987), Beltrão and

Ben Asher (1997), and Pang and Letey (1998) have also shown

that salt stress can be ameliorated by additional irrigation

water. Richards (1954) recommended increasing the amount

of water when using waters of worse quality in order to

prevent soil salinization/sodification and achieve higher crop

yields. However, Shani and Dudley (2001) report that the

critical irrigation level decreased with increasing salinity, thus

demonstrating that additional water did not compensate for

salt stress. In their work, a decrease in maximum yield was

associated with decreased transpiration. The result was that

less irrigation was required to produce the highest yield at a

given salinity level.

4.3. Analysis of mean yield response curves on both
locations

By combining the data set of Alvalade and Mitra, the

adjustments proved to be statistically significant, with the

model explaining 73% of the total observed variations.

Furthermore, the model included all the trends verified in

the analysis of each individual experimental field. The

regression result shows that yield response curves to N and

Na+ are quadratic indicating, as in Alvalade, diminishing

returns to the two variable factors. Taking the partial derivate

of the multiple regression equation (8) with respect to nitrogen

(N) yields:

@Y
@N
¼ 46:63� 3:4762 N (14)

showing that the rate of yield decreases per unit change in

nitrogen level, with the maximum yield being achieved at a
level of 13.41 g m�2 of N. This result is identical to the N

application required at Alvalade and Mitra. The partial deri-

vate of the multiple regression equation (8) with respect to

sodium (Na+):

@Y
@Naþ

¼ �0:5353� 0:000204 Naþ þ 0:000719 W (15)

reflects the difference in behaviour between Alvalade and

Mitra when taking into account the effect of sodium on

yield. Indeed, the rate of yield decreased per unit change

in Na+ level, reaching its maximum at 629.10 g m�2 of Na+ in

the irrigation water when considering the mean amount of

irrigation water applied on both sites during the 3 years

of the experiment (923 mm). Combining all data and obser-

ving that Na+ and W in Eq. (15) have opposite signs, the

results show that, similar to Mitra, when the sodium con-

centration of the irrigation water is increased higher water

depths will be required to maintain the yield at similar

levels.
5. Conclusions

The models obtained from the multiple stepwise regression

analysis of grain yield (Y) and the input factors nitrogen (N),

sodium (Na+), water (W) and their interactions explained 62

and 72% of the total observed variation at Alvalade and Mitra,

respectively.

For both experimental sites, yield increases at a decreas-

ing rate per unit change in the N level. The yield response to

N application diminishes as N level increases. Maximum

yield is obtained by applying 13 g m�2 N. Increasing N

application above this level will not result in an increase in

yield.

At the medium textured soil of Alvalade, yield response to

Na+ application also diminishes with increased Na+. A

maximum yield was achieved at 905.17 g m�2 of Na+ applica-

tion. This useful effect of irrigation water salinity could be due

to the displacement and subsequent availability for the crop of

NH4
+ adsorbed in the soil exchange complex but displaced by

increased concentrations of Na+. In the coarse textured soil of

Mitra, yields are not affected by changes in Na+ level. They

respond solely to changes in the level of the input water. In

addition, the use of irrigation waters with higher sodium

content at Mitra will require the use of more water to maintain

yield at the same level as when irrigating with low sodium

waters.

The combined results from both sites embody the same

trends observed in each individual site, including the positive

effect of sodium on maize yield when small amounts up to

630 g m�2 are in the irrigation water.
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