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ABSTRACT

We present the time-frequency analysis of an interrupted light-curve time series of the pulsating subdwarf B (sdB)
star PG 1605+072. From the data of a eight-night observational run we have determined the pulsating spectrum
of PG 1605+072. We used both wavelet packet transform (WPTs) and localized sine packet transform (LSPTs)
analysis to compare frequency determinations with previous results based on Fourier methods and their typical mod-
eling of signals by strictly harmonic contributions. The procedures adopted here allow the determination of the pul-
sating spectrum of the combined night runs of data with a reduction of the usual alias peaks produced by the daytime
observing gaps, thus providing a clean and compact spectrum.We also use various compression techniques to study
signal reconstruction under WPT.

Subject headinggs: methods: data analysis — stars: individual (PG 1605+072) — stars: oscillations — subdwarfs

Online material: color figures

1. INTRODUCTION

The discovery of pulsations in subdwarf B (sdB) stars pro-
vides an excellent opportunity to probe sdB interiors using astero-
seismological tools. While it is generally accepted that sdBs are
similar to extreme horizontal branch stars, many questions remain
unanswered regarding their formation and evolution. Of all the
known pulsating stars, PG 1605+072 has the most extreme prop-
erties among sdB stars. This star is expected to have the richest
spectrum of almost 50 modes, with the longest periods up to
550 s. In the past, PG 1605+072 has been observed many times
either with photometry observations, measuring luminosity vari-
ations, or with spectroscopic observations measuring the redshift
of emission lines (Koen et al. 1998; Kilkenny et al. 1999; O’Toole
et al. 2002; Woolf et al. 2002; Falter et al. 2003; Pereira & Lopes
2004, 2005).

This paper is concerned with the comparative determination
of a stellar pulsation spectrum of the star PG 1605+072 by two
different time-frequency analyzing methods: the local sine packet
transform (LSPT) and the wavelet packet transform (WPT). Our
goal is to compare the estimates of the stellar power spectrum
with those using conventional harmonic analysis as was made
in Pereira & Lopes (2004). The technique seems to be quite suc-
cessful in computing a power spectrum with reduced alias peaks
produced by large intervals of daytime observational gaps. Pre-
vious attempts to use alternative techniques to Fourier analysis
on the study of observational time series were made by Serre et al.
(1995).

The study of observational time series, namely, photometric
light curves and spectroscopic studies of velocity variations
(Goupil et al. 1991; Vigouroux & Delache 1993), has long been
used in stellar astronomy, although the systematic use of classical

Fourier analysis in the study of poor signal-to-noise ratio data, as
well as the inability to obtain uninterrupted time series of spectro-
scopic and photometric data, has recently emphasized the need
for a more optimal approach to observational data reduction.
While Fourier techniques may be well suited for very long

uninterrupted time series of periodic processes, deviations from
harmonicity, noise, and irregular samplings introduce inevitable
artifacts in the Fourier spectra. With Fourier analysis, the intro-
duction of windowing to model observational data with night/day
gaps causes a necessary loss in frequency resolution (for non-
square windows) and the appearance of false bumps near a strong
peak (for square windows). Gaussian windows are usually used
as a good compromise.
A strong argument in support of wavelet analysis is the pos-

sibility of periodic nonharmonic signal detection, since inverse-
scale rather than frequency is being used here. In addition, given
its scaling covariance and localization properties, wavelet co-
efficients are considerably unaffected by localized noise in the
data, which does not propagate to all coefficients as is the case
with Fourier methods.

2. OBSERVATIONAL DATA

The photometric data used here make up an interrupted time
series with a relatively poor signal-to-noise ratio and large inter-
vals of daytime observational gaps. Theywere obtained in the 1m
telescope at the Sutherland site of the SouthAfricanAstronomical
Observatory. These observations were part of the largest spec-
troscopic and photometric campaign (to date) on PG 1605+072,
using the Multi Site Spectroscopic Telescope (MSST). Several
telescopes around the world were coordinated in aim to produce
a long, high-quality continuous time series of that star’s luminosity
(Heber et al. 2003). The standard analysis of these photometric
observations were made using Period98.5 A full discussion of
this work can be found in Pereira & Lopes (2004).
To prepare photometric observational data for time-frequency

analysis, the data were resampled, or rebinned, and the daytime
gaps and sampling observational irregularities were zero-padded.

A
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Furthermore, the beginning and end of the time series were also
zeroed in order to obtain a sequence of 2n elements. Both discrete
local transforms were computed from this observational time se-
ries of 216 elements.

3. LOCALIZED TIME-FREQUENCY ANALYSIS

The methods usually employed for ‘‘localizing’’ a time-
frequency analysis may be characterized by the nature of the
subdivision made to the time-frequency plane.

Local sine packet transforms (LSPTs) break the time axis of
the time-frequency phase space in segments of different widths.
In each of these time intervals, the frequency window size is fixed
by the time duration of the segment. And two adjacent time win-
dows of different sizes have frequency segmentation of different
heights (see Fig. 2 below).

LSPTs, also referred to as Gabor transformations, provide win-
dowed transformations that can adapt to the needs of different seg-
ments of a time series. This is a type of analysis that is well suited
for a spectrum that shows peaks with spreads that are essentially
not1/T in nature. Gabor analysis is similar to a variable-window
Fourier analysis that is adapted to different segments of the data.
It can be complemented bymethods that determine optimal seg-
mentation of data and the corresponding choice of basis that is
conducive to the smallest number of significant coefficients. This
is one of the methods that we used to analyze the observational
time series.

On the other hand, wavelet packet transform (WPT) is a multi-
resolution analysis that breaks the time-frequency plane in scale
segments of different heights (scale �1/frequency). Scale divi-
sions of different sizes bring time segmentation of differentwidths,
so there is a more uniform treatment of oscillations during all ob-
servational time (see Fig. 3 below).

The set of bases is fixed when we choose the bell function in
LSPT and the mother wavelet in WPT. In both cases, once we
have chosen the basis generators, we can construct a binary tree
of information of a signal by translations and dilations of those

basis functions. The tree is built on the successive application of
the appropriate decomposition to the previous blocks on the tree.
Each level is a complete representation of the signal that covers
all the time-frequency (or time-scale) plane allowed by the sam-
pling. On one level of the tree all localization windows are equal.
But other covers of the time-frequency plane exist that use in-
formation of different levels, thus bringing windows of different
sizes.

Both methods may implement a best-basis search on the tree
(Coifman&Wickerhauser 1991, 1992), where a choice of basis is
done at different scales and locations according to someminimum
criterion, thus providing the most economical and efficient repre-
sentations of the signal with the chosen family of functions. This
could conceivably be used for ‘‘spectral fingerprinting.’’

In this paper we use local sine packets with a polynomial bell
function and Meyer wavelets (see Fig. 1), respectively, to gen-
erate the LSPT and WPTand their best basis relative to the signal
at hand (see Figs. 2 and 3).We shouldmention that there are many
levels of sophistication already developed for these techniques.

Using LSPT, we can improve the bell functions for better fre-
quency localization, or take unequal intervals to construct the
tree (Auscher et al. 1992; Wickerhauser 1991). In WPT, for in-
stance, one can look for the best choice of wavelet family that
optimizes the frequency localization capability of the respective
wavelet packets (Coifman et al. 1992). Or one can generalize the
wavelet packet formalism to use different families in each de-
composition step of the tree (Hess-Nielsen 1994; Hess-Nielsen
& Wickerhauser 1996).

We have refrained from going into too much technical sophisti-
cation just to make the point that, despite the fact that ours is not
the optimalwavelet choice for harmonic frequency detection, it still
provides excellent results at much lower resolution. A subband
with 212 frequency windows is used, which is four orders of mag-
nitude lower than the standard Fourier methods used, for exam-
ple, in Pereira & Lopes (2004). Themethod also provides amuch
nicer spectrum and better control over artifices of incomplete data.

Fig. 1.—Meyer mother wavelet and its associated scaling function and filter functions. Top left: Wavelet function  (t ); top right: bandpass filter  ̂(!); bottom
left: scaling function �(t ); bottom right: low-pass filter �̂(!).
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3.1. Wavelet Package Transforms

Awavelet frame  �f g� 2I is a collection of functions  � (t) 2
L2R such that for any f 2L2R, there are bounds 0 < A � B <1
that verify

A fk k2�
X
� 2I

f ;  ih ij j2� B fk k2: ð1Þ

If A ¼ B ¼ 1, then  �f g� 2I can be called a basis. If on the
other hand A ¼ B > 1, redundancy exists and we call it a tight
frame; i.e., an inversion formula exists anyway:

f (t) ¼ A�1
X
� 2I

f ;  �h i � (t):

Fig. 2.—Time-frequency plane of the best-base representation of the signal with local sine packets. Gray values represent the relative importance of a local sine-packet
contribution.White bands represent time windows (essentially daytime periods) for which the frequency subdivision is too tight to be usefully represented. Black means
a higher absolute value of the coefficients. [See the electronic edition of the Journal for a color version of this figure.]

Fig. 3.—Time-frequency plane of the best-base representation of the signal with wavelet packets. Gray values represent the relative importance of a wavelet-packet
contribution. White bands represent frequency windows at which the subdivision is too tight to be usefully represented. Black means a higher absolute value of the co-
efficients. [See the electronic edition of the Journal for a color version of this figure.]
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Wavelet frames can be built from a single special function  ,
called the mother wavelet, by using flexible space-scale sam-
plings (or, in this case, time-frequency samplings)

 ab(t) ¼
1ffiffiffi
a

p  
t � b

a

� �
: ð2Þ

Admissibility of  as a mother wavelet is conditioned by the
inversibility condition, which essentially requires that

C ¼
Z þ1

�1

 ̂(!)
�� ��2
j!j d! <1: ð3Þ

The discrete wavelet transform (DWT) usually makes the dy-
adic choice a ¼ 2�j, b ¼ 2�jk j; k2Zð Þ and corresponds then
to a representation of the signal in terms of scaled and translated
wavelets

 jk(t) ¼ 2 j=2 2 jt � k
� �

: ð4Þ

For finite signals, this is a linear operation on a data vector
of length 2N , usually chosen to be invertible and orthogonal.
A single level of a DWT will first generate 2N�1 coefficients
dN�1; k ¼ f ;  N�1;k

� �
corresponding to details DN�1 at that

scale. The remaining information needed to completely repre-
sent the signal can be chosen from an orthogonal subset of
equal number of coefficients sN�1; k ¼ f ; �N�1; k

� �
correspond-

ing to a smoothing SN�1 of the signal.6 For the DWT this pro-
cess is iterated on each smoothing component until we have the
signal represented by mostly very small numbers (the wave-
let coefficients corresponding to the details at different scales)
and a few large numbers (basically the cumulative average). At
each level, the scaling functions �jk (t) form a basis orthogo-
nal to the  jk(t) and are in addition required to obey a dilation
equation7

�N�1(t) ¼
X
k

hk�Nk(t) ¼
ffiffiffi
2

p X
k

hk�N�1(2t � k): ð5Þ

Equation (5) means that the space SN (which is just our signal
sampled to the maximum resolution 2N ) is in fact a direct sum
SN ¼ DN�1 � SN�1. But then the scaling functions �Nk , which
form a basis for SN , besides generating SN�1 also generate any
of the DN�1. The point is that we can determine coefficients
hk ; gk for which this generation would look like equation (5)
and8

 N�1(t) ¼
X
k

gk�Nk(t) ¼
ffiffiffi
2

p X
k

gk�N�1(2t � k): ð6Þ

Generalizing this splitting concept to the details space, if we
designate W0(t) ¼ �N�1(t) and W1(t) ¼  N�1(t), then the set

W2n(t) ¼
ffiffiffi
2

p X
k

hkWn(2t � k); ð7Þ

W2nþ1(t) ¼
ffiffiffi
2

p X
k

gkWn(2t � k) ð8Þ

generates a basis to decompose the detail spaces into direct
sumsDj ¼ DDj

j�1
� SDj

j�1
, as was done forDN�1 above, where we

would have

W2(t) ¼
ffiffiffi
2

p X
k

hk N�1(2t � k); ð9Þ

W3(t) ¼
ffiffiffi
2

p X
k

gk N�1(2t � k): ð10Þ

The functions

Wmjk ¼ 2 j=2Wm(2
jt � k) ð11Þ

are called wavelet packets, and a whole library of them exist
into which a decomposition of the signal is possible. In this
paper we have chosen to create a wavelet-packet basis from the
Meyer  and � functions (Fig. 1).

As we mentioned above, in DWT the variables j and k are
integers that scale and translate the  (t) to generate the wavelet
frame. The scale index j indicates the wavelet’s width, support,
or variance (scale), and the location index k gives its mean
position. The factor 2�j=2 is for the energy normalization across
the different scales. Repeating the same operation for all pos-
sible j (in practice from N ¼ 2 j down, where N is the maximal
resolution of our signal) yields a characteristic multiresolution
analysis, based on dividing the signal at each level j into a
smoothed part Sj and a details partDj of equal size n ¼ 2 j�1. At
the next level, a simple wavelet transform would do the same
for the smoothed part Sj, leaving the details part Dj as it was.
But a wavelet packet transform (WPT) can also change Dj

instead, generating as a result new decimated smoothed and
details parts. There are many ways we can do this (choosing at
level j if we are going to use a transform of the Sj orDj part), but
there is a way to choose a best-basis decomposition to represent
the signal, as we see in x 5.

3.2. Localized Sine Packet Transforms

An LSPT is essentially a variable windowed Fourier trans-
form, as the frames are made of trigonometric functions mul-
tiplied by ‘‘soft’’ bell functions. By dilating and translating the
bell functions that multiply the signal and then Fourier trans-
forming it, we can have a complete representation of a signal.

LSPT follows closely from some of the proprieties of wavelet
analysis, but it is complementary to the WPT in the sense that the
LSPT gives priority to the time, while theWPT gives priority to
the scales (�1/frequency). In a general LSPT we are choosing
different time-window widths, and in each time interval the
frequency-window heights are all equal. In the WPT we are
choosing different frequency-window heights and in each scale
interval all time-window widths are equal. But the areas of the
cells are fixed, so that choosing width (height) fixes height (width).
See Figures 2 and 3.

We consider bell functions that modulate a trigonometric
function so that they behave as softened characteristic function
in time. They go softly from zero to one and from one to zero.

6 In this dyadic notation the mother wavelet corresponds to  (t) ¼  N�1(t)
and the scaling function to �(t) ¼ �N�1(t).

7 This has to do with the way they are built on the Fourier-transformed space.
The coefficients hk , gk (see eq. [6] below) are called filter coefficients, and they are
the coefficients of the inverse Fourier transform of frequency response functions
H(!) and G(!) that verify the scaling equations in Fourier space �̂(2!) ¼
H(!)�̂(!) and  ̂(2!) ¼ G(!)�̂(!). These equations can be used to effectively
build scaling and wavelet functions in Fourier space by iteration, as Meyer did.

8 At each level j, the smoothing space Sj verifies Sj ¼ Dj�1 � Sj�1, and
therefore we can represent both the scaling and the wavelet functions at level
j� 1 solely on the basis formed by the scaling functions �j at level j.
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For the simplest construction,9 let �(t) be a continuous real-
valued function on R that verifies

1. �(t) ¼ 0 if t < �1;
2. �(t) ¼ 1 if t > 1;
3. �(t)2 þ �(�t)2 ¼ 1; 8t.

We are interested in functions � that are smooth on � � 1; 1½ and
have vanishing derivatives at the boundary, at least first-order
ones.

Let us choose an equipartition of the real line with a sequence
ck , k2Z, so that jck � ck�1j ¼ constant. Consider the intervals
Lk ¼ ½ck�1; ckþ1�, which will be the support of our base, the
middle point of the interval ½ck�1; ck �, ak ¼ (1/2)(ck þ ck�1),
and the half-length of it, kl ¼ (1/2)(ck � ck�1). Since we took
equally spaced fckg, fakg will also be equally spaced, and we
will have constant jLk j and jIk j.

We can define a bell function with support in Lk by

bk (t) ¼
�

t � ak

kk

� �
; if t2 ck�1; ck½ �;

�
akþ1 � t

kkþ1

� �
; if t2 ck ; ckþ1½ �;

8>>><
>>>:

that localizes essentially in Ik ¼ ½ak ; akþ1�.10 ‘‘Injecting’’ fre-
quencies in the bells, !n;k , and renormalizing them to unity, we
obtain an orthonormal basis of L2(R) made of the functions

gn;k(t) ¼ bk(t)

ffiffiffiffiffiffiffi
2

Ikj j

s
sin !n;k� t � akð Þ

	 


for n2N0 and k2Z, where

!n;k ¼
(nþ 1=2)�

Ikj j
:

The tails of adjacent basis functions overlap, but they are still
made orthogonal functions by the choice of bells (see Auscher
et al. 1992).
We can construct another subspace that localizes the signal

essentially on Ik [ Ikþ1 generated by

Bk(t)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

Ikj j þ Ikþ1j j

s
sin

(nþ 1=2)�

jIk j þ jIkþ1j
� t � akð Þ

� �
;

with B2
k (t) ¼ b2k(t)þ b2kþ1(t), where the third constraint to the

bell is useful. We get half as many time intervals and twice as
many frequency intervals.11

This way, if we now consider a sampled signal of 2N elements,
we can repeat the process of binary joining the intervals until, in
principle, we have one time interval and 2N frequency windows,
where the Fourier analysis is recovered. Actually we prefer to
think of the splitting process. If we keep all the coefficients of
the decomposition in each splitting step, we construct a binary
library tree of all possible local sine basis representation. We
used a polynomial bell.

4. FREQUENCY DETERMINATION

If we choose subbands of the binary-tree decomposition of
any of these transforms we have a complete representation of

Fig. 4.—Amplitude spectrum for the seven-night combined data set: Time average of the wavelet packet transform coefficients at the 211 (gray) and 212 (black)
subbands. Frequencies fromPereira &Lopes (2004) are shown as dashed vertical lines,WPTestimates as solid vertical lines. [See the electronic edition of the Journal for a
color version of this figure.]

9 A more general basis can be constructed for which the basis vectors are
still localizing in time (mainly in ½ak ; akþ1�; see Auscher et al. 1992).

10 Increased steepness of the sides of the bell yields better localization in
frequency.

11 Again, because fckgwere taken equally spaced, jIk j is constant and we get
equally distant frequencies.
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that signal that is a special packet transform. This corresponds
to taking equal time-frequency boxes at high and low frequen-
cies, as well as early and late times. In the LSPTcase we recover
the Gabor transform. With a signal of 216 elements, any com-
plete representation with these transforms must also have 216

coefficients. In a subband if we have 2h frequency boxes, we
must have 216�h time boxes.

Figure 4 represents the time average of the WPTcoefficients’
modules, in order to compare it to the Fourier spectrum. It was
from that averaged spectrum that we searched for the WPT fre-
quencies in Table 1.

Taking a general LSPT with different boxes over time corre-
sponds to considering different frequency boxes in each time in-
terval, so the average over timewould be incorrect. This is another
reason for using this specific packet basis, besides keeping the
same resolution at low and high frequencies. Moreover, when
identifying ‘‘frequencies,’’ we are interested in large time win-
dows, which bring us shorter frequency windows and therefore
better frequency resolution (see Fig. 5).

In Figure 6 we see that a subband containing 212 frequency
windows is quite accurate in pinpointing the spectrum profile. It
is particularly accurate in identifying the maxima, even if at this

TABLE 1

Frequency Comparison

This Work

LSPT 12

( �Hz)

(1)

This Work

WPT 12

( �Hz)

(2)

PL 2004

( �Hz)

(3)

Kilk 1999

( �Hz)

(4)

O’Toole 2002

( �Hz)

(5)

Falter 2003

( �Hz)

(6)

1742 1742 1732.65 1744.40 . . . . . .
1895 1889 1891.45 1891.42 1891.01 1891.4

1980 1986 1985.81 1985.32 1985.75 1985.8

2072 2078 2075.85 2075.76 2075.72 2075.9

2084 2090 2090.75 2085.84 . . . . . .

2102 2102 2102.44 2103.28 2102.48 2102.0

2139 2133 2133.75 . . . . . . . . .

2200 2200 2201.49 2201.93 . . . . . .
2389 2389 2391.90 2392.04 . . . 2392.0

2767 2761 2763.52 2761.30 2765.9 2763.7

2847 2847 2856.46 2846.47 . . . . . .

4055 4061 4061.57 4061.81 . . . 4062.4

4147 4140 4140.68 4139.93 4151.48 . . .

Notes.—Comparison of this work’s LSPTandWPT frequencies (�3.1 �Hz) with those of Pereira &
Lopes (2004), Kilkenny et al. (1999), and O’Toole et al. (2002), and with the photometric UVB study of
Falter et al. (2003). Determined with 213 resolution.

Fig. 5.—Amplitude spectrum for the seven-night combined data set: Time average of the local sine packet transform coefficients at the 211 (gray) and 212 (black)
subbands. Frequencies from Pereira & Lopes (2004) are shown as dashed vertical lines and LSPT estimates as solid vertical lines. [See the electronic edition of the
Journal for a color version of this figure.]
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resolution there is difficulty resolving some of the peaks com-
posed ofmultiple frequencies.We also shouldmention that lower
resolution in frequency spectra leads to an averaging effect and
the corresponding smoothing of the spectra (see versions of WPT
and LSPT at the 211 subband in Figs. 4 and 5).

We could refine and go to higher frequency resolutions, but a
compromise must be made, since frequency spreading in WPT
and oscillation phenomena in LSPT show up as we approach
maximum frequency resolution (Hess-Nielsen 1994).

5. BEST-BASIS SELECTION AND SIGNAL
RECONSTRUCTION

The identification of the signal is a process of representation,
be it by frequency, by amplitude and phase coefficients, or by
wavelet packet coefficients. In addition to a good fit to the ex-
perimental data, a smaller number of coefficients is usually re-
garded as a property of a good representation. Compression is
natural in the wavelet domain, since cancellation of some low-
valued coefficients will tend to affect details only locally in the
signal, whereas in the Fourier domain every coefficient has global
effects. In order to minimize the number of coefficients needed
to represent our data we use an entropy criterion developed by
Coifman & Wickerhauser (1992) and Wickerhauser (1991).
This corresponds to minimizing an ‘‘entropy function’’ E( wJf g)
over the set of N coefficients wJ , where J ¼ mjk, obtained by
decomposing the signal SN into each possible choice of wavelet-
packet basis WJf g for a particular mother wavelet  (t) and
corresponding scaling function �(t). Defining a normalized prob-
ability distribution pJ ¼ w2

J /
P

J w
2
J for each choice of basis, then

the function

E( WJf g) ¼ �
X
J

pJ log2(pJ ) ð12Þ

should be a minimum for the best basis WJf g; i.e., the basis that
needs the lowest number of components to effectively represent
the signal. At this point it is debatable whether this is the best
criterion for selection of a basis, when economy factors should
give way to frequency precision goals. In this work we chose to
look for the best basis associated with the Meyer wavelet and
scaling functions. This choice of mother wavelet is probably not
optimal for this signal, but we use it to illustrate that, as a tool for
spectrum analysis, many choices of wavelet will give very good
results (i.e., more economical and with better resolution at larger
scales than Fourier approaches). As already mentioned by other
authors (Coifman et al. 1992; Hess-Nielsen 1994; Hess-Nielsen
&Wickerhauser 1996), there are proposals to investigate wave-
lets that would allow optimal determination of frequencies, which
we chose not to follow in this paper.
In Figures 7–10 we reconstruct the observation data using

Meyer’s wavelet packet best basis for the signal (Fig. 3). We
adopted several compression schemes, and the first (and most
common) is to eliminate all WPT coefficients below a cutoff
value. Figures 7 and 8 are examples of reconstruction of the
third observation night, corresponding respectively to 98.33%
and 99.88% compression. From these we see (Fig. 8) that higher
compression degrades the reconstruction quality mostly at the
end zone, where low-frequency contributions seem to dominate.
The last two figures (Figs. 9 and 10) reflect another com-

pression scheme in which a restriction in the frequencies al-
lowed for reconstruction is first imposed on the WPT of the
signal, and then a cutoff is applied. The logic behind this is to
isolate possible low-frequency noise from the main spectrum, a
common measure when using Fourier reconstruction techniques.
The cutoff value of 56 ; 10�3 in the squares of WPT coeffi-
cients was determined to result in a reconstruction of the signal
using the same amount of information as was used in Pereira &
Lopes (2004); i.e., 39 coefficients in all (Fig. 10). The frequency

Fig. 6.—Amplitude spectrum for the seven-night combined data set: Observed pulsation spectrum of the star PG 1605+72 using a conventional Fourier transform
(gray) and theWPT 212 subband (black dots). The profile is enhanced by a black line joining the dots. [See the electronic edition of the Journal for a color version of this
figure.]
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Fig. 7.—Reconstruction of the third night’s data with simple compression (98.33%), using 1096 coefficients with squares larger than a cutoff of 10�3 in Meyer’s
WPT best basis (Fig. 3). [See the electronic edition of the Journal for a color version of this figure.]

Fig. 8.—Reconstruction of the same data as above, but with a higher compression (99.88%), corresponding to the 78 coefficients above a cutoff of 56 ; 10�3 in the
same basis. [See the electronic edition of the Journal for a color version of this figure.]

Fig. 9.—Using only frequencies from the spectrum shown in Fig. 6 (i.e., dropping low- and high-frequency components), we get a 99.06% compression with 614
coefficients above a cutoff of 10�3. [See the electronic edition of the Journal for a color version of this figure.]

Fig. 10.—Again, dropping low-frequency components and using as few as 39 coefficients above a cutoff of 56 ; 10�3 (the same amount of information as used in the
Fourier fit in Pereira & Lopes 2004), we obtain a reconstruction with 99.94% compression. [See the electronic edition of the Journal for a color version of this figure.]



bandwidth was also the same as in the cited reference, and it is
included in the range shown in Figure 6. The other cutoff at
10�3 in WPT space yields a better reconstruction with 614 co-
efficients (99.06% compression; see Fig. 9) but is still much
worse than that of Figure 7, where the same cutoff was used on
all frequencies.

As we can see in these images, low frequencies are essential to
a good reconstruction. Suppressing them shows that some noise
does occur at the end of the observation period each night, but
there are also genuine star luminosity periodicities in that low-
frequency band, because the signal dies away faster than expected
as compared to the remainder of the signal. Further work should
be done on separation and detection of true low-frequency contri-
butions and identification of the low-frequency noise.

6. CONCLUSION

Time-frequency analysis has been used by many people in
many different fields of research. Nevertheless, this type of anal-
ysis is far frombeing themainstreamdata research toolbox.Wave-
let techniques are a tool that expands the Fourier analysis with so
many advantages thatwe believe its use should bewidespread (Chui
1992; Daubechies 1992; Hess-Nielsen & Wickerhauser 1996).

While we do not propose to comprehensively study those ad-
vantages in this work, we apply the aforementioned techniques
to do a time-frequency analysis of a signal measured over some
nights for which the diurnal information is absent. This is a clas-
sical study in which Fourier analysis is the standard procedure,
with some well-known problems that are overcome by the anal-
ysis proposed in this work.

In this paper we studied the pulsating spectrum of sdB PG
1605+072. Subdwarf B stars are known to present nonlinear
stellar pulsations, namely, in the upper layers of the star where
the pulsation are strongly nonadiabatic; this fact is well estab-
lished once the timescale of stellar pulsation is of the same or-
der of magnitude of the transport of energy in the outer layers
of the star. Therefore, a general technique such as the wavelet
analysis allows a better determination of periodicities of the pul-
sation spectrum. In fact, the representation of stellar pulsations
as a series of harmonic functions is actually a strong simplifica-
tion of the observed pulsations on these stars.

By looking for luminosity variations in the PG 1605+072 pho-
tometry data, we essentially confirm, by an independent method,
the frequencies of themodes of vibration already studied by Pereira
&Lopes (2004), Kilkenny et al. (1999), O’Toole et al. (2002), and
Falter et al. (2003). A careful analysis of Table 1 and Figures 4–5
highlights the accuracy of the proposedmethods discussed in this
paper, and in particular of the WPT method. The LSPT method
(col. [1]) shows the ability to identify the same frequencies as
the classical Fourier analysis, nevertheless has a lower consis-
tency with those determined in previous campaigns. An excel-
lent agreement is found between theWPTmethod (col. [2]) and
the results obtained by previous observational campaigns, namely,
the campaign fromKilkenny et al. (1999), which has time series of
180 hr over five observational sites (col. [4]). The results obtained
with WPT methods seem quite interesting, if we recall that our
analysis is done on a observational time series of 45 hr, obtained
on a single site during 15 nights.
Furthermore, this type of analysis introduces a new concept

of periodicity that is related to the inverse timescale, rather than
the harmonic frequency concept basic to Fourier. Thismeans that
deformations and instantaneous perturbations of the harmonic
components will not affect the spectra in a global manner, thus
yielding a more robust means of periodicity determination. Of
course some of the frequencies detected might belong to an al-
together nonharmonic event, in which case new physics might
be present.
The best-base criterion for representation of both packet trans-

forms was shown to be not only economical, but provided also
some insight into the main spectral contributions of the signal.
It was used to create a scheme of band-suppressed compression
and to illustrate the differences in LSPT and WPT representa-
tions, displaying the dual windowing schemes that are invoked
when analyzing and/or reconstructing the signal.
In summary, the results presented in this paper strongly

suggest that wavelet packet basis analysis of stellar pulsation
time series can be an excellent methodology to obtain the pul-
sation frequencies and other periodicities from observed light
curves. Furthermore, in general, methods of wavelet analysis may
shed new light on the spectrum of pulsation stars and improve the
diagnostic tools of observational asteroseismology.
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