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Abstract: This paper presents algorithms for nonlinear and adaptive control of the viral load in a HIV-1
infection model. The model considered is a reduced complexity nonlinear state-space model with two
state variables, representing the plasma concentration of un-infected and infected CD4+ T-cells of the
human immune system. The viral load is assumed to be proportional to the concentration of infected
cells. First, a change of variables that exactly linearizes this system is obtained. For the resulting linear
system the manipulated variable is obtained by state feedback. To compensate for uncertainty in the
infection parameter of the model an adaptation mechanism based on a Control Lyapunov Function is
designed. Since the dependency on parameters is not linear, an approximation is made using a first order
Taylor expansion.
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1. INTRODUCTION

1.1 Framework

Strategies for counteracting HIV infection designed using con-
trol methods are receiving an increased attention. Detailed stud-
ies that combine modeling analysis with clinical results show
that the initial infection phase may be represented using sim-
ple nonlinear state models Perelson and Nelson (1999). This
fact boosted the production of an increasing number of papers
where therapy strategies are derived from control principles.

A straightforward approach to the design of a controller to
regulate the state of a nonlinear system consists in obtaining
an approximate linear model around the equilibrium point con-
sidered using Taylor series approximations and then to design
a state feedback controller that drives the state increments with
respect to the equilibrium to zero. Although simple, this method
has the drawback of requiring that the initial conditions are
close to the equilibrium for the approximation to be valid,
being difficult to establish stability results. Furthermore, if the
linearized system is not controllable, it may not be possible to
design adequately the state feedback. This is the case of the
model of HIV-1 infection considered hereafter around the equi-
librium corresponding to an healthy person. If this approach
is followed, the linearization must then be performed around
the equilibrium point corresponding to infection and the state
feedback controller should thus drive the state away from it,
with the risk of becoming unstable due to the neglected higher
order terms of the model.

Opposite to this approach, feedback linearization Nijmeijer
and van der Schaft (1990) aims at exactly canceling the
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nonlinearities using a nonlinear static feedback. This results in
a transformed model that is exactly linear in a region around
the equilibrium point to which a linear regulator may then
be applied. In this region, that is usually larger than the one
resulting from Taylor approximation methods, stability of the
closed loop is ensured.

This paper proposes a strategy that combines model reduction
using a simple singular perturbation approximation, feedback
linearization and LQ regulation based on state feedback. Due
to the wide variability of the dynamics associated to different
patients the capacity of a controller to stabilize models that
are different from the nominal one is quite important. Hence,
we consider the inclusion of an estimator of the infection
parameter.

It should be remarked that the present paper, as well as the refer-
ences quoted above, forms just one step towards the application
of control techniques to the design of HIV-1 infection therapy.
Indeed, in the actual clinical practice, the drugs currently used
for treatment of HIV-1 infection are neither continuously in-
fused nor is the virus concentration measured in permanence.
The sampling of the controllers designed is therefore required,
a subject that deserves attention on its own from the point of
view of systems and control.

1.2 Literature review

Examples of research papers addressing the design of HIV-
1 infection therapy with control techniques include nonlinear
control based on Lyapunov methods and on the use of decom-
position in strict feedback form with backstepping Gee et al.
(2005), adaptive control Cheng and Chang (2004), Optimal
Control Souza et al. (2000) and Predictive Control Zurakowski
and Teel (2006). In Brandt and Chen (2001) various methods
based on time-delay feedback control are shown, via Lyapunov
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Parameter Value Units

d 0.02 day−1

s 10 mm−3day−1

θ 1× 10
−3 mm3day−1

µ 0.24 day−1

Table 1. Model parameters.

function methods, to stabilize an HIV-1 model similar to the
one considered in the present paper. In Biafore and D’Atellis
(2005) a HIV-1 infection control strategy based on nonlinear
geometric control (exact linearization) is described, but without
any mention to adaptive control and considering a different
model.

1.3 Paper contributions and organization

The contribution of this paper consists of a therapy design
procedure for HIV-1 based on nonlinear control. The con-
troller proposed combines exact linearization with an adapta-
tion mechanism that relies on a joint control Lyapunov function
for the tracking and estimation errors.

the paper is organized as follows: After this introduction that
motivates the problem, reviews the main references and states
the paper contribution and structure, the model used for HIV-
1 infection is presented in section 2. This model has two
equilibrium points that are characterized in section 3. Section
4 addresses exact linearization and section 5 describes the
design of the controller for the resulting linear system. Section
6 deduces the adaptive controller and finally section 7 draws
conclusions.

2. HIV-1 INFECTION MODEL

Hereafter, the model considered is the reduced complexity
second order model:

ẋ1 = s− dx1 − (1− u)θx1x2 (1)

ẋ2 = (1− u)θx1x2 − µx2 (2)

In equation (1), s represents the production rate of healthy
cells, the coefficient d the natural death of the cells and θ the
infection rate coefficient. The infection rate of healthy cells is
proportional to the product of healthy cells x1 and free virus x3.
This process can be influenced by drugs (Reverse Transcriptase
Inhibitors – RTI) that reduce the virus ability to infect cells.
This influence is represented by the manipulated variable u,
in which u = 0 corresponds to absence of drug and u = 1
to a drug efficiency in preventing infection of 100%. Actually,
with the available drugs, the efficiency is below 100%, and u is
constrained to the interval [0, umax] with umax < 1.

Equation (2) comprises two terms that represent, respectively,
the transition of healthy cells to infected cells and the death of
infected cells, with µ the death coefficient.

An infected cell liberates free virus. In this reduced complexity
model the virus load is assumed to be proportional to the
concentration of infected cells.

Table 1 shows one possible set of model parameters, used in
simulations.

The reduced nonlinear model (1, 2), may also be written as

ẋ = f(x) + g(x)u (3)

Equilibrium point:
[

240.0000 21.6667
]

T

Eigenvalues: −0.0208 ± 0.0690j

Stability: asymptotically stable

Equilibrium point:
[

500.0000 0.0000
]

T

Eigenvalues: −0.0200, 0.2600

Stability: unstable

Table 2. Stability of the equilibrium points of the
reduced model.

where the state vector is given by x = [x1 x2]
′ and with the

vector functions f and g defined as

f :=

[

s− dx1 − θx1x2

θx1x2 − µx2

]

(4)

g := θx1x2

[

1
−1

]

(5)

3. EQUILIBRIUM POINTS

In the absence of therapy, i. e. when u = 0, model (1, 2) has as
equilibrium points the solutions of the algebraic equations

0 = s− dx1 − (1− u)θx1x2 (6)

0 = (1 − u)θx1x2 − µx2. (7)

with respect to the state variables x1 and x2. These equilibrium
points are

x1 =
s

d
, x2 = 0 (8)

corresponding to an healthy person, and

x1 =
µ

θ(1 − u)
, x2 =

s

µ
−

d

θ(1 − u)
(9)

corresponding to an infected individual.

The local stability analysis of these equilibrium points is made

by computing the eigenvalues of the Jacobian matrix Ã =
∂f/∂x, given by

Ã =

[

−d− θx2 −θx2

θx2 θx1 − µ

]

x=xeq

(10)

By using the model parameters of table 1, the results of table 2
are obtained.

4. EXACT LINEARIZATION

System (1, 2) is not linearizable by performing a state transfor-
mation only. However, by the combined use of the transforma-
tions

u = α(x) + β(x)v (11)

z = S(x) (12)

the following linear model is obtained

ż = Az +Bv. (13)

with

A =

[

0 1
0 0

]

B =

[

0
1

]

(14)

Figure 1 shows a block diagram of these transformations. The
manipulated variable v in the transformed model is called ”vir-
tual” because it has only mathematical existence, in opposition
to u, that has the physical meaning of being the drug dosage
actually applied to the patient. Eq. (11) allows to compute the
actual drug dose u such that between v and z there is a linear
relationship to which linear control techniques may then be
applied.
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β(x)v
+

+

S(x)x=f(x)+g(x)u

α(x)

.v u x z

Fig. 1. Exact linearization.

Proposition 1 The transformations performing linearization are

β(x) =
1

θx1x2(µ− d)
(15)

α(x) =
−ds+ d2x1 + µ2x2 + (d− µ)θx1x2

(d− µ)θx1x2
(16)

S(x) =

[

ϕ(x)
s− dx1 − µx2

]

(17)

with ϕ(x) given by

ϕ(x) = x1 + x2 −
µ

θ
−

s

µ
+

d

θ
(18)

2

Proof of Proposition 1

In Nijmeijer and van der Schaft (1990) it is shown that the
nonlinear system (3) with f(x0) = 0 and scalar input u is
feedback linearizable around the equilibrium x0 if and only if
the distributions Di defined by

Di = span
{

g(x), adfg(x), . . . , ad
i−1
f g(x)

}

(19)

verify the two following conditions:

dimDn(x0) = n, (20)

Dn−1 is involutive around x0 (21)

In relation to the model (3) with f and g given by (4) and (5),
the first condition results in

dimD2(x) = rank [g(x) adfg(x)]

=
βk

c
x2 rank

[

x1 s− µx1

−x1 −s+ dx1

]

= 2, for x1, x2 6= 0 and µ 6= d.

(22)

and hence dimD2(x0) = 2. The second condition is also
verified because D1 = span{g(x)} is involutive since the Lie
bracket [g, g] = 0 ∈ D1. The model is therefore feedback
linearizable.

Since the conditions on Di are satisfied, there exists (Nijmeijer
and van der Schaft (1990)) a function ϕ(x) that verifies the
following three conditions:

ϕ(x0) = 0 (23)

〈dϕ, adkfg〉(x) = 0, k = 0, 1, . . . , n− 2 (24)

〈dϕ, adn−1
f g〉(x0) 6= 0 (25)

In terms of ϕ(x), the linearizing transforms yielding (14)
around the equilibrium state x0 are given by Nijmeijer and van
der Schaft (1990):
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Fig. 2. Time response of the linearized system to a virtual
rectangular system (virtual signal on the left, actual signal
on the right).

α(x) = −
(

LgL
n−1
f ϕ(x)

)

−1

Ln
fϕ(x) (26)

β(x) =
(

LgL
n−1
f ϕ(x)

)

−1

(27)

zi = Li−1
f ϕ(x), i = 1, 2, . . . , n (28)

The function 18 satisfies the three conditions, in particular

(1) Computing ϕ(x) at the equilibrium x0 given by point (9)
yields ϕ(x0) = 0;

(2) 〈dϕ, g〉 = ∂ϕ(x)
∂x

g(x) = 0;

(3) 〈dϕ, [f, g]〉 = ∂ϕ(x)
∂x

[f, g] = βk
c
(d − µ)x1x2 6= 0, for

x = x0.

Using ϕ(x) as given by (18) and (26)-(28) yields the transfor-
mations (15-17).

The expression (18) for ϕ(x) is obtained by noting that Condi-
tion 2 may be written as

[

∂ϕ

∂x1

∂ϕ

∂x2

] [

1
−1

]

βk

c
x1x2 = 0 (29)

and hence implies that ϕ(x) satisfies the partial differential
equation

∂ϕ

∂x1
=

∂ϕ

∂x2
(30)

whose solution is given by any differentiable function Φ of
argument x1 + x2:

ϕ(x1, x2) = Φ(x1 + x2) (31)

The simplest choice that also satisfies Condition 1 is given by
(18). The expressions for α and β follow then in a straightfor-
ward way from 28.

2

With these transformations, the system in a region of state space
around the equilibrium (9) is transformed exactly in the linear
system (14). Figure 2 shows the response of the linearized
system to a rectangular virtual input (i. e. the input v before the
transform).
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5. CONTROL WITH KNOWN PARAMETERS

The problem of designing a control law for the linearized
system is addressed hereafter. The aim is to design a state
feedback control law that generates the virtual manipulated
variable v as a function of the transformed state z. More
specifically, we want to design the vector of feedback gains
K = [k1 k2], the equilibrium value of v (denoted v̄) and the
equilibrium z̄ = [z̄1 z̄2]

T of z corresponding to the a specified
equilibrium of x, in the control law:

v = v̄ −Kz̃ (32)

where
z̃ := z − z̄ (33)

The equilibrium value of the control variable of the linear
system verifies

Az̄ +Bv̄ = 0 (34)

5.1 Equilibrium values

Assume that the concentration of infected cells x2 is to be
driven to a reference value r and kept there. At the equilibrium
defined by x2 = r one has, by equating the derivatives to zero
in (1, 2)

u = 1−
µd

θ(s− µr)
(35)

and

x1 =
s− µr

d
(36)

In terms of the linearized system (that operates with trans-
formed variables) this results in the equilibrium point z̄ =
S(x̄), i. e.:

[

z̄1
z̄2

]

=

[s− µr

d
+ r +

1

θ
(d− µ)−

s

µ
0

]

= T (r) (37)

5.2 LQ controller design

It is then possible to design a LQ controller, using the linearized
dynamics, that keeps the system at the desired reference value
r.

The transformation T (r) allows to compute the equilibrium
point in terms of the variables (z1, z2). The controller is de-
signed by minimizing the quadratic cost:

J =

∫ +∞

0

zTQzz + ρv2dt (38)

where Qz and ρ adjust the contribution of the variables z(t)
and v(t). Since these variables are virtual (corresponding to
transformed states) it is difficult to develop heuristic choices
of their values. Thus it was decided to adjust the weights Qx

for the state variables x and then compute the corresponding
Qz . Using a linear approximation, it is shown in the Appendix
that

Qz =

(

∂S−1

∂z

)T

Qx

(

∂S−1

∂z

)

. (39)

With the following choice of the weights

Qx =

[

0.01 0
0 23

]

, ρ = 103 (40)

the results shown in figures 3 and 4 are obtained. These weights
are ”tuning knobs” that allow the designer to adjust the relative
importance of the state variables and the drug usage.
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Fig. 3. Changing the reference in the number of infected cells.
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Figure 3 shows in the three left graphics the variables of the
linearized system (virtual input v and states z1, z2), and on
the three graphics of the right the actual variables (input u and
states x1, x2) with the above choice of weights. Fig. 4 shows
the concentration of free virus. Its value decays fast, such as
the one of infected cells, as shown in fig. 3. The specification
consists in reducing the number of virus to 50 copies per mm3

in a period of less then 50 days.

In order to provide an overall idea of the influence of ρ on
control performance, fig. 5 plots

Ju :=

∫ 300

50

u2(t)dt

and

Jvir := λ

∫ 300

50

(x3(t)− r)2dt λ = 10−6, r = 50

as a function of ρ. Decreasing ρ leads to a smaller viral load
integrated over time, but to bigger drug dose administration.
The choice ρ = 10−3 was selected as a possible compromise.

6. ADAPTIVE CONTROL

In practice model parameters are not perfectly known. A possi-
ble approach to estimate them is described hereafter and relies
on a joint control Lyapunov function for both the control and es-
timation errors Sastry and Isidori (1989). In the work reported
only the adaptation of the infection parameter θ is considered.

6.1 Error equation

Let θ∗ be the (unknown) true value of parameter θ, assumed to

be constant, and θ̂ its estimate. The estimation error θ̃ verifies

θ̂ = θ∗ + θ̃ (41)

Differentiating (12) with respect to time and using the change
of variable (11) yields

ż =
∂S

∂x
{f(x, θ∗) + g(x, θ∗)[α(x, θ̂) + β(x, θ̂)v]} (42)

For the adaptive technique to be applied the equation error that
relates the tracking error with the estimation error should be

linear in θ̃. For this sake, we do a first order expansion of both
α and β and neglect higher order terms:

α(x, θ∗) ≈ α(x, θ̂)− α̃(x, θ̂)θ̃ (43)

β(x, θ∗) ≈ β(x, θ̂)− β̃(x, θ̂)θ̃ (44)

where

α̃(x, θ̂) =
∂α

∂θ̂
=

ds− d2x1 − µ2x2

(d− µ)x1x2θ̂2
(45)

and

β̃(x, θ̂) =
∂β

∂θ̂
=

1

θ̂2(d− µ)x1x2

(46)

With this approximation, and using the fact that

∂S

∂x
{f(x, θ∗) + g(x, θ∗)[α(x, θ∗) + β(x, θ∗)v]} = Az +Bv

(47)
equation (42) becomes

ż = Az +Bv +Ψ(x, v, θ)θ̃ (48)

where

Ψ(x, v, θ) := −
∂S

∂x
g(x, θ̂)[α̃(x, θ̂) + β̃(x, θ̂)v] (49)

From this equation and using (32) and (34) the error equation
is written as

˙̃z = Akz̃ +Ψ(x, v, θ)θ̃ (50)

Since
∂S

∂x
=

[

1 1
−d −µ

]

(51)

it follows that

Ψ(x, v, θ̂) =

[

0
1

]

v + ds− d2x2
1 − µ2x2

θ̂
(52)

6.2 Adaptation law

In order to design an adaptation mechanism to adjust θ, con-
sider the candidate Control Lyapunov Function

V (z̃, θ̃) = z̃TP z̃ +
1

γ
θ̃2 (53)

where P = PT is a positive definite matrix and γ > 0 is a
scalar design parameter.

Differentiating V with respect to time and using (50) it follows
that

V̇ = z̃T (AT
k P + PAk)z̃ + θ̃(2ΨT (x, v, θ̂)P z̃ +

2

γ
˙̃
θ) (54)

Where
Ak := A−BK (55)

For K such that Ak is hurwitz (as it happens, for instance, if K
is designed by solving the LQ problem in section 5.1), there is
Q = QT positive definite such that

AT
k P + PAk = −Q (56)

Using (56) and selecting
˙̃θ such that

˙̃
θ = −γΨ(x, v, θ̂)P z̃ (57)

equation (54) becomes

V̇ = −z̃TQz̃ ≤ 0 ∀z̃ 6= 0 (58)

Using a standard argument based on La Salle’s Invariant Set
Theorem it is then concluded that z̃ → 0. Equation (57) implies
the use of an adaptation law given by

θ̂(t) = −θ̂(0) +

∫ t

0

γΨT (x, v, θ̂)P z̃dt (59)

or

θ̂(t) = θ̂(0) + γ

∫ t

0

d2x1 + µ2x2 − ds− v

θ̂
(p12z̃1 + p22z̃2)dt

(60)

Figure 6 shows a result obtained using adaptive controller.

7. CONCLUSIONS

It was shown that a reduced complexity nonlinear model for
the HIV-1 infection can be controlled using adaptive nonlinear
control methods. The approach followed combines exact lin-
earization, LQ control and a joint control Lyapunov function
for for the tracking and estimation errors, to design the estima-
tion law. Since this requires a linear dependence of the error
equation on the estimation error, some approximations related
to the linearizing transforms have to be performed.

The adaptation law considers only the tuning of the infection
parameter. The same procedure may be extended to estimate
the other parameters at the cost of a more cumbersome algebra.
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Fig. 6. Results with adaptive control.
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APPENDIX – WEIGHT SELECTION

Since x = S−1(z), the corresponding in z to the quadratic form
in x is given by

(x − x0)
TQx(x − x0) = (S−1(z)− S−1(z0))

TQx(S
−1(z)−

−S−1(z0)) (.1)

that is not, in general, a quadratic form in z.

Using the linear approximation

S−1(z) ≈ S−1(z0) +
∂S−1

∂z
|z0(z − z0) (.2)

and replacing (.2) in (.1), it follows that

(x− x0)
TQx(x− x0) ≈

≈ (z − z0)
T

(

∂S−1

∂z

)T

Qx

(

∂S−1

∂z

)

(z − z0) (.3)

and hence (39) follows.
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