
Noname manuscript No.
(will be inserted by the editor)

Unbalanced Tree Search on a Manycore System using the GPI
programming model

Rui Machado · Carsten Lojewski · Salvador Abreu · Franz-Josef

Pfreundt

Received: date / Accepted: date

Abstract The recent developments in computer ar-

chitectures progress towards systems with large core

count (Manycore) which expose more parallelism to

applications. Some applications named irregular and

unbalanced applications demand a dynamic and asyn-

chronous load balance implementation to utilize the full

performance a Manycore system. For example, the re-

cently established Graph500 benchmark aims at such

applications. The UTS benchmark characterizes the per-

formance of such irregular and unbalanced computa-

tions with a tree-structured search space that requires

continuous dynamic load balancing. GPI is a PGAS

API that delivers the full performance of RDMA-enabled

networks directly to the application. Its programming

model focuses the use of one-sided asynchronous com-

munication, overlapping computation and communica-
tion. In this paper we address the dynamic load balanc-

ing requirements of unbalanced applications using the

GPI programming model. Using the UTS benchmark,

we detail the implementation of a work stealing algo-

rithm using GPI and present the performance results.

Our performance evaluation shows significant improve-

ments when compared with the optimized MPI version

Rui Machado
E-mail: rui.machado@itwm.fhg.de

Carsten Lojewski
E-mail: lojewski@itwm.fhg.de

Franz-Josef Pfreundt
E-mail: pfreundt@itwm.fhg.de
Fraunhofer Institut Techno-und Wirtschaftsmathematik
Competence Center for High Performance Computing
Kaiserslautern, Germany

Salvador Abreu
E-mail: spa@di.uevora.pt
University of Evora
Evora, Portugal

with a maximum performance of 9.5 billion nodes per

second on 3072 cores.

Keywords GPI · Work Stealing · Load Balancing ·
UTS · Manycore

1 Introduction

The development of parallel applications requires differ-

ent optimization and programming techniques to match

the different types of applications. Within the whole

range of applications, some applications possess char-

acteristics which allow to classify them as irregular and

unbalanced. Examples of such applications include op-

timization problems or heuristic search problems and

are important in different domains such as SAT solving
and machine learning.

The characteristics of such applications include un-

predictable communication, unpredictable synchroniza-

tion and/or a dynamic work granularity. One common

requirement is a asynchronous and dynamic load bal-

ancing scheme because the inherent unpredictability of

the computation does not allow a static partitioning of

work across the computing resources.

The UTS benchmark [1] aims at the characteriza-

tion of such unbalanced computations and at measur-

ing their efficiency in terms of load balancing. It ac-

complishes this using a search space problem where a

large tree of parametrized characteristics is traversed.

The tree traversal generates imbalance during run-time

according to the tree characteristics, therefore requir-

ing a implementation that minimizes this imbalance ef-

ficiently. This includes low communication overheads

and low idle times.

GPI stands for Global address space Programming

Interface and is a PGAS (Partitioned Global Address

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Científico da Universidade de Évora

https://core.ac.uk/display/62448377?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Rui Machado et al.

Space) API targeted at RDMA-enabled interconnects

such as Infiniband. It provides a different programming

model than the message passing paradigm of which

MPI is the most widely used standard. GPI focuses

on one-sided communication and the development of

more asynchronous algorithms, leveraging the capabili-

ties of modern interconnects to overlap communication

with computation. As GPI focuses on the communi-

cation, we developed the ManyCore Threading Pack-

age (MCTP) to harness the computation power of re-

cent systems composed of several cores. The MCTP

is a threading package based on thread pools that ab-

stracts the native threads of the platform and provides

advanced features for multithreaded programming. The

GPI programming model presents an alternative for the

development of parallel applications running on mod-

ern systems. It already showed an advantage in some

types of parallel applications with excellent results [4].

In this paper we are interested and focus on the

dynamic and asynchronous load balancing problem re-

quired by irregular applications. More concretely, we

present an implementation of work stealing using GPI

and evaluate our implementation using the UTS bench-

mark which targets exactly that. The evaluation used

two different and large (up to 300 billion nodes) tree

configurations and was performed on a recent many-

core system and we demonstrate the scalability of our

implementation on up to 3072 cores. In both cases the

GPI version outperforms the MPI version by a maxi-

mum factor of 2.5 in terms of raw performance (number

of nodes processed per second), reaching a maximum

performance of 9.5 billion nodes per second.

This paper is organized as follows: the following sec-

tion presents some related work on the topic. In section

3 we briefly describe the UTS problem as a representa-

tive of the problems we are interested in. In section 4 we

introduce GPI, the framework used to address the prob-

lem. We then describe our implementation in section 5

and present the results of our performance evaluation

in section 6. Finally, we conclude our work in section 7

and discuss some future work.

2 Related work

Load balancing is a central aspect of parallel comput-

ing that as been studied and analyzed many times in

the literature. In [13] several schemes for scalable load

balancing are presented and analyzed for a variety of

architectures. More recently, in [15] the authors discuss

the new challenges in dynamic load balancing and how

they address them with Zoltan [16]. A common prob-

lem concerns task scheduling of tasks organized as a

task graph and dynamic and irregular task tree [14].

Work stealing, as a method for efficient load balanc-

ing, has been explored and used in different contexts.

The seminal work [5] considers a shared memory setting

where tasks are stolen when the dequeue of a processor

becomes empty. This work is used in Cilk [12].

Recently and aimed at distributed memory machines,

work on the X10 [10] programming language presented

XWS [11], the X10 Work Stealing framework. The XWS

extends the Cilk work-stealing framework which include

several features to implement graph algorithms, global

termination detection, phased computation and more.

Using the UTS benchmark as a representative of

unbalanced computations that require dynamic load

balancing has been explored for different programming

models, exploring their main features and devising suit-

able techniques that match the programming model.

In [6] and [7], dynamic load balancing using message

passing (MPI) is examined using two approaches (work

stealing and work sharing). An UPC [8] implementa-

tion of the UTS benchmark is presented and evaluated

in [3]. Also following a PGAS approach, ARMCI [9] in

this case, the work in [2] aims at the implications and

performance of a design targeted at scale.

3 UTS - Unbalanced Tree Search

The Unbalanced Tree Search (UTS) benchmark was de-

signed to represent applications requiring substantial

dynamic load balance. The problem is rather simple:

the parallel exploration of an unbalanced tree, by count-

ing the number of nodes in an implicitly constructed

tree that is parametrized in shape, depth, size and im-
balance. Applications that fit this pattern include many

search and optimization problems that must search through

a large state space of unknown or unpredictable struc-

ture.

The tree is implicitly generated where each node

in the tree can be generated by the description of its

parent. Each node in the tree is represented by a node

descriptor which is the result of applying the SHA-1

secure hash algorithm to the descriptor of the parent

of the node together with the child index of the node.

With this generation method, UTS defines different tree

types that represent different search types or problems

and different load imbalance scenarios.

One interesting point about UTS is the different

implementations available. There are MPI implemen-

tations (different approaches), UPC, shmem, OpenMP

and more. And all the implementations are optimized

to take advantage of the features of each programming

model, creating an interesting comparison point for new

implementations.

Unbalanced Tree Search on a Manycore System using the GPI programming model 3

Global Memory

Node 1 Node 2 Node n

Local Memory

MCTP threads

Global Memory Global Memory

The Global Programming Interface (GPI)

DMA interconnect

MCTP threads MCTP threads

Local MemoryLocal Memory

Fig. 1: GPI architecture

4 GPI

GPI (Global address space Programming Interface) is a

PGAS API for parallel applications running on clusters.

The thin communication layer, delivers the full perfor-

mance of RDMA-enabled networks directly to the ap-

plication without interrupting the CPU.

The figure 1 depicts the architecture of GPI.

The local memory is the internal memory available

only to the node and allocated through typical allo-

cators (e.g. malloc). This memory cannot be accessed

by other nodes. The global memory is the partitioned

global shared memory available to other nodes and where

data shared by all nodes should be placed. The DMA

interconnect connects all nodes and is through this in-

terconnect that GPI operations are issued. At the node

level, the MCTP is used to take advantage of all cores

present on the system and make use of the GPI func-

tionality and global memory. We developed the Many-

core Threading Package (MCTP) in order to help pro-

grammers to take better advantage of new architectures

and facilitate the development of multithreaded appli-

cations. The MCTP is a threading package based on

thread pools that abstracts the native threads of the

platform.

GPI is constituted by a pair of components: the GPI

daemon and the GPI library. The GPI daemon runs on

all nodes of the cluster, waiting for requests to start ap-

plications and the library holds the functionality avail-

able for a program to use: read/write global data, pas-

sive communication, global atomic counters, collective

operations. The two components are described in more

detail in our previous contribution [4]. (Note: GPI was

previously known as Fraunhofer Virtual Machine (FVM)).

In the context of this work, the important function-

ality is the read/write of global data and global atomic

counters.

Two operations exist to read and write from global

memory independent of whether it is a local or remote

location. The important point is that those operations

are one-sided and non-blocking, allowing the program

to continue its execution and hence take better advan-

tage of CPU cycles. If the application needs to make

sure the data was transferred (read or write), it needs

to call a wait operation that blocks until the transfer is

finished and asserting that the data is usable.

Global atomic counters allow the nodes of a cluster

to atomically access several counters and all nodes will

see the right snapshot of the value. There are two oper-

ations supported on counters: fetch and add and fetch,

compare and swap. The counters can be used as global

shared variables used to synchronize nodes or events.

As an example, the atomic counters can be used to

distribute workload among nodes and threads during

run-time. They can also be used to implement other

synchronization primitives.

5 Dynamic load balancing with GPI

The UTS benchmark requires a asynchronous and dy-

namic load balancing solution. As referred, we choose

a work stealing strategy to address this.

Work stealing is a relatively simple algorithm. It is

triggered every time a thread runs out of local work.

An application taking advantage of a work stealing al-

gorithm usually enters the following states:

Working

While a thread has work, it keeps itself busy. In

the case of UTS that translates to visiting nodes,

generating child nodes and add them to the work

list.

Work stealing

When the work is all processed and the thread will

fall into an idle state, it looks for a victim to steal

work from and if it finds a potential one, it performs

a steal. How the search for a victim and the actual

steal operation are performed is implementation de-

pendent.

Termination detection

If work stealing fails that is, no victim thus no work

is found, the thread enters termination detection.

Termination detection is a topic in distributed com-

puting per se and several algorithms exist.

The GPI implementation of the UTS benchmarks

focuses therefore on the work stealing and termination

detection stages. We leverage the previous work on UTS

with MPI and other implementations, taking them a

starting point for our own implementation.

A common aspect to the implementations is the use

of a data structure that is partitioned into two regions:

4 Rui Machado et al.

tail split head

thread arena

shared private

GPI global memory

Fig. 2: Data structure and GPI memory placement

a private and shared. The private region holds the work

of a worker thread and this is not available to others

threads while the shared region holds the work available

to be stolen. The GPI implementation uses a similar

implementation of this data layout. Because we want

to take advantage of GPI, we completely implemented

the data structure on the global memory of GPI. This

allows global availability of the data and meta-data.

Moreover and because the global memory of GPI is al-

ready available from the start of the application, the

data structure operations (e.g. add, remove) become

cheaper since no calls to the allocator (malloc) are made

and it is just a matter of working with offsets of the

global memory. The figure 2 depicts the organization of

the data structure and its placement the global memory

of GPI.

A thread adds and removes work packages (nodes)

to its private region. This translates to a simple move-

ment of the head since there is no synchronization on

this private region. When the private area hits a parametrized

threshold, it releases a chunk of work to its shared re-

gion. This translates to a simple movement of the split

pointer towards the head. A thread can also re-acquire

chunks of work from its shared region when it exhausts

the work on its private region, by moving the split

pointer towards the tail. Finally, when a thread per-

forms a steal, it does it at the victim’s tail and moves

it towards the head. Since it is a shared region, some

mutual exclusion mechanism is required.

From a single thread point of view, the whole pro-

gram control structure follows Algorithm 1.

A GPI implementation usually has two levels. The

MCTP level is the single node case and in Algorithm

1 translates to steps 0, 1 and 2. The GPI level takes

care of the remote case which translates to step 3 and

most of step 4.

Each MCTP thread has its own arena organized as

described above. For steps 0 and 1, each thread acts

on the data structure placed on its own arena, adding,

Algorithm 1 Program control structure

while ! done do
while there is work do

consume work
generate (if that is the case) new work and save it

5: share some work if there is a surplus on the private
area

end while
{Step 1: re-acquire}
if there is work on the shared region then

re-acquire it and go back to work
end if
{Step 2: local steal}

10: if local steal is successful then
go back to work

end if
{Step 3: remote steal}
if remote steal is successful then

go back to work
15: end if

{Step 4: termination detection}
enter barrier and termination detection

end while

removing work and re-acquiring it when needed. When

they run out of work, threads must look and steal work

(Step 2) from other threads. The thief thread can and

does peek the status of the other thread’s arena and

if the shared region has more than a chunk of work,

it is a potential victim. Because a mutual exclusion

mechanism is required, the thief thread locks the data

structure (each data structure has one lock to access its

shared region and pointers), makes sure the work is still

available and modifies the tail of the victim. Finally, the

lock is released and the thief can move the stolen work

to its own private region. The choice of the victim and

whether a local steal happens follows a rather simple
heuristic: the thief circulates over all other threads and

if a surplus of work is found it immediately takes that

thread as its potential victim.

When a MCTP thread does not find any local work

to steal it tries to steal from a remote thread (Step 3)

and has to resort to GPI.

5.1 Remote work stealing

In the remote case, the work stealing operation relaxes

the meaning of a steal (a thief usually steals without

the victim to know it) and requires the participation of

the victim. The participation of the victim come as a

requirement due to the need of mutual exclusion on the

access to the shared region of the victim. The remote

thief is potentially trying to steal work concurrently

with other nodes and the other threads on the same

node of the victim.

Unbalanced Tree Search on a Manycore System using the GPI programming model 5

Our implementation applies a request/polling strat-

egy: the thief requests and the victim polls and responds

to requests. This ensures that the access to the victim’s

shared region is atomic since the victim itself will per-

form it.

Each worker thread has the added responsibility of

handling steal requests from other nodes which are di-

rectly targeted at it. Added to the normal program

control structure, each thread polls for pending remote

steal requests. If it finds a request, a reply to the thief

is sent. The reply takes the form:

– a work chunk

– no surplus of work but the node still has private

work

– no work at all

If there is work available, it comes from the shared

region and the victim performs a local steal to itself.

The work chunk is reserved for the steal request and

the victim issues a remote write directly to the thief’s

private region. This communication is a non-blocking

one-sided step that is queued and offloaded to the HCA

allowing the victim to immediately return to its normal

work loop.

Responding that there is no work to steal but that

there is private work allows the thief to better evaluate

the status of the victim. As it will be mentioned below,

this is useful for detecting termination.

From the thief perspective, the remote work steal

takes two simple steps: find the victim and send the

request in case work is found. To find the victim, the

thief thread takes advantage of the one-sided read prim-

itive of GPI (RDMA) to read the status of the remote

node. This is accomplished by reading some meta-data

of all threads on the remote node and finding the one

with surplus of work. Here the heuristic is simple: if

one thread has surplus of work it becomes the poten-

tial victim and the request is sent to it. The victim

only receives a request on the very probable case of

having surplus of work, diminishing the possibility of a

negative answer from the victim. This reduces the com-

munication overhead and the waiting time of the thief

for a negative answer. If the whole victim node is out

of work, the thief tries another potential node until it

tried all nodes. The thief tries all nodes in a ring pat-

tern, starting at the node where it performed the last

steal.

5.2 Termination detection

The current implementation uses a simple termination

detection algorithm. When a thread finds no work to

steal there is potential for the termination state. As

with work stealing, the termination detection works at

the two levels, local and remote.

The local termination detection level works as fol-

lows: when worker threads of each node are not able

to find work to steal they enter a local cancel-able bar-

rier which allows them to return to the stealing state

in case new work is made available. All but the last

thread of the node stay in this unsellable barrier. The

last thread on each node, by acknowledging that the

node is completely idle and no work was found, enters

a second level of the termination detection.

The second level of termination detection, global

termination, is handled by one single thread. The rea-

son for this is - using the current simple implementation

- to avoid that all idle threads wildly keep looking for

work and thus putting a high pressure on the intercon-

nect.

The last thread keeps looking for the availability of

work on remote nodes and trying to steal a chunk. And

it knows if the remote nodes still have private work

since the response from the remote node includes both

situations. When this last thread realizes that all nodes

are out of work - they all responded with “there is no

work at all” - it increases an atomic counter by one and

waits until this atomic counter reaches the total num-

ber of nodes. The global atomic counters of GPI are

used for this termination flag. As all nodes increase the

termination flag, the last thread on each node respon-

sible for global termination detection warns the other

worker threads waiting on the barrier that termination

has been reached and they can exit.

On the other hand, if the last thread waiting for ter-

mination detection finds and steals some remote work,

it cancels the barrier on where the other local threads

are waiting making them return to the normal program

loop.

5.3 Prefetching work

GPI provides asynchronous communication primitives

geared towards higher performance, allowing the appli-

cation to overlap computation and communication. Any

application making use of GPI should therefore exploit

this feature.

The remote steal operation is implemented with a

split-phase non-blocking semantics where a request has

two distinct and independent phases (steps). In the first

phase, the request is submitted and the function im-

mediately returns (non-blocking) not waiting for the

request completion - the calling worker thread is free

to continue its execution with some other work. In the

second phase, a request is then checked for completion.

6 Rui Machado et al.

We take advantage of this and implemented a work

pre-fetch step in order to overlap the communication

involved in remote steal response with the normal pro-

gram structure.

The prefetch step is triggered if the two following

conditions are met:

– the worker thread tries to acquire work from its

shared region and the work left there is smaller than

a chunk of work - the thread is running out of work.

– there is a imminent remote steal - the threads on

the same nodes do not have enough shared work for

a local steal.

If the conditions are met, one remote steal request

is submitted solely to the neighbor node (the nodes are

paired in a ring). When the threads actually runs out of

work, it first checks if a prefetch request was issued and

in that case, checks its completion and answer. If the

answer was positive, the thread avoids trying to steal

work from other threads and can immediately continue.

Although this adds some small extra overhead to

the worker thread (submitting the request, checking if

a prefetch was issued), we observed a 95% success ratio

between submitting a remote steal request and getting

a positive response on the overall prefetch steps per-

formed.

6 Experimental results

In this section, we present experimental results obtained

on the evaluation of our implementation.

All results were obtained on a system of up to 256

nodes where each node is equipped with a Intel Xeon

X5670 CPU (“Westmere”) running at 2.93GHz with

6 cores and 12MB of L3 cache. Each node has two of

such processors providing 12 threads (Hyper-Threading

is disabled) making up to 3072 threads on the whole sys-

tem. The nodes are connected via a Mellanox MT26428

QDR (40 Gb/sec) Infiniband card.

The UTS problems used for the performance evalua-

tion are two, representing two different types and sizes:

a geometric tree of about 270 billion nodes and a bino-

mial trees with size of about 300 billion nodes.

We compare our implementation to the work steal-

ing MPI implementation of UTS due to the general

availability of MPI and since it is the standard for the

development of parallel applications. The MPI imple-

mentation used was MVAPICH2 1.5.1.

The performance evaluation was run up to 3072

cores (threads) with 256 nodes. For each node setup,

the execution made use of the Full node or Half node.

Full node means that we use the maximum number of

physical cores available (12) and Half means only half

of those (6).

The reason behind this differentiated test is to ob-

serve the threads contention effects on the overall per-

formance. Since we are using a mixed scheme for local

and remote steals and the single node steals imply a

locking mechanism, having a larger number of threads

(cores) should present some contention effects.

The figure 3 presents the results obtained for a ge-

ometric tree of about 270 billion nodes.

The GPI version scales well reaching a peak perfor-

mance (shown in figure 3a) of around 9.5 billion nodes

per second which represents a 2.5 times speed-up factor

over the MPI implementation (MPI best is 3.8 billion

p/sec).

Comparing the two approaches in terms of cores

used (Half or Full), we see that GPI behaves as expected

that is, using more cores yields better performance. In

fact and although the number of cores doubles between

the Half and Full versions, using all cores attains 84%

performance improvement over using half of the cores.

The MPI version suffers harder from the number of

threads used, where using all cores only yields a 8%

improvement over using half the cores in the largest

number of nodes.

The figure 3b presents the obtained relative speedup

to using 32 nodes as origin and, directly related, the

figure 3c presents the relative efficiency when scaling

the problem from 32 nodes (origin) to 256 nodes. Both

GPI Half and GPI Full obtain high speedup (close to

the maximum 8) with a relative efficiency above 89%

in all cases. Worth noting is that using all cores yields

slightly lower speed-up factor and efficiency than just

using half of the cores. This is an expected result since

we have a fixed problem size and the efficiency should

decrease because of the extra overhead involved. This

observation is only noteworthy since we interested in

measuring the difference and quantify that extra over-

head. In this case, the values are acceptable as we ob-

serve an decrement in efficiency from 94% (GPI Half)

to 89% (GPI Full) with the largest node count.

The MPI implementation has two faces: using half

of the cores available (half) yields good results, with a

speedup close to the GPI implementations and a rel-

ative efficiency above 85% in all cases. On the other

hand, using all available cores (Full) and although ob-

taining higher performance, demonstrates scalability prob-

lems since the maximum obtained speedup only reaches

a factor of 3.81 and with a rapidly decreasing efficiency

that lowers to 48% at the largest core number. In the

MPI case, increasing the node count for a fixed problem

size decreases by a much larger margin the efficiency.

Unbalanced Tree Search on a Manycore System using the GPI programming model 7

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 32 64 128 256

P
er

fo
rm

an
ce

 (
bi

lli
on

 n
od

es
/s

ec
)

Number of nodes

GPI Full
GPI Half
MPI Half
MPI Full

(a) Performance

 1

 2

 3

 4

 5

 6

 7

 8

32 / 1 64 / 2 128 / 4 256 / 8

R
el

at
iv

e
sp

ee
du

p

No. of nodes / Relative factor

GPI Full
GPI Half
MPI Half
MPI Full

(b) Relative Speedup

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

32 64 128 256

R
el

at
iv

e
ef

fic
ie

nc
y

Number of nodes

GPI Full
GPI Half
MPI Half
MPI Full

(c) Relative Efficiency

Fig. 3: Performance on Geometric Tree (270 billion nodes)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 32 64 128 256

P
er

fo
rm

an
ce

 (
bi

lli
on

 n
od

es
/s

ec
)

Number of nodes

GPI Full
GPI Half
MPI Half
MPI Full

(a) Performance

 1

 2

 3

 4

 5

 6

 7

 8

32 / 1 64 / 2 128 / 4 256 / 8

R
el

at
iv

e
sp

ee
du

p

No. of nodes / Relative factor

GPI Full
GPI Half
MPI Half
MPI Full

(b) Relative Speedup

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

32 64 128 256

R
el

at
iv

e
ef

fic
ie

nc
y

Number of nodes

GPI Full
GPI Half
MPI Half
MPI Full

(c) Relative Efficiency

Fig. 4: Performance on Binomial Tree (300 billion nodes)

The figure 4 depicts the largest problem - about 300

billion nodes. In this case, it is a binomial tree which

presents higher load balancing requirements.

Again, GPI scales well on both versions and the per-

formance difference between using all or half of the cores

is acceptable - the worst case, using 256 nodes, using

all cores achieves a 72% improvement over using half of

the cores. The speedup values are not so high as with

the Geometric tree problem but that is acceptable since

this Binomial tree problem imposes higher load balanc-

ing requirements. Nevertheless, we see a 6.06 maximum

speedup factor (at 256 nodes) which represents a 76%

efficiency when taking 32 nodes as a starting point.

On the other hand, MPI has some problems at the

largest core count. Using half of the available cores even

yields better performance than using all cores. This is

more evident on the speedup plot (figure 4b) and on

the efficiency plot (figure 4c with a lowest point of 26%

of relative efficiency.

7 Conclusion and future work

In this paper we presented our current work on apply-

ing the GPI programming model to one of the problems

raised by irregular applications namely, dynamic load

balancing. Moreover, we focus on a recent large system,

where each node can handle up to 12 threads of exe-

cution in a total of 3072 threads and evaluate our im-

plementation on it. Our objective was to evaluate such

a programming model on the dynamic load balancing

problem using recent hardware and design a solution

that could improve the results obtained with current

implementations on other programming models such as

message passing.

We use the UTS benchmark as a representative of

that class of problems and evaluated two different kinds

of workloads, geometric and binomial trees. In both

cases the GPI version outperforms the MPI version by

a maximum factor of 2.5 in terms of raw performance

(number of nodes processed per second). The perfor-

mance results (9.5 and 8.7 billion nodes for the geo-

metric and binomial trees, respectively) represent the

best values obtained for the used platform that we are

aware of. In terms of speedup and efficiency, we ob-

served encouraging results.

One important aspect that we focused on and which

revealed an interesting outcome, was to evaluate the

performance when using all and only half of the cores

8 Rui Machado et al.

on each node of the system. Recent systems employing

a cc-NUMA system architecture demand more care on

the exploitation of system resources which if ignored

might yield surprising results. Ideally, the performance

obtained running the same problem on all cores of a

node should yield doubled the performance when run-

ning it on half of the cores. In practice this is almost

never the case. In our case, our GPI implementation

always behaves acceptably where, in the worst case (bi-

nomial tree on 256 nodes), using all the cores yields a

72% performance improvement over using only half of

the cores. On the other hand, the MPI implementation

reflects better the mentioned problem and has scalabil-

ity issues on the binomial tree case: using all the 3072

cores performs worse than using only half of the cores

on the same node count and with a relative efficiency

rapidly decreasing as the number of nodes increases.

This comes as a confirmation on the difficulties when

implementing or porting algorithms to modern systems

but we show that a rather simple implementation of

an efficient algorithm as work stealing with very sim-

ple heuristics can benefit from the GPI programming

model. The mixed nature of the programming model,

handling the local and remote cases, allows to better

exploit the increasing hierarchy of parallelism in more

recent cluster systems. Also, by concentrating efforts in

developing more asynchronous algorithms and overlap-

ping computation and communication using the primi-

tives of GPI results in excellent performance.

The obtained results lead us to conclude that GPI

gives a very good solution to the proposed problem.

While there is room for optimization, the obtained knowl-

edge and implemented algorithms will be useful when

we turn to the development of real applications that

present the same parallelism requirements.

As future work we intend to do deeper experimen-

tation with our implementation: work splitting (how

much does the thief steal from the victim needs) or

victim choice heuristic are details that need to be bet-

ter examined and that might result in performance im-

provements. We intend to apply this knowledge on real

workloads. More generally, we continue to improve the

GPI framework and to better adapt to developments in

system architectures and interconnects.

References

1. Stephen Olivier, Jun Huan, Jinze Liu, Jan Prins, James
Dinan, P Sadayappan and Chau-Wen Tseng. UTS: An Un-
balanced Tree Search Benchmark Proc. 19th Intl. Work-
shop on Languages and Compilers for Parallel Computing
(LCPC). New Orleans, LA, November 2-4, 2006.

2. James Dinan, Sriram Krishnamoorthy, D. Brian Larkins,
Jarek Nieplocha, P. Sadayappan Scalable Work Stealing

Proc. 21st Intl. Conference on Supercomputing (SC). Port-
land, OR, Nov. 14-20, 2009.

3. Stephen Olivier, Jan Prins. Scalable Dynamic Load Bal-
ancing Using UPC. Proc. of 37th International Conference
on Parallel Processing (ICPP-08). Portland, OR, Septem-
ber 2008.

4. Machado, R., Lojewski, C.: The Fraunhofer virtual ma-
chine: a communication library and runtime system based
on the RDMA model. Computer Science-Research and De-
velopment 23(3), 125132 (2009)

5. Blumofe, R., Leiserson, C.: Scheduling multithreaded com-
putations by work stealing. In: Proc. 35th Ann. Symp.
Found. Comp. Sci. (1994) 356368

6. J. Dinan, S. Olivier, G. Sabin, J. Prins, P. Sadayappan,
and C.-W. Tseng. Dynamic load balancing of unbalanced
computations using message passing. In Proc. of 6th Intl.
Workshop on Performance Modeling, Evaluation, and Op-
timization of Parallel and Distributed Systems (PMEO-
PDS), pages 18, 2007.

7. J. Dinan, S. Olivier, G. Sabin, J. Prins, P. Sadayappan,
and C.-W. Tseng. A message passing benchmark for unbal-
anced applications. J. Simulation, Modelling Practice and
Theory, 16(9):1177 1189, 2008.

8. UPC Consortium. UPC language specifications, v1.2.
Technical Report LBNL-59208, Lawrence Berkeley Na-
tional Lab, 2005.

9. J. Nieplocha and B. Carpenter. ARMCI: A portable re-
mote memory copy library for distributed array libraries
and compiler run-time systems. Lecture Notes in Computer
Science, 1586:533546, 1999.

10. P. Charles, C. Grotho, V. Saraswat, C. Donawa, A. Kiel-
stra, K. Ebcioglu, C. von Praun, and V. Sarkar. X10: an
object-oriented approach to non-uniform cluster comput-
ing. In Proc. Conf. on Object Oriented Prog. Systems, Lan-
guages, and Applications (OOPSLA), pages 519538, 2005.

11. G. Cong, S. Kodali, S. Krishnamoorty, D. Lea, V.
Saraswat, and T. Wen. Solving irregular graph problems
using adaptive work-stealing. In Proc. 37th Int Conf. on
Parallel Processing (ICPP), Portland, OR, Sept. 2008.

12. M. Frigo, C. E. Leiserson, and K. H. Randall. The
implementation of the Cilk-5 multithreaded language. In
Proc. Conf. on Prog. Language Design and Implementation
(PLDI), pages 212223. ACM SIGPLAN, 1998.

13. Kumar, V., Grama, A.Y., Vempaty, N.R.: Scalable load
balancing techniques for parallel computers. J. Par. Dist.
Comp. 22(1) (1994) 6079

14. Chakrabarti, S., Yelick, K.: Randomized load- balancing
for tree-structured computation. In: IEEE Scalable High
Performance Computing Conf. (1994) 666673

15. K. D. Devine, E. G. Boman, R. T. Heaphy, B. A. Hen-
drickson, J. D. Teresco, J. Faik, J. E. Flaherty, and L.
G. Gervasio. New challanges in dynamic load balancing.
J. Appl. Numer. Math., 52(2-3):133152, 2005.

16. Karen Devine, Bruce Hendrickson, Erik Boman,
Matthew St. John, and Courtenay Vaughan. 2000. De-
sign of dynamic load-balancing tools for parallel ap-
plications. In Proceedings of the 14th international
conference on Supercomputing (ICS ’00). ACM, New
York, NY, USA, 110-118. DOI=10.1145/335231.335242
http://doi.acm.org/10.1145/335231.335242

