
The Euclid Abstract Machine

JERZY MYCKA1?, JOSÉ FÉLIX COSTA2 , FRANCISCO COELHO3

1 Institute of Mathematics,
University of Maria Curie-Skłodowska

Lublin, Poland
§

2 Department of Mathematics,
I.S.T., Universidade Técnica de Lisboa

and CMAF – Centro de Matemática e Aplicações Fundamentais,
Lisboa, Portugal

||

3 Department of Mathematics,
Universidade de Évora, Portugal

#

He took the golden Compasses, prepar’d
In Gods Eternal store, to circumscribe
This Universe, and all created things:
One foot he center’d, and the other turn’d
Round through the vast profunditie obscure,
And said, thus farr extend, thus farr thy bounds,
This be thy just Circumference, O World.

Milton, Paradise Lost
Most famous painting by William Blake

§ email: Jerzy.Mycka@umcs.lublin.pl
|| email: fgc@math.ist.utl.pt
# email: fc@uevora.pt
? Corresponding author

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Científico da Universidade de Évora

https://core.ac.uk/display/62447013?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Abstract. Concrete non-computable functions are usually re-
lated to the halting function. Is it possible to present examples
of non-computability, which are unrelated to the halting prob-
lem and its derivatives? We built an abstract machine based on
the historic concept of compass and ruler constructions (a com-
pass construction would suffice) which reveals the existence of
non-computable functions not related with the halting problem.
These natural, and the same time, non-computable functions can
help to understand the nature of the uncomputable and the pur-
pose, the goal, and the meaning of computing beyond Turing.

Key words: unconventional computing, Euclid machine, undecidable
problems.

1 INTRODUCTION

The three most famous problems of ancient Greeks were to square a circle
(i.e., to find a square with the same area — problem also known as the quadra-
ture of a circle), to trisect an angle, and to duplicate a cube, by the use of only
an unmarked ruler and a compass. Greek philosophers, in particular Plato,
viewed the straight line and the circle as the basic and perfect curves that be
sufficient to accomplish the geometric constructions, namely to fully explain
the motions of the heavenly bodies, like the sun, the moon, the fixed stars and
the erratic planets which trajectories were thought later as compositions of
circles and uniform movements.

The Greeks were not able to solve these three problems (see [2]). Hip-
pocrates of Chios (about 460–380 B.C.) became famous for the major contri-
butions on (a) the quadrature of lunes that can be seen as an attempt to square
the circle and (b) the solution of the duplication of the cube. Menaechmus
(about 350 B.C., tutor of Alexander the Great) became famous for his attempt
to duplicate the cube.?

The ancient Greeks were interested in the construction of different an-
gles. Starting with a few fundamental angles such as angles of 60◦ and 108◦

(the angle of a regular pentagon), in a similar way to modern trigonometry,
they could construct other specific angles by (a) adding two given angles, (b)
subtracting one given angle from another, and (c) bisecting a given angle. At-
tempts to solve the trisection problem are due to Archimedes (287–212 B.C.),

? Legend says that in response to Alexander’s request for a short account of geometry,
Menaechmus replied O King, for traveling over the country there are royal roads and roads
for common citizens; but in geometry is one road for all.

2



Nicomedes (about 240 B.C.), and Hippias (about 420 B.C.). Sliding linkage
based on Archimedes trisection process, although well known is not reducible
to ruler and compass and the other attempts failed also to meet Plato’s pro-
gram. The most well know attempt to square the circle is due to Hippias.

The duplication and trisection problems are closely related: (a) they can
both be solved by using conic sections (known to the Greeks), (b) when ex-
pressed algebraically, they both lead to cubic equations, and (c) the proofs
that they can not be solved with ruler and compass alone make use of the
same approach and were given at the same time.

The proofs of the impossibility of duplicating a cube and trisecting an
angle rely in the theory of cubic equations, and were developed over many
centuries and formally proved by Wantzel ([8]). The proof of impossibility
of the quadrature was developed when Lindemann (1852–1939) proved that
π is a transcendental number.

Assuming that the general form of a polynomial equation is

a0 + a1x + . . . + an−1x
n−1 + anxn = 0,

the cubic equation takes the form

a0 + a1x + a2x
2 + a3x

3 = 0.

We have the following classic definition:

Definition 1.1 By a constructible root of an equation we mean a root that has
the following property: if a unit length is given, we can construct with ruler
and compass a line segment with the length equal to the root.

Then we have two main results:

Proposition 1.2 A cubic equation with integral coefficients that has no ratio-
nal root has no constructible root.

Proposition 1.3 If the coefficients of a polynomial equation are integers, then
any rational root of the equation can be written in the form p/q, where p is a
factor of a0 and q is a factor of an.

With these two propositions we can prove the main impossibility results:

Proposition 1.4 The duplication of the cube and the trisection of the angle
can not be accomplished by ruler and compass alone.

3



For the proofs and further discussions see [4] and [16]. For more techni-
cal proofs see [14], chapter 5 (in chapter 6 the reader can find the proof of
Lindemann’s theorem on the transcendence of π).

It is interesting to notice that, in 1672, Mohr showed that

• every construction with ruler and compass can be performed with a
compass alone.†

Of course, there can be considered also constructions using ruler alone.
Poncelet suggested that instead of a compass a singled fixed circle, together
with its center, should suffice. If the center of the circle is not known, then
fewer constructions are possible. Hilbert asked how many circles must be
given in order for the center of one of them to be constructed using ruler
alone. Cauer, in 1912, showed that for two general circles this is impossible.
Grossmann showed that three linearly independent circles suffice for geomet-
ric constructions with only a ruler. It is also known that all ruler and compass
constructions can be performed using a two-edged ruler, whose edges are ei-
ther parallel or meet at a point. More ideas can be read in [7].

� -

C

1

O P

A

B

R

U

D

FIGURE 1
Computing

√
2 at point U.

We start our discussions about the purpose of this paper with the illustra-
tions of some Euclidean constructions. We will make use of the Euclidean
plane together with unscaled, unmarked Cartesian orthogonal axis (that can

† Cf. William Blake’s most famous painting and Milton’s description of creation.

4



be constructed in the beginning of each session on Euclid machines). Let us
also suppose that we use the x axis to represent numbers as multiples of a
suitable unit, by means of an unmarked ruler and a compass accordingly to
what was said above.

Example 1.5 We can obtain irrational numbers along the x axis by simple
algebraic construction, such as

√
2. The following is a possible Euclid ma-

chine for the purpose. The construction is illustrated in Figure 1.

01 :: draw two different points with labels O and P
02 :: draw the line trough O and P and give it the label A
03 :: draw the perpendicular to A going through P and give it label B
04 :: draw the circumference with center P going through O and give it the label C
05 :: give the label R to the intersection of B and C over P
06 :: draw the circumference with center O going through R and give it the label D
07 :: give the label U to the intersection of A and D on the right of O

If the point O is taken as the origin of the Cartesian coordinate system and
the length of OP is taken as unit, then the length of OU is

√
2. This is the

kind of programs we want to write using ruler and compass.

Example 1.6 As another example, an Euclidean program for the multiplica-
tion can be given by means of the well known Thales’ theorem. All details are
illustrated in Figure 2.

01 :: draw two different points with labels O and P
02 :: draw the line through O and P and give it the label A
03 :: draw the perpendicular to A going through P and give it label B
04 :: draw along A any point to the right of O and give it the label S
05 :: draw along B any point and give it the label R
06 :: draw the line going through O and R and give it label D
07 :: draw the perpendicular to A going through S and give it label E
08 :: label the intersection point of D and E by T

If the point O is taken as the origin and the length of OP is taken as unit,
then the length of ST is the length of PR times the length of OS. It means
that

|ST | = |PR| × |OS|.

In the next section we introduce a suitable language to write programs us-
ing the above instruction types. We provide examples and we will discuss

5



���
�����

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

��

� -1

D

O P S

T

A

B E

R

FIGURE 2
Computing the product |PR| × |OS| = |ST |.

two different ways of looking to these programs: as constructs or as proofs.
In Section 2 we recall concepts of the unlimited ideal register machine URM

and simulate URM programs by Euclidean constructions. In Section 4 we
discuss algebraic numbers and its subset of reachable points by unmarked
ruler and compass. Finally, in Section 5 we define some undecidable predi-
cates.

The last aim of this paper is to put in correspondence the impossibility of
some Euclidean geometric constructions, like (a) the duplication of the cube
or (b) the trisection of the angle, with some undecidable problems in classical
computability theory.

2 OPERATIONS

Let us imagine a construction of algorithms acting in the framework of Eu-
clid’s geometry. We can use an infinite (in reality sufficiently large) sheet of
paper, an unmarked ruler and a compass. Now we need to specify the list of
possible operations.

6



• P (P1, . . . , Pn) — Draw a finite number of distinct points P1, . . . , Pn.‡

• C(P,Q) — Draw the circle with the center P and going through the
point Q.

• LC(P,Q;A) — Give the label A to the circle with the center P and
going through the point Q.

• L(P,Q) — Draw the line passing through P and Q.

• LL(P,Q;A) — Give the label A to the line passing through P and Q.

• LP (O1, O2;A,B) — Give the label A to the point of the intersection
of the objects (lines or circles) O1 and O2, in the case of two intersec-
tions choose freely the order of labeling by A and B.

• D(A) — Delete the label A.

• X ∈ C : n — If the point X is in the circle C, then execute the n-th
instruction; otherwise go to the next instruction.

Of course, from the first operation we see that points are always labeled,
unless labels are ultimately removed through an instruction of the type D.
Let us add that each label can be used only in the unique way, i.e., one label
can identify exactly one object. This does not mean that some objects can not
have two or more labels.

Let us comment some aspects of the above list of operations. The number
of starting points is arbitrary and related to the purpose of a program. For
example, we can think about a construction of the circle going through the set
of given points — then at least three points are needed at the beginning. Of
course, any configuration of these points is possible, but some of them can
lead to unexpected behavior of the program (as incorrect data supplied for
some algorithm working on numbers).

Let us add that in a natural way for the operation C(P,Q) the points P,Q

can be identical, then we obtain zero-sized circles (i.e., the same point P ). In
the case of L(P,Q) we need to have P and Q distinct in order to construct a
well-defined line. If some operation is impossible to execute (as L(P, P ) or
LP (O1, O2;A,B) when O1, O2 do not intersect or are not distinct) then our
program incorrectly halts (like in the case of division by zero for numbers).

‡ We can think about this operation as a weak version of the axiom of choice — we can always
choose finite set of different points from the Euclidean plane.

7



Some subtlety is connected with the operation D. It is not necessary to
use this operation in any program, which is known to have a fixed number of
steps. But in some situations we cannot foresee how many steps are needed
to complete the program. If we want to have some label chosen for the con-
structed point we can be forced to rename points during computation. It will
be clearly visible, when we describe how to represent variables as points.
This necessity leads us to an introduction of the operation D.

The last operation X ∈ C : n is a conditional form of an instruction. It is
needed to build programs with non-fixed numbers of steps during construc-
tions. We interpret X ∈ C : n as X inside the circle C or on the circum-
ference C. The interpretation is equivalent to the relation ≤ on real numbers
and is chosen as comfortable in our constructions.

A program is a (implicitly numbered) list of operations of the above types.
After the n-th operation the next one (with the number n + 1) is executed,
unless it is the last operation or it is the test X ∈ C : n.

Example 2.1 Let us consider the construction of two perpendicular lines. We
need to start with two points P , Q, then draw the line through these points.
Next we need two circles to construct a perpendicular line.

Here is the code for the construction of a perpendicular line to PQ through
P (see Figure 3):

01 :: P (P,Q)
02 :: L(P,Q)
03 :: LL(P,Q;A)
04 :: C(P,Q)
05 :: LC(P,Q;C)
06 :: D(Q)
07 :: LP (A,C;Q1, Q2)
08 :: C(Q1, Q2)
09 :: LC(Q1, Q2;C1)
10 :: C(Q2, Q1)
11 :: LC(Q2, Q1;C2)
12 :: LP (C1, C2;S1, S2)
13 :: L(S1, S2)

By the similarly constructed programs we can give Euclid machines, which
draw equilateral triangles or the line that bisects some angle.

Let us consider an analogy which exists between programs of Euclid ma-
chines and theorems of Euclidean geometry.

8



FIGURE 3
Construction of a perpendicular

Example 2.2 We can start by recalling the following Thales’ Theorem: An
inscribed angle in a semicircle is a right angle. How can this fact be checked
by means of Euclid machines? Let us imagine the following construction of
Figure 4.

01 :: Draw three different, non-collinear points O,A,X

02 :: Draw the circle C with the center O and going through A

03 :: Draw the line L through O and A

04 :: Label the other point of intersection of L and C by B

05 :: Draw the line through O and X

06 :: Label the points of the intersection of this line and C as P,Q

07 :: Draw the line going through A and P

08 :: Draw the line going through B and P

09 :: Draw the perpendicular L′ to the line BP through P

10 :: Label the intersection of L′ and L as A′.

9



Now let us analyze the above part of the program (which can be translated
into instructions of the Euclid machine in the obvious manner). For the cor-
rect construction only a requirement that the starting points are non-collinear
is sufficient.

FIGURE 4
Thales theorem

We have constructed the angle ∠APB and, after that, we have added the
perpendicular L′ to PB in the point P . Thus the fact that ∠APB is a right
angle is equivalent to the fact that the points A (the intersection of AP with
L) and A′ (the intersection of L′ and L) are identical. We can use the test
operation to check the last statement, let us assume that every point is a circle
with a radius of the length 0.

• A′ ∈ A : n

We can use this situation to build some kind of output. For example, the
program would end its activity if this condition is true; otherwise it would go

10



into infinite loop. Or we can draw some previously chosen labels for some
point (e.g. O): + for the positive test; − for the negative one.

In the light of the above example we can translate proposed proofs of Eu-
clidean geometry in equivalent programs; the proof is correct if for all initial
configurations we obtain the previously chosen special sign (e.g., +) of an
acceptance.

The reader surely noticed that our geometric constructions with a ruler
and a compass are non-deterministic in the sense that they depend on the
order of labeling. This fact is not truly relevant for our proofs. Indeed, the
non-determinism of labeling can be removed by imposing some conventions
on drawing circles.

We assume a Cartesian (unmarked) reference frame (see [14], chapter 5).
Such a frame can always be imposed by some arbitrary choice on Euclidean
plane. Acceptable convention is: the instruction LP (O1, O2;A,B) is exe-
cuted in the following way:

• If both objects O1 and O2 are lines, then always choose label A when-
ever there is such an intersection.

• If either O1 or O2 is a line, then the intersections (if any) are labeled
from left to right and from above to bottom along the line.

• The same as in the previous item along the line of intersections if both
O1 or O2 are circumferences.

3 REGISTER MACHINES

In this section we present the Turing completeness of the above described ge-
ometrical machine (i.e., we prove that to each computable — partial recursive
— function corresponds at least one Euclid machine). We use for this purpose
not the Turing machine but an equivalent formulation, the unlimited register
machine [13]. Every unlimited register machine (URM for short) program
is a finite sequence of instructions acting on (potentially) infinite number of
registers containing natural numbers. The instructions of URM machines
programs can be chosen in the following way.

• Z(n) — Put 0 into the n-th register.

• S(n) — Increment (adding 1) the current value of the n-th register.

11



• J(n, m, k) — If the values in the n-th and m-th registers are equal,
jump to the k-th instruction, else continue with the execution of the
next instruction in the list.

We use the following conventions: (a) inputs are registered in the first
registers of the memory, let us say, giving two inputs x and y, we consider
R1 for x and R2 for y, (b) the other registers hold the number 0, and (c)
when the machine halts the output may be read in the register R1. With these
conventions in mind, to add numbers x and y we can execute the following
URM program:

01 :: J(2, 3, 5)
02 :: S(1)

03 :: S(3)
04 :: J(1, 1, 1)

The previous program halts on all inputs. The next program only halts on
even inputs giving as output half of the input.

01 :: J(1, 2, 6)
02 :: S(3)
03 :: S(2)

04 :: S(2)
05 :: J(1, 1, 1)
06 :: Z(0)

07 :: J(1, 3, 10)
08 :: S(1)
09 :: J(1, 1, 7)

There are many variants of machines with registers (compare [13], [9]).
Some of them are extended with a special set of instructions which gives
good complexity properties for the model [11]. The example of a simulation
of Turing machines by register machines can be found in [1].

In the subsections 3.1, 3.2, and 3.3 we translate each URM instruction in
a program into a small Euclid machine; the final Euclid machine is obtained
by concatenating the translations of all instructions, redefining jumps of the
type X ∈ C : n through appropriate shifts.

3.1 The emulation of registers
Lines will be used to remember values of registers as Figure 5 presents. The
distance of point X to P , where X , lying somewhere in the line R between
P and the circumference of the circle with the center P and through the point
Q, informs us about the current value of some register which is put equal to

log2

|PQ|
|PX|

.

In the case we need to put zero into some register we should move the point X

to the intersection of R and C again. Representing numbers is thus obtained
by successive bisections of a corresponding line segment.

12



The reader may quest the efficiency of such division process. The answer
is subtle but simple: the unbound character of a tape in a Turing machine cor-
responds to the increasing precision needed to store a given natural number
— as much tape needed for a computation as much precision needed to com-
pute in bounded space. This simulation issue is well-known from dynamical
systems that simulate Turing machines. However, if a bound on space is pro-
vided together with the Turing machine, then finite precision will suffice to
compute over the reference circle and equality between two points can always
be established by finite means.

Let us observe that without any space restriction we can start always with
sufficiently large line segments. Then, after a finite process of successive
bisections, we could obtain sufficiently large resulting line segments to be
compared. So, the problem of efficiency for this representation is connected
with the problem space resources for Euclid machines and of restrictions for
a tape length.

P X ′′(= 2) X ′(= 1) Q ≡ X(= 0)

FIGURE 5
Values in one register

Let us consider a URM program P , and let r be a number of registers used
in this program (which can be obtained by syntactical inspection of P ). Then
we will use a pencil of r lines (i.e., a set of straight lines meeting at some
point) to emulate these registers. The line Ri is used to remember values of
the i-th register as in Figure 5. The construction (which is presented in Figure
6) will be done in the following way:

• Draw two distinct points P , Q.

• Draw the line through P and Q.

• Label this line as R1.

• Draw the perpendicular to R1 in P .

• Label this perpendicular as Rn.

13



• Construct the bisector of R1 and Rn.

• Label it as Rn−1.

• Construct the consecutive bisectors of R1 and Rn−1, Rn−2, . . . , R2

and label them as Rn−2, . . . , R1.

• Draw the circle with the center P and going through the point Q.

• Label this circle as C.

• Label the intersections of C and R1, . . . , Rn as X1, Y1, . . . , Xn, Yn.

�
�

�
�

�
�

�
�

�
�

�
��

�������������

P

R1

R2

R3R4

X1 ≡ Q

X2

X3

X4

C

FIGURE 6
Simulation of 4 registers.

Let us add an important remark. During the whole computation (or rather
drawing) the labels of the main elements of our system, i.e., the starting points
P , Q, register lines R1, . . . , Rn, and the circle C will be not removed or
changed.

3.2 The translation of URM instructions
Let us describe the translation of URM instructions into operations of Euclid
machines

14



Z(n): move the point Xn to the intersection of Rn and C

k + 00 :: D(Xn)
k + 01 :: LP (Rn, C;Yn, Xn)
k + 02 :: D(Yn)

S(n): divide the segment PXn into two sub-segments with the same length
and label the center point as Xn (look at Figure 7)
k + 00 :: C(P,Xn)
k + 01 :: LC(P,Xn;C1)
k + 02 :: C(Xn, P )
k + 03 :: LC(Xn, P ;C2)
k + 04 :: LP (C1, C2;P1, P2)
k + 05 :: L(P1, P2)
k + 06 :: LL(P1, P2;L)
k + 07 :: D(Xn)
k + 08 :: LP (L,Rn;Yn, Xn)
k + 09 :: D(C1)
k + 10 :: D(C2)
k + 11 :: D(P1)
k + 12 :: D(P2)
k + 13 :: D(L)
k + 14 :: D(Yn)

J(n, m, p): test whether the point Xn is in the circle with the center P and the
radius PXm and whether the point Xm is in the circle with the center
P and the radius PXn

k + 00 :: C(P,Xn)
k + 01 :: LC(P,Xn;Cn)
k + 02 :: C(P,Xm)
k + 03 :: LC(P,Xm;Cm)
k + 04 :: Xn ∈ Cm : k + 06
k + 05 :: P ∈ C : k + 7
k + 06 :: Xm ∈ Cn : k + 10
k + 07 :: D(Cn)
k + 08 :: D(Cm)
k + 09 :: P ∈ C : k + 13
k + 10 :: D(Cn)
k + 11 :: D(Cm)
k + 12 :: P ∈ C : q

where q is the starting number of the Euclid corresponding instruction,

15



equivalent to the p-th instruction of the URM program.

�
�

�
�

�
�

�
�

�
�

�
��

@
@

@
@

@
@

@
@

@
@

@
@@

@@

@@

Xn

Xn≡

Rn

L

P

C1≡

C2≡

P1≡

P2≡

FIGURE 7
Simulation of a S(n) instruction.

Note that, in the machine above, we used the unconditional jumping in-
struction P ∈ C. This unconditional jumping could have been translated di-
rectly from the URM language into an appropriate geometrical instruction.
Indeed, whenever such an instruction J(n, n, q) is found we can translated
directly to an Euclid instruction P ∈ C : q, where q is suitably chosen.

3.3 Euclid machines are Turing complete
Let us add the we have to proceed with the re-enumeration of the instructions
due to the fact that every Z instruction needs 2 operations, every S instruction
needs 14 operations and J needs 13 operations. With this re-enumeration we
have a complete description how to translate any URM program into some
Euclid machine. So, we obtain the following proposition.

Proposition 3.1 Every URM program can be simulated by some Euclid ma-
chine.

Now we proceed to exemplify with one URM program — the binary ad-
dition, considered in the beginning of Section 3. More illustrative examples
can be built straightforward by the reader.

16



Example 3.2 Consider simple example of the sum of two natural numbers.
We start with a preparation of 3 lines R1, R2, R3 of the same pencil with
the center P , and the circle C going through these lines with the points of
intersections called X1, X2, X3.

\\ draw the line R1

01 :: P (P,Q)
02 :: L(P,Q)
03 :: LL(P,Q;R1)
04 :: C(P,Q)
05 :: LC(P,Q;C)
06 :: D(Q)
07 :: LP (R1, C;Y1, X1)
\\ draw the perpendic-
ular line R3

08 :: C(X1, Y1)
09 :: LC(X1, Y1, C1)
10 :: C(Y1, X1)
11 :: LC(Y1, X1, C2)

12 :: LP (C1, C2;S2, S1)
13 :: L(S1, S2)
14 :: LL(S1, S2;R3)
15 :: D(C1)
16 :: D(C2)
17 :: D(S1)
18 :: D(S2)
19 :: D(Y1)
20 :: LP (R3, C;Y3, X3)
21 :: D(Y3),
\\ draw the bisector
of the angle ∠ R3PR1

and call it R2

22 :: C(X1, P )

23 :: LC(X1, P ;C1)
24 :: C(X3, P )
25 :: LC(X3, P ;C3)
26 :: LP (C1, C3;S2, S1)
27 :: L(S1, S2)
28 :: LL(S1, S2, R2)
29 :: D(S1)
30 :: D(S2)
31 :: D(C1)
32 :: D(C3)
33 :: LP (R2, C;Y2, X2)
34 :: D(Y2)

To start a computation for some n, m ∈ N we need to place the points X1,
X2 on the lines R1, R2 in such a way that the following conditions hold:

|PX1| =
|PX ′

1|
2n

,

|PX2| =
|PX ′

2|
2m

,

where X ′
0, X ′

1 represent the initial position of X1, X2. For this purpose we
need to use n times the operation S(1) and m times the operation S(2).

We can use the URM program introduced above to implement the problem
of an addition. We assume the arguments are in the registers 1 and 2; the rest
of registers is initially equal to zero.

Now this sequence of the URM instructions can be translated into oper-
ations of the Euclid machine in the following manner.

\\J(2, 3, 6)
01 :: C(P,X2)
02 :: LC(P,X2;C2)

03 :: C(P,X3)
04 :: LC(P,X3;C3)
05 :: X2 ∈ C3 : 07

06 :: P ∈ C : 08
07 :: X3 ∈ C2 : 11
08 :: D(C2)

17



09 :: D(C3)
10 :: P ∈ C : 14
11 :: D(C2)
12 :: D(C3)
13 :: P ∈ C : 43
\\S(1)
14 :: C(P,X1)
15 :: LC(P,X1;C1)
16 :: C(X1, P )
17 :: LC(X1, P ;C2)
18 :: LP (C1, C2;P2, P1)
19 :: L(P1, P2)
20 :: LL(P1, P2;L)
21 :: D(X1)

22 :: LP (L,R1;Y1, X1)
23 :: D(C1)
24 :: D(C2)
25 :: D(P1)
26 :: D(P2)
27 :: D(L)
28 :: D(Y1)
\\S(3)
29 :: C(P,X3)
30 :: LC(P,X3;C1)
31 :: C(X3, P )
32 :: LC(X3, P ;C2)
33 :: LP (C1, C2;P2, P1)
34 :: L(P1, P2)

35 :: LL(P1, P2;L)
36 :: D(X3)
37 :: LP (L,R3;Y3, X3)
38 :: D(C1)
39 :: D(C2)
40 :: D(P1)
41 :: D(P2)
42 :: D(L)
43 :: D(Y3)
\\J(1, 1, 1)
44 :: P ∈ C : 14

4 COORDINATES OF POINTS

What we have shown in the preceding sections is that a suitable encoding
of URM programs exist in the Cartesian plane, by performing geometric
constructions using an unmarked ruler and a compass. Many other such en-
codings exist, possibly more efficient. We did not really define computable
functions in the sense of an Euclid-computable analogous to, e.g., the Turing-
computable concept. In fact, we didn’t need of that concept.

However, we can have it directly over the plan, as we are going to show in
this section.

Let us recall some useful notions. A field F′ is said to be a field extension
of a field F, if F is a subfield of F′. Given some field we can extend it by
several methods, for us the most natural one is to pick some elements p1,
..., pk, not in F, and then to define F′ = F(p1, . . . , pk) as the smallest field
containing F and all pj , with j = 1, . . . , k . For instance, the real numbers
can be extended by i =

√
−1 to the field of complex numbers.

In our case we are interested in points on the Euclidean plane with good
(from the computational point of view) coordinates. The most convenient
choice is the field A of algebraic numbers, which are computable and enumer-
able. Because we want to start with completely freely chosen points we need
to extend this field by the set of all initial points (strictly speaking by the set of
real, non-algebraic coordinates). Hence, for the starting points P1 = (x1, y1),
..., Pk = (xk, yk) we obtain the extended field A(x1, y1, . . . , xk, yk).

We can enumerate elements of such field A(x1, y1, . . . , xk, yk) by natural

18



numbers, hence the problem of any construction of points on Euclidean plane
can be seen as some computation on natural numbers.

Let us make the above remark precise. Every construction available with
Euclid machines is done by drawing circles, lines, and finding intersections.
Hence, we can obtain coordinates of these newly constructed points from the
previously constructed by solving systems of equations of at most second
degree. This means that new points will be also in A(x1, y1, . . . , xk, yk). In
this way we have the following theorem.

Proposition 4.1 For any Euclid machine, with the initial points P1 = (x1, y1),
..., Pk = (xk, yk), all points reachable have their coordinates in the field
A(x1, y1, . . . , xk, yk).

If we start with points with algebraic coordinates (in A), then all con-
structed points will be also (with respect to their coordinates) in A.

Proposition 4.2 The set of algebraic points on the plane is effectively recur-
sively enumerable.

Proof. Consider any polynomial p(x) = a0 + a1x + ... + anxn. We start by
listing its integer coefficients

a0, . . . , an

and then transform this list into a list of natural numbers

b0, . . . , bn,

using the encoding bijective map

ξ(x) =
{

2x if x ≥ 0
−2x− 1 if x < 0

.

The previous list of non-negative integers can then be encoded into a natural
number by the well-known bijective map

τ(b0, . . . , bn) = 2b0 + 2b0+b1+1 + . . . + 2b0+...+bn+n − 1,

providing recursive enumeration (with repetitions) of all polynomials.
Now we apply Sturm’s algorithm (see [6] for an overview and [3] for a

detailed account) to effectively count the number of zeros of the given poly-
nomial p. Let p0, ..., pr be the sequence of polynomials given by (a) p0 = 0,

19



p1 = p′ (the derivative of p), (c) for 0 < i < r, there is a polynomial qi such
that pi−1 = piqi − pi+1 with pi+1 6= 0 and degree(pi+1) < degree(pi),¶

and (d) pr−1 = prqr. For any number y we denote by δ(y) the number of
sign changes in the sequence p0(y), ..., pr(y) (ignoring zeros). Suppose that
a and b are numbers that are not zeros of p, and a < b. Sturm’s theorem states
that the number of zeros z in the interval [a, b] is δ(a)− δ(b) (each zero being
counted once only).

Consider again the original polynomial p(x) = a0 +a1x+ ...+anxn. We
take the natural number

M = |a0|+ . . . + |an|,

such that all the zeros of p lie in the interior of the interval [−M,M ] (in fact,
the rational number M = 1 + 1

|an| (|a0| + . . . + |an−1|) suffices). Then by
Sturm’s theorem the number of zeros of p is δ(−M) − δ(M) which may be
calculated effectively.

We can then encode together the code of polynomial p, the list number
n of divisions of [−M,M ] necessary to separate all the roots of p (using
repeatedly Sturm’s theorem to successive divisions of the interval [−M,M ];
if there are no roots, then n is taken to be 0) and the index k of the a root
(if k is greater than δ(−M) − δ(M), then index k is taken to be the degree
of the polynomial plus 1), using the Cantor pairing coding function applied
successively to these numbers in this order.

Let ζ be the number of roots of a polynomial given by its code in the way
described above.

If ω is the enumeration established so far, then the new enumeration that
eliminates polynomials with no roots can be given by ν as follows:

ν(0) = ω(µy(ζ(ω(y)) 6= 0 and ζ(ω(y)) ≤ n)),

ν(n + 1) = ω(µy(y > ν(n) and ζ(ω(y)) 6= 0 and ζ(ω(y)) ≤ n)).

With ν we finally enumerate with repetitions all algebraic numbers by
eliminating those codes that refer to polynomials without zeros and other sit-
uations.

Ultimately, each algebraic number correspond to a polynomial and that
interval containing the algebraic number as the only root of that polynomial
in that interval. Applying Newton’s method, we can always specify a Turing

¶ So that qi and −pi+1 are the quotient and remainder respectively when pi−1 is divided by
pi.

20



machine that calculates the successive digits of this algebraic number in its
decimal expansion.

The final number is the code of an algebraic number. Coding together two
algebraic numbers we get the code of a point in the plane. �

Thus, to any natural number corresponds an algebraic point in the plane
and any algebraic point in the plane corresponds to a set of natural numbers
(its infinitely many codes).

Now, let us observe this fact closer for its connection with computability.
Let us denote by Pn the algebraic point P having index n.§

Definition 4.3 We say that a (n+1)-ary relationR over N is Euclid-decidable
if there exists a Euclid machine ER such that, for all k1, ..., kn, k,R(k1, . . . ,

kn, k) holds if and only if ER starting from the initial points Pk1 , ..., Pkn

reaches Pk.

5 UNDECIDABLE PROBLEMS

Let us clarify one important point. We can think about two different types of
activity for Euclid’s machines. The first one is connected with the described
method of computation on encodings (given by points) of natural numbers.
The second type of activity is simply drawing of points with a ruler and a
compass. Now we need to distinguish carefully these two levels: a simulation
of computations and drawings.

Let us exemplify this problem by means of the trisection problem. Angle
trisection is the division of an arbitrary angle into three equal angles. It was
one of the three famous geometric problems of antiquity for which solutions
using only compass and ruler were sought (the other two were: cube duplica-
tion and circle squaring — see Section 1 for a full account). The construction
was proved to be impossible by Wantzel (see [8]) only in 19th century. From
this result we can infer an obvious corollary.

Proposition 5.1 The problem of an angle trisection can not be solved by any
Euclid machine.

Proof. This statement can be more properly presented as a corollary to the
following theorem 5.2. �

Namely, we can even ask about the possibility of the trisection by ruler and
compass alone but restricted to points with algebraic coordinates. However,
within infinitely many other cases,

§ It n does not code for an algebraic number, then take the code of the first root of the first
polynomial with a root as convention.

21



Proposition 5.2 The angle π/3 can not be trisected.

Proof. See the proof in [14], Theorem 5.4. The angle π/3 is the classical
refutation instance of trisection. �

Since we can simulate Turing machines by Euclid machines, being the
outputs of Turing computations reachable by Euclid machines, we may well
wonder

Question 5.1 What is the computational interpretation of such unsolvability?

But now, we can reformulate the question about trisection. We can repre-
sent any angle ∠AOB by three points A, O, B as in Figure 8. If we restrict
ourselves to points from field A, then with the use of the above mentioned
coding we obtain the following new problem: does there exist such Euclid
machine that given three numbers m, n, r, it finds a number representation s

of the point of the trisection of ∠AOB, i.e., ∠AOB = 3∠AOP (e.g., with
respect to the main circle).

&%
'$

@
@

@
@

@

O

B

P

AFIGURE 8
Angle trisection.

The first claim needing justification in this problem is the existence of such
point P with algebraic coordinates. But this fact can be obtained by simple
algebra taken from analytic geometry.

Proposition 5.3 For any points A, O, B, with algebraic coordinates, there
exists the point P with algebraic coordinates too, such that

∠AOB = 3∠AOP.

22



Proof. We use simple methods of analytic geometry to prove that for an
angle placed in the center of a given circle (where the center of this circle and
the points of intersections of the angle with this circle are given by algebraic
coordinates), then the point which gives a solution of the trisection problem
on this circle has also algebraic coordinates.

Without any loss of generality we can identify the point O with the origin
(0, 0), because we can always use a translation with algebraic parameters to
obtain such a situation. Now, we have two lines: OA and OB, for A =
(xA, yA), B = (xB , yB) (xA can always be made different from 0 by some
rotation) they have the equations: xAy − yAx = 0, xBy − yBx = 0. We
can find now tan(∠AOB) = yBxA−yAxB

xAxB+yAyB
. Of course, tan( 1

3∠AOB) can be
found from the equation

tan(∠AOB) =
3 tan( 1

3∠AOB)− tan3( 1
3∠AOB)

1− 3 tan2( 1
3∠AOB)

,

which means that tan( 1
3∠AOB) is an algebraic number.

The next step is devoted to compute the coefficient of the line OP given
in the Cartesian plane by y = ax, with a given by

yA

xA
+ tan( 1

3∠AOB)

1− yA

xA
tan( 1

3∠AOB)
.

And now to find coordinates of P all we need is a solution of the following
system of equations with algebraic coefficients: x2

P + y2
P = x2

A + y2
A and

yP = axP , such systems have always algebraic solutions. �
In similar way, looking through the proof of last proposition, we can prove

that:

Proposition 5.4 For any points A, O, P , with algebraic coordinates, there
exists the point B with algebraic coordinates too, such that

∠AOP =
1
3
∠AOB.

So, now we are concerned with the crucial question. Can a code of P

be computed? Our first observation is that if it would be possible for some
URM machine, then this process of computation could be presented in the
well known manner by Euclid machines. By observation of the proof of
Proposition 5.4 we have such a method which can be performed on (possi-
bly infinite) decimal expansion of the coordinates (for example, by machines

23



of Type Two Theory [15] which can work on a tape filled with infinite num-
ber of digits). But our problem needs a computation on natural numbers, not
on infinite sequences of digits. And, let us recall, that even if we can gen-
erate from a natural label of some algebraic number x its decimal expansion
(see Section 4), it is impossible to obtain from finite subsequences of this ex-
pansion that natural number, which represents x (from density of the set of
algebraic numbers we can always find infinite number of natural descriptions
of algebraic numbers which agree with given finite sequence of digits).

But the above paragraph does not solve our problem. We can not compute
a code of an algebraic point P from its decimal expansion, but maybe there
is some direct method to solve this problem.

Theorem 5.5 Let us define the trisection relation T : N4 → N if and only if

∠PmPnPr = 3∠PmPnPs.

Then T is not Euclid-decidable.

What about decidability of relation T ?|| in the following way T (m,n, r, s) holds

Theorem 5.6 T is not URM -computable (of course, neither Turing-compu-
table).

Proof. This is rather trivial, because if T was decidable, then we could de-
cide equality between algebraic numbers given by procedures, i.e., given by
Turing machines that calculate their decimal expansions. But this procedure
can not be done in finite time.

It is sufficient to consider two arbitrary algebraic points Pm and Pn with
codes, respectively, m and n. Let u1, u2 are the minimal points such that their
trisection can be done by the point Pm. This can be described as:

u1 = (µuT ((u)1, 0, (u)2,m))1,

u2 = (µuT ((u)1, 0, (u)2,m))2.

Now the condition T (u1, 0, u2, n) means that both Pn, Pm are trisection points
for ∠Pu1P0Pu2 . Let us observe that the same point can be used on the arms
of some angle and as a trisection point if and only if this angle has a measure
0 degrees.

|| With codomain in {0, 1}, since T is characteristic function.

24



Hence T (n, 0,m, m) means that Pm lies on the line through P0, Pn. But
this condition does not exclude the possibility that Pn and Pm are two dif-
ferent points. So, let us demand that Pn, Pm are both on the different line
Pu1Pn — in this case these points Pn and Pm have to be identical. Now we
obtain the following condition

Pm = Pn

iff

T (u1, 0, u2, n) ∧ T (n, 0,m, m) ∧ T (n, u1,m, m) holds.

�
The above theorem creates a question about a source of non-computability

of the trisection problem. However the following explanation can be given.
There exist constructions trisecting the angle to an arbitrary degree of pre-

cision (see [14], Chapter 5). Given m, n, r, and s, such that T (m,n, r, s)
holds, there exist an infinite sequence of numbers (si)i∈N such that an ac-
cessibility decidable predicate U(m,n, r, si) exists, with (Psi)i∈N → Ps,
although such a procedure for T (m,n, r, s) does not exist, i.e., Psi is reach-
able from Pm, Pn, and Pr, for all i, but not Ps. Thus, the undecidability of
T is a consequence of the fact that, although infinitely many algebraic points
can be obtained as whole (entire) entities (the reachable ones) — objects in
themselves with no need of a decimal expansion —, infinitely many others
can only be approximated.

So far, it seems that the halting problem in this case is not a reason for not
achieving decidability, since Turing machines that compute algebraic num-
bers have to operate forever.

As a consequence, we can state that to handle operations with algebraic
numbers and questions on the computability of these operations the frame-
work of Type Two Turing machines is much more suitable than that of Turing
machines.

6 CONCLUDING REMARKS

It is very interesting to observe that the trisection function seems does not
have a character of a self-referential problem (like, e.g., the halting problem).
It would be worth of explanation whether such function has any connection to
classical uncomputable functions and to find the proper place of such problem
in the hierarchy of Turing degrees.

25



Let us also add that Fourier series can be interpreted as sums of circles
with decreasing radii. E.g., planetary orbits in the plane can be studied from
a computational point of view by means of possible approximations in the Eu-
clidean plane. This could be used to obtain another (functional) interpretation
of Euclid machines.

We can also ask the natural question: is every Euclid computable func-
tion also Turing computable? The obvious suggestion to this question is the
answer yes, by Church’s thesis. Of course, we can interpret this model as a
model with infinite precision, which leads us to comparison with such con-
structions as BSS machines. Whatever, the fully mathematical answer will
need a precise construction of a proof.

The next problem is to determine whether the non-deterministic character
of labeling has an impact on Euclid algorithms. In other words: let us fix
some convention of labeling in a given algorithm A. Can we always give
some equivalent algorithm A′ for any order of labeling? We can also ask what
is a characterization of the class of Euclid algorithms invariant with respect
to labeling.

The last (but not least) field of research is connected to the question about
meaning of such geometrical machines in different geometries. Let us recall
five postulates of Euclid in a formulation taken from [5].

1. A straight line may be drawn from any one point to any other point.

2. A finite straight line may be produced to any length in a straight line.

3. A circle may be described with any center at any distance from that
center.

4. All right angles are equal.

5. If a straight line meet two other straight lines, so as to make the two
interior angles on one side of it together less than right angles, the other
straight lines will meet if produced on that side on which the angles are
less than two right angles.

It is obvious to observe that the three first postulates are in a close corre-
spondence with our set of instructions. But it is not so obvious how to put the
fifth postulate in a construction of geometric machines. Let us use a different
statement, which is equivalent to the fifth postulate.

• Given any straight line and a point not on it, there exists one and only
one straight line which passes through that point and never intersects
the first line.

26



With this formulation in mind we can try to do the following modification
on the set of instructions. We can replace L(P,Q): draw the line through P

and Q by L′(P,Q,R): draw the line through R parallel to this line which
could be drawn through P and Q (this line through P and Q need not to
exist).

Let us justify the fact that these operations are equivalent on Euclidean
plane. To simulate L(P,Q) by L′ let us use the following program:

01 :: Draw the circle C1 with a center P and through Q

02 :: Draw the circle C2 with a center Q and through P

03 :: Label one of the intersection points of C1 and C2 as R

04 :: L′(P,Q,R) // we have a parallel line to our desirable line through P,Q

05 :: Label this line L1

06 :: Draw the circle C3 with a center R and through P

06 :: Label the intersection point of C3 and L1 as S

07 :: L′(R,S, P ) // this is the line through P , Q

We can also give a short description of the converse simulation. To simu-
late L′(P,Q,R) by the instruction L we should draw the line through P , Q

(which is done by L(P,Q)), label this line as L1, now draw the perpendicular
L2 to L1 through R. It is clear that the perpendicular to L2 through R is the
line parallel to P , Q and containing the point R.

Maybe a similar modification on instructions drawing circles is also pos-
sible. Namely, we could think about C ′(P,Q,R) — draw the circle through
the points P , Q, R instead of C(P,Q). The instruction C ′ is based on another
version of the fifth postulate.

• The three non-collinear points always lie on a circle.

In this or that way we could have the operation based on the famous Eu-
clid’s fifth postulate. With a change of a type of an underlying geometry we
will obtain new properties of the syntactically identical geometric algorithms.
In this framework we could ask: what is a connection of non-Euclidean geo-
metric machines with classical computational non-determinism?

7 ACKNOWLEDGEMENTS

A previous geometrical model was presented at York to the Conference Un-
conventional Computation ’06 (see [10]).

27



We thank to the many participants with whom we discussed the Euclid
model, their criticism and their suggestions.

A special thank goes to Christian S. Calude, from the south hemisphere,
and to Andy Adamatzky, our editor, for having invited us to submit an ex-
tended post-conference paper. We also thank to the anonymous referees and
their competent suggestions.

José Félix Costa is very indebted to the United Grand Lodge of England
for providing him with the DIVINE ARCHITECT, symbol of first principle.

REFERENCES

[1] Boolos, G. and Jeffrey, R.C. Computability and Logic, Cambridge University Press, 1989.

[2] Bunt, L.N.H., Jones, P.S. and Bedient, J.D. The Historical Roots of Elementary Mathemat-
ics, Dover, 1988.

[3] Cohn, P. M. Algebra, volume 2, Wiley, 1977.

[4] Courant, R. and Robbins, H. What is Mathematics?, Oxford University Press, New York,
1947.

[5] Coxeter, H.S.M, Non-Euclidean geometry, Mathematical Association of America, 1998.

[6] Cutland, Nigel J., Cumputability, An Introduction to Recursive Function Theory, Cam-
bridge University Press, 1980, 1992.

[7] Klein, F. et al. Famous Problems and other Monographs, Chelsea, New York, 1962.

[8] Martin, G.E. Geometric Constructions, Springer-Verlag, 1998.

[9] Minsky, M. L. Recursive Unsolvability of Post’s Problem of ’Tag’ and Other Topics in
Theory of Turing Machines. Ann. Math., 74, 437-455, 1961.

[10] Mycka J., Coelho F., and Costa J.F. Euclid abstract machine: the trisection of the angle
and the halting problem. In C. S. Calude, M. J. Dinneen, G.Paun, G. Rosenberg and S.
Stepney (eds), Unconventional Computation (UC 2006), volume 4135 of Lecture Notes in
Computer Science, 195-206, Springer-Verlag, 2006.

[11] Papadimitriou, Ch. H. Computational Complexity, Addison Wesley, 1993.

[12] Plouffe, S. The computation of certain numbers using a ruler and compass. Journal of
Integer Sequences, 1, 1998.

[13] Shepherdson, J.C. and Sturgis, H.E. Computability of recursive functions. Journal of the
ACM, 10(2), 217-255, 1963.

[14] Stewart, I. Galois Theory, Chapman & Hall, 1973, 1995.

[15] Weihrauch, K. Computable Analysis, An Introduction, Springer-Verlag, 2000.

[16] Yates, R. C. The Trisection Problem, National Council of Teachers of Mathematics, Wash-
ington, D. C., 1971.

28


