

ESCOLA DE CIÊNCIAS E TECNOLOGIA DEPARTAMENTO DE FITOTECNIA

Rotações de Culturas

Texto de apoio para as Unidades Curriculares de Sistemas e Tecnologias Agro-Pecuários, Tecnologia do Solo e das Culturas e Noções Básicas de Agricultura

(Para uso dos alunos)

José F. C. Barros

José G. Calado

Évora 2011

Índice

1. Introdução
2. Definição de rotação de culturas, de sequência de culturas e de afolhamento4
2. 1. Exemplos de rotações de culturas5
2. 2. Definição de cabeça de rotação5
2. 3. Definição de culturas melhoradoras e culturas esgotantes
3. Vantagens da rotação de culturas relativamente à monocultura
3. 1. Controlo de infestantes
3. 1. 1. Métodos de reprodução das infestantes
3. 1. 1. Infestantes anuais
3. 1. 1. 2. Infestantes perenes ou vivazes
3. 1. 2. Vantagens da rotação de culturas no controlo de infestantes12
3. 2. Controlo de doenças
3. 3. Incorporação de nutrientes
3. 3. 1. Utilização de leguminosas
3. 4. Rotações e erosão do solo
3. 5. Rotações e estrutura do solo
3. 5. Rotação de culturas e necessidades de maquinaria e mão-de-obra20
Bibliografia Relacionada21

1. Introdução

A rotação de culturas é uma prática agronómica importante em todos os sistemas de agricultura. A alternância de culturas de espécies com características distintas ao nível morfológico (sistema radical), ciclo vegetativo (épocas distintas de sementeira e colheita), e ao nível da sua resistência a pragas e doenças, contribui para o aumento da melhoria das características físicas, químicas e biológicas dos solos. A rotação de culturas pode melhorar a estrutura do solo, quer pela introdução de matéria orgânica, quer pela porosidade biológica criada pelas raízes das culturas. O aumento da porosidade biológica conduzirá a uma maior infiltração da água no solo com consequência na redução do escoamento superficial e portanto, da erosão hídrica. O acréscimo da porosidade biológica no solo pelas raízes é de extrema importância em sistemas de mobilização nula do solo (sementeira directa). A utilização de plantas leguminosas na rotação favorecerá o incremento de azoto no solo, o qual será favorável ao crescimento das gramíneas com redução dos seus custos de produção. Outro aspecto extremamente importante da rotação de culturas prende-se com a melhor distribuição do parque de máquinas e da mão-de-obra ao longo do ano, fazendo-se alternar culturas com épocas de sementeira e de colheita diferentes.

2. Definição de rotação de culturas, de sequência de culturas e de afolhamento

Define-se **rotação de culturas** como a sucessão de culturas no tempo, segundo uma determinada ordem (Figura1), sucessão que se repete de forma cíclica. Ao conceito de rotação está associado o conceito de **afolhamento**, o qual se define como a divisão do terreno em folhas, normalmente tantas quanto o número de anos da rotação e em que em cada ano se produz uma cultura.

Não poucas vezes se confunde o conceito de rotação de culturas com o de **sequência de culturas**, sendo este último definido como um conjunto ordenado de culturas que se sucedem no mesmo terreno, durante um determinado período de tempo (Figura 2), findo o qual se repete a sucessão de culturas pela mesma ordem.

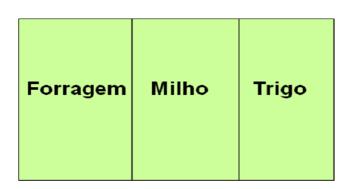


Fig. 1. Exemplo de uma rotação de três culturas

Fig. 2. Exemplo de uma sequência de três culturas

No exemplo da Figura 2, instala-se a forragem de Outono/Inverno (por exemplo Aveia x Vicia, Aveia x Tremocilha, etc.) em finais de Setembro, início de Outubro, forragem esta que será cortada em finais de Abril, princípio de Maio. Em Maio instala-se o milho que será colhido em Setembro e em Outubro/Novembro instala-se o Trigo que será colhido em Junho ou Julho.

2. 1. Exemplos de rotações de culturas

 $Girassol \rightarrow Trigo \rightarrow Cevada$

Grão-de-bico → Trigo – Forragem (Aveia x Vicia) → Trigo

Forragem (Aveia x Tremocilha) → Trigo → Cevada

Forragem (Aveia x Tremocilha) → Trigo → Forragem (Aveia x Vicia) → Trigo

Trigo → Aveia → Cevada

A escolha das culturas para cada uma das rotações depende em 1º lugar da adaptação de cada uma delas às condições edafo-climáticas e em segundo lugar à vontade do agricultor em produzir essas culturas, sendo o aspecto económico o factor mais importante na sua escolha.

2. 2. Definição de cabeça de rotação

Entende-se por cabeça de rotação ou cultura principal, aquela que, entre as praticadas na rotação, gera maior rendimento bruto. Uma vez definida a cabeça de rotação, as outras culturas serão classificadas de melhoradoras ou esgotantes, consoante o seu efeito no potencial produtivo do solo tendo em vista a produção da cultura considerada cabeça de rotação.

Exemplo:

Fig. 3. Rotação de três anos: Girassol → Trigo → Aveia

Neste exemplo, actualmente o trigo será a cultura que dá maior rendimento bruto e portanto, considerada a cultura principal ou cabeça de rotação. O girassol irá trazer benefícios para o trigo em termos de controlo de infestantes e a aveia trará benefícios em termos fitossanitários, porque apesar de ser um cereal, ela corta o ciclo de algumas doenças que podem afectar o trigo, como por exemplo o pé - negro.

2. 3. Definição de culturas melhoradoras e culturas esgotantes

Poder-se-á definir culturas melhoradoras como aquelas que deixam o terreno em boas condições para a cultura seguinte e culturas esgotantes, aquelas que empobrecem o solo em nutrientes, água, etc. No entanto, para se poder definir se uma cultura é melhoradora ou esgotante devemos atender a diversos factores, tais como o clima, a técnica cultural utilizada e a própria cultura inserida na rotação. A mesma cultura poderá ser melhoradora num determinado clima e ser esgotante noutro. Por exemplo, a cultura do milho, poderá em certos climas, facilitar a erosão do solo e noutros, não. A mesma cultura poderá ser considerada melhoradora se se utilizar uma determinada técnica cultural e esgotante com outra técnica cultural diferente. Por exemplo, o trigo será considerado esgotante se se retirar toda a palha do solo, mas ao deixar essa palha que irá aumentar o teor de matéria orgânica e fornecer nutrientes para a cultura seguinte, já poderá ser considerado uma cultura melhoradora. A mesma cultura poderá em certas rotações ser esgotante ou melhoradora. Por exemplo, se cortar o ciclo das doenças que

afectem as outras culturas da rotação será considerada melhoradora, caso contrário será esgotante.

3. Vantagens da rotação de culturas relativamente à monocultura

3. 1. Controlo de infestantes

As infestantes podem ser uma das principais causas da diminuição do rendimento das culturas, porque competem com elas para o espaço, para a água, luz solar, nutrientes e dióxido de carbono, podem segregar substâncias alelopáticas, ser o meio no qual, temporariamente, se instalam alguns organismos responsáveis por inúmeras pragas e doenças que atacam as culturas dificultando assim o combate às mesmas, dificultam a colheita quer esta seja manual ou mecanizada, podem contaminar o produto final depreciando-o e asseguram a reinfestação para as culturas seguintes.

O controlo de infestantes é um dos problemas mais graves que o agricultor tem de resolver numa exploração agrícola. Apesar de existirem métodos de controlo (químico e mecânico), a sua eficácia diminui para níveis elevados de infestação. Por outro lado, a eficácia de qualquer um dos métodos depende da oportunidade da sua realização.

3. 1. 1. Métodos de reprodução das infestantes

3. 1. 1. 1. Infestantes anuais

As infestantes anuais (cinerófitas) são aquelas que se reproduzem através de semente. Podem ser Monocotiledóneas (folha estreita), como por exemplo a *Avena sterilis* L. (balanco-maior), o *Lolium rigidum* G. (erva-febra), a *Phalaris minor* Retz (erva-cabecinha) a *Poa annua* L. (cabelo-de-cão), o *Bromus madritensis* L. (bromus) etc. Podem ser Dicotiledóneas (de folha larga), como por exemplo a *Lactuca serriola* L. (alface-brava-menor), a *Sonchus asper* L. (serralha – áspera), a *Sinapis arvensis* L.

(mostarda – dos – campos), o *Crysanthemum segetum* L. (pampilho – das – searas), a *Chamaemelum mixtum* L. (margaça) e muitas outras.

Exemplos de infestantes anuais

Monocotiledóneas (folha estreita)

Fig. 4. Avena sterilis L. (Balanco-maior)

Fig. 5. Lolium rigidum G. (erva-febra)

Fig. 6. Phalaris minor Retz (erva-cabecinha)

Fig. 7. *Poa annua* L. (cabelo – de – cão)

Fig. 8. *Bromus madritensis* L. (bromos)

Dicotiledóneas (folha larga)

Fig. 9. Lactuca serriola L. (alface-brava-menor)

Fig. 10. *Sonchus asper* L. (serralha – áspera)

Fig. 11. *Sinapis arvensis* L. (mostarda – dos – campos)

Fig. 12. *Chrysanthemum segetum* L. (pampilho – das – searas)

Fig. 13. *Chamaemelum mixtum* L. (margaça)

Estas infestantes produzem sementes no final da Primavera, as quais ficam no solo durante o Verão, com uma parte delas a germinarem no início do Outono, quando as condições de humidade e de temperatura forem as ideais. As infestantes anuais são as de mais difícil controlo pelas seguintes razões:

Germinação escalonada ao longo do tempo – em cada momento, o número de sementes germinadas representa apenas uma pequena percentagem da reserva total do solo. Estas infestantes começam a germinar no início do Outono e até à Primavera.

Elevado grau de dureza – muitas sementes permanecem viáveis no solo por muito tempo sem germinarem, podendo esse tempo corresponder a vários anos.

Capacidade de produção de sementes elevada – uma só planta pode produzir milhares de sementes, que são propagadas pelo vento, água e animais indo germinar, por vezes, a vários quilómetros de distância de onde foram produzidas.

3. 1. 1. 2. Infestantes perenes ou vivazes

As infestantes perenes ou vivazes são aquelas que se reproduzem vegetativamente através de estolhos, bolbos, rizomas, tubérculos, etc. Estas infestantes para sobreviverem e se reproduzirem de um ano para o outro necessitam de ter alguma humidade durante o Verão para manterem os órgãos reprodutivos vivos. Assim, é de esperar maiores populações de infestantes perenes ou vivazes em condições de regadio e em solos que mantenham alguma humidade durante o Verão, nomeadamente nos Aluviosolos, mas também em solos de barro e solos mediterrânicos. Tal como as infestantes anuais, também as perenes podem ser Monocotiledóneas (folha estreita)

como por exemplo a *Cynodon dactylon* L. (grama), ou Dicotiledóneas como a *Cichorium* intybus L., o *Rumex conglomeratus* Murray, a *Eryngium campestre* L., etc.

Exemplos de infestantes perenes ou vivazes

Monocotiledóneas (folha estreita)

Fig. 14. Cynodon dactylon L. (grama)

Dicotiledóneas (folha larga)

Fig. 15. *Rumex conglomeratus* Murray (labaça – ordinária)

3. 1. 2. Vantagens da rotação de culturas no controlo de infestantes

Datas de sementeira — Aspecto muito importante no controlo de infestantes de germinação escalonada no tempo, pela possibilidade do seu controlo em pré-sementeira, alternando culturas de Primavera/Verão com culturas de Outono/Inverno. As culturas de Primavera/Verão são muito eficazes no controlo de infestantes principalmente pela sua data de sementeira, pelo facto de que aquando da sua instalação existirem muitas infestantes no terreno

e a maior parte delas já se encontrarem bem desenvolvidas (Figura 16), permitindo desse modo um excelente controlo em pré-sementeira. Este aspecto torna por exemplo, a cultura do girassol numa boa precedente cultural para os cereais de Outono/Inverno, nomeadamente para o trigo. Em termos da sua data de sementeira, as culturas de Outono/Inverno não são muito eficazes no controlo de infestantes, porque aquando da sua instalação, a maioria dessas infestantes ainda não terão germinado e emergido.

Fig. 16. Controlo mecânico de infestantes em pré-sementeira de uma cultura de Primavera/Verão

Datas de colheita – Alternando culturas de colheita tardia (cereais e culturas de Primavera) com culturas de colheita precoce, como por exemplo as forragens de Outono/Inverno (Aveia forrageira, Aveia x Vicia, Aveia x Tremocilha, etc.). Estas forragens são colhidas normalmente em finais de Abril, princípios de Maio, quando a grande maioria das infestantes ainda não produziram sementes, evitando-se desse modo a sua propagação para culturas seguintes.

Fig. 17. Colheita de uma forragem de Outono/Inverno

Tolerância aos herbicidas – Após a sementeira os herbicidas são selectivos (só controlam determinadas espécies), havendo tolerância de algumas infestantes a esses herbicidas. Portanto, deve fazer-se alternância de culturas com exigência de herbicidas diferentes.

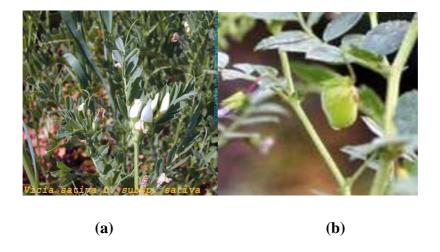
Culturas abafantes – são aquelas que têm grande capacidade de competição com as infestantes, quer por terem um crescimento inicial rápido, quer por terem elevadas populações. Por exemplo, as forragens de Outono/Inverno que se referiram anteriormente são consideradas abafantes pelo facto da aveia ter grande capacidade de afilhamento o que conduz a uma elevada densidade populacional por unidade de área. Também pelo facto de ter porte sub erecto a aveia abafa outras plantas que tenham crescimento mais lento, incluindo as infestantes. O girassol e o milho poderão também ser consideradas culturas abafantes, mas apenas na linha de cultura, porque dada a grande largura de entrelinha a sua capacidade de competição com as infestantes é reduzida, principalmente nas primeiras fases de crescimento.

Fig. 18. Aveia forrageira

Culturas sachadas – por serem semeadas com uma baixa população, permitem o controlo das infestantes na entrelinha. São exemplo o girassol, o milho, etc.

Fig. 19. (a)- Cultura do girassol; (b)- Sacha de uma cultura de Primavera/Verão

3. 2. Controlo de doenças


A rotação de culturas desempenha um papel muito importante no controlo das doenças das culturas, principalmente as chamadas doenças do solo, ou seja, as que atacam a cultura pela raiz, caso por exemplo dos nemátodos nas Solanáceas (tomate, batata, beterraba, etc.) e o pé negro nos cereais (trigo e cevada). As doenças são específicas para determinadas espécies de culturas e muitas vezes, o seu controlo só é possível através da alternância de culturas sensíveis a doenças diferentes.

Entende-se por **período de recorrência** o período que uma cultura deve estar ausente do terreno após um ano de cultivo ou, no caso de plantas vivazes, após um ciclo cultural. O período de recorrência do trigo é de 1/2 o que significa que a cultura só deve regressar ao mesmo solo passados 2 anos depois de lá ter estado. O girassol tem um período de recorrência de 1/3, o melão de 1/4, etc.

3. 3. Incorporação de nutrientes

3. 3. 1. Utilização de leguminosas

As plantas leguminosas fixam azoto atmosférico sendo auto-suficientes neste macronutriente, consequência da associação simbiótica das suas raízes com a bactéria Rizobium. No entanto, elas não só fixam o azoto para elas próprias mas deixam também algum azoto no solo para as culturas seguintes, com consequências na menor necessidade de adubação destas e portanto, na redução dos custos de produção. A quantidade de azoto deixado no solo para a cultura seguinte depende da leguminosa. Culturas forrageiras como por exemplo a vicia e a tremocilha deixam maior quantidade de azoto no solo do que culturas produtoras de grão, como por exemplo o grão-de-bico, a ervilha forrageira, etc. Isto deve-se ao facto de nestas culturas grande parte do azoto ser transferido para o grão no final do ciclo, o qual sai do sistema.

Fig. 20. (a) – Ervilhaca (*Vicia sativa* L.); (b) – grão-de-bico (*Cicer arietinum* L.)

As pastagens são de todas as culturas as que mais nutrientes incorporam no solo. Por um lado são geralmente constituídas por uma grande diversidade de leguminosas que absorvem o azoto atmosférico e por outro lado existe uma grande incorporação de nutrientes provenientes dos dejectos dos animais.

Fig. 21. Pastagem biodiversa

3. 4. Rotações e erosão do solo

O efeito maior ou menor da rotação de culturas na protecção do solo contra a erosão hídrica (Figura 22) resulta da sua maior ou menor capacidade de proteger o solo contra a acção directa da chuva e da sua capacidade em manter uma boa estrutura do solo. Num solo bem estruturado os agregados são mais estáveis, logo mais difíceis de serem arrastados e por outro lado, como a capacidade de infiltração da água no solo é maior, menos escorre à superfície, ou seja, menos erosão causa. As pastagens são as culturas que melhor protegem o solo da erosão.

Fig. 22. Erosão hídrica

3. 5. Rotações e estrutura do solo

Quando se fala de estrutura dum solo estamos a falar do arranjo das partículas e assim do tipo de agregados e da estabilidade desses agregados. Os agregados do solo mais estáveis são os chamados agregados argilo-húmicos que resultam de ligações fortes entre a argila e a matéria orgânica (húmus).

No maneio da estrutura dum solo há que dar atenção à criação de agregados (macroporosidade) e à sua manutenção quer pela redução das pressões (tráfico de máquinas e alfaias e impacto directo das gotas de chuva), quer pelo aumento da resistência a essas pressões através da alteração do teor do solo em matéria orgânica e pela maior ou menor incorporação de resíduos orgânicos frescos a que conduz.

Fig. 23. (a) – Agregados do solo; (b) – porosidade biológica (macroporosidade)

Uma boa estrutura do solo é conseguida através:

- do aumento do teor de matéria orgânica no solo.
- do aumento de resíduos orgânicos frescos.
- da permanência das raízes das culturas no solo.
- da redução do tráfico de máquinas no solo, principalmente quando está húmido.
- da redução do impacto das gotas de chuva directamente no solo.

Fig. 24. Solo bem estruturado (esquerda) e mal estruturados (direita)

É visível que o solo mais escuro (esquerda), ou seja, com maior teor de matéria orgânica, apresenta uma maior porosidade biológica, consequência duma melhor estrutura.

Uma boa estrutura do solo conduz a um aumento:

- da taxa de infiltração da água (redução da erosão).
- da capacidade de retenção do solo para a água.
- . do enraizamento das culturas ao longo do perfil do solo.
- . da capacidade de troca catiónica (capacidade do solo fornecer nutrientes às culturas).

A rotação de culturas poderá assim, afectar a estrutura de um solo quer por afectar os factores de formação de agregados, quer por afectar a estabilidade desses agregados.

A pastagem é de todas as culturas, aquela que mais beneficia a estrutura do solo:

- deixa resíduos no solo (dejectos dos animais e restos de plantas).
- aumenta o teor de matéria orgânica no solo.
- evita o impacto directo da gota de chuva no solo.
- permanece vários anos no solo sem mobilizações, o que permite que as raízes criem porosidade biológica contínua ao longo do perfil.

Fig. 25. Pastagem

3. 5. Rotação de culturas e necessidades de maquinaria e mão-de-obra

Devido à existência de períodos de ponta na época das sementeiras e na época das colheitas, a rotação deve ser composta por culturas com épocas de sementeira e épocas de colheita diferentes. Deste modo, uma rotação que inclua culturas de Outono/Inverno e culturas de Primavera/Verão permitirá uma melhor distribuição da maquinaria e da mão-de-obra ao longo do ano.

Bibliografia Relacionada

Carvalho, M. e Azevedo, A. L. (1991). Rotações de culturas. Texto de apoio para as disciplinas de Agricultura Geral e Máquinas Agrícolas I e II.