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Abstract

This paper studies a scalar minimization problem with an integral functional of the gradient under
affine boundary conditions. A new approach is proposed using a minimal and a maximal solution
to the convexified problem. We prove a density result: any relaxed solution continuously depending
on boundary data may be approximated uniformly by solutions of the nonconvex problem keeping
continuity relative to data. We also consider solutions to the nonconvex problem having Lipschitz
dependence on boundary data with the best Lipschitz constant.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Consider the integral functional

J (u) =
∫
�

g(∇u(x)) dx,
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defined on the class of scalar Sobolev functions subject to a boundary condition u|��=u0(·).
Here � is an open bounded set in Rn and the lagrangian g : Rn → R ∪ {+∞} is lower
semicontinuous, possibly nonconvex. In applications to elasticity theory, the functional J
can be the free energy of a homogeneous body undergoing antiplane shear
deformations.

In the past many researchers have paid attention to the problem of minimizing such
integral, under various physically reasonable hypotheses on the lagrangian and on boundary
data. Necessary and sufficient conditions for the existence of minimizers, in the case of
affine data, were independently found by Cellina and by Friesecke in the beginning of the
nineties (see [3,4,14]). They have shown that existence or nonexistence of minimizers for
the problem

min

{∫
�

g(∇u(x)) dx : u(·) ∈ 〈v, ·〉 + W1,p
0 (�)

}
(Pv)

depends on the position of the vector v on the geometrical structure of the lagrangian.
More precisely, denoting by g∗∗(·) the bipolar function, i.e. the greatest convex lower
semicontinuous function below g(·), the problem (Pv) admits at least one solution if and
only if

either g∗∗(v) = g(v)

or
near the point v the function g∗∗(·) is affine.

(C)

Notice that in [3,4] the author supposed superlinear growth of g, while in [14] the la-
grangian was assumed continuous. In case g admits values +∞ in the condition above one
must assume v to be an interior point of the effective domain of g∗∗.

Later (see [20,21]) the same variational problem with a more general boundary condition
was considered

min

{∫
�

g(∇u(x)) dx : u(·) ∈ u0(·) + W1,p
0 (�)

}

and a condition for its solvability, for each function u0(·) having enough regularity, was
proposed. The technique was mainly inspired by research on boundary value problems
for Hamilton–Jacobi equations (see [12]). It also contains an original argument using the
differentiability (a.e.) of a solution to the relaxed problem. In order to have this property
one needs to assume that either p > n or the lagrangian satisfies a rather strong growth
hypothesis (see [20]).

Let us return now to the problem (Pv). The next natural question is stability of solutions
w.r.t. boundary data. Such kind of result was obtained, e.g., in [5]. Fixing a v for which
there exists a unique solution uv(·), the authors studied convergence of various sequences
of solutions uvn(·) associated to vectors vn → v as n → ∞. Since, in general, we have
no uniqueness, then other question is to find a minimizer depending on v in a suitable
(continuous) way. This question was first considered in [15], where the authors proved the
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existence of a continuous mapping s(v)(x) such that: s(v)(·) solves (Pv) for almost any v

satisfying the condition (C) while for other v it always minimizes the relaxed functional.
A stronger result was reached later, in [10], constructing a Lipschitz continuous selection
associating to each v a minimizer of the original nonconvex problem (Pv), at those v where
it exists. Notice that on the set of minimizers we have the uniform topology induced by the
space C(�).

The common technical tool which unifies all of the above results is the Vitali cov-
ering theorem. Roughly speaking, this approach permits us to obtain a solution of the
original problem by a series of local perturbations of a solution of the convexified one.
Its application is much simpler in the case of affine boundary data, due to the fact that
the function x 	→ 〈v, x〉 itself is a solution of the relaxed problem. Thus, given a suit-
able v, a minimizer of (Pv) can be obtained as an arbitrarily small perturbation of the
affine function. However, a simple application of the Vitali theorem is not enough if one
wishes to keep the continuity of a solution w.r.t. v. That is why the paper [10] devel-
oped a constructive version of the Vitali method, taking into account also the depen-
dence on v. However, this technique is not convenient to describe the family of all the
solutions.

In this paper we develop a different approach, based on two functions which enclose the
solutions of the relaxed problem. Assuming that there exist no unbounded n-dimensional
faces (and this may be obtained by imposing e.g. superlinear growth), these functions
(defined explicitly) are themselves solutions of the relaxed problem. Moreover, they are
(Lipschitz) continuous as mappings from dom(g∗∗) to C(�). Then a simple compactness
argument permits us to construct minimizers of the original nonconvex functional which
approximate the upper and the lower solutions, keeping continuous dependence on v. Fur-
thermore, in such a way one can approximate any minimizer s̃(v)(·) of the relaxed func-
tional which satisfies either s̃(v)(x) > 〈v, x〉, or s̃(v)(x) < 〈v, x〉 for all v and x while for
a more general minimizer (containing possibly affine pieces as well) we apply first some
polynomial approximation. However, if the epigraph of the function g∗∗ has unbounded
n-dimensional faces, then the closure of the solution set of the original problem (Pv) is,
in general, strictly included in the family of solutions of the relaxed one (as shown in
Example 5.1).

The paper is organized as follows. In Section 2 after some preliminaries, we construc-
tively define upper and lower functions, associated with the extremal structure of the epi-
graph of g∗∗, and discuss their connection with the family of solutions of the convex-
ified variational problem. Then (Section 3) we formulate the main theorem (on density
of the solution set uniformly w.r.t. v ) and introduce the basic constructions needed to
prove it. As convenient tools to treat such kind of problems we use the Baire category
theorem and a Choquet function characterizing extreme points of a convex compact set.
In the following section we prove some auxiliary statements on polynomial approxima-
tions, while the essential part of the proof of the main theorem is contained in Section
5. In Section 6 we modify the proof in order to obtain the result on density of solu-
tions which are Lipschitz continuous w.r.t. v. Finally, the last section analyses our vari-
ational problem in terms of a differential inclusion for the gradient, and shows a con-
crete example in which the lower and the upper solutions do not solve the nonconvex
problem.
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2. Preliminaries. Solutions of the relaxed problem

In what follows we assume � to be an open bounded set in Rn, and g : Rn → R∪{+∞}
to be a lower semicontinuous proper function. The following notations will be used:

• dom(g) := {v ∈ Rn : g(v) < + ∞}—the domain of g(·)
• epi(g) := {(v, r) ∈ Rn × R : r �g(v)}—the epigraph of g(·)
• diam A := sup{|x − y| : x, y ∈ A}—the diameter of a set A ⊂ Rn

• coA—the convex closed hull of A
• ext A—the set of all extreme points of A
• int A—the interior of A
• �A—the boundary of A
• A—the closure of A
• B—the closed unit ball centered at zero in Rn

• �A(v) := sup{〈v, x〉 : x ∈ A}—the support function of a set A ⊂ Rn (where 〈·, ·〉 is the
scalar product in Rn)

• A∗ := {v ∈ Rn : �A(v)�1}—the polar of a set A ⊂ Rn

• distA(·)—the distance from a point to a set A ⊂ Rn

• �(�)—the n-dimensional Lebesgue measure of �
• C(�)—the space of all continuous functions u : � → R supplied with the norm

‖u‖∞ := sup
x∈� |u(x)|

• C0(�)—the subspace of those u(·) ∈ C(�) which are zero on ��.

We consider the bipolar function g∗∗ : Rn → R ∪ {+∞} whose epigraph is the closed
convex hull of epi(g). Since any convex set can be represented as the union of the relative
interiors of its faces (see [17, p. 164]), to each vector v ∈ dom(g∗∗) we can associate a
unique (nonvertical) face F(v) of epi(g∗∗) to whose relative interior the point (v, g∗∗(v))

belongs. Let us denote by F̂ (v) the projection of this face into Rn. One way to guarantee
boundedness of all the sets F̂ (v) is the following superlinear growth assumption:

lim|v|→+∞
g(v)

|v| = +∞. (H)

Another way is the hypothesis of strict convexity at infinity: there exist no nonvertical
rays (i.e. straight half-lines) contained in the epigraph of g∗∗. It may also be obtained by
imposing a non-coercive growth condition: g∗∗(�k) − 〈mk, �k〉 → −∞ for any sequence
{�k} ⊂ dom(g∗∗) having |�k| → ∞ and mk ∈ �g∗∗(�k) ∀k.

But even when these hypotheses are violated, one can write the necessary and sufficient
condition of existence of a minimizer in (Pv), for v ∈ int dom(g∗∗), as

v ∈ Y ∪ int co(Y ∩ F̂ (v)), (C
′
)

where Y := {v ∈ int dom(g∗∗) : g(v) = g∗∗(v)}. In [20] this condition was formulated in
terms of the subdifferential of g (see Theorem 1.1 there).
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Let us consider now the relaxed (convexified) variational problem

min

{∫
�

g∗∗(∇u(x)) dx : u(·) ∈ 〈v, ·〉 + W1,p
0 (�)

}
. (RPv)

This problem always admits a solution (for instance, the affine function 〈v, x〉 itself), and
the minimum is g∗∗(v)�(�). By the relaxation result [20, Lemma 2.3] we have also

inf

{∫
�

g(∇u(x)) dx : u(·) ∈ 〈v, ·〉 + W1,p
0 (�)

}
= g∗∗(v)�(�),

whenever v ∈ int dom(g∗∗). Recall that for any solution u(·) of (RPv) the inclusion

∇u(x) ∈ F̂ (v) (2.1)

holds for almost every (a.e.) x ∈ �. Moreover, by the divergence theorem (see, e.g., [13, p.
478]) it follows that each function u(·) ∈ 〈v, ·〉 + W1,p

0 (�) satisfying the condition (2.1)
is indeed a minimizer of the problem (RPv). Notice that this property does not depend
neither on the smoothness of the boundary �� nor on the growth of the integrand (see the
proof of Lemma 3.3 in [14]). However, for the sake of simplicity, further on we suppose
the hypothesis (H) or strict convexity at infinity to be satisfied. The condition (C′) in this
case, by the Krein–Milman theorem, takes the form

v ∈ Y ∪ int F̂ (v). (C
′′
)

Let us start by defining the functions as following:

s+(v)(x) := inf
x′∈��

sup
v′∈F̂ (v)

{〈v, x′〉 + 〈v′, x − x′〉}, (2.2)

s−(v)(x) := sup
x′∈��

inf
v′∈F̂ (v)

{〈v, x′〉 + 〈v′, x − x′〉}. (2.3)

Our first statement gives another representation of these functions, connecting them with
the expansion factors defined by

�+(v)(x) := sup{� > 0 : x − �(F̂ (v) − v)∗ ⊂ �} and (2.4)

�−(v)(x) := − sup{� > 0 : x + �(F̂ (v) − v)∗ ⊂ �} (2.5)

for v ∈ int F̂ (v) and x ∈ �; and �+(v)(x) = �−(v)(x) = 0 for x ∈ �� or v ∈ �F̂ (v).

Proposition 2.1. For all v ∈ dom(g∗∗) and x ∈ � we have

s+(v)(x) = 〈v, x〉 + �+(v)(x) and s−(v)(x) = 〈v, x〉 + �−(v)(x). (2.6)

If u(·) is a minimizer of the problem (RPv) for some v ∈ dom(g∗∗) then

s−(v)(x)�u(x)�s+(v)(x) ∀x ∈ �. (2.7)

Proof. Let us prove, for instance, the first equality in (2.6). Set

� := s+(v)(x) − 〈v, x〉 = inf
x′∈��

�
F̂ (v)−v

(x − x′).
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If v ∈ �F̂ (v) then there exists � ∈ Rn, � �= 0, with �
F̂ (v)−v

(�) = 0. On the other hand, for

each x ∈ � one can find x′ ∈ �� and � > 0 such that x−x′=��. Therefore �=0=�+(v)(x).
Observe that the relation v ∈ �F̂ (v) is equivalent to intF̂ (v) = ∅.

Now assume that v ∈ intF̂ (v), i.e. the set (F̂ (v) − v)∗ is bounded. For an arbitrary
ε > 0 let us choose x′ ∈ �� such that �

F̂ (v)−v
(x − x′)�� + ε. It is equivalent to say

that x′ ∈ x + (� + ε)[−(F̂ (v) − v)∗]. Consequently, � + ε��+(v)(x), i.e., the inequality
〈v, x〉+�+(v)(x)�s+(v)(x) holds. Since the set −(F̂ (v)−v)∗ is compact, it is not possible
that x + �+(v)(x)[−(F̂ (v) − v)∗] ⊂ �. Then there exists x′ ∈ �� with

x − x′

�+(v)(x)
∈ (F̂ (v) − v)∗,

or, in other words, �
F̂ (v)−v

(x − x′)��+(v)(x), i.e. the converse inequality also follows.
The proof of the second equality in (2.6) is similar.

Now let u(·) be a minimizer of the relaxed functional subject to the boundary condition
u(x) = 〈v, x〉 whenever x ∈ ��. By (2.1) and boundedness of F̂ (v), the function u(·) is
Lipschitz continuous. Therefore, using Lebourg’s theorem [6, p. 41] and Theorem 2.5.1
[6, p. 63] for each x ∈ � and x′ ∈ ��, one can find v′ ∈ F̂ (v) such that u(x) − 〈v, x′〉 =
u(x) − u(x′) = 〈v′, x − x′〉; and this immediately implies the inequalities (2.7). �

Remark 2.1. From Proposition 2.1 it follows, in particular, that the problem (RPv) admits
a unique (affine) solution if and only if v ∈ �F̂ (v).

Observe that the function �+(v)(·) is the viscosity solution of the Hamilton–Jacobi equa-
tion �

(F̂ (v)−v)∗(∇u(x)) = 1, u|�� = 0, as defined in [8]. See, for instance, [2] and the
references there. In order to give a generalization of the McShane lemma on Lipschitz
extensions, the authors in [2] also used the symmetrical function �−(v)(·).

Theorem 2.1. Let g : Rn → R ∪ {+∞} be a lower semicontinuous proper function and
fix any open bounded set � in Rn. Then the above functions s+(v)(·) and s−(v)(·) are
minimizers in the relaxed problem (RPv) for each v ∈ dom(g∗∗). Moreover, the mappings
v 	→ s+(v)(·) and v 	→ s−(v)(·) are Lipschitz continuous in the sense that the inequalities

‖s+(v1) − s+(v2)‖∞ �‖�‖ |v1 − v2| and (2.8)

‖s−(v1) − s−(v2)‖∞ �‖�‖|v1 − v2| (2.9)

hold for all v1, v2 ∈ dom(g∗∗) where ‖�‖ := max
x∈�|x|.

Proof. Given v ∈ dom(g∗∗) the set F̂ (v) − v is bounded, and for any x′ ∈ �� the
map x 	→ �

F̂ (v)−v
(x − x′) is Lipschitz continuous with Lipschiz constant not depending

on x′. Hence it is differentiable (a.e.) and ∇�
F̂ (v)−v

(x − x′) ∈ ext F̂ (v) − v (see
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[17, Corollary 25.1.3, p. 243]). Then s+(v)(x) = 〈v, x〉 + infx′∈���
F̂ (v)−v

(x − x′) is also

Lipschitz and, by Theorem 2.8.6 [6] ∇s+(v)(x) ∈ F̂ (v) for a.e. x ∈ �, i.e. s+(v)(·) is the
solution of (RPv).

Let us prove the inequality (2.8). It is obvious in case either F̂ (v1) = F̂ (v2) or both
sets F̂ (v1) and F̂ (v2) have empty interiors. Assume, therefore, that F̂ (v1) ∩ F̂ (v2) = ∅
and v1 ∈ int F̂ (v1), v2 ∈ int F̂ (v2). All the other cases can be easily reduced to this one.
Denote by v′

1 and v′
2 the points of the interval (v1, v2) which belong to the boundaries of

F̂ (v1) and F̂ (v2), respectively. By definition �+(v′
1) = �+(v′

2) ≡ 0. Furthermore, given
ε > 0 small enough we have that �+(v)(x)�ε ∀x ∈ � whenever either v ∈ int F̂ (v1)

with |v−v′
1|�ε/(3‖�‖), or v ∈ int F̂ (v2) with |v−v′

2|�ε/(3‖�‖). Indeed, assuming that
�+(v)(x) > ε for some x ∈ �, in the first case, e.g., we would have x+ε[−(F̂ (v1)−v)∗] ⊂
�, hence (F̂ (v1) − v)∗ ⊂ (2‖�‖/ε)B or v + ε/(2‖�‖)B ⊂ F̂ (v1) which is impossible.
Now for any ε > 0 choose points v′′

1 ∈ (v1, v
′
1) and v′′

2 ∈ (v′
2, v2) with |v′

1 −v′′
1 |�ε/(3‖�‖),

|v′
2 − v′′

2 |�ε/(3‖�‖). Since v′′
1 ∈ int F̂ (v1) = int F̂ (v′′

1 ) and v′′
2 ∈ int F̂ (v2) = int F̂ (v′′

2 )

we can write

|s+(v1)(x) − s+(v2)(x)|� |s+(v1)(x) − s+(v′′
1 )(x)|

+ |〈v′′
1 , x〉 + �+(v′′

1 )(x) − 〈v′
1, x〉|

+ |〈v′
1, x〉 − 〈v′

2, x〉|
+ |〈v′

2, x〉 − 〈v′′
2 , x〉 − �+(v′′

2 )(x)|
+ |s+(v′′

2 )(x) − s+(v2)(x)|
�‖�‖|v1 − v′′

1 | + ‖�‖|v′′
1 − v′

1|
+ ‖�‖|v′

1 − v′
2| + ‖�‖|v′

2 − v′′
2 |

+ ‖�‖|v′′
2 − v2| + 2ε

= ‖�‖|v1 − v2| + 2ε.

This proves (2.8). In a similar way one may consider the function s−(v)(x) and obtain the
inequality (2.9). �

Taking into account also Proposition 2.1 the functions s+(v)(·) and s−(v)(·) can be named
the upper and lower solutions of the problem (RPv), respectively. Theorem 2.1 states their
Lipschitz regularity w.r.t. the boundary data. Clearly, we can extend these functions to whole
space Rn by setting �+(v) = �−(v) ≡ 0 ∀v /∈ dom(g∗∗).

The following examples show that when some n-dimensional face of epi(g∗∗) is un-
bounded then the family of minimizers of the relaxed problem may be unbounded and/or
may not contain its lower and upper bounds.

Example 2.1. Let � ⊂ Rn be an open bounded set and g(�) = 1/(|�| + 1), � ∈ Rn.

Clearly, here g∗∗(�) ≡ 0 and for each v ∈ Rn we have F̂ (v) = Rn. Then any function
from 〈v, ·〉 + W1,p

0 (�) is solution of the relaxed problem, and from (2.4)–(2.6) we see that
s+(v)(x) ≡ +∞ and s−(v)(x) ≡ −∞.
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Example 2.2. Let � = (−1, 1) ⊂ R1 and g(�) = |�|(1 + 1/(�2 + 1)), � ∈ R1.

In this case g∗∗(�) = |�|, and the boundary of epi(g∗∗) consists of two one-dimensional
faces whose projections into R1 are (−∞, 0] and [0, +∞). From (2.2) and (2.3) one easily
finds

s+(v)(x) =
{−v if x = −1,

|v| if − 1 < x < 1,

v if x = 1.

s−(v)(x) =
{−v if x = −1,

−|v| if − 1 < x < 1,

v if x = 1.

These functions are not even continuous in x, so that they are not minimizers in (RPv) for
each v �= 0. On the other hand, s+(v)(·) and s−(v)(·) are the upper and lower bounds of
the solution set, respectively, in the sense that the problem (RPv) admits a (continuous in
v) solution s(v)(·) which is so near to the function s+(v)(·) (respectively, s−(v)(·)) as one
wishes. For instance, let the continuous mappings sk : R1 → C(�) be defined as

sk(v)(x) :=
{

k(v + |v|)(x + 1) − v if − 1�x < − 1 + 1/k,

|v| if − 1 + 1/k�x�1 − 1/k,

k(v − |v|)(x − 1) + v if 1 − 1/k < x�1.

Then sk(v)(·) is a minimizer of the relaxed functional for each v ∈ R1, k = 1, 2, . . . , and
the sequence {sk(v)(·)} converges to s+(v)(·) (but only pointwise).

3. The main result: basic constructions

The basic space in our considerations will be the spaceC(Rn, C(�)) of all the continuous
mappings s : Rn → C(�) with the topology of uniform convergence in compact sets. This
space is, clearly, metrizable and complete. Let us denote by S∗∗ the set of all �(·) ∈
C(Rn, C0(�)) such that the function x 	→ 〈v, x〉 + �(v)(x) is solution of the relaxed
problem (RPv) for all v ∈ dom(g∗∗), and �(v) ≡ 0 if v /∈ dom(g∗∗). Observe that each
function �(·) ∈ S∗∗ vanishes outside the open set

⋃
v∈dom(g∗∗) int F̂ (v) (see the Remark

after Proposition 2.1). Since for different v the sets int F̂ (v) are either disjoint or coincide,
this union consists of an at most countable family of disjoint sets, say Vm, m = 1, 2, . . . ,
which are bounded under any of our hypotheses on a behaviour of g at infinity. Recalling
now the condition (2.1) we see that the set S∗∗ consists of those and only those continuous
mappings � : Rn → C0(�) which are equal to zero outside

⋃∞
m=1 Vm such that �(v)(·) ∈

W1,p
0 (�) and v + ∇�(v)(x) ∈ V m for a.e. x ∈ � and all v ∈ Vm, m = 1, 2, . . . . For

each �(·) ∈ S∗∗ in fact �(v)(·) ∈ W1,∞
0 (�), v ∈ Vm, and the function �(v)(·) is Lipschitz

continuous with Lipschitz constant Dm := diam Vm, m = 1, 2, . . . .

Lemma 3.1. The set S∗∗ is closed in C(Rn, C(�)), hence it is a complete metric space
with respect to the induced topology.

Proof. Let {�k(·)} be a sequence in S∗∗ converging to some �(·) ∈ C(Rn, C(�)). We
clearly have that �(v) = 0 for all v /∈⋃∞

m=1Vm, and �(v)(x) = 0 whenever x ∈ ��, v ∈
dom(g∗∗). Furthermore, given v ∈ Vm, m=1, 2, . . . , we see that the sequence {�k(v)(·)} is
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bounded in the space W1,∞(�). Consequently, by the Alaoglu–Bourbaki theorem (see, e.g.,
[19, p. 89]) we can assume without loss of generality that {�k(v)(·)} converges to �(v)(·)
weakly in W1,∞(�). Therefore, the sequence of gradients {v + ∇�k(v)(·)} converges
weakly in L∞(�) to v + ∇�(v)(·), and the relations v + ∇�k(v)(x) ∈ V m, k = 1, 2, . . . ,
that hold for a.e. x ∈ �, imply by convexity of Vm that also v + ∇�(v)(x) ∈ Vm a.e. in �.
Thus �(·) ∈ S∗∗ and the proof is complete. �

From now on we consider S∗∗ as a metric space with the induced topology.
Let us pass to the original nonconvex variational problem (Pv) and observe (see [20,

Lemma 2.3]) that each solution of (Pv) is also solution of the relaxed problem (RPv).
So that it is natural to consider the set S of all the mappings �(·) ∈ S∗∗ such that x 	→
〈v, x〉+�(v)(x) is solution of (Pv) for all v ∈ ⋃∞

m=1 Vm, taking into account that for other
v solution may fail to exist. On the other hand, we pay special attention to those elements
�(·) ∈ S∗∗ whose gradients ∇�(v)(x) belong to ext Vm − v a.e. in � whenever v ∈ Vm,
m = 1, 2, . . . . As is easily seen, the set of all such mappings, say Sext, is contained in S.

The main result of this paper is the following

Theorem 3.1. Sext is a dense G�-subset of S∗∗.

Thus S is also dense in S∗∗ which means that each solution of (RPv) continuously
depending on v can be approximated by a sequence of solutions of the original problem (Pv)

keeping continuity in v uniformly in each bounded set where a solution exists, particularly,
in each Vm, m = 1, 2, . . ..

Below we introduce some constructions which will be used to prove this result.
Let us associate to each compact convex set K ⊂ Rn a function l(·, K) : Rn → R

concave, upper semicontinuous and such that

0� l(x, K)�diam K ∀x ∈ K; (3.1)

l(x, K) = −∞ ∀x /∈ K;

l(x, K) = 0 if and only if x ∈ ext K . (3.2)

We refer to [1,11] for examples of such functions. For fixed m and u(·) ∈ C(�) we denote
by

Lm(u) =
∫
�

l(∇u(x), V m) dx. (3.3)

It is known (see [9, p. 49]) that the functional Lm : C(�) → R is upper semicontinuous.
Given m = 1, 2, . . . and 	 > 0 small enough we consider then the compact set

V
	
m := {v ∈ Vm : dist�Vm(v)�	}, (3.4)

and for each �(·) ∈ S∗∗, we define

L
	
m(�) := sup

v∈V
	
m

Lm(〈v, ·〉 + �(v)(·)). (3.5)
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Lemma 3.2. The functional L	
m : S∗∗ → R is bounded, namely

0�L
	
m(�)�Dm · �(�) ∀�(·) ∈ S∗∗, (3.6)

and is upper semicontinuous.

Proof. Since for �(·) ∈ S∗∗ we have v + ∇�(v)(x) ∈ V m a.e. in � whenever v ∈ Vm, the
inequality (3.6) follows immediately from (3.5), (3.3) and (3.1).

Let now {�k} ⊂ S∗∗ be a sequence converging to �(·) in S∗∗. For each k = 1, 2, . . . let
us choose vk ∈ V

	
m such that

L
	
m(�k) = Lm(〈vk, ·〉 + �k(vk)(·)). (3.7)

The existence of suchvk follows from upper semicontinuity of the mappingv 	→ Lm(〈v, ·〉+
�k(v)(·)) and compactness ofV 	

m.Without loss of generality we can assume that the sequence
{vk} converges to some point v ∈ V

	
m. Then, obviously, �k(vk) → �(v) as k → ∞ in C(�),

and by the same argument as above

Lm(〈v, ·〉 + �(v)(·))� lim sup
k→∞

Lm(〈vk, ·〉 + �k(vk)(·)). (3.8)

Thus, from (3.8), (3.5) and (3.7) we obtain

lim sup
k→∞

L
	
m(�k)�L

	
m(�),

and the upper semicontinuity of L	
m follows. �

We associate to the functional L	
m the sublevel set

S
	
m := {�(·) ∈ S∗∗ : L

	
m(�) < 	},

which is open by Lemma 3.2. Taking into account the property (3.2) we see that

∞⋂
m,k=1

S
1/k
m = Sext.

Therefore, in order to apply the Baire category theorem to prove density of the set Sext

in S∗∗ it suffices to prove density of each S
	
m, m = 1, 2, . . . , 	 > 0. We deal with this in

Section 5. In the next section, instead, we obtain some auxiliary approximation results.
In what follows we fix m ∈ {1, 2, . . .} and, for the sake of simplicity, use the notations

V, D, V 	 and S	 in the place of Vm, Dm, V
	
m and S

	
m, respectively.

4. The polynomial approximations

Let us denote by CV the family of continuous mappings 
 : V → C(�) such that
∇
(v)(x) ∈ V − v a.e. in � for all v ∈ V . Observe that the restriction of the set S∗∗ to
V consists of all 
(·) ∈ CV satisfying the suplementary condition 
(v)(x) = 0 ∀(v, x) ∈
(V × ��) ∪ (�V × �). We denote this set by S∗∗

V .
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Lemma 4.1. Let 
(·) ∈ CV be such that the function (v, x) 	→ 
(v)(x) is constant on the
set V × ��. Then there exists a sequence {
k(·)} ⊂ CV converging to 
(·) as k → ∞
uniformly in v ∈ V , such that for each v ∈ V and k ∈ {1, 2, . . .} either 
k(v) ≡ 0 or

k(v)(x) �= 0 for a.e. x ∈ �.

Proof. Assume that 
(v)(x) = � = const ∀v ∈ V , x ∈ ��, and extend each function

(v)(·), v ∈ V , to Rn setting 
(v)(x) = � for x /∈ �. We apply then the standard argument
of polynomial approximations (see, e.g., [18, p. 159]).

Fix R� 3
4 so large that � − � ⊂ �R where

�R := {x ∈ Rn : |xi |�R ∀i = 1, . . . , n}.
Let us define the polynomials

Qk(x) := 
k

n∏
i=1

(R2 − x2
i )k, x = (x1, . . . , xn) ∈ Rn, k = 1, 2, . . . ,

where the constants 
k > 0 are chosen such that∫
�R

Qk(x) dx = 1. (4.1)

From the condition (4.1) we have

1 = 
k 2n

(∫ R

0
(R2 − t2) dt

)n

�
k 2n R2kn

(∫ R/
√

k

0

(
1 − kt2

R2

)
dt

)n

=
(

4

3

)n


k R2kn Rn (1/
√

k)n.

Thus


k � (
√

k)n

R2kn
, k = 1, 2, . . . .

Now given some 0 < � < R for each x ∈ �R\�� we obtain

0�Qk(x)�
k (R2 − �2)k R2k(n−1) �(
√

k)n(1 − (�/R)2)k, k = 1, 2, . . . .

Hence {Qk(x)} converges to zero as k → ∞ uniformly in x ∈ �R\��. We set


k(v)(x) :=
∫
�R


(v)(x + y)Qk(y) dy, x ∈ �, v ∈ V ,

and observe that the mappings 
k : V → C(�) are continuous, and

∇
k(v)(x) =
∫
�R

∇
(v)(x + y)Qk(y) dy ∈ V − v
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a.e. in � whenever v ∈ V , that is 
k(·) ∈ CV . Furthermore, given ε > 0, by continuity of
the mapping (x, v) 	→ 
(v)(x) and compactness of the sets �, V one can choose � > 0 such
that

|
(v)(x + y) − 
(v)(x)|�ε/2, (4.2)

whenever v ∈ V , x ∈ Rn and y ∈ ��. Also there exists L > 0 such that |
(v)(x)|�L for
all v ∈ V and x ∈ Rn. By uniform convergence of the polynomials Qk(x), let us choose
k′ ∈ {1, 2, . . .} such that

0�Qk(x)� ε

2L(2R)n
(4.3)

for all k�k′ and all x ∈ �R\��. Combining (4.2) and (4.3) we obtain

|
k(v)(x) − 
(v)(x)|�
∫
��

|
(v)(x + y) − 
(v)(x)|Qk(y) dy

+
∫
�R\��

|
(v)(x + y) − 
(v)(x)|Qk(y) dy

�ε/2 + 2L

∫
�R\��

Qk(y) dy�ε,

whenever v ∈ V and x ∈ �.
Finally, by a change of variables we have


k(v)(x) − � =
∫
�R

(
(v)(x + y) − �)Qk(y) dy

=
∫
�R+x

(
(v)(z) − �)Qk(z − x) dz

=
∫
�
(
(v)(z) − �)Qk(z − x) dz, x ∈ �, v ∈ V .

Therefore, 
k(v)(·) is polynomial of degree 2nk w.r.t. xi , i = 1, . . . , n, whenever v ∈ V ,
and there are only two possibilities: either 
k(v)(x) �= 0 for a.e. x ∈ � or 
k(v) ≡ 0 in �
(see, e.g., [13, p. 120]). �

Remark 4.1. If, in addition to the hypotheses of Lemma 4.1, we assume that 
(v) is not
identically zero for each v ∈ V , then by uniform convergence of the sequence {
k(·)} it
follows that for k large enough we cannot have 
k(x) ≡ 0 for any v ∈ V .

Corollary 4.1. For each 
̃(·) ∈ S∗∗
V and ε > 0 there exists 
̄(·) ∈ CV such that, for any

v ∈ V ,

‖
̃(v) − 
̄(v)‖∞ �ε (4.4)

and


̄(v)(x) �= 0 for a.e. x ∈ �. (4.5)
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Proof. It is enough to apply Lemma 4.1 and the Remark above to the function 
(v) =

̃(v) + ε/2. �

The approximating function 
̄(·) constructed in Corollary 4.1 keeps the property of gra-
dients to stay inside the convex set V − v but it no more vanishes on the boundaries ��
and �V . In order to construct a function satisfying both the boundary condition and the
property (4.5) let us use the upper and lower solutions of the problem (RPv) considered
in Section 2.

Proposition 4.1. Given any �̃(·) ∈ S∗∗ and ε > 0 there exists a �̄(·) ∈ S∗∗ such that

‖�̄(v) − �̃(v)‖∞ �ε ∀v ∈ Rn

and, for any v ∈ V ,

�̄(v)(x) �= 0 for a.e. x ∈ �. (4.6)

Proof. Let 
̄(·) ∈ CV be the mapping obtained in Corollary 4.1 by assuming 
̃(·) to be the
restriction of �̃(·) to V . We set

�̄+(v)(x) := min{max{
̄(v)(x), 0}, �+(v)(x)},
�̄−(v)(x) := max{min{
̄(v)(x), 0}, �−(v)(x)},

where �+ and �− are defined by (2.4) and (2.5). Clearly, �̄+ and �̄− are continuous mappings
from V to C0(�). Furthermore, �̄+(v) = �̄−(v) ≡ 0 if v ∈ �V , and for each v ∈ V the
functions �̄+(v)(·), �̄−(v)(·) are Lipschitz continuous. Since by Theorem 2.1, together with
Proposition 2.1, the gradients ∇�+(v)(x) and ∇�−(v)(x) belong to the set V − v a.e. in �
for all v ∈ V and the same holds for the gradients ∇
̄(v)(x) (see Corollary 4.1), then as it
follows from Proposition 2.4 [12]

∇�̄+(v)(x) ∈ V − v, ∇�̄−(v)(x) ∈ V − v (4.7)

for a.e. x ∈ � and all v ∈ V .
Let us define now

�̄(v)(x) = �̄+(v)(x) + �̄−(v)(x), x ∈ �, v ∈ V ,

and extend the mapping �̄ : V → C0(�) to Rn by setting �̄(v) = �̃(v) outside V . So
that �̄(·) ∈ C(Rn, C0(�)). If �̄+(v)(x) > 0 for some x ∈ �, v ∈ V then 
̄(v)(x) > 0
and �̄−(v)(x) = 0 (we recall that �+(v)(x) > 0 and �−(v)(x) < 0 ∀x ∈ �, v ∈ V ).
Analogously, the inequality �̄−(v)(x) < 0 implies �̄+(v)(x)= 0. Therefore, �̄(v)(x)= 0 iff
�̄+(v)(x) = �̄−(v)(x) = 0, and in case v ∈ V it follows that �̄(v)(x) �= 0 a.e. in �. So that
the property (4.6) holds. Furthermore, since for each v ∈ V the function �̄(v)(x) is equal
to either �̄+(v)(x) or �̄−(v)(x) on open subsets of � we have from (4.7) that �̄(·) ∈ S∗∗.

Finally, we have to show that

|�̃(v)(x) − �̄(v)(x)|�ε (4.8)
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for all v ∈ V , x ∈ �. This is obvious if �̄(v)(x) = 0 (see (4.4)). Consider now, for
instance, the case �̄+(v)(x) > 0. We have two possibilities. The first one is �̄(v)(x) =
�̄+(v)(x)=
̄(v)(x), and the inequality (4.8) follows directly from (4.4). Otherwise, we have
�̄(v)(x)= �̄+(v)(x)=�+(v)(x) < 
̄(v)(x). Taking into account Proposition 2.1 we observe
that �̃(v)(x)��+(v)(x), and, therefore, |�̃(v)(x)− �̄(v)(x)|� |�̃(v)(x)− 
̄(v)(x)|�ε. The
case �̄−(v)(x) < 0 can be treated similarly. �

5. The proof of density of S� in S∗∗

As proved in the previous section, each mapping �̃(·) ∈ S∗∗ can be approximated
uniformly by another one also belonging to S∗∗ and satisfying (4.6). Furthermore, the last
condition implies the following property which is crucial to prove the main theorem.

Lemma 5.1. Assume that the mapping �̄(·) ∈ C(Rn, C(�)) satisfies the condition (4.6).
Then for each compact K ⊂ V and � > 0 there exists � > 0 such that

�{x ∈ � : |�̄(v)(x)| < �} < � ∀v ∈ K . (5.1)

Proof. Indeed, by (4.6) to each v ∈ V we can associate a number �v > 0 with

�{x ∈ � : |�̄(v)(x)| < �v} < �. (5.2)

Let us choose then �v > 0 such that |v′ − v|��v implies ‖�̄(v′) − �̄(v)‖∞ ��v/2. Since
the set K ⊂ V is compact, we can find a finite number of points v1, . . . , vr ∈ K such that
K ⊂ ⋃r

i=1 (vi +�vi
B). Now we set � := min{�vi

/2 : i =1, . . . , r}. Let us take any v ∈ K .
Then there exists vi , i = 1, . . . , r , with |v − vi |��vi

, and, consequently, the inequality
|�̄(v)(x) − �̄(vi)(x)|��vi

/2 holds for all x ∈ �. Therefore, |�̄(v)(x)| < ���vi
/2 implies

|�̄(vi)(x)|��vi
, and (5.1) follows from (5.2). �

Proof of Theorem 3.1. Fix 	 > 0, �̃(·) ∈ S∗∗ and ε > 0. By Proposition 4.1 there exists
a mapping �̄(·) ∈ S∗∗ satisfying the condition (4.6) and with ‖�̄(v) − �̃(v)‖∞ �ε/2
∀v ∈ Rn. Let us choose, moreover, a number 0 < � < ε/2 as in Lemma 5.1 for K =V 	 and
� = 	/D (see (3.4) and (3.6)).

We associate to each v ∈ V the sets

�+
� (v) := {x ∈ � : �̄(v)(x)��},

�−
� (v) := {x ∈ � : �̄(v)(x)� − �}

and observe that �+
� and �−

� have closed graphs, as multivalued functions from V to �.
Hence the sets

�+
� := {(v, x) ∈ V 	 × � : x ∈ �+

� (v)}
and

�−
� := {(v, x) ∈ V 	 × � : x ∈ �−

� (v)}
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are compact. Consider, first, the covering of �+
� by the family of open sets U+(x), x ∈ �,

defined as

U+(x) := {(v, y) ∈ V × � : �̄(v)(x) > �/2, |x − y| < ε/(8D),

y ∈ x + (�̄(v)(x) − �/2)int[−(V − v)∗] ⊂ �}. (5.3)

Notice that the inclusion x + �̄(v)(x)int[−(V − v)∗] ⊂ � always takes place due to the
results of Section 2. By compactness there exists a finite number of points x+

i , i=1, . . . , N+,
in � such that

�+
� ⊂

N+⋃
i=1

U+(x+
i ). (5.4)

Now we are able to define the function to be a suitable approximation of the positive part
of �̄(v)(x), at least for v ∈ V 	. Namely, set

f +(v)(x) := max
1� i �N+ {�̄(v)(x+

i ) − �V −v(x
+
i − x), �/2} (5.5)

forv ∈ V ,x ∈ �. Obviously,f + : V → C(�) is a continuous mapping andf +(v)(x)=�/2
if x ∈ ��, v ∈ V , because in this case �̄(v)(x) = 0 and �V −v(x

+
i − x)� �̄(v)(x+

i ) for
all i = 1, . . . , N+. Since for each v ∈ V the function f +(v)(·) is Lipschitz continuous,
it admits gradient almost everywhere in � which is equal to either one of the gradients
∇�V −v(x

+
i − x), i = 1, . . . , N+, or zero (see [12, Proposition 2.4] or [16, p. 50]). So that

we always have ∇f +(v)(x) ∈ V − v a.e. in �.
Similarly, the open sets

U−(x) := {(v, y) ∈ V × � : �̄(v)(x) < − �/2, |x − y| < ε/(8D),

y ∈ x − (�̄(v)(x) + �/2)int(V − v)∗ ⊂ �}, (5.6)

x ∈ �, cover �−
� . Let x−

i , i = 1, . . . , N−, be some points of � such that

�−
� ⊂

N−⋃
i=1

U−(x−
i ),

and f − : V → C(�) be the continuous mapping defined as

f −(v)(x) := min
1� i �N− {�̄(v)(x−

i ) + �V −v(x − x−
i ), −�/2} (5.7)

for v ∈ V , x ∈ �. By the same arguments as above it follows that f −(v)(x) = −�/2
whenever x ∈ ��, v ∈ V , and for each v ∈ V the gradient ∇f −(v)(x) belongs to V − v

for a.e. x ∈ �.
Fix (v, x) ∈ V ×�. Iff +(v)(x) > �/2 then for some i=1, . . . , N+ and any j=1, . . . , N−

we have

�/2 < �̄(v)(x+
i ) − �V −v(x

+
i − x)

� �̄(v)(x)� �̄(v)(x−
j ) + �V −v(x − x−

j ), (5.8)
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so that f −(v)(x)=−�/2.Analogously, assuming f −(v)(x) <−�/2 it follows immediately
that f +(v)(x) = �/2. Thus, the function

f (v)(x) := f +(v)(x) + f −(v)(x), v ∈ V , x ∈ �,

is well defined in the sense that it is never equal to the sum of two nonconstant terms. Hence,
as above (see the proof of Proposition 4.1) ∇f (v)(x) ∈ V −v for a.e. x ∈ � and all v ∈ V .

Let v ∈ V 	 and x ∈ � be such that the gradient ∇f (v)(x) exists. If �̄(v)(x)�� then by
(5.4) and (5.3) there exists i = 1, . . . , N+ with

x+
i − x ∈ (�̄(v)(x+

i ) − �/2)int(V − v)∗,

and this means

�̄(v)(x+
i ) − �V −v(x

+
i − x) > �/2.

Consequently, according to Proposition 2.4 [12] and Corollary 25.1.3 [17, p. 243] it follows
from (5.5) that ∇f (v)(x) = ∇f +(v)(x) ∈ ext V − v. Similarly, we have v + ∇f (v)(x) ∈
extV also for a.e. x ∈ � with �̄(v)(x)� −�. By the choice of � (see Lemma 5.1) we obtain∫

�
l(v + ∇f (v)(x), V ) dx�D · �{x ∈ � : |�̄(v)(x)| < �} < 	. (5.9)

Let us prove now that

|f (v)(x) − �̄(v)(x)| < ε/2, (5.10)

whenever v ∈ V 	, x ∈ �. Fix x ∈ �. As we already know, three cases here are possible.
Case 1 f +(v)(x) > �/2.
By (5.8) we have �̄(v)(x) > �/2. If �̄(v)(x)�� then by (5.4) and (5.3) there exists i =

1, . . . , N+ with �̄(v)(x+
i ) − �V −v(x

+
i − x) > �/2 and |x − x+

i | < ε/(8D). Consequently
(see (5.5)),

�̄(v)(x) > f (v)(x) = f +(v)(x) − �/2

� �̄(v)(x+
i ) − �V −v(x

+
i − x) − �/2

� �̄(v)(x) − 2D|x − x+
i | − �/2 > �̄(v)(x) − ε/2.

Otherwise we have �/2 < �̄(v)(x) < � hence

�̄(v)(x) > f (v)(x) = f +(v)(x) − �/2 > 0

> �̄(v)(x) − � > �̄(v)(x) − ε/2

and the inequality (5.10) also follows.
Case 2 f −(v)(x) < − �/2.
This case is treated similarly.
Case 3 f +(v)(x) = �/2 and f −(v)(x) = −�/2, so that f (v)(x) = 0.
Assuming �̄(v)(x)��, like above we find i = 1, . . . , N+ with the property �̄(v)(x+

i ) −
�V −v(x

+
i − x) > �/2. However, this is not possible due to (5.5). Analogously, we always

have �̄(v)(x) > − � and the inequality (5.10) holds.
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Since V 	 is compact, there exists an open set W, V 	 ⊂ W ⊂ V , such that ‖f (v) −
�̄(v)‖∞ < ε/2 for all v ∈ W . Let � : Rn → [0, 1] be a continuous function equal to 1 on
V 	 and to 0 outside W. Define the continuous mapping �̂ : Rn → C0(�) by

�̂(v)(x) = �(v)f (v)(x) + (1 − �(v))�̄(v)(x), v ∈ Rn, x ∈ �,

and observe that �̂(·) ∈ S∗∗. Since �̂(v)(x) = f (v)(x) ∀x ∈ �, v ∈ V 	, it follows from
(5.9) that �̂(·) ∈ S	. Finally, given an arbitrary v ∈ Rn we have

‖�̂(v) − �̄(v)‖∞ ��(v)‖f (v) − �̄(v)‖∞ �ε/2,

and Theorem 3.1 is completely proved. �

Let us show now that if epi(g∗∗) has unbounded n-dimensional faces then the density
property can be violated. This can be done through a slight modification of Example 2.2.

Example 5.1. Consider the lagrangian g : R1 → R1 defined by

g(�) := |�|
∣∣∣∣1 + ||�| − 1|

�2 + 1

∣∣∣∣
and the domain � = (−1, 1) ⊂ R1.

Here, as happened in Example 2.2, the bipolar function is g∗∗(�) = |�|, � ∈ R1; but in
this case we have g∗∗(±1) = g(±1), g∗∗(0) = g(0) while at other points g∗∗(�) < g(�).
Consequently, by Theorem 1.1 [20], the problem (Pv) admits solutions iff |v|�1. Let
s(v)(·) be a minimizer continuous in v ∈ [−1, 1], which must be, obviously, solution of
the relaxed problem (RPv) as well. The condition (2.1) gives that ∇s(v)(x)�0 a.e. in �,
if v�0, and ∇s(v)(x)�0 a.e. in � otherwise. More precisely, in the first case ∇s(v)(x)

equals 0 or 1 a.e. in � while in the second one ∇s(v)(x) admits the values −1 or 0 for a.e.
x ∈ �. Then, by the same argument as in the proof of Proposition 2.1 we have

s−
0 (v)(x)�s(v)(x)�s+

0 (v)(x), (5.11)

v ∈ [−1, 1], x ∈ �, where

s−
0 (v)(x) := max

x′=±1
inf

v′∈F̂0(v)

{vx′ + v′(x − x′)},

s+
0 (v)(x) := min

x′=±1
sup

v′∈F̂0(v)

{vx′ + v′(x − x′)},

F̂0(v) :=
{ [−1, 0] if − 1�v < 0,

{0} if v = 0,

[0, 1] if 0 < v�1.

(5.12)

Let us fix, for instance, 0 < v�1. Then from (5.12) we obtain, in particular, that

s+
0 (v)(x) =

{−v + x + 1 if − 1�x < 2v − 1,

v if 2v − 1�x�1.
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On the other hand, choosing an integer k with kv�1 and taking the solution sk(v)(·) of the
relaxed problem constructed in Example 2.2, we see that [−1, −1 + 1/k] ⊂ [−1, 2v − 1]
and

sk(v)(x) = 2kv(x + 1) − v = s+
0 (v)(x) + (2kv − 1)(x + 1)

�s+
0 (v)(x) + x + 1,

whenever x ∈ [−1, −1 + 1/k]. Thus, sk(v)(x) cannot be approximated by solutions of the
problem (Pv), uniformly in x ∈ �.

This is an extreme case: indeed, as follows from (5.11), the problem (Pv) admits the
unique solution s(v)(x)=vx for v=±1, while the relaxed functional has a lot of minimizers.

6. Well-posedness with the best Lipschitz constant

Recalling Theorem 2.1 we see that not only the affine function 〈v, ·〉 but also the upper
and lower solutions s+(v)(·), s−(v)(·) of the relaxed problem (RPv) satisfy the Lipschitz
inequality w.r.t. v with the constant ‖�‖ = max

x∈� |x|. Taking into account this fact, one
is led to wonder that also the original problem (Pv) should admit a solution possessing the
same property. To prove this, consider the set S∗∗

‖�‖ consisting of all mappings �(·) ∈ S∗∗
such that v 	→ 〈v, ·〉 + �(v)(·) is Lipschitz continuous with Lipschitz constant ‖�‖. Let
also C+ and C− be the positive and negative cones in the space C(Rn, C0(�)), respectively.
Namely,

C+ := {�(·) ∈ C(Rn, C0(�)) : �(v)(x)�0 ∀v ∈ Rn, x ∈ �},
C− := {�(·) ∈ C(Rn, C0(�)) : �(v)(x)�0 ∀v ∈ Rn, x ∈ �}.

Obviously, S∗∗
‖�‖ ∩ C+ and S∗∗

‖�‖ ∩ C− are closed nonempty subsets of S∗∗, and, conse-
quently (see Lemma 3.1), they are complete metrizable spaces w.r.t. the induced topology.

In the remainder of this section we keep all the notations used above. Observe that, given
m=1, 2, . . . and 	 > 0, the set S∗∗

‖�‖ ∩C+ ∩S
	
m (respectively, S∗∗

‖�‖ ∩C− ∩S
	
m) is open

in S∗∗
‖�‖ ∩ C+ (respectively, S∗∗

‖�‖ ∩ C−). Clearly,

∞⋂
m,k=1

(S∗∗
‖�‖ ∩ C± ∩ S

1/k
m ) = S∗∗

‖�‖ ∩ C± ∩ Sext. (6.1)

Let us prove now the following density statement.

Lemma 6.1. S∗∗
‖�‖ ∩ C± ∩ S

	
m is dense in S∗∗

‖�‖ ∩ C± for any m = 1, 2, . . . and 	 > 0.

Proof. Let us omit the index m everywhere in what follows as we did earlier.
Fix 	 > 0, �̃(·) ∈ S∗∗

‖�‖ ∩ C+ and ε > 0. First we set

�̄(v)(x) := min{�̃(v)(x) + ε/2, �+(v)(x)}, v ∈ Rn, x ∈ �,
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and observe that �̄(·) ∈ S∗∗
‖�‖ ∩ C+ (see Proposition 2.4 [12]). Moreover �̄(v)(x) > 0

everywhere in �, and

�̃(v)(x)� �̄(v)(x)� �̃(v)(x) + ε/2 ∀v ∈ Rn, x ∈ �. (6.2)

By Lemma 5.1 there exists 0 < � < ε/2 such that

�{x ∈ � : �̄(v)(x) < �} < 	/D (6.3)

for all v ∈ V 	. Repeating the first steps of the proof of Theorem 3.1 (see Section 5) we
find points x+

i ∈ �, i = 1, . . . , N+, such that (5.4) holds. Let us define the mapping
f : V → C(�) by

f (v)(x) := max
1� i �N+{�̄(v)(x+

i ) − �V −v(x
+
i − x) − �/2, �(v)(x) − ε/2, 0}, (6.4)

and observe that v 	→ 〈v, ·〉 + f (v)(·) is Lipschitz continuous with Lipschitz constant ‖�‖
as a mapping to C(�). Furthermore, f (v)(x) = 0 whenever either v ∈ �V or x ∈ ��, and
∇f (v)(x) ∈ V − v for a.e. x ∈ �. So that the mapping �̂ : Rn → C0(�), equal to f (v)

for v ∈ V and to �̄(v) elsewhere, belongs to S∗∗
‖�‖ ∩ C+.

For every v ∈ V and x ∈ � we have �̄(v)(x+
i )−�V −v(x

+
i −x)� �̄(v)(x), i=1, . . . , N+.

Then from (6.4) it obviously follows that |f (v)(x) − �̄(v)(x)|�ε/2. Combining this with
(6.2) we see that ‖�̂(v) − �̃(v)‖∞ �ε ∀v ∈ Rn.

Finally, let us fix v ∈ V 	 and x ∈ � with �̄(v)(x)��. Then by using (5.4) and (5.3) we
choose i = 1, . . . , N+ such that

�̄(v)(x+
i ) − �V −v(x

+
i − x) > �/2 (6.5)

and

|x − x+
i | < ε/(8D). (6.6)

We deduce from (6.6) the inequality

�̄(v)(x+
i ) − �V −v(x

+
i − x) − �/2� �̄(v)(x) − 2D|x − x+

i | − �/2

> �̄(v)(x) − ε/2,

which together with (6.5) implies that

f (v)(x) = max
1� i �N+{�̄(v)(x+

i ) − �V −v(x
+
i − x) − �/2}.

Therefore (see Proposition 2.4 [12] and Corollary 25.1.3 [17]) we have∇�̂(v)(x)=∇f (v)(x)

∈ extV − v a.e. in �. Hence, by the choice of � (see (6.3)), we get �̂(·) ∈ S	, and density
of the set S∗∗

‖�‖ ∩ C+ ∩ S	 in S∗∗
‖�‖ ∩ C+ follows.

The case of the set S∗∗
‖�‖ ∩ C− may be treated similarly. �

Finally, using the last lemma combined with (6.1) and applying the Baire category theo-
rem, we obtain the following result.
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Theorem 6.1. The variational problem (Pv) admits a minimizer ŝ(v)(·), defined in the
set of those v where the minimum exists, which is ‖�‖-Lipschitz continuous (i.e. Lipschitz
continuous w.r.t. v with Lipschitz constant ‖�‖=max

x∈� |x|). Moreover, this minimizer can
be chosen arbitrarily near to any ‖�‖-Lipschitz continuous solution s̃(v)(·) of the relaxed
problem (RPv) which always remains above (respectively, below) the affine function.

Remark 6.1. In particular, there exists a Lipschitz continuous selection inside any neigh-
bourhood of the affine function v 	→ 〈v, ·〉. Notice also that in [10] we have proved a
constructive version of the Vitali covering theorem, with which we have constructed a min-
imizer having Lipschitz constant ‖�‖ + 3; while now, in Theorem 6.1, this constant has
been improved to ‖�‖ (which is the best possible Lipschitz constant).

7. Some remarks on gradient inclusions

Let us notice once more that we search (in the proofs of Theorems 2.1 and 3.1) solutions
of the problem (RPv) or (Pv) among the functions u(·) satisfying the relation (2.1) (or
∇u(x) ∈ ext F̂ (v), respectively) for a.e. x ∈ �. See also the Example 5.1 which shows
that generally our technique is not applicable and the results fail if the variational problem
cannot be reduced to the inclusions above (for instance, with unbounded n-dimensional
faces). On the other hand, whenever such reduction is possible we have obtained in fact a
result which is stronger than the one given by Theorem 3.1. Indeed, in order to be solution of
(Pv) a function u(·) does not need to have its gradients on the extremal boundary of F̂ (v)

but should satisfy the weaker condition g(∇u(x))=g∗∗(∇u(x)). Taking into account these
observations we can formulate our existence and density result for solutions of gradient
inclusions. Namely, let us consider a convex compact set F ⊂ Rn and an open bounded
domain � ⊂ Rn. From the proof of Theorem 3.1 we obtain immediately the corollary below
which describes the structure of the solution set to the following boundary value problems:

∇u(x) ∈ F, u|�� = 〈v, ·〉 ; (RP
′
v)

∇u(x) ∈ ext F, u|�� = 〈v, ·〉. (P
′
v)

Notice that by solution of (RP′
v) or (P′

v) we mean any Lipschitz continuous function
u : � → R (with Lipschitz constant ‖F‖ := maxv∈F |v| ) satisfying the condition u(x) =
〈v, x〉 ∀x ∈ �� and such that the respective gradient inclusion holds for a.e. x ∈ �. Notice
the connection between the differential inclusions (RP′

v) and (P′
v), on one hand, and, on

the other hand, the variational problems (RPv) and (Pv) with lagrangian

g(v) =
{

0 if v ∈ ext F,

+∞ otherwise.

Corollary 7.1.

(i) For any v ∈ F , each solution u(·) of (RP′
v) satisfies the inequalities

u−
v (x)�u(x)�u+

v (x) ∀x ∈ �,
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where

u+
v (x) := inf

x′∈��
sup
v′∈F

{〈v, x′〉 + 〈v′, x − x′〉}, (7.1)

u−
v (x) := sup

x′∈��
inf
v′∈F

{〈v, x′〉 + 〈v′, x − x′〉}. (7.2)

(ii) The functions u−
v (x) and u+

v (x) are themselves solutions (minimal and maximal) of
(RP′

v). Furthermore, v 	→ u−
v (·) and v 	→ u+

v (·) are Lipschitz continuous with Lipschitz
constant ‖�‖ := max

x∈� |x|, as mappings from F into C(�).
(iii) For each solution ũv(·) of (RP′

v) continuously depending on v ∈ int F w.r.t. the norm
in C(�) and each ε > 0 there exists a solution ûv(·) of (P′

v) still continuously depending
on v, and such that |ûv(x) − ũv(x)|�ε whenever x ∈ �, v ∈ int F .

Observe also that u+
v (x)−〈v, x〉 can be interpreted as the minimal time function with the

constant dynamics −(F − v)∗ and the target set �� to be reached from inside the domain
�. Therefore, it follows from Theorem 3.1 [7] that u+

v (·) (and, symmetrically, u−
v (·)) cannot

have gradients in the interior of F. However, for the sake of completeness, let us give here
the proof of this simple fact based on the Corollary above.

Proposition 7.1. Let v ∈ F and x ∈ � be such that the gradient ∇u+
v (x) (or ∇u−

v (x))
exists. Then ∇u+

v (x) ∈ �F (respectively, ∇u−
v (x) ∈ �F ).

Proof. Since u+
v (x) ≡ 〈v, x〉 for v ∈ �F , we can assume that v ∈ int F . Suppose now that

there exists a pointx∗ ∈ �with∇u+
v (x∗) ∈ int F , and let ε > 0 be such that∇u+

v (x∗)+εB ⊂
F . Then for some 	 > 0 small enough we have

|u+
v (x) − u+

v (x∗) − 〈∇u+
v (x∗), x − x∗〉| < 1/4 ε 	, (7.3)

whenever x ∈ � with |x − x∗|�	. Let us define the function h : x∗ + 	B → R by

h(x) := max

{
u+

v (x∗) − u+
v (x) − 〈∇u+

v (x∗), x∗ − x〉 + ε

4
	�

( |x − x∗|
	

)
, 0

}
,

where the piecewise affine function � : R+ → [−1, 1],

�(t) :=
{1 if 0� t �1/2,

3 − 4t if 1/2 < t < 1,

−1 if t �1,

(7.4)

admits derivative equal to 0 or −4 for all t �= 1/2, 1. We assume, of course, that x∗ +	B ⊂
�. If |x − x∗|�	/2 then by (7.4) and (7.3)

0 < u+
v (x∗) − u+

v (x) − 〈∇u+
v (x∗), x∗ − x〉 + ε

4
	 = h(x). (7.5)

Furthermore, on the boundary of x∗ + 	B we have �(|x − x∗|/	) = −1 and (7.3) gives
h(x) = 0. Therefore, h(·) can be extended continuously by setting h(x) = 0 for all x ∈ �
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with |x − x∗| > 	. Then the function h : � → R will be Lipschitz continuous, and by the
Proposition 2.4 [12] its gradient is equal either to 0 or to

∇u+
v (x∗) − ∇u+

v (x) + ε

4
	∇�

( |x − x∗|
	

)

at almost every point x ∈ �. If we define now û : � → R as û(x)=u+
v (x)+h(x), x ∈ �,

then, obviously, û(x)=〈v, x〉 ∀x ∈ ��, and the gradient ∇û(x) either equals ∇u+
v (x), or

satisfies the inequality |∇û(x)−∇u+
v (x)|�ε (see (7.4)). In each case ∇û(x) ∈ F , and û(·) is

a solution of (RP′
v). On the other hand, by (7.5) û(x) > u+

v (x) for all x ∈ �, |x−x∗|�	/2,
thus contradicting Corollary 7.1 (i).

The function u−
v (·) can be treated similarly. �

The following simple example shows that, in general, upper and lower solutions (7.1),
(7.2) are not solutions of the extremal inclusion (P′

v). That is, the gradients ∇u+
v (x) and

∇u−
v (x) can belong to relative interiors of k-dimensional faces of F for 1�k�n − 1 (in

the case n > 1).

Example 7.1. Let n = 2 and F = � := {(�1, �2) : max(|�1|, |�2|)�1}.
Since

F ∗ = {(x1, x2) : |x1| + |x2|�1},
and �F (x1, x2) is the gauge function associated to F ∗, it follows from (7.1) that

u+
v (x) = min

{
min

x′
1=±1, −1�x′

2 �1
(v1x

′
1 + v2x

′
2 + |x1 − x′

1| + |x2 − x′
2|),

min
x′

2=±1, −1�x′
1 �1

(v1x
′
1 + v2x

′
2 + |x1 − x′

1| + |x2 − x′
2|)
}

.

After calculations we find

u+
v (x) = 1 + min{v1x1 − |x2 − v2|, v2x2 − |x1 − v1|},

and the gradient ∇u+
v (x) equals (v1, ±1) or (±1, v2) a.e. in �, for v = (v1, v2) ∈ int F .

Similarly, the formula (7.2) gives

u−
v (x) = −1 + max{v1x1 + |x2 + v2|, v2x2 + |x1 + v1|},

and also ∇u−
v (x) ∈ {(v1, ±1), (±1, v2)} for a.e. x ∈ �. Thus the “extremal” solutions

u+
v (·), u−

v (·)do not satisfy the inclusion (P′
v)on a set of full measure (for eachv=(v1, v2) ∈

int F ).
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