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Abstract

It is a longstanding problem in Algebraic Geometry to determine whether the syzygy
bundle Fg, . 4, on PN defined as the kernel of a general epimorphism

¢:0(-d1)® - ®O(—d,) —=0O

is (semi)stable. In this note we restrict our attention to the case of syzygy bundles E,,,
on PV associated to n generic forms f1,..., fn € K[Xo, X1,..., Xn] of the same degree
d. Our first goal is to prove that E;, is stable if N +1 < n < (d;Q) + N — 2 and
(N,n,d) # (2,5,2). This bound improves, in general, the bound n < d(N + 1) given by
G. Hein in [2], Appendix A.

In the last part of the paper, we study moduli spaces of stable rank n—1 vector bundles
on PV containing syzygy bundles. We prove that if N +1 <n < (df) +N—-2, N#3
and (N,n,d) # (2,5,2), then the syzygy bundle E,, is unobstructed and it belongs to
a generically smooth irreducible component of dimension n(d+N ) —n? if N > 4, and

N
n(d;Q) —l—n(dgl) —n2 if N=2.

Keywords: Moduli spaces, stability, vector bundles

Contents

1 Introduction 2
2 Stability of syzygy bundles. Generalities 3
3 The case N = 2. Stability 7
4 Moduli spaces of syzygy bundles 30

1Partially supported by MTM2007-61104.
2Partially supported by Fundagio para a Ciéncia e Tecnologia, under grant SFRH/BD/27929,/2006,
and by CIMA — Centro de Investigacao em Matemadtica e Aplicagdes, Universidade de Evora.

Preprint submitted to Elsevier January 24, 2011


https://core.ac.uk/display/62444049?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1. Introduction

Let R = K[Xg, X1,...,Xn], P = Proj(R) be the N-dimensional projective space
over an algebraically closed field K of characteristic 0. Set m = (Xo, X1,...,Xn). Itisa
classical and difficult problem in Algebraic Geometry, as well in Commutative Algebra,
to understand the syzygy bundle E4 . 4, on PV defined as the kernel of a general
epimorphism

¢=(f1,--sfn) : Opn(=d1) @ - ® Opn (=dn) —— Opr,

where (f1,..., fn) C R is an m-primary ideal, and f; is an homogeneous polynomial of
degree d; = deg(f;). We would like to know the cohomology of Eg4, . g4, , its splitting

type on a generic line, and whether it is simple, exceptional or stable. In particular, we
are led to consider the following problem:

Problem 1.1. Let fi,...,f, € R be a family of m-primary homogeneous polynomials

ey

to fi,..., fu. Is B4, a, a (semi)stable vector bundle on PV?

In the last few years, Problem 1.1 has been extensively studied and surprisingly only
a few partial results have been obtained. We refer to [2] and [3] for precise information.
In this paper we restrict our attention to the case d; = dy = ... = d,, = d and we address
the following problem, which should be viewed as a particular case of Problem 1.1.

Problem 1.2. Let fi1,..., f, € R be a family of m-primary forms of the same degree
d and let Ey, be the syzygy bundle associated to them. Is Eg;, a (semi)stable vector
bundle on PV?

Note that since (f1, ..., fn) is an m-primary ideal, we always have N+1 < n < (dTVN).
Problem 1.2 turns out to be true for a set of n general m-primary forms of the same degree
d, provided

e d and N are arbitrary and n = (N;,rd) [11];

e d and N are arbitrary and n = N + 1 [1];
e d and N are arbitrary and n < d(N + 1) [2].

The first goal of this paper is to give an affirmative answer to Problem 1.2 for the
case of n general m-primary forms of the same degree d, provided

(1) N=2and 3<n< (%2) (see Theorem 3.5);

(2) N>2and N+1<n< (df) + N — 2 (see Theorem 4.2).

We want to point out that the result (1) was announced by Brenner in [2] but no
proof was included and the result (2) strongly improves, in general, the bound N + 1 <
n < d(N + 1) given by G. Hein in [3], Theorem Al.

In the last section of this work, we also study the unobstructedness of stable syzygy
bundles on PV. There exists a beautiful theorem due to Maruyama establishing the
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existence of the moduli space M = M (r;cq,...,cs) of rank r, stable vector bundles F
on PV with fixed Chern classes ¢;(E) = ¢; fori = 1,...,s = min(r, N) (see [9] and [10]).
Unfortunately, in general, very little is known about its local and global structure. In
this paper we prove that points [E4,] of M = M(r;cy,...,cs) parameterizing stable
syzygy bundles Eg, on PN, N # 3, N+ 1 < n < (d42'2) + N — 2 and (N,n,d) #
(2,5,2), are smooth and we compute the dimension of the irreducible component of

M = M(r;ecq,...,cs) passing through [Eg ] in terms of d, n and N (see Theorem 4.4).
Notation: We work over an algebraically closed field K of characteristic zero. We set
PN = Proj(K|[Xg, X1,...,Xn]) and m = (X, X1,...,Xx). Given coherent sheaves F
and F on PV, we write h'(E) (resp. ext'(E, F)) to denote the dimension of the ith
cohomology group H! (PN, E) = H*(E) (resp. ith Ext group Ext'(E, F)) as a K-vector
space.

For any = € R, we set [z]| :=min{n € Z | z < n}.

2. Stability of syzygy bundles. Generalities

In this section we recall the notion of (semi)stability of torsion free sheaves on projec-
tive spaces and its basic properties. We review the useful cohomological characterization
of (semi)stability due to Hoppe as well as its applications to the problem of determining
the (semi)stability of syzygy bundles.

Let us start by fixing the notation and some basic definitions.

Definition 2.1. Let E be a torsion free sheaf on PN and set

Cl(E)
rk(E)’

w(E) =
The sheaf F is said to be semistable in the sense of Mumford-Takemoto if

p(F) < p(E)

for all non-zero subsheaves F' C E with rk(F) < rk(FE); if strict inequality holds then FE
is stable.

Note that for rank r, torsion free sheaves E on PV, with (cy(E),r) = 1, the concepts
of stability and semistability coincide.

Notation 2.2. Let F be a rank r vector bundle on PY. We set E,opm := E(kg) where
kg is the unique integer such that ¢1(E(kg)) € {—r+1,...,0}.

For rank 2 vector bundles on PV we have the following useful stability criterion: a rank
2 vector bundle E on P¥ is stable (resp. semistable) if and only if H*(PN, E,orm) = 0
(resp. H°(P", Eporm(—1)) = 0). This criterion was generalized by Hoppe in [4], Lemma
2.6. We have

Proposition 2.3. Let E be a rank v vector bundle on PN. The following hold:

(a) If HY(X,(NE)porm) =0 for 1 < q<r —1, then E is stable.
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(b) H*(X,(NE)porm(—1)) =0 for 1 < g <r —1 if and only if E is semistable.

Remark 2.4. The conditions of Proposition 2.3(a) are not necessary. The simplest
counterexamples are the nullcorrelation bundles E on PV (N odd) where by a nullcor-
relation bundle we mean a rank N — 1 vector bundle £ on PV (N odd) defined by an
exact sequence

0—— Opn (1) —= Qr (1) —= E ——0.

E is a stable vector bundle of rank N — 1 on PV (N odd) and H°(PY, (A2E)norm) # 0
(in fact, (A2E)porm contains Opn as a direct summand).

Definition 2.5. A syzygy sheaf Eq,.. 4, on PV is a coherent sheaf defined as the kernel
of a morphism

¢ @?:1OIP>N(_di) S fn
where f1,..., fn € K[X0,X1,...,Xn] are forms of degree d; = deg(f;). If (f1,...,fn) C
K[Xo,X1,...,Xn] is an m-primary ideal, this sheaf is locally free, and we call it syzygy
bundle. When dy =ds = --- =d,, = d, we write Iy, instead of Eg4, . 4, .

O]P’N )

Let Eq,,.. 4, be a syzygy sheaf on PN By construction, Fg, 4,.....4, is a torsion-free

n

sheaf of rank n — 1, locally free on U ; D, (f;) C PN. Moreover, we have c1(Eq,.. a,) =
d— Z?:l d;, where d is the degree of the highest common factor of fi,..., f, and hence
the slope of Ey, d,.....4, is

_ d— Z;L:l di

I’I‘(Ed17d2a“-7dn) n_1

Note that when Eg, 4, .4, be a syzygy bundle, we get ¢1(Eq, d,,....d,) = — > iy d; and

Z;L:l di

By dsodn) = =5 =1

Note also that since (fy,..., fn) is an m-primary ideal, we have n > N + 1.

In this paper we address problems 1.1 and 1.2. As far as we know, there exist very few
contributions to these problems, and we summarize all of them, as well as the techniques
that have been used to prove these results.

First of all, we observe that, as an easy application of Hoppe’s Theorem, we obtain
the following result, which also follows from [1], Theorem 2.7.

Proposition 2.6. Let B4 n41 be the syzygy bundle on PN associated to N + 1 generic
forms of degree d. Then, Eq N1 15 stable.

Proof. Since stability is preserved by duality, it is enough to check that F' = ECX N1 18
stable. According to Proposition 2.3, it is enough to prove that H? (PY, (A1F) 0 ) = 0
for 1 < ¢ < N — 1. First of all, note that since c;(AYF) = (g:ll)(N + 1)g, we have
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(ATF) porm = (NF)(kp) with kp < —dq. Twisting by Op~ (kr) the gth wedge power of
the exact sequence

0 Opn Opn ()N — = F ——0,
we get the long exact sequence:
0 —= Opn (kr) —= Opn (kp) @ Opn ()N — Opn (kp) @ A? (Opx (d)VH!) — -
— Opn (kp) @ N7 (Opn (d)N ) —= Opn (k) @ A1 (Opn (d)NT1) —= AIF (kp) —= 0.
Cutting it into short exact sequences, for 2 < j < ¢ — 1, we get:
00— Kgs1-i —= A" (Opn (V) (kp) — Kgyo-i —0,

and

0—— O]pN (kF) E— O]PN (d + k'F)N—i_1 Kq—l 0.

Since line bundles on PV have no intermediate cohomology, taking cohomology on the
above exact sequences we obtain

h'(K1) = h*(K2) = - = B (Kq-1) = h(Opx (kF)) = 0,
where the last equality follows from the fact that ¢ < N. On the other hand, since
krp < —qd,
(N+1)
H? (Opv (k) 1 (Or (@) = 1 (Ops (g + k)0 ) ) 0.

Putting all together we get that for 1 <g < N —1,
H° (PN, (ANF)(kp)) = H® (BN, (AN F)porm) =0,

which proves that F', and hence E4 n1, is stable. O]

Using the fact that the syzygy bundle Ed a+ny on PV is a homogeneous bundle, to

A d
prove the stability of Ed d+Ny it is enough to check that the slope of any homogeneous
sub-bundle of Ed d+nNy 1s less than the slope of Ed d+nNy - In [11], the author described

d
all the homogenous sub-bundles of Ed (d+ N) and she proved
\ d

Proposition 2.7. Let Ed7 a1y be the syzygy bundle on PN associated to (dJ;N) K-linearly

d
independent homogeneous forms of degree d. Then, Ed (d+N) is stable.
"\ d
Proof. See [11], Theorem 2.8. O

Using Klyachko results on toric bundles ([5], [6] and [7]), Brenner deduced the fol-
lowing nice combinatoric criterion for the (semi)stability of the syzygy bundle Eg4, . 4
in the case where the associated forms fi,..., f, are all monomials. Indeed, we have

5
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Proposition 2.8. Let f; = XoloX U XN e, be a set of m-primary monomials
of degree d; = E?’:O i;. Then the syzygy bundle Eq, . 4, on PN associated to the fi,
1 € 1, is semistable (resp. stable) if and only if for every J G I, |J| > 2, the inequality

dy _ZieJdi < _Eiel di
-1 = -1

(resp. <) (1)

holds, where dj is the degree of the greatest common factor of the f;, i € J.
Proof. See [2], Proposition 2.2 and Corollary 6.4. O

Example 2.9. (1) If we consider the set [ := {)(057 X%, X5°, X02X12X2} of m-primary
monomials, inequality (1) is strictly fulfilled for any proper subset J & I. Therefore the
syzygy bundle F associated to I is stable.

(2) If we consider the set I := {XOS, X%, X5°, X04X1} of m-primary monomials,
then for the subset J := {X05, X04X1} inequality (1) is not fulfilled. Therefore the
syzygy bundle E associated to I is not stable. In fact, the slope of E is u(E) = —20/3
and the syzygy sheaf F' associated to J is a subsheaf of E with slope u(F) = —6. Since
w(F) £ u(E), we conclude that E is not stable.

Remark 2.10. (a) Let I be a set of n m-primary monomials of degree d. It easily
follows from the above proposition that the syzygy bundle E4,, on PV associated I is
(semi)stable if and only if for every subset J C I with k:=|J| > 2,

(d—dj)n+dy—dk >0 (resp. >0), (2)

where d; is the degree of the greatest common factor of the monomials in J.
(b) If we use the notation aq; := fjjfdl, inequality (1) can be written

kd_"l +agr < agn-

The fact that, once d is fixed, the sequence (aq, ;);>2 is monotonically increasing will be
useful in many arguments.

Due to Proposition 2.8, to decide whether a syzygy bundle on PV associated to a
set of m-primary monomials of degree d is semistable or not is a purely combinatorial
problem but not yet solved, even when all monomials f; have the same degree. In [2],
Question 7.8, Brenner asks
Question 2.11. Does there exist for every d and every n < (N K,rd) a family of n mono-
mials in K[Xy, ..., Xn] of degree d such that their syzygy bundle is semistable?

Remark 2.12. For N = 1, d = 9 and n = 3 the answer to this question is negative.
In fact, if we consider a family I := {X° Y% X°Y9*} with a >9—q, ie. a>5,
the subset J C I with a greatest common factor of highest degree is {X?, XY~} its
greatest common factor is X<, but inequality 1 fails, since (9 —a) -3+ a—-9-2=9—-2a < 0.



Xo?

X4

X0X2d71 X1X2d71

X02X2d—2 X0X1X2d_2 X12X2d_2

XOd_2X22 de_2X22
Xodile XodizXle X0X1d72X2 X1d71X2
X% X, Xo%2X,2 Xo2X, %2 XoX 41

Figure 1: Monic monomials in K [Xo, X1, X2] of degree d.
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Figure 2: Simpler sketch of the monomials in figure 1.

3. The case N = 2. Stability

The goal of this section is to solve Problem 1.2 and Question 2.11, when N = 2. As
a main tool, we use the criterion given in Proposition 2.8. Let us sketch our strategy.
Monic monomials in K [Xg, X1, X5] of a given degree d can be sketched in a triangle as
in figure 1. For the sake of simplicity, we can sketch the triangle in figure 1 as shown
in figure 2. Once arranged in this manner, the closer two monomials are, the higher the
degree of their greatest common factor is.

Proposition 3.1. For any integer 3 < n < 18 and any integer d > n—2 there is a set Iy
of n m-primary monomials in K[Xo, X1, Xs2] of degree d such that the corresponding
syzygy bundle Eq ,, is stable.

Proof. We apply Proposition 2.8 and Remark 2.10. So, for any integer 3 < n < 18
and any integer d > n — 2 we explicitly give a set Iy, of n m-primary monomials in
K[Xo, X1, X2 of degree d such that for every subset J C I, with k := |J| > 2, we have

(d—dj)n+dy—dk >0, (3)

where d; is the degree of the greatest common factor of the monomials in J.
Let ey, €1 and es be integers such that

eg+e1+ey=d, ey > e1 > eg and eg —eg < 1.

In particular, ey = {g—| Let i := {%1
In cases 3 < n < 8, we consider the sets

Ig3:= {Xod, X4, X2d}7
Ina = {Xo% X1 Xo%, X0 X1 X%},

Iys := {Xod, X% Xo% X0 X9 X, deiini},
8



d d d e d—e d—e e e d—e,
Ige = {XO , X119, Xo% X0 X197, X" X0, X190 X, 0},
d d d d— d— d—
Ig7 = {XO , X019 X% XX 0 X0, XX 9700, X0 X0, X0 X, 60},
and

d d d e e e
Iis = {Xo% X1% X2%, Xo® X1 X,
eog+te e e ep+te ep+te e e e1te
XoTX %2, X X0t X 0T X, X0 X,ater )

Iy
In case n =9, we shall look at two cases separately: if d = 8, we consider the set
Iso = {Xo% Xi% Xo°, Xo°X:°X5%, Xo°X:?,
Xo*X5%, Xo°X5°, X1°X5%, X1° X0 )

if d#8,let d=3m+t, with 0 <t < 3, and for each [ € {1,2}, let 4 := Im + min(l, t)
and consider the set

Ig9 := {Xod, X1% X% Xoh X4 Xt X, 0
X0d7i1X2i1 XodfizXQiz XlilXQdiil XligXQdfig }.
In case n = 10, we shall distinguish two cases: if d = 9, we consider the set
Ig 10 := {XOQ, X%, X% Xo3 X3 X0?, Xo° X1 ®, Xo® XS,
Xo°X5®, Xo° X0, X1°X5°%, X% Xo0;

ifd#9, let d =5m+t, where 0 < t < 5, and for each [ € {1,2,3,4}, let 4; :=
Im + min(l,t); consider the set

Ioao = {Xo%, X1%, Xo%, X0 X1" Xo® 172, X" X1 T, X2 X107,
Xoi X0~ X1 X,00, X, X070 X1i4X2d7i4}'
In case n = 11, we shall distinguish two cases: if d = 12, we consider the set
112,11 = {X()u, X112, X212, X09X13, X06X16, X03X19>
Xo”X5®, Xo° X520, X0° X7, X17X0%, X1°X.0 )
if d # 12, let us write d = 5m + t, where 0 < t < 5, and for each | € {1,2,3,4}, let
1; == Im + min(l, t); consider the set
Lo = {X0d7 X,9, X5, Xo Xy X0 XX, 4 X i x4
Xo2 X9, X X,070 ) X X0 X0 Xy, X1i4X2d7i4}'
9



In case n = 12, we shall distinguish two cases: if d = 11, we consider the set
Lo o= {Xo™, X1M, Xo™, Xo®X1%, Xo®X0®, Xo° X2 Xo*, Xo* X' X0,
Xo’X1®, Xo®Xo®, Xo® X1° X!, X8 X0®, XiPXo% )

ifd # 11, let d = 4m+t, where 0 < ¢ < 4, and for each | € {1, 2, 3}, let 4; := Im+min(l, t);
consider the set

4 o d J e a e a e a e a
Igi2 = {Xo s X1 X% XoB X0, X X0, Xot X, Xt X,
iz v d—i iy d—i i1y d—i iz v d—i i v d—i
D OLD CLELND (LD CLELND (LD CLELND CLLD CLuLND CLD CLu s 3

In case 13 <n <15, let d = 4m + ¢, where 0 < ¢ < 4, and for each [ € {1,2,3}, let
i :=Im + min(l,t). Consider the sets

L3 2= {Xodv X171 Xo® Xo X e Xy
Xoie,defig,’ X0i2X1d7i27 Xoiled,il’
X0i3X2d—i3’ XOiQXQd—i27 XOiIXQd_il,
X0 X0 Xy Xy, Xliade—i3}7
Ig14 = {Xod, X1d, ng, Xoléde_lﬁ)(21'3—1'27 Xoiled_i2X2i2_i1’
Xo X9, XX, 0 X X,
X0i3X2d7i3’ X0i2X2d7i2, XoilXQdfil,
X1i1X2d—i1’ ‘X'liz)(?d—iz7 X1i3X2d—i3 }7

and

Ioas == {Xo%, X1, X1,
X' X, 0 X, X Xy Xy Xt X, 4 Xl
Xo X070 X X, X, X,
Xo™ Xp07% X X0, X1 Xyt
X, X0, xR X, e X X, 3
In case 16 <n < 18, let d = 5m + ¢, where 0 < ¢t < 5, and for each [ € {1,2,3,4}, let
i :=Im + min(l,t). Consider the sets
Lo = {Xod7 X4 Xt X Xy Xy i Xt x4 X X0 X Xy,
Xol X070 X X0, Xy Xp0Ti X X0 X Xyt
X, X070 XX, X Xy i X1i4X2d7i4}7
Lo = {Xoal7 X194, X, Xo Xy X, Xt X, A Xyt
XoH X971 Xy X, 0 X, Xy, X x4
XoH X0 X X0, Xy Xy, Xoh X,0 0
X, X070 XX, X Xyt X1i4X2d7i4}’
10



and

Tyis == {Xod7 de, XQd’ X0i2X1d—13X213—i27 XOQde—uXQu—iQ’ Xoiled—ig)XQig—il’
Xo“de*”, Xoigxldﬂ'g’ X0i2X1d7i27 Xoilxldﬂ'l7
X0i4X2d7i4’ Xoingdfig, on‘zXQdfiQ’ on‘lXQdfil’
XlilXQdfil, X1¢2X2d7i2’ X1i3X2d7i37 X1i4X2d7i4}.

Ii618

For any 3 < n < 18 and d > n — 2, we consider the described set I, and for any
subset J C I, with &k := |J| > 2, we have to check that inequality (3) is satisfied. We
check the case n = 18 and we leave the other cases to the reader.

So, assume n = 18. In this case we use the fact that no monomial of degree d; divides
a greater number of monomials in Ig,, than Xod".

If 0 < dy <1, the multiples of Xo% in 14,18 are the monomials in the set

J = {XOd, X0i2X1d7i3X2i37i2, )(02‘2)(1d77;4)(2i47i27 XoiledfigXQigfil’
Xo" X197 XoB X147 X X, X X, T,
X0i4X2d_i4, X0i3X2d—i37 XOiZXQd_iz, Xoiled—il }
Therefore we have k = 12 and
(d—dj)n+dy—dk>18(d—dy)+dy —12d =6d — 17dy > 6d — 171 >

> 13m + 6t — 17min(1,¢) > 13m — 11 > 0.
11



If i1 < dj < i3, the multiples of Xo% in 1418 are the monomials in the set
J = {Xod7 XOiQde—i3X2i3—i2’ Xoizde—i4X2i4—i27
X0i4X2d7i4, X0i3X2d7i3’ X0i2X2d7i2 }
Therefore we have k = 9 and
(d—djn+d;—dk=18(d—dj)+d;—9d =9d — 17d; > 9d — 17ip >
> 11m+ 9t — 17min(2,¢) > 11m — 16 > 0.

dy

If 49 < dj < i3, the multiples of X(“’ in I4 15 are the monomials in the set

J o= { X!, Xo" X017 XoR X0, XM X1, XX, T )
Therefore we have £k = 5 and

(d—dj)n+dj—dk:18(d_dj)+dj—5d:13d—17djz13d—17i32
> 14dm + 13t — 17min(3,t) >14m — 12 > 0.

If i3 < dj < i4, the multiples of Xo% in 1418 are the monomials in the set
J = {Xod’ Xyt x4 Xo”ng_”}.
Therefore we have k = 3 and
(d—djn+d;y—dk=18(d—dy)+d; —3d =15d — 17dy > 15d — 17iq >
>Tm—2t>7Tm —8 > 0.

If iy < dj < d, the only multiple of Xo% in Ig,18 is Xo? and we have nothing to check.
Thus, we conclude that the stability is guaranteed in all the cases. O

Proposition 3.2. For any integers n and d such that 18 < n < d + 2, there is a set
Ly of n m-primary monomials in K[Xo, X1, X2] of degree d such that the corresponding
syzygy bundle Eq , is stable.

Proof. For each integer j > 1, let T} := (jgl) be the jth triangular number. Choose j
such that T2 <n < Tjy3, and write n = Tj o+, with 0 <r < j42. Since n > 18, we
have j > 3. Since n < d + 2, we get Tj12 < d + 2, and therefore 2d — j2 — 55 — 2 > 0.

From now until the end of this proof we shall adopt the following strategy:

Strategy: For each given d and n, we choose a set of n monomials I, such that for
0 < dj < d, no monomial of degree d; divides a greater number of monomials in I,
than Xodj.

This strategy will make it easier to check the conditions of Remark 2.10 (a) for Iy .,
since for each value of d; we only have to consider the multiples of X%

12



We write d = m(j + 1) +t, where 0 <t < j + 1. Note that, since 2d > j2 + 55 + 2,
we get d > 3(j + 1) + 1, and therefore m > 3. For each | € {1,...,j}, we define

1 = Im + min(l, t).
We have 0 <y < -+ <15 <d,
d—i; <i;—i;-1 < <dg — 1 <,
and iy — (d —i;) < 1. Set e := [2]. Consider the set

/ d i d—ij i d—i;
I' = {Xo% Xo"X197%, Xo" X074,
Xoljleldf’Ljfl’ Xoljleldflj XQZ]'*’LJ'fl’ XoljleQdfljfl’
)('0711'72)(1d—7,j727 Xoljszld—ljflX21j71—1j72’ Xoljngld—’LjX2’Lj—Zj72’ )('Olj72)(2(1—1]'727

Xolled*’n’ X011X1d712X212721,
Xoll de_13X213_7117 o 7)(07,1 de—Zj )(2711'—7,17 Xoll )(2(1—’L17
d i d—ij i d—i d
X1% X9 X0 X X0 XY
and the sequence
(XO’L]‘JrEde*’LJ‘*e’ XOEXQdfe, Xlzj+eX2d72jie7
onj,1+eX1d71j,lfe, X011+6X2d71176, X11j71+eX2d71j7176,
cy

onj,quedefzj,qfe’ onqueXQdfzqfe’ Xlzj,queXdezj,qfe)

where ¢q := (%] Let I” be the set of the first 7 monomials in this sequence, and let
Iy, =1I'"UI". Since I' has T2 monomials, the number of monomials in I, is n.
For 1 <1< j, let J; be the set of monomials in I’ that are multiples of Xoil. We have
Jy = {Xod7 Xob X, 00 Xt Xy
Xyt X, 41 X1 Xy 4 Xyl Xoij,1X2d7ij,1’
D OLED LD OUIED SLaU IS R R OIS S USRI TE D URED ot ey

XOZzde*lz’ Xolz de*lz+1X2u+1*Zz’
X011X111+2X2u+2—u e ,X()”de_lj_XQZj_“7 XO” XQd—u}
and |Jl| = Tj_l+2.

We distinguish two cases.
Case 1: n = T};2. Since we are following the strategy mentioned above, for 0 < d; < d,
we only have to check inequality (3) for multiples of X4

13



If 0 < dy <y, the multiples of XOdJ in Ig, are among the monomials in the set J;.
Therefore if k is the number of multiples of X%, we have k = Tj41 and

(d — dJ)n +dy—dk= (d — dJ)Tj_;,_Q +dy— de+1 =
d(j+2)—djTjro+d; >
G+D+)0G+2) —iu(Tjre—1) =

>
= (mG+1)+t)(j+2) — (m + min(1,8))(Tj42 — 1).

(m
(m
This last expression takes the following forms, depending on the different values of ¢:

-fort =0, i +1);

- for t > 0, G (2 4 (m—1)(j —1) —4) + m + L.
These expressions are positive in both cases because j > 3 and m > 3. So inequality (3)
is strictly satisfied.

If iy < dj <41, for 1 <1 < j5—1, the multiples of Xod" in Ig,, are the monomials
in the set Jj41. Therefore we have k = Tj;1—; and
(d — dJ)TL +dy—dk = (d — dJ)Tj+2 +dy— de+1—l =
=d(Tj42 = Tjs1-1) —ds(Tjr2 — 1) =

2 d(Tj2 — Tipr—1) — g1 (Tje2 — 1).

This last expression takes the following forms, depending on the different values of ¢:

-fort <I1+1,
(m =Dl =D+ 50m =1 =)+ 3(m = 2)I(j = )+
+3m =2 -0+ 30 -G - D+ (-G - 1)
+3(G=D?+3(G—-0)(I+1—1)>0;
-fort>1+1,
sm =1 =)+ 5(m =1)j(G = 1) + 3(m = 2)I(j — 1)+
+3m=3)G -0+ 3G -+
+ 35U -1+ P +2j+31+4)(t—1—-1) > 0.
Therefore inequality (3) is strictly satisfied.
If i; < dj < d, the only multiple of Xo% in Iqy is Xo? and there is nothing to check.

Therefore all possible values of d; are verified, and hence the syzygy bundle E,, is
stable.

Case 2: n > T 5.
Here is a picture of I;, in case n =19 and d = 20. In this case, we get j =3 and
d=5(j+ 1), therefore m =5, ¢t =0 and e = 3.

14



120,19

Sincen =Tj10+7r <d+2,with0 <r < j+4 2, wehaved + 2 > T2 + 1. From this,
if 7 > 3, we get
20> j2+5j+4>9j4+4>8(j+1).

In case j = 3, since d > 17, we have d > 4(j + 1) + 1. In any case, m > 4.
We distinguish three subcases.
Case 2.1: r =3s+ 1, with s > 0.
If 0 < dy < e, the multiples of Xo% in 14, are the monomials in the set
J = J U {Xobtex e L Xt tex e e
Xo“Xo%¢ L Xl e X, d el

15



Therefore if k is the number of multiples of X%/, we have k = Tj41+ 2541, and

(d—dj)yn+dy—dk=(d—dy)(Tjsa+3s+1)+dy—d(Tjs1 +25+1) =
=d(j+2+s)—dj(Tj42+3s) >
(m(+1)+1)(+2+s)—e(Tj42+3s) =
(MG +1) + 1) +2+5) — " (T2 +3s) =
13m = 1)7% + 1(7m = 5)(j — 2) + 4(m — 1)+
5(2m(]72)+3(m71))5+t(j+2+5)>O.

If e < djy <11, the multiples of ng" in Ig, are the monomials in the set

J = J1 U {)(()lj—Hi)(ld_”_67 e ,X01j75+eX1d_1j75_e,
X0i1+eX2d—i1—e7 o ’X0i5,1+6X2d—i5,1—6}.

Therefore we have k = T 1 + max(2s,1), and

(d—dyn+dy—dk=(d—d;)(Tj+2+3s+1)+d; — d(Tj41 +max(2s,1)) =
=d(j+3+3s —max(2s,1)) —dy(Tj42 + 3s) >
>d(j+ 3+ 3s —max(2s,1)) — i1 (Tjy2 + 3s) =
=(m(j+1)+1t)(j + 3+ 3s — max(2s,1))—
— (m+ min(1,¢))(Tj4+2 + 3s).

This last expression takes the following forms, depending on the different values of s
and ¢:

-for s=t=0, T +2)( 1)
-for s =0 and t > 0, F((m=1)G -2+ GBm -7 —2)+4(m—3))+

+ (=1 +2);

-for s >0and t =0, (34(G+3)+(—2)s);

-for s >0and ¢t >0, 1((m—=1)7>+ (3m —5)(j — 2)) +3(m — 3)+
+(G+3+s)(t—1)+m(j —2)s+j+4—2s.

3

These expressions are positive in all cases because m > 4, j > 3 and s < % So,
inequality (2) is strictly satisfied.

Ifiyy <dy<ig+e, forl <l <j—2, the multiples of XOdJ in I3, are the monomials
in the set

J = Jip U{ X e X T L X tex el
XOZLJFEXQdi“ie’ o ,X01571+6X2d7157176},

where a = max(j — s,1) and the second line is understood to be empty if s < I. Therefore
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we have k = Tj41—; +min(s + 1,5 + 1 — ) + max(s — ,0), and

(d—dj)n+dy—dk=(d—dj)(Tjy2+3s+1)+d;—
— d(Tj41-1 + 1 +min(s,j — 1) + max(s — [,0)) =
= d(Tj2 — Tj11—1 + 3s — min(s, j — ) — max(s — ,0)) —
—dj(Tjt2+3s) >
> d(Tjy2 — Tj41-1 + 3s —min(s, j — [) — max(s — 1,0))—
— (i + L) (Tj42 + 3s).
We can rewrite this last expression in the following forms, depending on the different
values of j, [, s and ¢, so that they become sums of non-negative numbers (and at least
one of these is strictly positive):
~fors<j—1, s<Il, t<I,

Lm—2)lj(j—1— 1)+ 3(m — 1) = 1) + S (m — 41 — )+
+3m—P +I(m—-3)j — 1)+ L(m —4) + tm+
+31-DG-1-22+(1-1)2G—1-2)+j(G—1—-2)+
+3G-1-2)+ R0 -1)+3( - 1)+ 3+
+2(@dm(G - +m—-3)s+Illm+1)(Fj—1—2s)
+31=)((G-D*+3G —1)+2+2s) >0;

~fors<j—1, s<lIl, t>1,

3(m —=4)jl(G =1 =1) + 5(m = 1)j(G =) + 3 (m — 4)lj + 3ml*+
+Im -G -+ iml+i(m—4)+31(j —1—2)+
F30-1D2G-D+ 3G —1-2) + §0G —1-2) +j+
+HI-D)+ 24+ -D((2 — DI +2j + 31 +4+4s)+
+1dm@G - +m—3)s+ (m+1)I([F—1—s) > 0;

~fors<j—1I,s>10t<lI,

sm =11 =)+ 3(m—1)j(G 1)+ F(m = 3)I(G — 1) + jml®+
+Im=2)3j+ A +2)+ PG - D)+ 321G - )+
+HI-D+3iG—1-2+3@mG —20) +m—3)(s— )+
+ ((m+2)l4+m)(j—1—s)+
+3((G-D2+3( —20)+1+2+4s) (I —t) > 0;

~fors<j—1, s>, t>1

sm =11 =)+ 3(m—1)j(G 1) + F(m = 3)I([G — 1) + jml®+
+im—-1)@Bj+4+2)+ 302G -1+ LG —20- 1)+
+3@m@EG -2 +m=3)(s—1)++I(1—-1)+3
+((m+2)l+m)(j—1—s)+20(j —20) + 211 - 1)+

+2RU+DE - +P+Tl+4+2s) (t—1) > 0;
17
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-fors>j—1, s<Il, t<I,
3(m—4)5(j —1=2) + 4§ (m —2)5(j = 1) + F(m = 1)I(2 — j)+
+9m( -+ imi+im+ 30 -1 —1-2°+ 2+ 2+
+20 =12 —1-2)+ (G —1=-2)+ 51— 1 - 2)+
+ =1+ LG -0+ i(s—j+D6m( —1)+3m—3)+
+31=t)(G-D*+5G 1) +2) >0
~fors>j5—1, s<Il, t>1,
2(m =)l =1 =2)+ 5 (m = 2)j(j =) + F(m =112 = j)+
+3m@G -+ iml+im+ 301 —1-2)%+
+20-12G —1-2)+ZjG—1-2)+ LG —1-2)+ (1 - 1)+

OG-+l 8y
+i(s—j+0(6m(j—1)+3m—3)+
+it-DQ2G-1)+ 1 +5l+4+6s) >0.

Since s < %, if Il <s, wegetj—I1> % > % > s. Therefore all possible cases are

checked, and inequality (3) is strictly satisfied.
Ifii+e<dy <ipy,forl <1< j— 2, the multiples of Xo% in 14, are the monomials
in the set
J = Jl+1 @] {Xoij+8X1d_ij—6, o ,)(0i"'—’_e)(ld_i"'_e7
Xoil+1+€X2d*il+1*6, L ’X0i5—1+€X2d*is—1*€}7
where a = max(j — s,1+ 1), and the second line is understood to be empty if s <[+ 1.
Therefore we have k = T;11_; + min(s + 1, j — ) + max(s — [ — 1,0), and
(d—dj)n—f'dj—dk: (d_dj)(Tj+2+3S+1)+dJ_
—d(Tj41— + min(s + 1,5 — 1) + max(s — [ — 1,0)) =
=d(Tjs2 — Tjr1—1+3s+1—min(s+1,j — 1)—
—max(s — 1 —1,0)) — dy(Tj42 + 3s) >
Z d(Tj+2 — Tj+1_l +3s+1— min(s + ].,j — l)*
—max(s — 1 —1,0)) — 441 (Tj42 + 3s).

As before, we can rewrite this last expression in the following forms, depending on the
different values of j, [, s and ¢:

~fors4+1<j—1, s<l+1, t<Il+1,
=G =D+ 5m =4[ =D~ 1= 1)+ (m =4 -1 - 1)+
+3G 1= +3PG-D+30G-DG—1-2)+ 30— D+
+2(—1-2)+3+14+m2(j —1— 1)+ 1)s+
i+t —1-1=5)+3((G-1D>+5(G-0)(1+1-1t)>0;
18



sfors4+1<5j-10, s<I+1, t>1+1,
3m =4 =D +5m =4[ -G —1-1)+(m-4)(j — -1+
TG 1224201 )+ 3G DG -2+
+HG-1-2)+ 4G —1-2)+3(1—-1)+2+
+@m(G—1l-1)+m+2t)s+(ml+31+3)(j—1—-1—s5)+
+3QG-D+P+2-D)+5l+4)(t—1—-1)>0;
sfors+1<j—-I,s>1+1,t<1+1,
3m =D =D+ 30m = 4) (52 + 1) + 5(m = )G = 1= 1) + mi+
+Im+i1-12G-D+3i(G—1-1)+4P+ I - 1)+ 3+
+m(—1-2)(s—1—-1)+2ml+t)(j —1—-1—s)+
+3(G-1-22+11(G —1-2)+14) (I +1—t)+1t > 0;
~fors4+1<j—-10, s>1+1, t>1+1,
sm =G -1+ 3m—=1) (5> + 1)+ 3(m—-2)(j — 1 — 1) + mi+
+im+ 3G -1-2+ -G - +6+ i+ L0 -1)+ 3+
+mG—1=2)+t)(s—1—-1)+(2m+3)+3)(j—1—1—s5)+
2 QRUG-D+P+2+TI+8) (t—1—1) > 0;
~fors+1>5—-10, s<Il+1, t<[+1,
3m =G =D+ 3m =1 =D+ Z(m =D = 1) + 300 — 1= 2)+
+ 3G -D+20 - D2+ L+ 2+ -1+
+3m(G—D(s—j+1—-1)+
+3(G-D2+5G-0)(I+1—1)>0;
~fors+1>5—-10, s<Il+1, t>1+1,
2m =G =D+ 3m =1 =D+ 3(m =1 -+
+35( -1 —-2)+ 3P - D) +2( - 1D + 2+
+ 3P4 —1+3m(—D(s—j+1-1)+
120G -1+ 1P +5l+6+6s)(t—1—1)>0.
Smces<m, ifl+1<s, we getj—l—1>2331>]+1>5 Therefore all possible
cases are checked and inequality (3) is strictly satisfied.
If i1 <dy <ij_1+ e, the multiples of XOdJ in Ig,, are the monomials in the set
J = Jj U {Xoij+eX1d—ij—€7 Xoij,a-‘rede—ij,a—e}’
where a = min(s, 1). Therefore we have k = T5 + min(s + 1,2), and

(d—dj)n+dy—dk=(d—ds)(Tjs2+3s+1) +dy — d(T> + min(s + 1,2)) =
=d(Tj+2 — To + 35 —min(s, 1)) — dj(Tj12 + 3s) >
> d(Tj42 — 3+ 3s —min(s, 1)) —
= (i1 + "57) (Tj42 + 3).
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This last expression takes the following forms, depending on the different values of j, s
and ¢:
~fors <1, t<j5—1,
3m=2)G -1+ 3m—4)+2m—-1)+3( 3%+ 1 -3)+4+
+(m+1)(G-3)+2)1—s5)+2(m—3)s+(s+3)(j —1—1t) > 0;
-fors <1, t=7,
Fm =15 =1+ 5mj+5m—1)+( —3)" + 35+
+(m+1)(j —3)(1—s)+ 1(m—3)s > 0;
~fors>1,t<j -1,
$m=2)j(G =1+ 5(m—4j+5m—1)+3( —3)* + 3 —3) + 3+
+39m—1)+6)(s—1)+4(i —1—1t) > 0;
-fors>1, t=j,
Fm = 1)j(j = 1) + gmj +5(m — 1) + (j = 3)* + §(j = 1) + §+
+1(9m +3)(s—1) > 0.

Therefore inequality (3) is strictly satisfied.
If i;_1 + e < dy <1, the multiples of Xo% in 14, are the monomials in the set

J = Jj U {Xoiri_ede_ij_e}.
Therefore we have k =T + 1 = 4, and

(d=djn+d;—dk=(d—d;)(Tj42+3s+1)+d;—4d =
=d(Tj42+3s—3) —dj(Tjt2 +3s) >
d( J+2+38—3)—7,j( j+2+33)_
=(m(+1)+)(Tjt2+3s — 3)—
— (mj +)(Tjsa +3s) =
= 1((m=3)j(j — 1) +35(j — 3)) +3(j — t) + 3ms > 0.

If i; < dj <ij + e, the multiples of Xo% in 14, are the monomials in the set
J = {Xo% Xo¥tex 4ie}
Therefore we have k = 2, and

(d—dj)n+dy—dk=(d—ds)(Tjpo+3s+1) +dy —2d =
=d(Tjr2 +35 = 1) —d;(Tjz2 + 3s) =
d(Tji2 +3s —1) = (i + €)(Tj42 + 3s) =
(m(j+1) +8)(Tj4z +3s —1)—

— (mj+t+ 2F) (T + 3s) =
=L(m—-1)72+3(m—1)j+3(m—1)s)+ (j —t)+

+2(m—1)+1>0.
20
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If i; + e < dj < d, the only multiple of XOdJ in Iy, is Xod7 and there is nothing to
prove.

Therefore all possible values of d; are verified, and hence the syzygy bundle E,, is
stable.

Case 2.2: r = 3s + 2, with s > 0. The difference between this case and the previous
one is that we are adding the monomial X% +¢X,47%~¢ to I4y. Therefore we should
only worry with the cases 0 < dj < is + e, since for degrees greater than i + e the set
J of multiples of Xy%’ has the same number of elements as in the corresponding sets of
the previous case, whereas the set I;, has one more element. Given the fact that the
sequence (ad,j)j>2 is monotonically increasing, inequality (3) is strictly satisfied.

If 0 < d; < e, the multiples of X% in 14, are among the monomials in the set

J = Jl U {Xoij+eX1d—ij—e7 o ’Xoij,5+eX1d—ij,s—e’
X06X2d—e XOiS—‘rede—’L'S—e}-

Therefore if k is the number of multiples of Xy, we have k = Tj41+ 2542, and

(d—dyn+dy—dk=(d—ds)(Tjy2+3s+2)+d;—d(Tj41 +25+2) =
d(]—|—2+5) dj(Tjye +3s+1) >
+1)+0)(+2+s)—e(Tjre+3s+1) 2
J+1) G +24s) - 2 (Tj+3s+1) =
=1Bm-1)7+1(Tm-5)(j—-2)+L(m—-2)+ 5+
+22m(i—2)+3(m—1))s+t(j+2+s)>0.
If e < dj <1y, the multiples of Xo% in 14, are the monomials in the set
J=J1U {XoijJredeiijie, . ,Xoij_‘d?edeiij_sie,
X0i1+€X2d72—17€7 o ,X0i5+6X2d7i37€}.
Therefore we have k =T} +2s+ 1 and
(d—dyn+dy—dk=(d—ds)(Tj42+3s+2)+d;—d(Tj41 +2s+1) =
=d(j+3+s)—di(Tj;2+3s+1) >
>d(j+3+s)—i1(Tjq2+3s+1) =

=(m@F+1)+1)(J+3+s)-
— (m+min(1,t))(Tj32 + 3s + 1).

This last expression takes the following forms, depending on the different values of ¢:

- for t =0, TG +2)G—1)+m(j —2)s +my;
- for t > 0, F((m=1)G -2+ (Tm—-T7)(j —2)+8(m—3) +12)+
+(m(=3)+m—=3+t)s+ (t—-1)(j+3)

These expressions are both positive, so inequality (3) is strictly satisfied.
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Ifiog<dy<iit+e forl1<l<s, wegetj—s> %j>l7 since 3s + 2 < j 4+ 2. There-
fore the multiples of X%’ in 14, are the monomials in the set

J = Jl+1 U {XoijJredeiijie, e ,Xoij*s+eX1diljfsie
onl+eX2d7ufe’ o ’X025+€X2d7l576}.

)

Therefore we have k =T, +2s+2—1, and

(d—dj)n+dy—dk=(d—ds)(Tjpo+3s +2) +ds—
—d(Tj1—+2s+2-1) =
= d(Tj+2 —Tj1—1+s+ 1) —dy(T Y2 +3s+ 1) >
> d(Tjro — Tjs1-1+ s +1) — (i1 + 22) (T2 + 35 + 1).

This last expression takes the following forms, depending on the different values of ¢:

-fort <1,

5m =11 =)+ §m = 1)j(G =) + F(m = 3)I(j — 1) + jml*+
+3m —4)j+ 312G — 1)+ 550 — 20) + 205 — 20) + LUl - D)+
+IG-1-2)+ 31+ +Li@2m( —20) +m—3)(s— )+
+ ((m+2)l4+m)(j—1—s)+
+3(G-D?+3(—2)+1+4+4s)(I—t) > 0;
- for t > 1,

s(m =D = 1)+ 3(m = 1) — 1) + Fm = 3)I(j — 1) + jmi*+
+3m—1)j+ 3P0 —1-2)+ 350 — 21— 1)+
+2(-20-1)+ -1+ L0 -1)+ 3+
+32m( —20) +m—3)(s— )+
+((m+2)l+m)(j—1—s)+
+3QU4ADG - +P+Tl+442s) (t—1)>0.

Ifii,+e<dy <ipyp,forl <I<s—1,themultiples of Xo% in 14, are the monomials
in the set
J =T U {Xohtex e L Xpliete Xy el
X()il+1+eX2d—il+1—e’ o 7X0is+eX2d—i3—e}.
Therefore we have k =T, +2s+1—1, and
(d—djn+dy—dk=(d—ds)(Tj12+3s+2)+dj—
—d(Tjp1-1+2s+1-1) =

= d(Tj+2 *T’jJrlfl +S+1+l) dJ( j+2 +38+1)
> d(Tj+2 — Tj+1_l +s+1+ l) — Zl+1( j+2 + 3s + 1)
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This last expression takes the following forms, depending on the different values of ¢:

-fort <Il+1,
1 L. 1 -2 2 5 :
§(m—1)l](j—l)+§(m—4>(j +l)+§(m—1)(j—l—2)+2m+
+ 311G =D+ 3G -1-1)+dl-1)+B1-1)+ 3+
+m(j—1—-2)(s—=1—-1)+2ml+t)(j —1—-1—5)+
+3((G—1-2%+11G —1-2)+16) ({+1—1t) +1t > 0;
-fort>1+1,
1 S 1 2, 72\ 4 5 :
2(m—4)lj(j—l)+2(m—1)(j —I—l)+2(m—2)(j—l—2)—|—2m+
+3G—1-2)+ -G -D+6l(1 -+ 25+ F(1-1)+ I+
MG —1-2)+t)(s—1—1)+ (2m+3)+3)(—1—1—s)+
+LQ@G-D+P+2j+T+8)(t—1—1)>0.

Therefore inequality (3) is strictly satisfied.

Case 2.3: 7 = 3s, with s > 1. The difference between this case and the previous one
is that we are adding the monomial Xliﬁeng*iS*e to Igqn. Since this is no multiple
of Xo%, the set J of multiples of X% has the same number of elements as in the
corresponding sets of the previous case, whereas the set I ,, has one more element. Given
the fact that the sequence (aq,;);~, is monotonically increasing (see Remark 2.10(b)),
inequality (3) is strictly satisfied.

We can conclude that stability is guaranteed in all cases. O

Proposition 3.3. For any integers n and d such that d+2 < n < 3d and (n,d) # (5,2),
there is a set Iy, of n m-primary monomials in K[Xo, X1, Xo] of degree d such that the
corresponding syzygy bundle Eg4,, is stable. For (n,d) = (5,2), there are 5 m-primary
monomials in K[Xo, X1, Xz] of degree 2 such that the corresponding syzygy bundle Es 5
is semistable.

Proof. Suppose that d > 4, and consider the set
I'={X% X" ' X1,..., Xo X141, X117, X0}
and the sequence

(XoXo"!, Xo? X" 2, .., X" 2 X2,
X172 X0?, XX,
XX XX XX X X)),

If 1 < i <2d—2, let I” be the set of the first ¢ monomials in this sequence and let
Iy, =I'"UI". The number of monomials in Iy, isn=d+2+1.
For 0 < dj < d, since we are again following the strategy mentioned in Proposition 3.2,
it is enough to count, in each case, the number of multiples of X% which are in Igp.
If ¢ < d— 2, the set of multiples of Xod" in I, is

{Xo%, .. XM X1, XM XoT WL X X0,
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where e := max{i,d; — 1} and the list X% X4 X¢X597¢ is understood to be
empty if e =dj; — 1. The number of monomials in this set is k =d — 2d; + e + 2, and
we get

(d—djm+d;—dk=i(d—dy)+dd;—d;—de>0.
If i = d — 1, the set of multiples of X%’ is
{Xo%, ... Xo¥ X1 XWXt L XX

The list X0 Xo% % ..., X972 X2 is again understood to be empty if dj = d — 1. The
number of monomials in this set is k = 2d — 2d;, and we get

(d—dj)n+dy—dk=d>0.
If i > d, the set of multiples of X%’ is
{Xo%,. . XY X1 XgT X X X )
The number of monomials in this set is k = 2d — 2d; + 1, and we get
(d—djn+dy—dk>d—dy>0.

In all cases, inequality (3) is strictly satisfied, and the corresponding syzygy bundle
is stable.
For cases d = 2 and d = 3, we consider the sets
Ls = {Xo*, X1°, X5, XoX1, XoX2}
I = {Xo®, X1°, X%, XoX1, XoX2, X1 X5}
I3 = {Xo®, X1°, X5o°, Xo® X1, XoX5®, X1° X}
Is7 = {Xo°, X1°, Xo°, Xo° X1, XoXo®, X1°X,, XoX1 X}
Iss == {X0o®, X1°, Xo®, X0’ X1, XoX1?, X0’ X2, XoX2®, X1’ X}
Iy = { X0, X1°, X5, Xo* X1, XoX1°, Xo* X2, Xo X2, X1° X, X1X,5°}

In all cases but (n,d) = (5,2), the corresponding syzygy bundle is stable. O

Proposition 3.4. For any integers n and d such that 3d < n < (df), there is a set

Iy of n m-primary monomials in K[Xo, X1, X2] of degree d such that the corresponding
syzygy bundle Eq ,, is stable.

Proof. We divide the proof in three cases. Let 7 > 1 be such that 3j < d and suppose
that

d+2 d+2—3j d+2 d+2-3(j+1

(“3%) = () <m < (UF7) - (RUTY).
Note that as j varies, we get all values of n mentioned, except (3?) when d is a multiple
of 3. However, for this highest possible value of n, the result follows from Proposition
2.7.
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Case 1. Suppose that
w5 - () s - 2
with 1 <7 < d—3j 4+ 1 and consider the set
I' = {Xo" X1" X5" 1ig + i1 + i = d and (ig < j Vi1 < jVia < j)}.
Consider the sequence
(X0 ¥ X7 Xo?, Xo 271 X0 X7 X! X TP X)),

Let I" be the set of the first ¢ monomials in this sequence and let Iy, = I’ UI"”. Then I,
has » monomials and we verify that it strictly satisfies inequality (3).

112,66

For 0 < dj < d, all we have to do is to count, in each case the number of multiples
of Xo% which are present in 14, since we are again applying the strategy mentioned in
Proposition 3.2.

For d — 2j < dj < d, all monomials of degree d of type XX, X5, with ig > d,
are in I ,. Therefore the number of multiples of Xo% in Igy is

k= (d_dé’ +2)

and we get
(d—dy)n+dy —dk = (d—dy) (de — %G1 4 z) +dy—d(TYE).
This expression can be rewritten in the two following ways:

3d(d—dy)(dy+j—d)+5(d=3j)(d—dy)(j — 1) +3(d—ds)j(j — 1)+
+d(d—dy)+ (i —1)(d—dy)
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and

td(d—dy—j)ds+2j—d)+3(d—d;—j)*(j — D+
+3d—d;—5)ds(j— 1)+ 3(ds +2j — d)j*+
+2(dy— i -1+ 3d—ds—§)j+dsj+ 152+ (G —1)(d—dy).

From the first one, we can see that the expression above is positive for d — j < dj < d,
and the second shows us positivity for d — 25 < dj; < d — j (since 3j < d, we get in this
case j < dyj).

For j < dj < d— 2j, the monomials in I, that are multiples of X% are the ones
in the set

J = {X"X1" X, €I 1ig > dy}U
U{Xo" X0 X7, Xo T TIXITIG L Xt T X,
where e := min(i — 1,d — 2§ — dy). Therefore their number is
k _ (d—d2J+2) _ (d-2j;d]+2) + e.
Ifi—1<d—-2j—dj, we get
(d—dy)n+dy — dk = (d - dy) (de — %G=D +i> +dy—
—d ((d—dzj+2) B (d—QjEdJ-i-?) i 1) _
=(d—-j—dy)(d=2j—ds)j+(d=2j—ds)ds;(j— 1)+
+5di% + 5(dy = 7)jG — 1) + 350G - D+

+3(d—2j—dy)j+idsj+ 5 +d+
+(d=2j—d;+1—i)d; >0

sinced —2j—dy>0and 5 >1. Ifi—1>d—2j—dy, we get
(A dy)n+dy —dks = (d - dy) (34 - 252 +7) +dy—
—_d ((d—d21+2) _ (d—QjEdJ+2) td—2j— d,;) _
=(d—dy—2j)(d~j)(j - 1)+ 3dj* + 5(ds - j)i(j — 1)+

+ 3584 (d—dy—2§)*+3(d—dy —2§)j + 3(ds — j)j +d+
+G@—1—-d+2j+dy)(d—d;)>0

sinced —2j —dy >0and j > 1.
For 0 < djy < j, the number of monomials in I, that are multiples of X0 is

k= (d—d2J+2) _ (d732j+2) 44
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and we get
(d—dy)n+dy —dk = (d—dy) (3dj7w+i)+dﬁ

—a (T - (TR i) =
= (d—3§)*dy +3(d = 3§)(j — ds)ds + 5(d — 3j)d5+
+35(j —dy)dy +3jd5 + 2(d —35)d; + (d — 35 + 1 —4)d; > 0.

In all cases, inequality (3) is strictly satisfied, and hence the corresponding syzygy bundle
is stable.

Case 2. Now suppose that
n= (%2 — () 4 i=3dj +d+1 - BEZD 4
with 1 <14 < d — 3j and consider the set
I' = {Xo"X1" X5" tig + i1 + i = d and (ig < j Vi1 < jVia < j)}.
Consider the sequence
(Xo?! X1 X% X/ T X X007 L XTI X T X,

Let I" be the set of the first ¢ monomials in this sequence and let I ,, = I’ UI"”. Then I4,,
has n monomials and we verify that it strictly satisfies inequality (3).

Ia73

As in the previous step, for 0 < d; < d, no monomial of degree d; divides a greater
number of monomials in Ig, than X% . Therefore all we have to do is count, in each

7 which are present in I .
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For d — 2j < dj < d, all monomials of degree d of type X" X, X,%, with ig > d,

dy

are in I4,. Therefore the number of multiples of Xo“’ in I, is
_ (d—ds+2
B=(T%7),

as it was in step 1, and we can claim that since all values are the same except for n,
which is bigger, inequality (2) is strictly satisfied, due to the fact that sequence (aq,;);>2
is monotonically increasing (see Remark 2.10(b)).

For j < dj < d— 2j, the monomials in I, that are multiples of X% are the ones
in the set

J = {X"X1"X5,” € I' vig > dy}U
U {XOdJleXQd_j_dJ7 X()dJ+1X1jX2d_j_dJ_1, o X0j+i_1X1jX2d_2j_i+1},
where this last set is understood to be empty if j +i — 1 < dj. Therefore their number

is

= (d—d2]+2) _ (d—2j;dJ+1) +max(0,j +1i—dy).

If j +4 < dj, we get (keeping in mind that i > 1)
(dfdJ)nerdek:(dfdJ)(3d]+d+1 33— 1>+z)+dﬁ
_d((dfd,]+2) _ d 25— d1+1 )
2
=(d—j)d—2j—d))j+3d* + L(ds —5)i(i —1) + 35°+
+5(d=2j—dy)j+ 3(ds = j)j +i(d—dy) > 0.

If j4+1i>dy, we get
(d—dy)n+dy —db = (d—dy) (3 +d+1— 2= i) +d,—
_d ((d—d2J+2) _ (d—ZjEdJ—‘rl) Y4 dj) _
=(d—=j)(d—2j—ds)j+3(d—2j—ds)j(j — 1)+
+4(dy — 5)j% + 353 + (dy — 5)j + (d — 35 —i)d; > 0.

For 0 < dy < j, the number of monomials in /4, that are multiples of XOdJ is

B= (T - (YT +i

and we get
(d—dy)n+dy—dk = (d—dy) (3dj+d+1 3G=1) —H) tdy—

d—dj+2 d—3j+1
—d(( 2J+) ( ]+)+l):
= (d—j)(d—3j)ds+d(j —ds)d; + 3dd;(d; — 1)+
35%dy + 3jdy + (d— 35 —i)d; > 0.
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Again in all cases, inequality (3) are strictly satisfied and the associated syzygy bundle
is stable.

Case 3. If d = 35 + 1, case 2 has exhausted all possible monic monomials of degree d,
and this proof is ended.
If d > 3j + 1, then suppose that

n= (42 = (©5¥) +i=3dj +2d + 1 — HEED
with 1 <¢ < d—3j — 1, and consider the set
I' = {Xo" X" Xo™ 1 ig + iy + iz =d and (i < j Vip < jVia <)}
Consider the ordered multiple
(Xo? X171 X027 X T X 2,002 X X R X

Let I"” be the set of the first ¢ monomials in this ordered multiple and let Iy, = I' UI".
Then I, has n monomials and we shall verify that it strictly satisfies inequality (3).

Ti2,78

As in the previous cases, all we have to do is count, in each case the number of
multiples of X% which are present in Ign. ‘ ‘ ‘

For d — 2j < dj < d, all monomials of degree d of type X' X1** X2, with ig > dj,
are in I ,. Therefore the number of multiples of Xo% in Iy is

d—dj+2
k= ( 2J+ )’

as it was in cases 1 and 2, and we can claim that since all values are the same except
for n, which is bigger, inequality (3) are strictly satisfied, due to the fact that sequence
(@q,5)j>2 is monotonically increasing (see Remark 2.10(b)).
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For j < dj < d — 2j, an analogous argument based on calculations for case 2 allows
us to claim that inequality (3) is strictly satisfied.
For 0 < dy < j, the number of monomials in /4, that are multiples of Xo% is

k= () = (V) +i
and we get (keeping in mind that i <d —3j — 1)
(d=dyn+dy — s = (d = dy) (3 + 24+ 1 = ¥ 1) a,—

—d () - (1) +i) =
= (d—2j)(d—3j)ds +2(d—5)(j —ds)ds + 3(d— j)ds(ds — 1)+
+ 313G —dy)dy +3jds+dy+(d—3j — 1 —1d)d; > 0.

Again in all cases, inequality (3) is strictly satisfied, which makes the syzygy bundle
stable, and concludes the proof. O

Putting all together we have got

Theorem 3.5. For any integers d,n > 1 with (n,d) # (5,2) and 3 < n < (d;rz),
there is a family of n m-primary monomials in K[Xo, X1, Xs2] of degree d such that
the corresponding syzygy bundle is stable. For (n,d) = (5,2), there are 5 m-primary
monomials in K|[Xo, X1, Xa]| of degree 2 such that the corresponding syzygy bundle is

semistable.
As an immediate consequence of Theorem 3.5 we obtain

Corollary 3.6. Let Eq,, be the syzygy bundle on P? associated to n general m-primary
forms of the same degree d. Suppose that 3 < n < (‘%2). Then Eq, is stable when
(n,d) # (5,2) and Es 5 is semistable.

Proof. Tt follows from Theorem 3.5, taking into account that stability is an open property.
O

4. Moduli spaces of syzygy bundles

In this section we study the moduli space of syzygy bundles on PV. We denote by
M = M(r;cy,...,cs) the moduli space of rank 7, stable vector bundles £ on PV with
fixed Chern classes ¢;(E) = ¢;, fori =1,...,s = min(r, N). The existence of the moduli
space M (r;cq,...,cs) was established by Maruyama in 1977 (see [9] and [10]) and once
the existence of the moduli space is established, the question arises as what can be said
about its local and global structure. More precisely, what does the moduli space look like
as an algebraic variety? Is it, for example, connected, irreducible, rational or smooth?
What does it look like as a topological space? What is its geometry? Until now, there
is no general answer to these questions. The goal of this section is to determine the
unobstructedness of stable syzygy bundles E,;,, on PV and to compute the dimension of
the irreducible component of the corresponding moduli space.
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Let us start by analyzing whether a syzygy bundle on PV is stable and to state
our contribution to study (semi)stability properties of syzygy bundles on PV. This will
improve all previous known results, which we quickly recall now.

Let C C PV be a smooth, projective, elliptic curve embedded by a complete system
of degree N 4+ 1. Using the fact that the restriction of a general syzygy bundle E;, on
PV to C is (semi)stable, Hein proved:

Proposition 4.1. Let fi,..., fn € K[Xo, X1,...,Xn]|, N > 2, denote generic homoge-
neous forms of degree d. Suppose that N +1 < n < d(N + 1). Then the syzygy bundle
Eqn on PN is semistable.

Proof. See [2], Theorem 8.6 and Theorem A.1. O

As another application of Theorem 3.5, we can improve the above proposition and
we get

Theorem 4.2. Let fi,..., fn € K[X0,X1,...,Xn], N > 2, denote generic homogeneous
polynomials of degree d. Suppose N +1 < n < (d;r2) + N — 2. Then the syzygy bundle
E4n on PN is stable when (N,n,d) # (2,5,2), and Es 5 is semistable on P2.

Proof. Since stability is an open property in a flat family of torsion free sheaves, it is
enough to prove the stability property for a single choice of homogeneous forms f, ..., f,
of degree d.

If (n,d) # (5,2) we proceed by induction on N. Case N = 2 follows from Theorem 3.5.
Assume N > 2 and take an integer n such that N +1 < n < (df) +N —2. By
hypothesis of induction on N, there exists a family of n — 1 (X, X1, ..., Xy_1)-primary
forms ¢1,...,9n—1 € K[Xo, X1,...,Xn_1] of degree d such that the kernel Fy,,_1 of the
epimorphism

=091, 9gn-1) : @?gllopN—l(—d) —— Opn-—1

is a rank n — 2 stable syzygy bundle. Consider the family of n — 1 forms fi,..., fn—1 €

K[Xo,Xl, N ,XN] ofdegreedsuch that fi(X07X1a PN 7)(]\[,1,)(]\[) = gi(X07X1, ce ,XNfl),

1 <i<n-1,and add f,(Xo,...,Xn) = Xn?%. Note that fi,..., fn is a set of n
(X0, X1, ..., Xn)-primary forms and we denote by Fg, the syzygy bundle on PV as-
sociated to them. Identifying PV—! with the hyperplane {Xx = 0} in PV, we have
Ejnlpv—1 = Fgp-1 and since Fy,_1 is stable, Eq, is also stable. Indeed, if there
is a sub-bundle G destabilizing E,,, then G|py-1 destabilizes Fy ,_1 contradicting its
stability.

Assume (n,d) = (5,2). Note that in that case 2 < N < 4. If N = 2, Ez5is a
semistable bundle on P? by Theorem 3.5. If N = 4, E55 is a stable bundle on P* by
Proposition 2.6. Finally if N = 3, we consider the set T := {X?, X1%, X5?, X532, XoX,}.
The associated syzygy bundle is stable and hence, by the openness of the stability, Es5 o
is stable on P3. O

Remark 4.3. In general, the bound N +1 <n < (%2) + N — 2 generalizes the bound
N+1<n<d(N+1) given by Hein in [3], Theorem A.1.

We are now ready to state the unobstructedness of stable syzygy bundles on P,

31



Theorem 4.4. Assume N+1<n < (d;rZ)—l—N—Q, N # 3 and (N,n,d) # (2,5,2). Then
the syzygy bundle Eq , is unobstructed and it belongs to a generically smooth irreducible
component of dimension n(dTVN) —n?, if N >4, and n(df) + n(dgl) —n?, if N =2.

Proof. Let us denote by ¢; = ¢;(Eq4y), ¢ = 1,...,min(n — 1, N) the ith Chern class of
Egyn andlet M = M(n—1;c1,. .., Cnin(n—1,n)) be the moduli space of rank n — 1, stable
vector bundles on PV with Chern classes ¢;. From deformation theory, we know that the
Zariski tangent space of M at [Eg,] is canonically given by

T[Ed,n]M = E.’L'tl(Ed’n, Ed,n) >~ Hl(Ed’n ® E<\i/,n)7

and the obstruction space of the local ring Oy (g, ) is a subspace of Ext*(Egn, Ean).
Thus, if
Ext*(Eqn, Ean) = H*(Eq, ® EY,) =0,

then the moduli space M is smooth at Ey, and in this last case
dimg Ext'(Eg,, Egn) = dimg, .} M(n —1;e1,. .., Cmin(n—1,N))

(see [9] and [10]).
To compute Exti(Ed,n, E4.n), we consider the exact sequence

0 Eq Opn (—d)™ Opn~ 0 (4)

and its dual

0 Opx Opx (d)" EY, 0. (5)

First of all, note that by the cohomological exact sequence associated to the exact
sequence (4), we get

hO(Ed’n) = 0;
hl(Edm) = 1;
0 if N >4 (6)
2 _ 9
h (Ed,n) - { n(d;l)’ lf N _ 2,
h3(Ed,n) =0

associated to the exact sequence

0 Eqn Egp(d)" —=F —>0.

Since Ey, is stable, it is simple, i.e. H°(F) = K. Thus, from the exact sequence (7),
and the fact that by (6), H*(E4.,) = 0, we get H*(Ey,,(d)) = 0.
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Twisting by Opn (d) the exact sequence (4), and taking cohomology, we deduce

h2(Eqn(d)) =0,
h?(Eqn(d)) =0, (8)
W (Egn(d) = (V1Y) —n.

In particular, from (7) we get H%(F) & Ext*(Eqn, Ea,) = 0 and the exact sequence

0 K K Hl(Edm(d))” —— HYF) —— HQ(Edm) — 0.
Therefore
N+dy _ 2 if N >4
W(F) = ext'(Eyg . Bg) =4 "Ca) =% ! =
() = ot BaEa) = { Mat) iy 0 i N2
which finishes the proof. U
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