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Abstract This paper concerns the study of a general minimal time problem with a
convex constant dynamics and a closed target set in Banach spaces. We pay the main
attention to deriving sufficient conditions for the major well-posedness properties that
include the existence and uniqueness of optimal solutions as well as certain regularity of
the optimal value function with respect to state variables. Most of the results obtained
are new even in finite-dimensional spaces. Our approach is based on advanced tools of
variational analysis and generalized differentiation.
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1 Introduction

A general class of minimal time problems with constant dynamics can be described as:

minimize t > 0 subject to (x + tF ) ∩ C 6= ∅, x ∈ X, (1.1)

where X is a Banach space of state variables, C ⊂ X is a closed target set, and F ⊂ X
is a closed, convex, and bounded set with 0 ∈ int F . We call F the constant dynamics
reflecting the fact that the optimal value in problem (1.1) is the minimal time needed to
attain the target set C from x by trajectories of the differential inclusion ẋ (t) ∈ F . The
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imposed requirements on the dynamics and target are our standing assumptions in this
paper. Various properties of optimal solutions to (1.1) were studied in [8, 9, 10, 12, 17]
and the references therein in finite and infinite dimensions.

The major optimal characteristics of problem (1.1) are given by the optimal value
function (known also as the minimal value/time function) defined by

TF
C (x) = T (x) := inf

{
t > 0

∣∣ (x + tF ) ∩ C) 6= ∅
}

= inf
y∈C

ρF (y − x), (1.2)

where ρF (·) is the classical Minkowski functional/gauge,

ρF (u) := inf
{
t > 0

∣∣ t−1u ∈ F
}
, u ∈ X, (1.3)

and by the generalized/minimal time projection

ΠF
C(x) :=

{
y ∈ C

∣∣ ρF (y − x) = T (x)
}
, x ∈ X, (1.4)

which is generally a set-valued mapping Π: X →→ C with possibly empty values.
Observe that the minimal value function (1.2) can be considered as a natural gener-

alization of the classical distance function

dist(x;C) := inf
y∈C

‖y − x‖, x ∈ X, (1.5)

which corresponds to (1.2) with F = B, the closed unit ball of the space in question. In
the latter case, the generalized projection (1.4) reduces to the usual metric projection

ΠC(x) :=
{
y ∈ C

∣∣ dist(x;C) = ‖y − x‖
}
, x ∈ X, (1.6)

of x onto C induced by the norm of the Banach space X under consideration.

The main objective of this paper is to study well-posedness of the minimal time
problem (1.1) in finite-dimensional and infinite-dimensional spaces. By well-posedness
we understand here the existence and uniqueness of the generalized projection (1.4) in
connection with certain regularity properties of the minimal time function (1.2). Since
the latter function is intrinsically nonsmooth, our study strongly involves the usage of
appropriate tools of advanced variational analysis and generalized differentiation.

Concerning most relevant results of the previous investigations, note that the prox-
imal and Fréchet subdifferentials of the minimal time function were computed first in
Hilbert spaces [8, 9]. These results generalize the corresponding formulas obtained ear-
lier in [3, 6, 13] for the case of F = B. Furthermore, based on these formulas and
adapting respective arguments used earlier in [4, 6, 7, 19] to study the metric projec-
tion (1.6), the authors of [8, 9] established some well-posedness properties (existence,
uniqueness, and certain regularity near the target C) of the minimal time projection
(1.4). The assumptions in [8, 9] involve both “external sphere type” conditions on C,
called ϕ-convexity or proximal smoothness, and a kind of uniform strict convexity of the
dynamics F . Quite recently [10], these conditions have been sharpened and localized by
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introducing a certain regular curvature of a convex body. Besides that, an alternative hy-
pothesis involving the duality mapping, which requires neither ϕ-convexity of the target
set C nor rotundity/strict convexity of the dynamics F , is proposed in [10, Section 5]).

Formulas for evaluating the proximal and Fréchet subdifferentials of the minimal time
function (1.2) in general Banach spaces, extending the corresponding results of [8, 9] from
the Hilbert space setting, are obtained in [12]. The most recent results in this direction
derived in [17] provide tight upper estimates as well as exact formulas for computing
the ε-subdifferentials of the Fréchet type and the limiting/Mordukhovich subdifferential
of the minimal time function at both in-set (x̄ ∈ C) and out-of-set (x̄ /∈ C) points in
arbitrary Banach spaces X. The results of [17] extend those obtained in [3, 13, 15, 16] for
the latter subdifferentials of the distance function (1.5). They are used in what follows
to establish some regularity properties of the minimal time function (1.2).

In this paper we develop an approach to the existence and uniqueness of the minimal
time projection (1.4) that is different from the previous investigations discussed above.
Namely, we study the existence and uniqueness of (1.4) through subdifferentiability of the
minimal time function (1.2) at a fixed point x̄ ∈ X \C (not necessarily in a neighborhood
of the target). A prototype result for the metric projection mapping (1.6) can be found
in [2, Lemma 6], which proves the existence and uniqueness of the metric projection of
x̄ ∈ X \C onto C provided that the distance function (1.5) is Fréchet subdifferentiable at
x̄ and that the space X admits a Fréchet smooth renorm. We obtain a similar result in
this direction for the general minimal time projection (1.4) by using some local rotundity
properties of the dynamics F expressed in terms of the duality mapping associated with
F . We also derive other verifiable conditions, including necessary and sufficient ones, for
the existence and uniqueness of the minimal time projection that are expressed in terms
of the dynamics and target sets in (1.1).

Finally, we derive sufficient conditions ensuring the lower/subdifferential regularity
of (1.2) at both in-set and out-of-set points of the target. The assumptions imposed
and the results obtained are illustrated by examples and counterexamples in both finite-
dimensional and infinite-dimensional spaces.

The rest of the paper is organized as follows. Section 2 contains some definitions and
preliminary material from convex and variational analysis widely used in the paper.

In Section 3 we establish relationships between the minimal time projection mapping
(1.4) and its ε-enlargement, from one side, and the duality mapping for the dynamics
and the Fréchet subdifferential of the minimal time function at the reference point from
the other. This allows us to derive in Section 4 sufficient conditions for the existence
and uniqueness of the minimal time projection via some rotundity properties of the
dynamics. This section contains also some general observations concerning rotundity
as well as a counterexample showing that problem (1.1) is no longer well posed if the
rotundity condition is violated.

In Section 5, by using a somewhat different approach, we obtain characterizations
of the existence and uniqueness of the minimal time projection in terms of the Gâteaux
differentiability of the support function associated with an appropriate subset of the
target C in (1.1). Sufficient conditions of another type are derived under the Fréchet
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differentiability of the support function associated with the ε-enlargement of the minimal
time projection onto C.

The final Section 6 provides conditions ensuring the lower regularity of the minimal
time function (1.2) that imply, in the case of reflexive and more general Asplund spaces,
the Fréchet subdifferentiability of (1.2) at the reference points, which is essentially used
in the most interesting results of Sections 4 and 5 on the uniqueness of the minimal time
projection (1.4). On the other hand, we present examples showing that the lower regular-
ity of (1.2) is not necessary for the uniqueness of (1.4), while even Fréchet differentiability
alone does not ensure the uniqueness of generalized projections.

2 Basic Definitions and Preliminaries

In this section we present some constructions and facts from convex and variational
analysis needed in what follows. The reader can consult the books [18] in the convex
case and [14] in the general setting for more details, discussions, and further references.

Unless otherwise stated, the space X under consideration is arbitrary Banach with
the norm ‖·‖, and the canonical pairing 〈·, ·〉 between X and its topological dual X∗.
Given a nonempty set F ⊂ X, we recall the construction of its polar

F ◦ :=
{
x∗ ∈ X∗

∣∣〈x∗, x〉 ≤ 1 for all x ∈ F},

which is always a convex (even when F is nonconvex) and weak∗ closed subset of the
dual space X∗. The support function σF : X∗ → R := (−∞,∞] of F is

σF (x∗) = sup
x∈F

〈x∗, x〉, x∗ ∈ X∗. (2.1)

Note that (2.1) is always convex and lower semicontinuous (l.s.c.) on X∗, and it is the
Legendre-Fenchel conjugate of the indicator function δF (·) of F equal to 0 for x ∈ F and
∞ otherwise.

The duality mapping JF : F ◦ →→ F for F is defined by

JF (x∗) :=
{
x ∈ F

∣∣ 〈x∗, x〉 = σF (x∗)
}
, x∗ ∈ F ◦,

which reduces to the simplified representation on the boundary bdF ◦ of F ◦:

JF (x∗) =
{
x ∈ F

∣∣ 〈x∗, x〉 = 1
}
, x∗ ∈ bdF ◦. (2.2)

Furthermore, in the case of reflexive spaces X we have the relationship

∂σF (x∗) = JF (x∗) for all x∗ ∈ F ◦, (2.3)

where ∂ stands for the classical subdifferential of convex analysis. It is worth mentioning
that, under our standing assumptions on the dynamics F , both the Minkowski gauge
(1.3) and the minimal time function (1.2) are Lipschitz continuous on X. Furthermore,

ρF (x) = σF ◦(x) and ρF ◦(x∗) = σF (x∗) for all x ∈ X, x∗ ∈ X∗. (2.4)
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Using (1.2) and (1.3) allows us to consider, together with the (possibly empty) minimal
time projection (1.4), its always nonempty enlargement called ε-approximate minimal
time projection as ε > 0 and denoted by

ΠF
C(x, ε) :=

{
y ∈ C

∣∣ ρF (y − x) ≤ T (x) + ε
}
6= ∅ for all x ∈ X. (2.5)

Note that both the minimal time projection (1.4) and its ε-enlargement (2.5), for all
ε > 0, are closed subsets of X under our standing assumptions.

Let us further recall two outer/upper limits of the Painlevé-Kuratowski type needed
in this paper. Given a set-valued mapping G : Y →→ Z between two Banach spaces,
consider the weak sequential outer limit of G at ȳ defined and denoted by

w- Lim sup
y→ȳ

G(y) :=
{
z ∈ Z

∣∣∣ ∃ sequences yk → ȳ and zk
w
→ z, as k → ∞

with zk ∈ G(yk) for all k ∈ N := {1, 2, . . .}
}

,
(2.6)

where
w
→ signifies the convergence w.r.t. the weak topology on the image space Z.

Another version of the sequential Painlevé-Kuratowski outer limit needed below con-
cerns set-valued mappings G : X →→ X∗ between a Banach space X and its topological
dual. We say that the construction

w∗- Lim sup
x→x̄

G(x) :=
{

x∗ ∈ X∗
∣∣∣ ∃ sequences xk → x̄ and x∗

k
w∗

→ x∗

with x∗
k ∈ G(xk) for all k ∈ N

} (2.7)

is the w∗-sequential outer limit of G as x → x̄, where w∗ signifies the weak∗ topology
of the dual space X∗. Note that we use sequences in both constructions (2.6) and (2.7)
although neither the weak topology of a Banach space nor the weak∗ topology of a dual
Banach space is generally sequential.

Consider next an extended-real-valued function ϕ : X → R on a Banach space X.
Given ε ≥ 0, the ε-subdifferential of ϕ at x̄ ∈ dom ϕ := {x ∈ X| ϕ(x) < ∞} is defined by

∂̂εϕ(x̄) :=
{

x∗ ∈ X∗
∣∣∣ lim inf

x→x̄

ϕ(x) − ϕ(x̄) − 〈x∗, x − x̄〉

‖x − x̄‖
≥ −ε

}
(2.8)

with ∂̂ϕ(x̄) := ∂̂0ϕ(x̄) called the Fréchet subdifferential of ϕ at x̄. If ϕ is Fréchet dif-
ferentiable at x̄, then ∂̂ϕ(x̄) reduces to the classical Fréchet derivative. In general the
set ∂̂εϕ(x̄) is convex for any ε ≥ 0 while it may often be empty for nonconvex functions
as, e.g., in the case of ϕ(x) = −|x| at x̄ = 0 ∈ R. Observe furthermore that the sub-
differential construction (2.8), including ∂̂ϕ(·), does not satisfy pointwise calculus rules
(for sums, compositions, etc.) required in various applications. This is dramatically
improved for the sequential limiting construction

∂ϕ(x̄) := w∗- Lim sup
x

ϕ
→x̄
ε↓0

∂̂εϕ(x), (2.9)
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known as the basic/limiting/Mordukhovich subdifferential of ϕ at x̄, where x
ϕ
→ x̄ stands

for x → x̄ with ϕ(x) → ϕ(x̄). We can equivalently put ε = 0 in (2.9) if ϕ is l.s.c. around
x̄ and the space X is Asplund, i.e., each separable subspace of it has a separable dual.
The latter subclass of Banach spaces is sufficiently large including all reflexive spaces
and all Banach spaces with a separable dual. Note that the basic subdifferential (2.9)
reduces to the classical derivative for smooth functions ϕ and to the subdifferential of
convex analysis when ϕ is convex, while the set (2.9) may often be nonconvex for simple
nonconvex functions; e.g., ∂ϕ(0) = {−1, 1} for ϕ(x) = −|x|. Recall also that ∂ϕ(x̄) 6= ∅
if ϕ is locally Lipschitzian around x̄ and the space X is Asplund; see [14, Corollary 2.25].

It is clear from (2.9) that we always have the inclusion

∂̂ϕ(x̄) ⊂ ∂ϕ(x̄), x̄ ∈ dom ϕ. (2.10)

A function ϕ : X → R is called to be lower regular at x̄ if (2.10) holds as equality.
Besides smooth functions, convex functions and the like, the latter property is satisfied
for various classes of “nice” functions important in applications. Furthermore, there is a
well-developed calculus ensuring the preservation of lower regularity under a variety of
operations; see [14] for more details. We can easily deduce from the previous discussions
that ∂̂ϕ(x̄) 6= ∅ if ϕ is locally Lipschitzian around x̄ and lower regular at this point
provided that either X is Asplund, or ϕ is convex. It is important in the framework of
this paper, where the minimal time function (1.2) is Lipschitz continuous on X while its
Fréchet subdifferentiability ∂̂T (x̄) 6= ∅ is used in the major results established below.

Given further a function ϕ : X → R on a Banach space X locally Lipschitzian around
x̄, recall the Clarke generalized gradient of ϕ at x̄ defined by

∂ϕ(x̄) :=
{
x∗ ∈ X∗

∣∣ 〈x∗, v〉 ≤ ϕ◦(x̄; v) for all v ∈ X
}
, (2.11)

where the generalized directional derivative of ϕ at x̄ in direction v ∈ X is

ϕ◦(x̄; v) := lim sup
x→x̄
t↓0

ϕ(x + tv) − ϕ(x)

t
.

The reader is referred to [5] for more details on these constructions. If X is Asplund, we
have the relationship [14, Theorem 3.57]

∂ϕ(x̄) = cl∗co ∂ϕ(x̄) (2.12)

between (2.11) and our basic subdifferential (2.9), where cl∗co stands for the convex
closure of the set in the weak∗ topology of X∗. It follows from (2.12) and the aforemen-
tioned nonemptiness of the basic subdifferential that ∂ϕ(x̄) 6= ∅ for locally Lipschitzian
functions on Asplund spaces.

Finally in this section, define the normal cones

N̂(x̄; Ω) := ∂̂δΩ(x̄) and N(x̄; Ω) := ∂δΩ(x̄) (2.13)
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to a set Ω ⊂ X at x̄ ∈ Ω generated by the corresponding subdifferentials (2.8) and (2.9)
of the indicator function of Ω. Note that for X = R

n the limiting normal cone in (2.13)
can be equivalently described via the metric projection (1.6) by

N(x̄; Ω) = Lim sup
x→x̄

[
cone

(
x − ΠΩ(x)

)]
,

where the symbol “cone” stands for the conic hull of the set. We say that Ω is normally
regular at x̄ ∈ Ω if N̂(x̄; Ω) = N(x̄; Ω). This property holds for convex and “nice” non-
convex sets; it satisfies rich calculus ensuring its preservation under various operations.

3 General Representation Formula

Our first result is the following unconditional inclusion, which is definitely of its own
interest being at the same time crucial for the subsequent applications in this paper.

Theorem 3.1 (approximate projection via minimal time function and duality
mapping in Banach spaces). For each x̄ /∈ C we have the inclusion

w-Lim sup
ε↓0

ΠF
C(x̄, ε) ⊂

⋂

x∗∈b∂T (x̄)

(
x̄ + T (x̄)JF (−x∗)

)
. (3.1)

Proof. In the case of ∂̂T (x̄) = ∅ inclusion (3.1) is trivial, since the right-hand side of
(3.1) is the whole space X by the standard convention. Assuming that ∂̂T (x̄) 6= ∅, we
have ∂̂T (x̄) ⊂ −bdF 0 by [12, Theorem 4.2], which is a Banach space extension of the
Hilbert space result of [9, Theorem 3.1]. This implies by (2.2) that

JF (−x∗) =
{
x ∈ F

∣∣ 〈−x∗, x〉 = 1
}

for − x∗ ∈ ∂̂T (x̄). (3.2)

Select now an arbitrary element y ∈ w-Lim sup
ε↓0

ΠF
C(x̄, ε) and find by (2.6) a sequence

{yk} with yk ∈ ΠF
C(x̄, εk) and εk ↓ 0 such that yk

w
→ y as k → ∞. It follows from the

definition that T (x̄) ≤ ρF (yk − x̄) ≤ T (x̄) + t2k with tk := ε
1/2
k > 0. Taking an arbitrary

Fréchet subgradient x∗ ∈ ∂̂T (x̄), we get from (2.8) as ε = 0 that

lim inf
x→x̄

T (x) − T (x̄) − 〈x∗, x − x̄〉

‖x − x̄‖
≥ 0. (3.3)

Define further a sequence {xk} ⊂ X by

xk := x̄ + tk(yk − x̄), k ∈ N,

and observe that xk → x̄ as k → ∞, since {yk} is bounded in X. Furthermore, xk 6= x̄ for
all k ∈ N by construction. It thus follows from (3.3) that there is a sequence {αk} ⊂ R

with lim
k→∞

αk ≥ 0 for which we have the inequality

T (xk) − T (x̄)

tk
≥ 〈x∗, yk − x̄〉 + αk, k ∈ N.
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The latter implies by the definitions of the minimal time and Minkowski functions and
by the constructions of the sequences involved that

〈x∗, yk − x̄〉 + αk ≤
ρF (yk − xk) − ρF (yk − x̄) + t2k

tk
= −ρF (yk − x̄) + tk, k ∈ N.

By passing to the “lim sup” as k → ∞ above, we arrive at

lim inf
k→∞

〈x∗, x̄ − yk〉 ≥ lim
k→∞

ρF (yk − x̄) = T (x̄). (3.4)

On the other hand, by the choice of x∗ we have the relationships

〈x∗, x̄ − yk〉 = 〈−x∗, yk − x̄〉 ≤ σF 0(yk − x̄) = ρF (yk − x̄),

which imply, by passing to the “lim sup” as k → ∞, that

lim sup
k→∞

〈x∗, x̄ − yk〉 ≤ lim
k→∞

ρF (yk − x̄) = T (x̄). (3.5)

Comparing (3.5) with (3.4) allows us to conclude that the limit lim
k→∞

〈x∗, x̄ − yk〉 exists

and equals T (x̄). This implies, since the sequence {yk} weakly converges in X to the
element y fixed above, that

〈x∗, x̄ − yk〉 → 〈x∗, x̄ − y〉 as k → ∞,

and thus 〈x∗, x̄ − y〉 = T (x̄). Furthermore, we have

lim
k→∞

ρF (yk − x̄) = T (x̄) = 〈x∗, x̄ − y〉 ≤ σF 0(y − x̄) = ρF (y − x̄). (3.6)

By its convexity, the function ρF (·) is weakly lower semicontinuous on X. Hence

lim inf
k→∞

ρF (yk − x̄) ≥ ρF (y − x̄). (3.7)

Combining the relationships in (3.6) and (3.7) gives us

lim
k→∞

ρF (yk − x̄) = ρF (y − x̄) = T (x̄),

which in turn implies that 〈
x∗,

x̄ − y

ρF (y − x̄)

〉
= 1.

Since −x∗ ∈ bdF 0 by the above, we get the inclusion

y − x̄

ρF (y − x̄)
∈ JF (−x∗), i.e., y ∈ x̄ + T (x̄)JF (−x∗),

which concludes the proof of the theorem by taking into account that the Fréchet sub-
gradient −x∗ ∈ ∂̂T (x̄) was chosen arbitrarily. △

As a consequence of Theorem 3.1, we obtain a precise representation of the (possibly
empty) minimal time projection (1.4) in arbitrary Banach spaces under our standing
assumptions made on the dynamics and target.
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Corollary 3.2 (precise representation of minimal time projection in Banach
spaces). For each x̄ /∈ C with ∂̂T (x̄) 6= ∅ the following holds: if x∗ ∈ ∂̂T (x̄) then

ΠF
C(x̄) =

(
x̄ + T (x̄)JF (−x∗)

)
∩ C. (3.8)

Proof. It follows from Theorem 3.1 that for any fixed x̄ /∈ C and x∗ ∈ ∂̂T (x̄) we have

ΠF
C(x̄) ⊂ w-Lim sup

ε↓0
ΠF

C(x̄, ε) ⊂ x̄ + T (x̄)JF (−x∗).

This implies, by taking into account the obvious one ΠF
C(x̄) ⊂ C, that the inclusion “⊂”

holds in (3.8). To justify the opposite inclusion “⊃” in (3.8), observe that for any

y ∈
(
x + T (x̄)JF (−x∗)

)
∩ C ⊂ (x̄ + T (x̄)bdF ) ∩ C

we get by the constructions of (1.2) and (2.2) with x∗ ∈ ∂̂T (x̄) ⊂ −bdF ◦ that

y ∈ C and ρF (y − x̄) = T (x̄),

which gives y ∈ ΠF
C(x̄) and thus completes the proof of the corollary. △

4 Minimal Time Projection via Dynamics Rotundity

In this section we derive and illustrate sufficient conditions ensuring the existence and
uniqueness of the minimal time projection (1.4) in reflexive Banach spaces under certain
rotundity properties of the dynamics F . We say that F is strongly rotund with respect
to x∗ ∈ bdF 0 if there is a (unique) point x̄ ∈ bdF such that the rotundity modulus

Rr (x̄, x∗) := inf {〈x∗, x̄ − x〉 : x ∈ F, ‖x − x̄‖ ≥ r}

is positive for each r > 0. Some characterizations and verifiable sufficient conditions
ensuring this property in a Hilbert space setting are given in [10] and can be easily
extended to the case of an arbitrary Banach space; see also [18, Proposition 5.11]. Note
that our rotundity condition is equivalent to the Fréchet differentiability of the support
function σF (·) at x∗, and in this case x̄ = ∇σF (x∗). In turn, the condition Rr (x̄, x∗) > 0
is equivalent to saying that x̄ is a strongly exposed point of the set F (see [18]) in the
sense that the hyperplane

H (x∗) := {x ∈ X : 〈x∗, x〉 = σF (x∗)} (4.1)

touches F at the point x̄ only (i.e., JF (x∗) = {x̄}) and that each sequence {xk} ⊂ F
with 〈x∗, xk − x̄〉 → 0 strongly converges to x̄ as k → ∞. In fact, the latter property
will be used in the proof of Theorem 4.1 below. However, it is preferable to formulate
the main hypothesis in terms of the Fréchet differentiability of σF , since in this case we
do not refer to any point x̄ ∈ bdF . Observe furthermore that the following geometrical
property is sufficient for the strong rotundity (see [10, Section 3]): taking the (unique)
point x̄ ∈ bdF at which x∗ is normal to F , we have

sup
‖x−x̄‖≥r

ρF (x + x̄) < 2 for each r > 0.
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Theorem 4.1 (existence and uniqueness of minimal time projection for ro-
tund dynamics). Let X be reflexive, and let x̄ /∈ C with ∂̂T (x̄) 6= ∅. Assume in
addition that for some x∗ ∈ ∂̂T (x̄) the support function σF (·) of the dynamics is Fréchet
differentiable at −x∗. Then the set ΠF

C(x̄) is a singleton.

Proof. Since the approximate projection (2.5) is a nonempty, closed, and bounded
subset of X for any ε > 0, we deduce from the reflexivity of X that the weak sequential
outer limit w-Lim sup

ε↓0
ΠF

C(x̄, ε) is a nonempty subset of X. Pick any element y from the

latter set that surely belongs to co C, the convex closure of C. We have by Theorem 3.1
that y ∈ x̄ + T (x̄)JF (−x∗). Furthermore, by the Fréchet differentiability of σF (·) (or,
equivalently, of ρF 0(·)) at −x∗, it follows from [18, Proposition 5.11] that JF (−x∗) is a
singleton {v}, which is a strongly exposed point of F . By the above choice of y we conclude
that y is a weak limit of a minimizing sequence {yk} ⊂ C with ρF (yk − x̄) → T (x̄) as
k → ∞. Then we have the weak convergence

yk − x̄

ρF (yk − x̄)

w
−→

y − x̄

T (x̄)
= v as k → ∞. (4.2)

Since v is a strongly exposed point of F , the convergence in (4.2) is indeed strong in X,
and thus yk → y as k → ∞. This gives y ∈ C, which yields that y ∈ ΠF

C(x̄) 6= ∅ by
Corollary 3.2. Observe finally that the above arguments with the usage of Corollary 3.2
ensure in fact that the minimal time projection set ΠF

C(x̄) is a singleton. △

Remark 4.2 (on Fréchet subdifferentiability and lower regularity). Since any
reflexive space is Asplund and since the minimal time function (1.2) is Lipschitz con-
tinuous, T (·) is Fréchet subdifferentiable (∂̂T (x̄) 6= ∅) at a point x̄ if, in particular, it is
lower regular at this point. Indeed, this follows from the definition of lower regularity
in Section 2 and the fact that the basic subdifferential (2.9) is nonempty for any locally
Lipschitzian function on an Asplund space; see [14, Corollary 2.25].

Let us show next that the Fréchet differentiability assumption on σF (·) in Theo-
rem 4.1 cannot be removed, for a separable infinite-dimensional Hilbert space X, in
order to ensure the existence of the minimal time projection (1.4). Furthermore, the
generalized projection may exist without this assumption while not being unique.

Example 4.3 (non-existence and non-uniqueness of generalized projection for
dynamics with nonsmooth support function). In a separable Hilbert space X there
are dynamics sets F ⊂ X and target sets C ⊂ X satisfying our standing assumptions
and such that T (·) is Fréchet differentiable at 0, σF (·) is not Fréchet differentiable at
−∇T (0) while ΠF

C(0) = ∅. Furthermore, there are F and C with the above properties for
which ΠF

C(0) 6= ∅ while the latter projection set is not a singleton.

Proof. Let X be a separable infinite-dimensional Hilbert space with an orthonormal
base {en} ⊂ X. Define the dynamics and target sets by, respectively,

F :=
{
x ∈ X

∣∣∣ ‖x‖ ≤ 1, 〈x, e1〉 ≤
1

2

}
, (4.3)
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C :=
{(1

2
+

1

n

)(en

2
+ e1

)∣∣∣ n ≥ 2
}

. (4.4)

It is easy to check that the sets F and C satisfy our standing assumptions formulated
in Section 1. Observe that T (x) = 1 − 2〈x, e1〉 in a neighborhood of the origin, and
so the minimal time function is Fréchet differentiable therein. We have T (0) = 1 and
∇T (0) = −2e1 while ρF (y) > 1 for all y ∈ C. The latter means that the minimum of
ρF (·) is not attained in C, and thus ΠF

C(0) = ∅. Observe furthermore that

JF

(
−∇T (0)

)
=

{
x ∈ X

∣∣∣ ‖x‖ ≤ 1, 〈x, e1〉 =
1

2

}
,

which contains, in particular, the points 1
2e1 + λen with λ2 ≤ 3/4, n = 2, 3, . . .. Thus

the support function σF (·) is not Fréchet differentiable at −∇T (0).
By keeping the same dynamics (4.3) while changing the target (4.4) by

C̃ :=
{(1

2
+

1

n

)en

2

∣∣∣ n ≥ 2
}

,

we easily check that the minimal time projection ΠF
C(0) is nonempty, but it is not a

singleton. In this case the minimal time function T (·) remains the same. △

5 Minimal Time Projection via Target Set

In this section we derive new verifiable conditions for the existence and uniqueness of
the minimal time projection (1.4) that, in contrast to the “dynamics” ones in Section 4,
exploit similar properties of the target set C. Some of the results obtained are neces-
sary and sufficient for the generalized projection set ΠF

C(x̄) to be a singleton. As in
Section 4, we essentially use here the underlying projection formula established above in
Corollary 3.2 applying it to a modified projection operator.

First we use Corollary 3.2 to interpret the minimal time function (1.2) and the
minimal time projection (1.4) in a somewhat different way. Assuming that ∂̂T (x̄) 6= ∅
for some x̄ ∈ X and picking a Fréchet subgradient x∗ ∈ ∂̂T (x̄), consider the modified
minimal time problem

minimize t > 0 subject to
(
x + tJF (−x∗)

)
∩ C 6= ∅, x ∈ X, (5.1)

for which the dynamics F in (1.1) is replaced by the face of F corresponding to the
support functional −x∗. Denote the modified minimal time function in (5.1) by

T̃x∗(x) = inf
y∈C

ρJF (−x∗)(y − x) (5.2)

and the corresponding modified minimal time projection operator by

Π̃F
C(x, x∗) :=

{
y ∈ C

∣∣∣ ρJF (−x∗)(y − x) = T̃x∗(x)
}

. (5.3)

The next proposition provides conditions for the nonemptiness of the original minimal
time projection (1.4) in terms of the modified problem (5.1).
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Proposition 5.1 (existence of minimal time projection via modified problem).
For any fixed x̄ ∈ X such that ∂̂T (x̄) 6= ∅ and x∗ ∈ ∂̂T (x̄) we have that ΠF

C(x̄) 6= ∅ if and

only if T (x̄) = T̃x∗(x̄) and Π̃F
C(x̄, x∗) 6= ∅. Furthermore, Π̃F

C(x̄, x∗) = ΠF
C(x̄) whenever

these conditions hold.

Proof. With no loss of generality, suppose that x̄ /∈ C. Assuming that ΠF
C(x̄) 6= ∅ and

taking the selected subgradient x∗ ∈ ∂̂T (x̄) give us by Corollary 3.2 that

(
x̄ + T (x̄)JF (−x∗)

)
∩ C 6= ∅, and hence T̃x∗(x̄) ≤ T (x̄).

On the other hand, we have the relationships

JF (−x∗) ⊂ F, and thus ρJF (−x∗)(y − x̄) ≥ ρF (y − x̄) for all y ∈ C. (5.4)

Taking the infimum in (5.4) over y ∈ C gives us T̃x∗(x̄) ≥ T (x̄). Thus we get

T̃x∗(x̄) = T (x̄) and Π̃F
C(x̄, x∗) = C ∩

(
x̄ + T̃x∗(x̄)JF (−x∗)

)
= ΠF

C(x̄) 6= ∅,

which proves the “only if” part of the proposition.
To justify the “if” part, suppose that T (x̄) = T̃x∗(x̄) and Π̃F

C(x̄, x∗) 6= ∅. Then we
easily conclude by Corollary 3.2 that

ΠF
C(x̄) =

(
x̄ + T (x̄)JF (−x∗)

)
∩ C

=
(
x̄ + T̃x∗(x̄)JF (−x∗)

)
∩ C = Π̃F

C(x̄, x∗) 6= ∅,

which thus completes the proof of the proposition. △

To proceed with deriving sufficient conditions for well-posedness of the minimal time
problem (1.1) in terms of the target set C, we need the following representation (Propo-
sition 5.2) of the modified projection (5.3) via the support function of some subset of
the target. Given x∗ ∈ ∂̂T (x̄), denote by Kx∗ the convex and closed cone generated by
the duality mapping value JF (−x∗). Consider further the set

C(x̄, x∗) := C ∩ (x̄ + Kx∗), (5.5)

which is nonempty if and only if T̃x∗(x̄) < ∞ for the modified minimal time function
(5.2). In particular, it follows from Proposition 5.1 that C(x̄, x∗) 6= ∅ if ΠF

C(x̄) 6= ∅.

Proposition 5.2 (representation of modified minimal time projection in Ba-
nach spaces). Given x̄ /∈ C and x∗ ∈ ∂̂T (x̄), we have the representation

Π̃F
C(x̄, x∗) =

{
y ∈ C(x̄, x∗)

∣∣ σC(x̄,x∗)(x
∗) = 〈x∗, y〉

}
(5.6)

of the modified projection (5.3) via the support function of (5.5).
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Proof. If y belongs to the right-hand side of (5.6), then

〈x∗, y〉 ≥ 〈x∗, v〉 for all v ∈ C with v − x̄ ∈ Kx∗ . (5.7)

Moreover, y ∈ C(x̄, x∗), i.e., y ∈ C and there exists λ > 0 with y ∈ x̄ + λJF (−x∗).
Let us show that λ = T̃x∗(x̄). Indeed, we have 〈−x∗, y − x̄〉 = λ, and thus inequality

(5.7) can be rewritten as follows:

λ ≤ t for all t > 0 such that C ∩
(
x̄ + tJF (−x∗)

)
6= ∅.

This implies that λ ≤ T̃x∗(x̄), since T̃x∗(x̄) is the infimum of all such t > 0 by (5.1) and
(5.2). On the other hand, we have

y ∈
(
x̄ + λJF (−x∗)

)
∩ C 6= ∅,

which yields T̃x∗(x̄) ≤ λ. Thus λ = T̃x∗(x̄) < ∞, and furthermore

ρJF (−x∗)(y − x̄) ≤ λ = T̃x∗(x̄), i.e., y ∈ Π̃F
C(x̄, x∗).

This gives y ∈ Π̃F
C(x̄, x∗) and justifies the inclusion “⊃” in (5.6).

To prove the inclusion “⊂” in (5.6), pick any y ∈ Π̃F
C(x̄, x∗) and get by (5.3) that

ρJF (−x∗)(y − x̄) ≤ ρJF (−x∗)(v − x̄) for all v ∈ C.

Define further λ := T̃x∗(x̄) = ρJF (−x∗)(y− x̄) and observe that y ∈ x̄+λJF (−x∗). On the
other hand, take t > 0 to be sufficiently small to have C ∩

(
x̄ + tJF (−x∗)

)
6= ∅. In this

case there is v ∈ C with t = 〈−x∗, v − x̄〉, and we get λ ≤ t. Taking now into account
that λ = 〈−x∗, y − x̄〉 by construction, we arrive at

〈x∗, y − x̄〉 ≥ 〈x∗, v − x̄〉 for each v ∈ C with v − x̄ ∈ tJF (−x∗), t > 0.

It gives 〈x∗, y〉 ≥ 〈x∗, v〉 whenever v ∈ C ∩ (x̄ + Kx∗), which justifies the inclusion “⊂”
in (5.6) and completes the proof of the proposition. △

Next we use the above propositions to derive necessary and sufficient conditions for
the existence and uniqueness of the minimal time projection (1.4) at the point in question
involving the modified value function (5.2) and appropriate subsets of the target set C.
Note the results obtained in the following theorem are new for the uniqueness part even
in the cases when the existence is already known as, e.g., in finite dimensions as well as
for convex target sets in reflexive spaces.

Theorem 5.3 (characterization of well-posedness of minimal time projection
via subsets of target). Let X be a reflexive Banach space, and let x̄ /∈ C be such that
∂̂T (x̄) 6= ∅. Then the minimal time projection set ΠF

C (x̄) is a singleton if and only if

there exists x∗ ∈ ∂̂T (x̄) such that T̃x∗ (x̄) = T (x̄) and the support function σC(x̄,x∗) (·)
of the set C(x̄, x∗) from (5.5) is Gâteaux differentiable at x∗. In this case we have

ΠF
C (x̄) =

{
∇σC(x̄,x∗) (x∗)

}
. (5.8)
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Proof. By Proposition 5.1 we have that the set ΠF
C(x̄) is nonempty if and only if

Π̃F
C(x̄, x∗) 6= ∅ and T̃x∗(x̄) = T (x̄) for some x∗ ∈ ∂̂T (x̄). It holds furthermore that

Π̃F
C(x̄, x∗) = ΠF

C(x̄), and thus the sets ΠF
C(x̄) and Π̃F

C(x̄, x∗) are singletons simultaneously.
Employing Proposition 5.2, we get in this case that the right-hand side of (5.6) reduces
to {ȳ} for some ȳ ∈ C(x̄, x∗). On the other hand, the subdifferential of the (always
convex) support function σC(x̄,x∗)(·) at x∗ admits the representation

∂σC(x̄,x∗)(x
∗) = ∂σco C(x̄,x∗)(x

∗) =
{
v ∈ co C(x̄, x∗)

∣∣ σC(x̄,x∗)(x
∗) = 〈x∗, v〉

}
. (5.9)

It follows from (5.9) that the set C̃ := ∂σC(x̄,x∗)(x
∗) is an exposed face of the convex

closed set co C(x̄, x∗).
Since 〈x∗, v〉 = 〈x∗, ȳ〉 for each v ∈ C̃ and ȳ ∈ x̄ + T (x̄)JF (−x∗) by Corollary 3.2, we

have that C̃ ⊂ x̄ + [0, T (x̄)]JF (−x∗), which ensures the boundedness of the set C̃ in X.
The reflexivity of the space X and the convexity and closedness of C̃ allow us to conclude
that the latter set is weakly compact in X. By the classical Krĕın-Mil’man theorem there
is an extreme point v̄ of C̃ that is, by transitivity, an extreme point of the set co C(x̄, x∗) as
well. Thus we have v̄ ∈ C(x̄, x∗), and the equality σC(x̄,x∗)(x

∗) = 〈x∗, v̄〉 holds. The latter
means that v̄ belongs to the set on the right-hand side of (5.6), which is the singleton
{ȳ} in the notation above. This justifies that the subgradient set C̃ = ∂σC(x̄,x∗)(x

∗) is
a singleton, and thus—by the classical result of convex analysis—the support function
σC(x̄,x∗)(·) is Gâteaux differentiable at x∗ with

ΠF
C(x̄) = {ȳ} = {v̄} =

{
∇σC(x̄,x∗)(x

∗)
}
.

This proves the “only if” part of the theorem with the projection representation (5.8).
To justify the “if” part, suppose that the support function σC(x̄,x∗) (·) is Gâteaux

differentiable at x∗, which gives the relationships

∂σC(x̄,x∗) (x∗) =
{
∇σC(x̄,x∗) (x∗)

}
= {ȳ} .

Thus ȳ is an exposed point of the convex weakly compact set coC (x̄, x∗). This gives ȳ ∈
C (x̄, x∗) and yields, by using formula (5.6) from Proposition 5.2, that Π̃F

C(x̄, x∗) = {ȳ}.

Taking finally into account that T̃x∗(x̄) = T (x̄) as assumed, we arrive at ΠF
C(x̄) = {ȳ}

and complete the proof of the theorem. △

Observe further that, in contrast to the case F = B, in general there is no direct
relation between existence and uniqueness of the minimal time projection and the subd-
ifferentiability of the value function. Indeed, as shown in Example 4.3, even the Fréchet
differentiability of T (·) at x̄ /∈ C does not imply the nonemptiness of the projection
ΠF

C (x̄) in a Hilbert space X; ΠF
C (x̄) may be not a singleton in a finite dimensions as

well. Some modification of that example allows us to examine the converse situation,
i.e., when ∂̂T (x̄) = ∅ while ΠF

C (x̄) is a singleton.

Example 5.4 (existence and uniqueness of minimal time projection do not
imply Fréchet subdifferentiability of minimal time function). There are subsets
C,F ⊂ X of a separable Hilbert space X satisfying the standing assumptions and a point
x̄ /∈ C such that ΠF

C(x̄) is a singleton while ∂̂T (x̄) = ∅.
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Proof. Let F and C be given as in Example 4.3. Consider now the minimal time
problem (1.1) with the same dynamics (4.3) and the modified target

C1 := C ∪
{
− e1

}
.

It is easy to check that ΠF
C1

(0) = {−e1}, while for all λ ∈ R sufficiently small we compute
the corresponding minimal time function by

T (λe1) =

{
1 − 2λ if λ ≥ 0,

1 + λ if λ < 0.
(5.10)

Then definition (2.8) with ε = 0 applied to the function (5.10) gives us ∂̂T (0) = ∅. △

The following simple example shows that the latter situation can occur even in R
2.

Example 5.5 (existence and uniqueness of minimal time projection do not
imply Fréchet subdifferentiability of minimal time function in finite dimen-
sions). There is a nonconvex target set C ⊂ R

2 and a convex polyhedral dynamics F
such that ΠF

C (x̄) is a singleton at some x̄ /∈ C, while ∂̂T (x̄) = ∅.

Proof. Let C := {(x, y) | min (x, y) ≤ 0} and F := co {(0, 1) , (1, 0) , (−1,−1)}. Then
ΠF

C (x, y) = {(0, 0)} whenever x = y > 0. Fixed (a, a) /∈ C let us denote by Ω the
enlarged set

{
(x, y) ∈ R

2| TF
C (x, y) ≤ TF

C (a, a)
}
. It is obvious that Ω = (a, a) + C and

N̂ ((a, a) ,Ω) = {(0, 0)}. By [9, Theorem 3.1] we get ∂̂TF
C (a, a) = ∅. △

Theorem 5.3 gives a sufficient condition for the existence and uniqueness of the
minimal time projection in terms of the target set, which is also necessary under the
aforementioned subdifferentiability hypothesis. Since, as shown above, the latter prop-
erty may fail in general, it would be nice to have a (weaker) necessary condition ensuring
also that ∂̂T (x̄) 6= ∅. Let us establish such result by assuming that the projection ΠF

C (x)
is a singleton not only at the reference point x̄ /∈ C but for each x close to x̄. Observe
that the following statement is valid in general nonreflexive Asplund spaces.

Theorem 5.6 (relationships between well-posedness of minimal time projec-
tion and Fréchet differentiability of minimal time function in Asplund spaces).
Let X be Asplund, and let x̄ /∈ C. Assume that the mapping x 7→ ΠF

C (x) is single-valued
and continuous in a neighborhood of x̄. If moreover the gauge ρF (·) is Fréchet differ-
entiable at ȳ − x̄ with ȳ := ΠF

C (x̄), then the minimal time function T (·) is also Fréchet
differentiable at x̄ and the equality ∇T (x̄) = −∇ρF (ȳ − x̄) holds.

Proof. We proceed by developing the arguments in the proof of implication (iii)⇒(ii)
in [7, Theorem 6.3] given for the case of F = B in Hilbert spaces. Since ∂T (x̄) 6= ∅ for
the Clarke generalized gradient in Asplund spaces (see Section 2), pick x∗ ∈ ∂T (x̄) 6= ∅
and denote y := ΠF

C (x) for all x ∈ X close to x̄. It is clear that y → ȳ when x → x̄.

15



Then by (1.2) and (2.11) we have the relationships:

〈x∗, ȳ − x̄〉 ≤ lim sup
x→x̄
t↓0

T
(
x + t (ȳ − x̄)

)
− T (x)

t

≤ lim sup
x→x̄
t↓0

T
(
x + t (y − x)

)
− T (x)

t

+ lim sup
x→x̄
t↓0

T
(
x + t (ȳ − x̄)

)
− T

(
x + t (y − x)

)

t

≤ lim sup
x→x̄
t↓0

ρF

(
y − x − t (y − x)

)
− ρF (y − x)

t

+ ‖F ◦‖ lim
x→x̄

‖ȳ − x̄ − y + x‖

= −ρF (ȳ − x̄) = −σF ◦ (ȳ − x̄) ,

(5.11)

where ‖F ◦‖ := sup {‖y∗‖ for y∗ ∈ F ◦}. It follows from (2.12), (2.9), and [12, Theo-
rem 4.2] that ∂T (x̄) ⊂ −F ◦. This together with (5.11) imply that 〈−x∗, ȳ − x̄〉 =
σF ◦ (ȳ − x̄), which is equivalent to −x∗ ∈ ∂ρF (ȳ − x̄). The latter shows that the gen-
eralized gradient ∂T (x̄) is the singleton {−∇ρF (ȳ − x̄)}. Employing now [5, Proposi-
tion 2.2.4], we conclude that the minimal time function T (·) is strictly differentiable in
the Hadamard sense with the strict Hadamard derivative ∇HT (x̄) = −∇ρF (ȳ − x̄). It
follows from the same arguments that T (·) is strictly Hadamard differentiable at each
point x ∈ X sufficiently close to x̄, and that ∇HT (x) = −∇ρF (y − x) is a unique
element of the subdifferential ∂ρF (y − x).

Furthermore, the Fréchet differentiability of ρF (·) at the point ū := ȳ−x̄ is equivalent
to the Hausdorff continuity of the mapping ∂ρF (·) at ū; see, e.g., [1, Corollary 2].
Taking into account the continuity of the minimal time projection near x̄, the (single-
valued) mapping x 7→ ∂ρF (y − x) is continuous at x̄, which thus implies the Fréchet
differentiability of T (·). Finally we have

∇T (x̄) = ∇HT (x̄) = −∇ρF (ȳ − x̄) ∈ ∂̂T (x̄)

and complete the proof of the theorem. △

Next we obtain a remarkable characterization of well-posedness of the minimal time
problem (1.1) in the case of convex targets; it follows from Theorem 5.3.

Corollary 5.7 (existence and uniqueness of minimal time projection for con-
vex targets). Let C be a closed and convex subset of a reflexive space X, and let x̄ ∈ X.
Then ∂̂T (x̄) 6= ∅, and for any subgradient x∗ ∈ ∂̂T (x̄) the minimal time projection ΠF

C(x̄)
is a singleton if and only if the support function of the set C(x̄, x∗) in (5.5) is Gâteaux
differentiable at x∗.

16



Proof. Since the minimal time function T (x̄) is Lipschitz continuous and convex on X
under the assumptions made, we get that the Fréchet subdifferential ∂̂T (x̄) reduces to
the (nonempty) subdifferential ∂T (x̄) of convex analysis. We also have T (x̄) = T̃x∗(x̄)
for every subgradient x∗ ∈ ∂T (x̄) and thus arrive at the conclusion of the corollary by
using Theorem 5.3 and the aforementioned equivalence between the single-valuedness of
subdifferentials and the Gâteaux differentiability for convex functions. △

Remark 5.8 (Gâteaux differentiability versus Fréchet differentiability of con-
vex functions). Observe that, in contrast to the results of Section 4 involving the
Fréchet differentiability assumption on the support function of the dynamics, we use in
Theorem 5.3 and Corollary 5.7 the Gâteaux differentiability requirement on the support
function of a subset of the target set. As it is well known, a Gâteaux differentiability
requirement is essentially weaker than the Fréchet differentiability one for convex con-
tinuous functions in infinite dimensions. In particular, there is an equivalent norm in the
space ℓ1, which is nowhere Fréchet differentiable while Gâteaux differentiable at every
nonzero point; see, e.g., [18, Example 1.14(c)].

Let us next obtain another sufficient condition for well-posedness of the minimal
time problem (1.1), different from the previous results of this section, that relates to
the Gâteaux differentiability of the support function of an enlargement of the minimal
time projection. We need the following preliminary result of its own interest; cf. [9,
Theorem 4.2] for the case of Hilbert spaces.

Proposition 5.9 (minimal time function and projection estimates for convex
targets in Banach spaces). Let C ⊂ X be a closed and convex subset of a Banach
space X. Then for any x̄ ∈ X we have the inclusion

∂T (x̄) ⊂ N(ȳ;C) whenever ȳ ∈ ΠF
C(x̄), (5.12)

which can be equivalently written in the dual form

ΠF
C(x̄) ⊂ ∂σC(x∗) for each x∗ ∈ ∂T (x̄) 6= ∅. (5.13)

Proof. As mentioned above, the (Lipschitz continuous) minimal time function T (·)
is convex, and hence its Fréchet subdifferential ∂̂T (x̄) is nonempty and reduces to the
subdifferential ∂T (x̄) of convex analysis, i.e.,

T (x) − T (x̄) ≥ 〈x∗, x − x̄〉 for all x ∈ X and x∗ ∈ ∂T (x̄).

By the construction of T (x) in (1.2) the latter yields, in particular, that

〈x∗, x − x̄〉 ≤ −T (x̄) for all x ∈ C, (5.14)

which in turn implies (5.12) in the case of x̄ ∈ C by T (x̄) = 0. If instead x̄ /∈ C, we get
from Corollary 3.2 that

[
ȳ ∈ ΠF

C(x̄) ⊂ x̄ + T (x̄)JF (−x∗)
]

=⇒
[
〈−x∗, ȳ − x̄〉 = T (x̄)

]
. (5.15)
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It follows from (5.14) and (5.15) that 〈x∗, x − ȳ〉 ≤ 0 for all x ∈ C. Hence x∗ ∈ N(ȳ;C)
and (5.12) holds. Furthermore, from the latter inequality we get 〈x∗, ȳ〉 ≥ σC(x∗).
Consequently, 〈x∗, ȳ〉 = σC(x∗) by ȳ ∈ C. Thus ȳ ∈ ∂σC(x∗), which justifies (5.13) as
well as the equivalence between (5.12) and (5.13). △

Now we are ready to derive the aforementioned sufficient condition for well-posedness
of the minimal time problem with an arbitrary closed target set (1.1). Observe that we
do not require the subdifferentiability of T .

Theorem 5.10 (existence and uniqueness of minimal time projection via prop-
erties of its ε-enlargement). Let X be reflexive, and let x /∈ C. Given any ε > 0,
denote by S (x̄, ε) the closed convex hull of the ε-approximate projection ΠF

C (x̄, ε) in
(2.5) and by Tε (·) the optimal value function in the minimal time problem with the same
dynamics F and with the new target set S (x̄, ε). Assume that for some x∗ ∈ ∂Tε (x̄)
the support function σS(x̄,ε) (·) is Gâteaux differentiable at x∗. Then the minimal time

projection ΠF
C (x̄) is a singleton.

Proof. Note first that the subdifferential ∂Tε (x̄) of the convex function Tε is nonempty.
Since the space X is reflexive and since the set S (x̄, ε) is convex and closed, the projection
ΠF

S(x̄,ε) (x̄) on the new target set is nonempty. Moreover, we get from Proposition 5.9

that ΠF
S(x̄,ε) (x̄) ⊂ ∂σS(x̄,ε) (x∗). The latter implies, by the Gâteaux differentiability

assumption, that the set ΠF
S(x̄,ε) (x̄) is a singleton, i.e.,

ΠF
S(x̄,ε) (x̄) = {ȳ} (5.16)

for some ȳ. Furthermore, it follows from the Gâteaux differentiability of σS(x̄,ε) (·) at x∗

that ȳ is an exposed point (not necessarily strongly exposed) of the weakly compact set
S (x̄, ε) = coΠF

C (x̄, ε) meaning that the corresponding hyperplane (4.1) touches the set
S (x̄, ε) only at ȳ. This yields that ȳ ∈ ΠF

C (x̄, ε) ⊂ C.
Let us next justify the inequality in

ρF (ȳ − x̄) = inf
y∈S(x̄,ε)

ρF (y − x̄) ≤ T (x̄) . (5.17)

Indeed, given an arbitrary γ satisfying 0 < γ < ε and using definition (1.2), we find
y ∈ C such that T (x̄) ≥ ρF (y − x̄)−γ ≥ ρF (y − x̄)−ε. This gives y ∈ S (x̄, ε) and thus
yields (5.17). Since ȳ ∈ C, we get ρF (ȳ − x̄) = T (x̄), i.e., ȳ ∈ ΠF

C (x̄) 6= ∅. Furthermore,
we have

ΠF
C (x̄) ⊂ ΠF

S(x̄,ε) (x̄) , (5.18)

as we are now going to see. Indeed, obviously ΠF
C (x̄) ⊂ S (x̄, ε) and ρF (ỹ − x̄) =

ρF (ȳ − x̄) = Tε (x̄). Combining (5.16) and (5.18) we prove the uniqueness of the minimal
time projection and therefore complete the proof. △
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6 Lower Regularity of Minimal Time Function and Unique-

ness of Generalized Projections

Observe that the major results of Sections 4 and 5 involve the assumption about the
Fréchet subdifferentiability of the minimal time function (1.2) at the reference point, i.e.,
∂̂T (x̄) 6= ∅. As mentioned above, this assumption holds if the minimal time function
T (·) is lower regular at x̄ and the space X is either Asplund (e.g., reflexive), or X is
arbitrary Banach and T (·) is convex on X. On the other hand, it is well known (see
[14, p. 111] and the references therein) that, in the case of the metric projection (1.6)
of x̄ /∈ C on a closed subset C of a finite-dimensional Euclidean space, i.e., for X = R

n

and F = B in (1.4), the lower regularity of T (·) = dist(·;C) at x̄ is equivalent to its
differentiability at this point and provides a necessary and sufficient condition for ΠC(x̄)
to be a singleton. This characterization is essentially due to the fact that the distance
function is semiconcave around out-of-set points.

In this section we pursue a twofold goal. First to illustrate by examples that the
aforementioned relationships are no longer true for the minimal time problem (1.1) with
F 6= B in both finite and infinite dimensions. Then we present sufficient conditions, which
ensure (and some of them are also necessary for) the lower regularity of the minimal time
function (1.2) at in-set and out-of-set points.

Let us start with an example showing that, already in X = R
2, the minimal time

projection ΠF
C(x̄) can be a singleton for some x̄ /∈ C while the minimal time function

T (·) is not differentiable and even not lower regular at this point, although it admits a
nonempty and single-valued Fréchet subdifferential.

Example 6.1 (single-valuedness of minimal time projection does not imply
either differentiability or lower regularity of minimal time function in finite
dimensions). There is a nonconvex target set C ⊂ R

2 and a convex polyhedral dynamics
F such that ΠF

C(x̄) is a singleton at some x̄ /∈ C while T (·) is not lower regular at x̄.

Proof. Consider an even function ϕ : R → R given on R+ := [0,∞) by

ϕ(x) :=





0 for x = 0

k
(
x −

1

k

)
−

1

k2
for

1

k
≤ x ≤

k2 + 1

k3
, k ≥ 2

k3(k − 1)

(k − 1)2(−k2 + k − 1)

(
x −

1

k − 1

)
−

1

(k − 1)2
for

k2 + 1

k3
≤ x ≤

1

k − 1
, k ≥ 2

+∞ for x > 1

and define the closed target set C ⊂ R
2 in question by the epigraph of this function

C :=
{
(x, y) ∈ R

2
∣∣ y ≥ ϕ(x)

}

19



depicted at Figure 1. It is easy to see that ϕ is differentiable at x = 0 with ϕ′(0) = 0,
and thus N̂((0, 0);C) = (0,−1)R+. Consider now the dynamics

F := co
{(

0,
1

2

)
,
(1

2
,−

1

2

)
,
(
−

1

2
,−

1

2

)}

and observe that ΠF
C(0,−1/2) = {(0, 0)} and that T (0,−1/2) = 1. Letting further

Ω :=
{
(x, y) ∈ R

2
∣∣ T (x, y) ≤ 1

}
, (6.1)

we get the representation of the Fréchet normal cone (2.13) to this set at (0,−1/2):

N̂
(
(0,−1/2);Ω

)
= (0,−1)R+.

In fact, there are no points belonging to Ω below the parabola y = −1/2 − x2 for all x
sufficiently close to 0. On the other hand, all the points

zk :=

(
1

k
,−

1

k2
−

1

2

)
, k ≥ 2,

belong to both the set Ω in (6.1) and the aforementioned parabola for all k ≥ 2. Thus
it follows from [9, Theorem 3.1] that

∂̂T (0,−1/2) = {(0,−λ)}, where λ ∈ R is such that ρF 0(0, λ) = 1.

Observe further that for each k ≥ 2 if the triangle zk + F is displaced a little in the
direction e = (1, 2), then it continues to touch the boundary of the target C at the point
(1/k,−1/k2) only; in the other words

ΠF
C(zk + te) =

(1

k
,−

1

k2

)
and T (zk + te) = 1

for all t ≥ 0 sufficiently small (see Figure 1). Then for each t > 0 we have

(2,−1) ∈ N̂(zk + te; Ω), k ≥ 2.

C

1/k 1/(k − 1)

zk + te + F y = −x2 − 1/2

y = ϕ(x)
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Figure 1

Thus there exists an appropriate constant λ̃ > 0 such that

λ̃(2,−1) ∈ ∂̂T (zk + te) for small t ≥ 0 and k ≥ 2.

Passing to the limit in the latter inclusions as k → ∞ and t ↓ 0, we arrive at

λ̃(2,−1) ∈ ∂T (0, 1/2)

for the limiting subdifferential (2.9). This implies that ∂T (0,−1/2) 6= ∂̂T (0,−1/2), and
hence the minimal time function T (·) is not lower regular at (0,−1/2). △

It is worth mentioning further that there are sets C,F ⊂ R
2 and a point x̄ /∈ C such

that the minimal time function is Fréchet subdifferentiable at x̄ with ∂̂T (x̄) not being a
singleton, while the minimal time projection ΠF

C(x̄) is a singleton. Indeed, it holds, e.g.,
in the case of the sets

C :=
{
(x1, x2) ∈ R

2
∣∣ x1 ≤ 0, x2 ≤ 0

}
and F := [−1, 1] × [−1, 1]

for any point x̄ = (x̄1, x̄2) with x̄1 = x̄2 > 0.

Observe also that, as shown in Example 4.3, the Fréchet differentiability of the min-
imal time function T (·) at x̄ /∈ C does not imply the nonemptiness of the minimal time
projection ΠF

C(x̄) in a Hilbert space X. Some modification of that example allows us to

examine the situation when ∂̂T (x̄) = ∅ (and thus T (·) is definitely not lower regular at
x̄), while ΠF

C(x̄) is a singleton.

In the rest of the section we study the lower regularity property of the minimal time
function (1.2) in infinite-dimensional spaces. This topic is of its own interest as a part
of well-posedness of the minimal time problem (1.1) while, as seen above, is important
from the viewpoint of existence and uniqueness of the minimal time projection (1.4).

We begin by establishing a characterization of the lower regularity of T (·) at in-set
points of target sets in arbitrary Banach spaces.

Proposition 6.2 (characterization of lower regularity of minimal time func-
tions at in-set points of targets in Banach spaces). Let x̄ ∈ C under the standing
assumptions made. Then the minimal time function T (·) is lower regular at x̄ if and
only if the target set C is normally regular at this point.

Proof. It follows from [12, Theorem 4.1] (for F = B it was first proved in [13]) that

∂̂T (x̄) = N̂(x̄;C) ∩
{
x∗ ∈ X∗

∣∣ ρF ◦(x∗) ≤ 1
}

(6.2)

Furthermore, we get from [17, Theorem 3.6] the representation

N(x̄;C) =
⋃

λ≥0

λ∂T (x̄), (6.3)
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which was first obtained in [20, Proposition 2.7] for F = B. Since 0 ∈ int F ◦, equality
(6.2) easily implies the representation

N̂(x̄;C) =
⋃

λ≥0

λ∂̂T (x̄) (6.4)

with the convention that 0× ∅ = 0. Combining (6.3) and (6.4), we arrive at the equiva-
lence stated in the proposition. △

Next we derive sufficient conditions for lower regularity of the minimal time func-
tion T (·) at out-of-set points in arbitrary Banach spaces. To proceed, let us recall two
additional constructions needed in what follows.

Given a target set C ⊂ X and a point x̄ /∈ C, define the minimal time enlargement
of C relative to x̄ by

Cr :=
{
x ∈ X

∣∣ T (x) ≤ r
}

with r = T (x̄) > 0. (6.5)

Given further a function ϕ : X → R on a Banach space with ϕ(x̄) < ∞ and following
[15], define the right-sided limiting subdifferential of ϕ at x̄ by

∂≥ϕ(x̄) :=
{

x∗ ∈ X∗
∣∣∣ ∃ sequences εk ↓ 0, xk → x̄ and x∗

k
w∗

→ x∗

such that ϕ(xk) ↓ ϕ(x̄) and x∗
k ∈ ∂̂εk

ϕ(xk)
}

.
(6.6)

Comparing (6.6) with the definition of the basic subdifferential (2.9), we see that the
only difference between these two constructions is that ϕ(xk) → ϕ(x̄) with ϕ(xk) ≥ ϕ(x̄)
in (6.6) while the latter requirement is omitted in (2.9). It immediately follows that

∂̂ϕ(x̄) ⊂ ∂≥ϕ(x̄) ⊂ ∂ϕ(x̄). (6.7)

Note that both inclusions in (6.7) are generally strict even in finite dimensions and that
we can equivalently put εk ≡ 0 in (6.6) if X is Asplund and ϕ is lower semicontinuous
around x̄; see [15, 16] and [14, Subsection 1.3.3] for these and other properties of the
right-sided limiting subdifferential (6.6).

Proposition 6.3 (lower regularity of minimal time function at out-of-set points
in Banach spaces). Assume that the minimal time enlargement (6.5) is normally reg-
ular at x̄ /∈ C. Then the minimal time function T (·) is lower regular at this point.

Proof. It follows from [12, Theorem 4.2] (see also [17, Theorem 4.2] for another proof
and correction) that

∂̂T (x̄) = N̂(x̄;Cr) ∩
{
x∗ ∈ X∗

∣∣ ρF ◦(x∗) ≤ 1
}

(6.8)

in terms of the enlargement (6.5); for F = B it was shown in [3, 13]. On the other hand,
we get from [17, Theorem 4.4] by using the right-sided subdifferential (6.6) that

N(x̄;Cr) =
⋃

λ≥0

λ∂≥T (x̄). (6.9)
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Comparing (6.8) and (6.9) and taking (6.7) into account allow us to arrive at the con-
clusion of the proposition. △

Our final result provides sufficient conditions of another type ensuring the lower
regularity of T (·) at out-of-set points in terms of their generalized projection on the
target set X under additional assumptions in Hilbert spaces.

Recall that the proximal normal cone to a set Ω ⊂ X at x̄ ∈ Ω is defined by

Np(x̄; Ω) :=
{
x∗ ∈ X∗

∣∣ ∃ γ > 0 with 〈x∗, x − x̄〉 ≤ γ‖x − x̄‖2 for all x ∈ Ω
}
. (6.10)

We always have the inclusions

Np(x̄; Ω) ⊂ N̂(x̄; Ω) ⊂ N(x̄; Ω), x̄ ∈ Ω, (6.11)

both of which can be strict already in finite dimensions. Accordingly, a set Ω is proximally
regular at a point x̄ ∈ Ω if

Np(x̄; Ω) = N(x̄; Ω).

It follows directly from (6.11) that the proximal regularity of a set implies its normal
regularity at the corresponding point.

Now we are ready to derive the aforementioned sufficient conditions for lower reg-
ularity of the minimal time function, and give moreover a precise representation of its
subdifferential(s) under consideration.

Theorem 6.4 (lower regularity of minimal time function at out-of-set points
in Hilbert spaces). In the framework of problem (1.1) let the space X be Hilbert, and
let x̄ /∈ C. Assume furthermore that the minimal time projection ΠF

C(·) is single-valued
around x̄ and satisfies the following “one-point” Hölder property at x̄: there are constants
K > 0, 1/2 < α ≤ 1, and neighborhood U of x̄ such that

‖ΠF
C(x) − ΠF

C(x̄)‖ ≤ K‖x − x̄‖α for all x ∈ U. (6.12)

If the set C is proximally regular around ȳ := ΠF
C(x̄), then the minimal time function

T (·) is lower regular at x̄, and we have the representation

∂T (x̄) = N(ȳ;C) ∩
(
− ∂ρF (ȳ − x̄)

)
. (6.13)

Proof. It follows from [9, Theorem 3.3] and the proximal regularity of C around ȳ that

∂̂T (x) ⊂ Np(y;C) ∩
(
− ∂ρF (y − x)

)
for y = ΠF

C(x) and any x ∈ U, (6.14)

where U is taken from the condition (6.12). Let us now justify the “one-point” version

Np(ȳ;C) ∩
(
− ∂ρF (ȳ − x̄)

)
⊂ ∂̂T (x̄) (6.15)

of the opposite inclusion to (6.14) under all the assumptions made. Picking x∗ from the
set on the left-hand side of (6.15), we get by the subdifferential construction of convex
analysis that the inclusion −x∗ ∈ ∂ρF (ȳ − x̄) reads as

ρF (u) ≥ ρF (ȳ − x̄) + 〈−x∗, u − ȳ + x̄〉 for all u ∈ X. (6.16)
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Furthermore, that of x∗ ∈ Np(ȳ;C) signifies by (6.10) the existence of γ > 0 with

〈x∗, v − ȳ〉 ≤ γ‖v − ȳ‖2 for all v ∈ C. (6.17)

Putting then u = y − x for x ∈ U and y = ΠF
C(x), we get from (6.16) the estimate

ρF (y − x) − ρF (ȳ − x̄) − 〈x∗, x − x̄〉 ≥ 〈−x∗, y − ȳ〉. (6.18)

Combining (6.17) and (6.18) allows us to conclude that

lim inf
x→x̄

T (x) − T (x̄) − 〈x∗, x − x̄〉

‖x − x̄‖
≥ lim inf

x→x̄

〈−x∗, y − ȳ〉

‖x − x̄‖

≥ lim inf
x→x̄

−γ‖y − ȳ‖2

‖x − x̄‖
≥ −Kγ lim

x→x̄
‖x − x̄‖2α−1 = 0,

(6.19)

where the latter inequality is due to the Hölder condition (6.12). By definition (2.8) with
ε = 0, we get from (6.19) that x∗ ∈ ∂̂T (x̄) and thus justify inclusion (6.15).

Using next construction (2.9) of the basic subdifferential in the case of Hilbert spaces
and then inclusion (6.14) and the first one in (6.11) gives us the relationships

∂T (x̄) = w- Lim sup
x→x̄

∂̂T (x) ⊂ w- Lim sup
x→x̄

[
Np(y;C) ∩

(
− ∂ρF (y − x)

)]

⊂ w- Lim sup
x→x̄

[
N̂(y;C) ∩

(
− ∂ρF (y − x)

)]
,

(6.20)

where clearly y = ΠF
C(x) → ȳ as x → x̄. It follows further from the normal cone

definitions (2.13) and the graph closedness of the subdifferential of convex analysis that
the right-hand side of the last inclusion in (6.20) reduces to N(ȳ;C) ∩ (−∂ρF (ȳ − x̄)).
This yields by inclusions (6.15), (2.10), and the proximal regularity of C at ȳ that

N(ȳ;C) ∩
(
− ∂ρF (ȳ − x̄)

)
= Np(ȳ;C) ∩

(
− ∂ρF (ȳ − x̄)

)
⊂ ∂̂T (x̄) ⊂ ∂T (x̄). (6.21)

Combining (6.20) and (6.21), we get the lower regularity of T at x̄ and thus complete
the proof of theorem. △

Note that some verifiable sufficient conditions ensuring the Hölder property of the
minimal time projection (6.12) appear in [11].
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