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Abstract

An integral representation result is obtained for the relaxation of a class of energy functionals de-
pending on two vector fields with different behaviors.
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1 Introduction

Minimization of energies depending on two independent vector fields arise frequently to model several phe-
nomena. This is the case of thermochemical equilibria for multiphase solids (see [4]) or TV (total variation)
image decomposition models (see [8], [9]). In both cases, the functionals to minimize have an integral form
with densities depending on the total variation of a vector field u and on another independent vector field
v. However, the natural space setting is different in each case. For the first one, u is a Sobolev function,
whereas in the image decomposition models the natural space for u is BV , the space of bounded variation
functions.

In this paper we consider functionals of the form∫
Ω

f(x, u(x),∇u(x), v(x)) dx, for u ∈ W 1,p(Ω;Rd) and v ∈ Lq(Ω;Rm) (p, q ≥ 1).

As well known for the case with no x and u dependence, sequential weak lower semicontinuity of the
previous functional is related to convexity conditions of the density f (cf. [4], [7]). More precisely, under con-
venient growth and coercivity conditions, a joint quasiconvexity of f on the gradient variable and convexity
on the v variable, here called quasiconvexity-convexity, cf. Definition 1.3 below, is a necessary and sufficient
condition for weak lower semicontinuity. In the lack of such condition it is of interest to characterize the
relaxed functional of the original one. In this paper we provide a characterization for the relaxed energy
of the functional above for the weak convergence in W 1,p and the weak convergence in Lq, generalizing a
result due to Fonseca, Kinderlehrer and Pedregal cf. [4] where no dependence on x and u was considered.
Moreover, this is a first step to deal with the analogous relaxation problem in a BV × Lq

w setting, as it is
the case for image decomposition models.

We introduce next some notation and we establish our main result. Let Ω be an open bounded set of
RN and let A (Ω) denote the family of all open subsets of Ω.

Let 1 ≤ p, q < ∞ and let F : W 1,p
(
Ω;Rd

)
× Lq (Ω;Rm)×A (Ω) → R be defined by

F (u, v,A) :=

∫
A

f (x, u (x) ,∇u (x) , v (x)) dx (1.1)
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where f : Ω× Rd × Rd×N × Rm → R is a Carathéodory function satisfying

0 ≤ f (x, u, ξ, b) ≤ C (1 + |u|p + |ξ|p + |b|q) (1.2)

for a.e. x ∈ Ω, for every (u, ξ, b) ∈ Rd × Rd×N × Rm and for some C > 0.
Consider the relaxed localized energy of (1.1) given by

F (u, v;A) := inf

{
lim inf
n→∞

∫
A

f (x, un (x) ,∇un (x) , vn (x)) dx : un ⇀ u in W 1,p
(
A;Rd

)
, vn ⇀ v in Lq (A;Rm)

}
.

Our goal is to find an integral representation for F . Precisely

Theorem 1.1 Let 1 ≤ p, q < ∞ and assume that f : Ω× Rd × Rd×N × Rm → R is Carathéodory satisfying
the growth condition (1.2).

Then for every u ∈ W 1,p
(
Ω;Rd

)
, v ∈ Lq (Ω;Rm) and A ∈ A (Ω) we have

F (u, v;A) =

∫
A

QCf (x, u (x) ,∇u (x) , v (x)) dx,

where QCf stands for the quasiconvex-convex envelope of f with respect to the last two variables (see (1.5)
and (1.6)).

Remark 1.2 Assuming that f satisfies the coercivity condition

1

C
(|ξ|p + |b|q)− C ≤ f (x, u, ξ, b) (1.3)

for a.e. x ∈ Ω, for every (u, ξ, b) ∈ Rd × Rd×N × Rm and for some C > 0 then F is W 1,p
w × Lq

w lower
semicontinuous.

We also emphasize that Theorem 1.1 constitutes an extension of [1, Theorem 1.3] for the case of the
differential operator A = (curl, 0), since, in the present result, we impose two different growth assumptions
on the A-free fields.

Following [4, 7], see also [5], we recall the definition of quasiconvexity-convexity.

Definition 1.3 A Borel measurable function f : Rd×N × Rm → R is said to be quasiconvex-convex if there
exists a bounded open set D of RN such that

f(ξ, b) ≤ 1

|D|

∫
D

f(ξ +∇φ(x), b+ η(x)) dx, (1.4)

for every (ξ, b) ∈ Rd×N×Rm, for every φ ∈ W 1,∞
0

(
D;Rd

)
and for every η ∈ L∞(D;Rm), with

∫
D
η(x)dx = 0.

If f : Rd×N × Rm → R is any given Borel measurable function bounded from below, it can be defined
the quasiconvex-convex envelope of f , that is the largest quasiconvex-convex function below f :

QCf(ξ, b) := sup{g(ξ, b) : g ≤ f, g quasiconvex-convex}. (1.5)

Moreover, by Theorem 4.16 in [7]

QCf(ξ, b) = inf

{
1

|D|

∫
D

f(ξ +∇φ(x), b+ η(x)) dx : φ ∈ W 1,∞
0 (D;Rd), η ∈ L∞(D;Rm),

∫
D

η(x) dx = 0

}
,

(1.6)
D being any bounded open set.

Remark 1.4 It can also be showed that if f satisfies (1.2) for some p, q ≥ 1, then in (1.4) and (1.6) the
spaces W 1,∞

0 and L∞ can be replaced by W 1,p
0 and Lq, respectively.
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2 Results

All over this section f : Ω× Rd × Rd×N × Rm → R is a Carathéodory function satisfying (1.2) .
We start by presenting the following auxiliary lemmas.

Lemma 2.1 Let 1 ≤ p, q < ∞. For any A ∈ A (Ω) , u ∈ Lp
(
A;Rd

)
, v ∈ Lq (A;Rm) , and any sequences

{un} ⊂ Lp
(
A;Rd

)
and {vn} ⊂ Lq (A;Rm) such that un ⇀ u in W 1,p

(
A;Rd

)
and vn ⇀ v in Lq (A;Rm)

there exist sequences {un} ⊂ W 1,p
(
A;Rd

)
, {vn} ⊂ Lq (A;Rm) such that un ⇀ u in W 1,p

(
A;Rd

)
, {∇un}

is p−equi-integrable,
∫
A
∇un (x) dx =

∫
A
∇u (x) dx, vn ⇀ v in Lq (A;Rm), {vn} is q−equi-integrable,∫

A
vn (x) dx =

∫
A
v (x) dx and

lim inf
n→∞

∫
A

f (x, u (x) ,∇un (x) , vn (x)) dx ≤ lim inf
n→∞

∫
A

f (x, un (x) ,∇un (x) , vn (x)) dx.

Proof. If p, q > 1, the proof is identical to [1, Lemma 3.1], together with the second part of the proof of
[1, Theorem 1.3, page 560]. The mentioned lemma gives the construction of the sequences {wn}, (curl-free)
and {vn} while the argument of [1, Theorem 1.3] ensures that the sequence {wn} is in fact a sequence of
gradients {∇un} .

If p = 1 (q = 1, respectively), then un = un (vn = vn, respectively) because the original sequences are
already equi-integrable.

Let L : W 1,p
(
Ω;Rd

)
× Lq (Ω;Rm)×A (Ω) → R be defined by

L (u, v;A) := inf

{
lim inf
n→∞

∫
A

f (x, u (x) ,∇un (x) , vn (x)) dx : {∇un} ⊂ Lp
(
A;Rd×N

)
,

∇un ⇀ ∇u in Lp
(
A;Rd×N

)
, {∇un} is p− equi-integrable,

{vn} ⊂ Lq (A;Rm) , vn ⇀ v in Lq (A;Rm) , {vn} is q − equi-integrable

}
.

Lemma 2.2 Let 1 ≤ p, q < ∞. Then F (u, v; ·) and L (u, v; ·) are the traces of Radon measures absolutely
continuous with respect to LN⌊Ω.

Proof. The proof is standard relying on De Giorgi-Letta criterion (see [3]) and we refer to Lemma 3.4 in [1]
for more details.

Lemma 2.3 Let 1 ≤ p, q < ∞. Then
F (u, v;A) = L (u, v;A)

for any u ∈ W 1,p
(
Ω;Rd

)
, v ∈ Lq (Ω;Rm) and A ∈ A (Ω) .

Proof. The result is achieved by double inequality. The proof of L (u, v;A)≤ F (u, v;A) relies on Lemma
2.1. Indeed, for {un} ⊂ W 1,p

(
A;Rd

)
and {vn} ⊂ Lq (A;Rm) such that un ⇀ u in W 1,p

(
A;Rd

)
and

vn ⇀ v in Lq (A;Rm) we may find sequences {un} ⊂ W 1,p
(
A;Rd

)
with {∇un} p − equi-integrable, and

{vn} ⊂ Lq (A;Rm) , q − equi-integrable such that

lim inf
n→∞

∫
A

f (x, u (x) ,∇un (x) , vn (x)) dx ≤ lim inf
n→∞

∫
A

f (x, un (x) ,∇un (x) , vn (x)) dx.

Using the definition of L and taking the infimum on the sequences {un} and {vn} we obtain L (u, v;A)≤ F (u, v;A) .
To obtain the converse inequality, consider admissible sequences for L and, using Poincaré inequality and

the fundamental theorem of Young measures, construct an admissible sequence for F with the same limit
energy. See the proof of Theorem 1.3 in [1] for more details.

We sketch the proof of the main result.

Proof of Theorem 1.1. The characterization of F is obtained by double inequality.
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To prove that

F (u, v;A) ≥
∫
A

QCf (x, u (x) ,∇u (x) , v (x)) dx, (2.1)

for every u ∈ W 1,p
(
Ω;Rd

)
, v ∈ Lq (Ω;Rm) and A ∈ A (Ω) , we can exploit blow-up techniques developed by

Fonseca and Müller in [6] and argue as in the proof of [2, Theorem 1.2], introducing the dependence on u in
the density f. We also observe that the same proof of [2, Theorem 1.2] can still be performed replacing the
growth condition therein by (1.2) . Moreover, the result still holds for q = 1.

To prove the converse inequality of (2.1) , we observe that by Lemma 2.3, it is enough to show that

L (u, v;A) ≤
∫
A

QCf (x, u (x) ,∇u (x) , v (x)) dx (2.2)

for every u ∈ W 1,p
(
Ω;Rd

)
, v ∈ Lq (Ω;Rm) and A ∈ A (Ω) .

By Lemma 2.2 L (u, v; ·) is a measure. In the case p > 1 and q > 1, to prove (2.2) we argue as in the
second part of the proof of [2, Theorem 1.2], generalizing [2, Theorem 3.1] to the present growth condition,
namely, replacing condition iii) therein by

|L (u, v;A)| ≤
∫
A

a (x) + C (|∇u (x)|p + |v (x)|q) dx

for some C > 0 and a ∈ L1
loc (Ω) .

If p = 1 and (or) q = 1 the upper bound can be proved arguing as in [1, Theorem 3.6].
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