On some third order nonlinear boundary value problems: Existence, location and multiplicity results

Feliz Manuel Minhós ${ }^{1}$
Departamento de Matemática, Universidade de Évora, Centro de Investigação em Matemática e Aplicações da UE, Rua Romão Ramalho, 7000-671 Évora, Portugal
Received 18 April 2007
Available online 11 August 2007
Submitted by Goong Chen

Abstract

We prove an Ambrosetti-Prodi type result for the third order fully nonlinear equation $$
u^{\prime \prime \prime}(t)+f\left(t, u(t), u^{\prime}(t), u^{\prime \prime}(t)\right)=\operatorname{sp}(t)
$$ with $f:[0,1] \times \mathbb{R}^{3} \rightarrow \mathbb{R}$ and $p:[0,1] \rightarrow \mathbb{R}^{+}$continuous functions, $s \in \mathbb{R}$, under several two-point separated boundary conditions. From a Nagumo-type growth condition, an a priori estimate on $u^{\prime \prime}$ is obtained. An existence and location result will be proved, by degree theory, for $s \in \mathbb{R}$ such that there exist lower and upper solutions. The location part can be used to prove the existence of positive solutions if a non-negative lower solution is considered. The existence, nonexistence and multiplicity of solutions will be discussed as s varies.

© 2007 Elsevier Inc. All rights reserved.
Keywords: Nagumo-type conditions; Lower and upper solution; Topological degree; Ambrosetti-Prodi problems

1. Introduction

In this paper we study the following third order fully nonlinear equation

$$
\begin{equation*}
u^{\prime \prime \prime}(t)+f\left(t, u(t), u^{\prime}(t), u^{\prime \prime}(t)\right)=s p(t), \tag{s}
\end{equation*}
$$

for $f:[0,1] \times \mathbb{R}^{3} \rightarrow \mathbb{R}$ and $p:[0,1] \rightarrow \mathbb{R}^{+}$continuous functions and s a real parameter, with several types of two-point boundary conditions.

If the boundary conditions are

$$
\begin{equation*}
u(0)=A, \quad a u^{\prime}(0)-b u^{\prime \prime}(0)=B, \quad c u^{\prime}(1)+d u^{\prime \prime}(1)=C, \tag{1}
\end{equation*}
$$

for $a, b, c, d, A, B, C \in \mathbb{R}$ and $b, d \geqslant 0$ such that $a^{2}+b>0$ and $c^{2}+d>0$ an existence result is proved, for values of s such that there are lower and upper solutions to the problem $\left(\mathrm{E}_{s}\right)-(1)$.

[^0]In Section 3 we consider boundary conditions

$$
\begin{equation*}
u(0)=0, \quad a u^{\prime}(0)-b u^{\prime \prime}(0)=0, \quad c u^{\prime}(1)+d u^{\prime \prime}(1)=0 \tag{2}
\end{equation*}
$$

with $a, b, c, d \geqslant 0$ such that $a+b>0, c+d>0$ and proving that the existence of solutions for the problem $\left(\mathrm{E}_{s}\right)-(2)$ depends on s.

Considering, in (2), $b=d=0$ with $a, c>0$ the two-point boundary conditions are

$$
\begin{equation*}
u(0)=u^{\prime}(0)=u^{\prime}(1)=0, \tag{3}
\end{equation*}
$$

an Ambrosetti-Prodi type result is obtained in Section 4. That is, we prove that there are $s_{0}, s_{1} \in \mathbb{R}$ such that $\left(\mathrm{E}_{s}\right)-(3)$ has no solution if $s<s_{0}$, it has at least one solution if $s=s_{0}$ and ($\left.\mathrm{E}_{s}\right)-(3)$ has at least two solutions for $\left.\left.s \in\right] s_{0}, s_{1}\right]$.

Equation $\left(\mathrm{E}_{s}\right)$ can be seen as a generalized model for various physical, natural or physiological phenomena such as the flow of a thin film of viscous fluid over a solid surface [1,12], the solitary waves solution of the Korteweg-de Vries equation [8] or the thyroid-pituitary interaction [3]. The problem $\left(\mathrm{E}_{S}\right)-(1)$ can model the static deflection of an elastic beam with linear supports at both endpoints.

The arguments used were suggested by several papers namely [4], applied to second order periodic problems [11], to third order three points boundary value problems [5-7], for two-point boundary value problems. In short, they make use of a Nagumo-type growth condition [10], the upper and lower solutions technique [2], and Leray-Schauder degree theory [9].

2. Preliminary results

In the following, $C([0,1])$ denotes the space of continuous functions with the norm

$$
\|x\|=\max _{t \in[0,1]}|x(t)|
$$

Moreover, $C^{k}([0,1])$ denotes the space of real valued functions with continuous i-derivative in $[0,1]$, for $i=1, \ldots, k$, equipped with the norm

$$
\|x\|_{C^{k}}=\max _{0 \leqslant i \leqslant k}\left\{\left|x^{(i)}(t)\right|: t \in[0,1]\right\} .
$$

Some growth conditions on the nonlinearity of $\left(\mathrm{E}_{S}\right)$ will be assumed in the following. The first one is given by the next definition and provides also an a priori estimate for the second derivative of solutions u of $\left(\mathrm{E}_{s}\right)$, if some bounds on u and u^{\prime} are verified.

Definition 1. A continuous function $g:[0,1] \times \mathbb{R}^{3} \rightarrow \mathbb{R}$ is said to satisfy Nagumo-type condition in

$$
E=\left\{(t, x, y, z) \in[0,1] \times \mathbb{R}^{3}: \gamma_{0}(t) \leqslant x \leqslant \Gamma_{0}(t), \gamma_{1}(t) \leqslant y \leqslant \Gamma_{1}(t)\right\},
$$

with $\gamma_{0}, \gamma_{1}, \Gamma_{0}$ and Γ_{1} continuous functions such that $\gamma_{0}(t) \leqslant \Gamma_{0}(t), \gamma_{1}(t) \leqslant \Gamma_{1}(t)$, for every $t \in[0,1]$, if there exists a continuous function $h_{E}: \mathbb{R}_{0}^{+} \rightarrow[k,+\infty[$, for some fixed $k>0$, such that

$$
\begin{equation*}
|g(t, x, y, z)| \leqslant h_{E}(|z|), \quad \forall(t, x, y, z) \in E, \tag{4}
\end{equation*}
$$

with

$$
\begin{equation*}
\int_{0}^{+\infty} \frac{\xi}{h_{E}(\xi)} d \xi=+\infty \tag{5}
\end{equation*}
$$

If these assumptions hold for every $E \subset[0,1] \times \mathbb{R}^{3}$, given above, then g is said to satisfy Nagumo-type conditions.
Lemma 2. Let $f:[0,1] \times \mathbb{R}^{3} \rightarrow \mathbb{R}$ be a continuous function that satisfies Nagumo-type conditions (4) and (5) in

$$
\begin{equation*}
E=\left\{(t, x, y, z) \in[0,1] \times \mathbb{R}^{3}: \gamma_{0}(t) \leqslant x \leqslant \Gamma_{0}(t), \gamma_{1}(t) \leqslant y \leqslant \Gamma_{1}(t)\right\}, \tag{6}
\end{equation*}
$$

where $\gamma_{0}, \gamma_{1}, \Gamma_{0}, \Gamma_{1}$ are continuous functions. Then there is $r_{*}>0$ (depending only on the parameter s and on the functions p, h_{E}, γ_{1} and $\left.\Gamma_{1}\right)$ such that every solution $u(t)$ of $\left(\mathrm{E}_{S}\right)$ verifying

$$
\gamma_{0}(t) \leqslant u(t) \leqslant \Gamma_{0}(t), \quad \gamma_{1}(t) \leqslant u^{\prime}(t) \leqslant \Gamma_{1}(t)
$$

for every $t \in[0,1]$, satisfies

$$
\left\|u^{\prime \prime}\right\|<r_{*}
$$

Remark 1. We observe that r_{*} can be taken independent of s as long as s belongs to some bounded set.
Proof. Considering the non-negative number

$$
\eta=\max \left\{\Gamma_{1}(1)-\gamma_{1}(0), \Gamma_{1}(0)-\gamma_{1}(1)\right\}
$$

and $r>\eta$ such that

$$
\int_{\eta}^{r} \frac{\xi}{h_{E}(\xi)+|s|\|p\|} d \xi \geqslant \max _{t \in[0,1]} \Gamma_{1}(t)-\min _{t \in[0,1]} \gamma_{1}(t)
$$

then the proof follows from [5, Lemma 1], as $\left(\mathrm{E}_{S}\right)$ is a particular case of the equation there assumed.
The appropriate definition of lower and upper-solutions for problem $\left(\mathrm{E}_{S}\right)-(1)$ is now given.
Definition 3. Consider $a, b, c, d, A, B, C \in \mathbb{R}$ such that $b, d \geqslant 0, a^{2}+b>0$ and $c^{2}+d>0$.
(i) A function $\alpha(t) \in C^{3}(] 0,1[) \cap C^{2}([0,1])$ is a lower solution of $\left(\mathrm{E}_{s}\right)-(1)$ if

$$
\left.\alpha^{\prime \prime \prime}(t)+f\left(t, \alpha(t), \alpha^{\prime}(t), \alpha^{\prime \prime}(t)\right) \geqslant s p(t), \quad \text { if } t \in\right] 0,1[,
$$

and

$$
\alpha(0) \leqslant A, \quad a \alpha^{\prime}(0)-b \alpha^{\prime \prime}(0) \leqslant B, \quad c \alpha^{\prime}(1)+d \alpha^{\prime \prime}(1) \leqslant C .
$$

(ii) A function $\beta(t) \in C^{3}(] 0,1[) \cap C^{2}([0,1])$ is an upper solution of $\left(\mathrm{E}_{s}\right)-(1)$ if

$$
\left.\beta^{\prime \prime \prime}(t)+f\left(t, \beta(t), \beta^{\prime}(t), \beta^{\prime \prime}(t)\right) \leqslant s p(t), \quad \text { if } t \in\right] 0,1[
$$

and

$$
\beta(0) \geqslant A, \quad a \beta^{\prime}(0)-b \beta^{\prime \prime}(0) \geqslant B, \quad c \beta^{\prime}(1)+d \beta^{\prime \prime}(1) \geqslant C .
$$

For s such that there are upper and lower solutions of $\left(\mathrm{E}_{s}\right)-(1)$ with first derivative "well ordered," an existence result and some information concerning the location of the solution of $\left(\mathrm{E}_{s}\right)-(1)$ and its derivative are obtained.

Theorem 4. Let $f:[0,1] \times \mathbb{R}^{3} \rightarrow \mathbb{R}$ be a continuous function. Suppose that there are lower and upper solutions of $\left(\mathrm{E}_{s}\right)-(1), \alpha(t)$ and $\beta(t)$, respectively, such that, for $t \in[0,1]$,

$$
\alpha^{\prime}(t) \leqslant \beta^{\prime}(t)
$$

and f satisfies Nagumo-type conditions (4) and (5) in

$$
E_{*}=\left\{(t, x, y, z) \in[0,1] \times \mathbb{R}^{3}: \alpha(t) \leqslant x \leqslant \beta(t), \alpha^{\prime}(t) \leqslant y \leqslant \beta^{\prime}(t)\right\} .
$$

If f verifies

$$
\begin{equation*}
f(t, \alpha(t), y, z) \leqslant f(t, x, y, z) \leqslant f(t, \beta(t), y, z)) \tag{7}
\end{equation*}
$$

for fixed $(t, y, z) \in[0,1] \times \mathbb{R}^{2}$ and $\alpha(t) \leqslant x \leqslant \beta(t)$, then $\left(\mathrm{E}_{s}\right)-(1)$ has at least one solution $u(t) \in C^{3}([0,1])$ satisfying

$$
\alpha(t) \leqslant u(t) \leqslant \beta(t), \quad \alpha^{\prime}(t) \leqslant u^{\prime}(t) \leqslant \beta^{\prime}(t), \quad \forall t \in[0,1] .
$$

Proof. Define the auxiliary continuous functions

$$
\begin{align*}
& \delta_{0}(t, x)= \begin{cases}\beta(t) & \text { if } x>\beta(t), \\
x & \text { if } \alpha(t) \leqslant x \leqslant \beta(t), \\
\alpha(t) & \text { if } x<\alpha^{(i)}(t),\end{cases} \tag{8}\\
& \delta_{1}(t, y)= \begin{cases}\beta^{\prime}(t) & \text { if } y>\beta^{\prime}(t), \\
y & \text { if } \alpha^{\prime}(t) \leqslant y \leqslant \beta^{\prime}(t), \\
\alpha^{\prime}(t) & \text { if } y<\alpha^{\prime}(t),\end{cases} \tag{9}
\end{align*}
$$

and, for $\lambda \in[0,1]$, the modified problem composed, by

$$
\begin{equation*}
u^{\prime \prime \prime}(t)+\lambda f\left(t, \delta_{0}(t, u(t)), \delta_{1}\left(t, u^{\prime}(t)\right), u^{\prime \prime}(t)\right)-u^{\prime}(t)+\lambda \delta_{1}\left(t, u^{\prime}(t)\right)=\lambda s p(t) \tag{10}
\end{equation*}
$$

and the boundary conditions

$$
\begin{align*}
& u(0)=\lambda A, \\
& u^{\prime}(0)=\lambda\left[B-a \delta_{1}\left(0, u^{\prime}(0)\right)+b u^{\prime \prime}(0)+\delta_{1}\left(0, u^{\prime}(0)\right)\right], \\
& u^{\prime}(1)=\lambda\left[C-c \delta_{1}\left(1, u^{\prime}(1)\right)-d u^{\prime \prime}(1)+\delta_{1}\left(1, u^{\prime}(1)\right)\right] . \tag{11}
\end{align*}
$$

Taking $r_{1}>0$ such that, for every $t \in[0,1]$,

$$
\begin{aligned}
& -r_{1} \leqslant \alpha^{\prime}(t) \leqslant \beta^{\prime}(t) \leqslant r_{1}, \\
& s p(t)-f\left(t, \alpha(t), \alpha^{\prime}(t), 0\right)-r_{1}-\alpha^{\prime}(t)<0, \\
& s p(t)-f\left(t, \beta(t), \beta^{\prime}(t), 0\right)+r_{1}-\beta^{\prime}(t)>0
\end{aligned}
$$

and

$$
\begin{array}{ll}
\left|B+(1-a) \beta^{\prime}(0)\right|<r_{1}, & \left|B+(1-a) \alpha^{\prime}(0)\right|<r_{1}, \\
\left|C+(1-c) \beta^{\prime}(1)\right|<r_{1}, & \left|C+(1-c) \alpha^{\prime}(1)\right|<r_{1}
\end{array}
$$

the proof follows the arguments used in [5, Theorem 1]. So, only the following details due to a more general boundary conditions are included.

In Step 1 it is proved that every solution u of (10)-(11) satisfies $\left|u^{\prime}(t)\right|<r_{1}$ and $|u(t)|<r_{0}$, for every $t \in[0,1]$ and $r_{0}:=r_{1}+|A|$, independently of λ.

In Step 2, the set

$$
E_{r}=\left\{(t, x, y, z) \in[0,1] \times \mathbb{R}^{3}:|x| \leqslant r_{0},|y| \leqslant r_{1}\right\}
$$

and the function $F_{\lambda}: E_{r} \rightarrow \mathbb{R}$ given by

$$
F_{\lambda}(t, x, y, z):=\lambda f\left(t, \delta_{0}(t, x), \delta_{1}(t, y), z\right)-y+\lambda \delta_{1}(t, y)
$$

are considered. As $\left|F_{\lambda}(t, x, y, z)\right| \leqslant 2 r_{1}+h_{E_{*}}(|z|)$ and

$$
\int_{0}^{+\infty} \frac{z}{2 r_{1}+h_{E_{*}}(z)} d z=+\infty
$$

then F_{λ} satisfies a Nagumo-type condition in E_{*} and the assumptions of Lemma 2 are verified.
In Step 3 the nonlinear operator \mathcal{N}_{λ} is defined by

$$
\mathcal{N}_{\lambda} u=\left(-\lambda f\left(t, \delta_{0}(t, u(t)), \delta_{1}\left(t, u^{\prime}(t)\right), u^{\prime \prime}(t)\right)+u^{\prime}(t)-\lambda \delta_{1}\left(t, u^{\prime}(t)\right)+\lambda s p(t), \lambda A, B_{\lambda}, C_{\lambda}\right)
$$

with

$$
\begin{aligned}
& B_{\lambda}:=\lambda\left[B-a \delta_{1}\left(0, u^{\prime}(0)\right)+b u^{\prime \prime}(0)+\delta_{1}\left(0, u^{\prime}(0)\right)\right], \\
& C_{\lambda}:=\lambda\left[C-c \delta_{1}\left(1, u^{\prime}(1)\right)-d u^{\prime \prime}(1)+\delta_{1}\left(1, u^{\prime}(1)\right)\right]
\end{aligned}
$$

and the Leray-Schauder degree is evaluated in the set

$$
\Omega=\left\{x \in C^{2}([0,1]):\|x\|<r_{0},\left\|x^{\prime}\right\|<r_{1},\left\|x^{\prime \prime}\right\|<r_{2}\right\} .
$$

Example. Consider the differential equation

$$
\begin{equation*}
u^{\prime \prime \prime}(t)+\left|u^{\prime \prime}(t)\right|^{\theta}-k\left[u^{\prime}(t)\right]^{2 n+1}+[u(t)]^{2 m+1}=\operatorname{sp}(t) \tag{12}
\end{equation*}
$$

for $t \in[0,1], \theta \in[0,2], n, m \in \mathbb{N}, k>0, s \in \mathbb{R}$ and $p:[0,1] \rightarrow \mathbb{R}^{+}$a continuous function, with the boundary conditions

$$
\begin{equation*}
u(0)=0, \quad a u^{\prime}(0)-b u^{\prime \prime}(0)=B, \quad c u^{\prime}(1)+d u^{\prime \prime}(1)=C, \tag{13}
\end{equation*}
$$

for $B, C \in \mathbb{R}, a, b, c, d \geqslant 0$ with $a+b>0$ and $c+d>0$.
If a, c, B and C are such that $|B| \leqslant a$ and $|C| \leqslant c$ then functions $\alpha, \beta:[0,1] \rightarrow \mathbb{R}$ given by $\alpha(t)=-t$ and $\beta(t)=t$ are, respectively, lower and upper solutions of problem (12)-(13) for $|s| \leqslant \frac{k}{\|p\|}$. As

$$
f(t, x, y, z)=|z|^{\theta}-k y^{2 n+1}+x^{2 m+1}
$$

is continuous and verifies Nagumo-type assumptions (4) and (5) in

$$
\begin{equation*}
E=\left\{(t, x, y, z) \in[0,1] \times \mathbb{R}^{3}:|x| \leqslant t,|y| \leqslant 1\right\} \tag{14}
\end{equation*}
$$

for $h_{E}(z)=k+1+|z|^{\theta}$ then, by Theorem 4, problem (12) has at least one solution $u(t)$ such that

$$
-t \leqslant u(t) \leqslant t, \quad-1 \leqslant u^{\prime}(t) \leqslant 1, \quad \forall t \in[0,1],
$$

for $|s| \leqslant \frac{k}{\|p\|}$.

3. Existence and nonexistence results

A first discussion concerning the dependence on s of the existence and nonexistence of a solution will be given in the special case that $A=B=C=0$ and $a, b, c, d \geqslant 0$ with $a+b>0, c+d>0$, that is, for $\left(\mathrm{E}_{s}\right)-(2)$. Lower and upper solutions definition for this problem are obtained considering in Definition 3 these restrictions.

Theorem 5. Let $f:[0,1] \times \mathbb{R}^{3} \rightarrow \mathbb{R}$ be a continuous function satisfying a Nagumo-type condition and such that
(i) for $(t, y, z) \in[0,1] \times \mathbb{R}^{2}$

$$
\begin{equation*}
x_{1} \geqslant x_{2} \quad \Rightarrow \quad f\left(t, x_{1}, y, z\right) \geqslant f\left(t, x_{2}, y, z\right) \tag{15}
\end{equation*}
$$

(ii) for $(t, x, z) \in[0,1] \times \mathbb{R}^{2}$

$$
\begin{equation*}
y_{1} \geqslant y_{2} \quad \Rightarrow \quad f\left(t, x, y_{1}, z\right) \leqslant f\left(t, x, y_{2}, z\right) \tag{16}
\end{equation*}
$$

(iii) there are $s_{1} \in \mathbb{R}$ and $r>0$ such that

$$
\begin{equation*}
\frac{f(t, 0,0,0)}{p(t)}<s_{1}<\frac{f(t, x,-r, 0)}{p(t)} \tag{17}
\end{equation*}
$$

for every $t \in[0,1]$ and every $x \leqslant-r$. Then there is $s_{0}<s_{1}$ (with the possibility that $s_{0}=-\infty$) such that
(1) for $s<s_{0},\left(\mathrm{E}_{s}\right)-(2)$ has no solution;
(2) for $s_{0}<s \leqslant s_{1},\left(\mathrm{E}_{s}\right)-(2)$ has at least one solution.

Proof. Step 1. There is $s^{*}<s_{1}$ such that $\left(\mathrm{E}_{s^{*}}\right)-(2)$ has a solution.
Defining

$$
s^{*}=\max \left\{\frac{f(t, 0,0,0)}{p(t)}, t \in[0,1]\right\},
$$

by (17), there exists $t^{*} \in[0,1]$ such that

$$
\frac{f(t, 0,0,0)}{p(t)} \leqslant s^{*}=\frac{f\left(t^{*}, 0,0,0\right)}{p\left(t^{*}\right)}<s_{1}, \quad \forall t \in[0,1],
$$

and, by the first inequality, $\beta(t) \equiv 0$ is an upper solution of $\left(\mathrm{E}_{s^{*}}\right)-(2)$.

The function $\alpha(t)=-r t$ is a lower solution of $\left(\mathrm{E}_{s^{*}}\right)-(2)$. In fact, as $\alpha(t) \geqslant-r, \alpha^{\prime}(t)=-r$ and $\alpha^{\prime \prime}(t)=\alpha^{\prime \prime \prime}(t) \equiv 0$, then, by (17) and (15),

$$
\begin{equation*}
\alpha^{\prime \prime \prime}(t)=0>s_{1} p(t)-f(t,-r,-r, 0) \geqslant s_{1} p(t)-f(t,-r t,-r, 0)>s^{*} p(t)-f(t,-r t,-r, 0) . \tag{18}
\end{equation*}
$$

So, by Theorem 4, there is, at least a solution of $\left(\mathrm{E}_{s^{*}}\right)-(2)$ with $s^{*}<s_{1}$.
Step 2. If $\left(\mathrm{E}_{s}\right)-(2)$ has a solution for $s=\sigma<s_{1}$, then it has at least one solution for $s \in\left[\sigma, s_{1}\right]$.
Suppose that $\left(\mathrm{E}_{\sigma}\right)-(2)$ has a solution $u_{\sigma}(t)$. For s such that $\sigma \leqslant s \leqslant s_{1}$,

$$
u_{\sigma}^{\prime \prime \prime}(t)=\sigma p(t)-f\left(t, u_{\sigma}(t), u_{\sigma}^{\prime}(t), u_{\sigma}^{\prime \prime}(t)\right) \leqslant s p(t)-f\left(t, u_{\sigma}(t), u_{\sigma}^{\prime}(t), u_{\sigma}^{\prime \prime}(t)\right)
$$

and so $u_{\sigma}(t)$ is an upper solution of $\left(\mathrm{E}_{s}\right)-(2)$ for every s such that $\sigma \leqslant s \leqslant s_{1}$.
For $r>0$ given by (17) take $R \geqslant r$ large enough such that

$$
\begin{equation*}
u_{\sigma}^{\prime}(0) \geqslant-R, \quad u_{\sigma}^{\prime}(1) \geqslant-R \quad \text { and } \quad \min _{t \in[0,1]} u_{\sigma}(t) \geqslant-R . \tag{19}
\end{equation*}
$$

Since, by (17) and (15), for $s \leqslant s_{1}$,

$$
0>s_{1} p(t)-f(t,-R,-r, 0) \geqslant \operatorname{sp}(t)-f(t,-R t,-R, 0)
$$

and $-a R \leqslant 0,-c R \leqslant 0$ then $\alpha(t)=-R t$ is a lower solution of $\left(\mathrm{E}_{s}\right)-(2)$ for $s \leqslant s_{1}$.
To apply Theorem 4 the condition

$$
\begin{equation*}
-R \leqslant u_{\sigma}^{\prime}(t), \quad \forall t \in[0,1], \tag{20}
\end{equation*}
$$

must be verified. Suppose that (20) is not true. Therefore there is $t \in[0,1]$ such that $u_{\sigma}^{\prime}(t)<-R$. Defining

$$
\min _{t \in[0,1]} u_{\sigma}^{\prime}(t):=u_{\sigma}^{\prime}\left(t_{0}\right) \quad(<-R)
$$

then, by (19), $\left.t_{0} \in\right] 0,1\left[, u_{\sigma}^{\prime \prime}\left(t_{0}\right)=0, u_{\sigma}^{\prime \prime \prime}\left(t_{0}\right) \geqslant 0\right.$ and, by (16), (19) and (17), the following contradiction

$$
\begin{aligned}
0 & \leqslant u_{\sigma}^{\prime \prime \prime}\left(t_{0}\right)=\sigma p\left(t_{0}\right)-f\left(t_{0}, u_{\sigma}\left(t_{0}\right), u_{\sigma}^{\prime}\left(t_{0}\right), u^{\prime \prime}\left(t_{0}\right)\right) \\
& \leqslant \sigma p\left(t_{0}\right)-f\left(t_{0}, u_{\sigma}\left(t_{0}\right),-R, 0\right) \leqslant s_{1} p\left(t_{0}\right)-f\left(t_{0},-R,-R, 0\right)<0
\end{aligned}
$$

is obtained. So $-R \leqslant u_{\sigma}^{\prime}(t)$, for every $t \in[0,1]$, and, by Theorem 4, problem ($\left.\mathrm{E}_{s}\right)-(2)$ has at least a solution $u(t)$ for every s such that $\sigma \leqslant s \leqslant s_{1}$.

Step 3. There is $s_{0} \in \mathbb{R}$ such that:

- for $s<s_{0}$, $\left(\mathrm{E}_{s}\right)$-(2) has no solution;
- for $\left.s \in] s_{0}, s_{1}\right]$, (E_{s})-(2) has at least a solution.

Let $S=\left\{s \in \mathbb{R}:\left(\mathrm{E}_{s}\right)-(2)\right.$ has at least a solution $\}$. As, by Step $1, s^{*} \in S$ then $S \neq \emptyset$. Defining $s_{0}=\inf S$, by Step 1 , $s_{0} \leqslant s^{*}<s_{1}$ and, by Step 2, (E_{s})-(2) has at least a solution for $\left.\left.s \in\right] s_{0}, s_{1}\right]$ and $\left(\mathrm{E}_{s}\right)-(2)$ has no solution for $s<s_{0}$.

Observe that if $s_{0}=-\infty$ then, by Step 2, ($\left.\mathrm{E}_{s}\right)-(2)$ has a solution for every $s \leqslant s_{1}$.
A variant of Theorem 5 can be obtained replacing, in (17), f by $-f$ and x by $-x$.
Theorem 6. Let $f:[0,1] \times \mathbb{R}^{3} \rightarrow \mathbb{R}$ be a continuous function satisfying a Nagumo-type condition and growth assumptions (15) and (16). If there are $s_{1} \in \mathbb{R}$ and $r>0$ such that

$$
\frac{f(t, 0,0,0)}{p(t)}>s_{1}>\frac{f(t, x, r, 0)}{p(t)}
$$

for every $t \in[0,1]$ and every $x \geqslant r$, then there is $s_{0}>s_{1}$ (with the possibility that $s_{0}=+\infty$) such that
(1) for $s>s_{0},\left(\mathrm{E}_{s}\right)-(2)$ has no solution;
(2) for $s_{0}>s \geqslant s_{1},\left(\mathrm{E}_{s}\right)-(2)$ has at least one solution.

4. Multiplicity results

In the particular case of boundary conditions (1) where $b=d=A=B=C=0$ and $a, c>0$ is proved the existence of a second solution for problem $\left(\mathrm{E}_{S}\right)-(3)$ as a consequence of a non-null degree for the same operator in two disjoint sets.

The arguments are based on strict lower and upper solutions and some new assumptions on the nonlinearity.
Definition 7. Consider $\alpha, \beta:[0,1] \rightarrow \mathbb{R}$ such that $\alpha, \beta \in C^{3}(] 0,1[) \cap C^{2}([0,1])$.
(i) $\alpha(t)$ is a strict lower solution of $\left(\mathrm{E}_{s}\right)-(3)$ if

$$
\left.\alpha^{\prime \prime \prime}(t)+f\left(t, \alpha(t), \alpha^{\prime}(t), \alpha^{\prime \prime}(t)\right)>s p(t), \quad \text { if } t \in\right] 0,1[
$$

and

$$
\begin{equation*}
\alpha(0) \leqslant 0, \quad \alpha^{\prime}(0)<0, \quad \alpha^{\prime}(1)<0 \tag{21}
\end{equation*}
$$

(ii) $\beta(t)$ is a strict upper solution of $\left(\mathrm{E}_{S}\right)-(3)$ if

$$
\left.\beta^{\prime \prime \prime}(t)+f\left(t, \beta(t), \beta^{\prime}(t), \beta^{\prime \prime}(t)\right)<s p(t), \quad \text { if } t \in\right] 0,1[
$$

and

$$
\beta(0) \geqslant 0, \quad \beta^{\prime}(0)>0, \quad \beta^{\prime}(1)>0 .
$$

Define the set $X=\left\{x \in C^{2}([0,1]): x(0)=x^{\prime}(0)=x^{\prime}(1)=0\right\}$ and the operators $L: \operatorname{dom} L \rightarrow C([0,1])$, with $\operatorname{dom} L=C^{3}([0,1]) \cap X$, given by $L u=u^{\prime \prime \prime}$ and, for $s \in \mathbb{R}, N_{s}: C^{2}([0,1]) \cap X \rightarrow C([0,1])$ given by

$$
N_{s} u=f\left(t, u(t), u^{\prime}(t), u^{\prime \prime}(t)\right)-s p(t) .
$$

For an open and bounded set $\Omega \subset X$, the operator $L+N_{s}$ is L-compact in $\bar{\Omega}$ [9]. Note that in dom L the equation $L u+N_{s} u=0$ is equivalent to problem (E_{s})-(3).

The next result will be an important tool used to evaluate the Leray-Schauder topological degree.
Lemma 8. Consider a continuous function $f:[0,1] \times \mathbb{R}^{3} \rightarrow \mathbb{R}$ verifying a Nagumo-type condition and (15). If there are strict lower and upper solutions of $\left(\mathrm{E}_{s}\right)-(3), \alpha(t)$ and $\beta(t)$, respectively, such that

$$
\begin{equation*}
\alpha^{\prime}(t)<\beta^{\prime}(t), \quad \forall t \in[0,1] \tag{22}
\end{equation*}
$$

then there is $\rho_{2}>0$ such that $d\left(L+N_{s}, \Omega\right)= \pm 1$ for

$$
\Omega=\left\{x \in \operatorname{dom} L: \alpha(t)<x(t)<\beta(t), \alpha^{\prime}(t)<x^{\prime}(t)<\beta^{\prime}(t),\left\|x^{\prime \prime}\right\|<\rho_{2}\right\} .
$$

Remark 2. The set Ω can be taken the same for $\left(\mathrm{E}_{S}\right)-(3)$, independent of s, as long as α and β are strict lower and upper solutions for $\left(\mathrm{E}_{s}\right)-(3)$ and s belongs to a bounded set.

Proof. For the auxiliary functions δ_{0}, δ_{1} defined in (8) and (9) consider the modified problem

$$
\left\{\begin{array}{l}
u^{\prime \prime \prime}(t)+F\left(t, u(t), u^{\prime}(t), u^{\prime \prime}(t)\right)=s p(t) \tag{23}\\
u(0)=u^{\prime}(0)=u^{\prime}(1)=0
\end{array}\right.
$$

where $F:[0,1] \times \mathbb{R}^{3} \rightarrow \mathbb{R}$ is the continuous function given by

$$
F(t, x, y, z)=f\left(t, \delta_{0}(t, x), \delta_{1}(t, y), z\right)-y+\delta_{1}(t, y)
$$

and define the operator $F_{s}: C^{2}([0,1]) \cap X \rightarrow C([0,1])$ by

$$
F_{s} u=F\left(t, u(t), u^{\prime}(t), u^{\prime \prime}(t)\right)-s p(t) .
$$

With these definitions problem (23) is equivalent to the equation $L u+F_{s} u=0$ in $\operatorname{dom} L$. For $\lambda \in[0,1]$ and $u \in \operatorname{dom} L$ consider the homotopy

$$
H_{\lambda} u:=L u-(1-\lambda) u^{\prime \prime}+\lambda F_{s} u
$$

and take $\rho_{1}>0$ large enough such that, for every $t \in[0,1]$,

$$
\begin{aligned}
& -\rho_{1} \leqslant \alpha^{\prime}(t)<\beta^{\prime}(t) \leqslant \rho_{1}, \\
& s p(t)-f\left(t, \alpha(t), \alpha^{\prime}(t), 0\right)-\rho_{1}-\alpha^{\prime}(t)<0
\end{aligned}
$$

and

$$
s p(t)-f\left(t, \beta(t), \beta^{\prime}(t), 0\right)+\rho_{1}-\beta^{\prime}(t)>0
$$

Following the arguments referred in the proof of Theorem 4, there is $\rho_{2}>0$ such that every solution $u(t)$ of $H_{\lambda} u=0$ satisfies $\left\|u^{\prime}\right\|<\rho_{1}$ and $\left\|u^{\prime \prime}\right\|<\rho_{2}$, independently of $\lambda \in[0,1]$. Defining

$$
\Omega_{1}=\left\{x \in \operatorname{dom} L:\left\|x^{\prime}\right\|<\rho_{1},\left\|x^{\prime \prime}\right\|<\rho_{2}\right\}
$$

then, every solution u of $H_{\lambda} u=0$ belongs to Ω_{1} for every $\lambda \in[0,1], u \notin \partial \Omega_{1}$ and the degree $d\left(H_{\lambda}, \Omega_{1}\right)$ is well defined, for every $\lambda \in[0,1]$.

For $\lambda=0$ the equation $H_{0} u=0$, that is, the linear problem

$$
\left\{\begin{array}{l}
u^{\prime \prime \prime}(t)-u^{\prime \prime}(t)=0, \\
u(0)=u^{\prime}(0)=u^{\prime}(1)=0
\end{array}\right.
$$

has only the trivial solution and, by degree theory, $d\left(H_{0}, \Omega_{1}\right)= \pm 1$. By the invariance under homotopy

$$
\begin{equation*}
\pm 1=d\left(H_{0}, \Omega_{1}\right)=d\left(H_{1}, \Omega_{1}\right)=d\left(L+F_{s}, \Omega_{1}\right) \tag{24}
\end{equation*}
$$

In the sequel it is proved that if $u \in \Omega_{1}$ is a solution of $L u+F_{s} u=0$ then $u \in \Omega$.
In fact, by (24), there is $u_{1}(t) \in \Omega_{1}$ solution of $L u+F_{s} u=0$. Assume, by contradiction, that there is $t \in[0,1]$ such that $u_{1}^{\prime}(t) \leqslant \alpha^{\prime}(t)$ and define

$$
\min _{t \in[0,1]}\left[u_{1}^{\prime}(t)-\alpha^{\prime}(t)\right]:=u_{1}^{\prime}\left(t_{1}\right)-\alpha^{\prime}\left(t_{1}\right) \quad(\leqslant 0) .
$$

From (21) $\left.t_{1} \in\right] 0,1\left[, u_{1}^{\prime \prime}\left(t_{1}\right)-\alpha^{\prime \prime}\left(t_{1}\right)=0\right.$ and $u_{1}^{\prime \prime \prime}\left(t_{1}\right)-\alpha^{\prime \prime \prime}\left(t_{1}\right) \geqslant 0$. By (15), the following contradiction:

$$
\begin{aligned}
u_{1}^{\prime \prime \prime}\left(t_{1}\right) & =\operatorname{sp}\left(t_{1}\right)-F\left(t_{1}, u_{1}\left(t_{1}\right), u_{1}^{\prime}\left(t_{1}\right), u_{1}^{\prime \prime}\left(t_{1}\right)\right) \\
& =\operatorname{sp}\left(t_{1}\right)-f\left(t_{1}, \delta_{0}\left(t_{1}, u_{1}\left(t_{1}\right)\right), \delta_{1}\left(t_{1}, u_{1}^{\prime}\left(t_{1}\right)\right), u_{1}^{\prime \prime}\left(t_{1}\right)\right)+u_{1}^{\prime}\left(t_{1}\right)-\delta_{1}\left(t_{1}, u_{1}^{\prime}\left(t_{1}\right)\right) \\
& \leqslant \operatorname{sp(t_{1})-f(t_{1},\alpha (t_{1}),\alpha ^{\prime }(t_{1}),\alpha ^{\prime \prime }(t_{1}))+u_{1}^{\prime }(t_{1})-\alpha ^{\prime }(t_{1})} \\
& \leqslant \operatorname{sp(t_{1})-f(t_{1},\alpha (t_{1}),\alpha ^{\prime }(t_{1}),\alpha ^{\prime \prime }(t_{1}))<\alpha ^{\prime \prime \prime }(t_{1})}
\end{aligned}
$$

is achieved. Therefore $u_{1}^{\prime}(t)>\alpha^{\prime}(t)$, for $t \in[0,1]$. In a similar way it can be proved that $u_{1}^{\prime}(t)<\beta^{\prime}(t)$, for every $t \in[0,1]$ and so $u_{1} \in \Omega$.

As the equations $L u+F_{s} u=0$ and $L u+N_{s} u=0$ are equivalent on Ω then

$$
d\left(L+F_{s}, \Omega_{1}\right)=d\left(L+F_{s}, \Omega\right)=d\left(L+N_{s}, \Omega\right)= \pm 1
$$

by (24) and the excision property of the degree.
The main result is attained assuming that f is bounded from below and it satisfies some adequate condition of monotonicity-type which requires different "speeds" of growth.

Theorem 9. Let $f:[0,1] \times \mathbb{R}^{3} \rightarrow \mathbb{R}$ be a continuous function such that the assumptions of Theorem 5 are fulfilled. Suppose that there is $M>-r$ such that every solution u of $\left(\mathrm{E}_{s}\right)-(3)$, with $s \leqslant s_{1}$, satisfies

$$
\begin{equation*}
u^{\prime}(t)<M, \quad \forall t \in[0,1], \tag{25}
\end{equation*}
$$

and there exists $m \in \mathbb{R}$ such that

$$
\begin{equation*}
f(t, x, y, z) \geqslant m p(t), \tag{26}
\end{equation*}
$$

for every $(t, x, y, z) \in[0,1] \times[-r,|M|] \times[-r, M] \times \mathbb{R}$, with r given by (17). Then s_{0}, provided by Theorem 5 , is finite and
(1) if $s<s_{0},\left(\mathrm{E}_{S}\right)-(3)$ has no solution;
(2) if $s=s_{0},\left(\mathrm{E}_{s}\right)-(3)$ has at least one solution.

Moreover, let $M_{1}:=\max \{r,|M|\}$ and assume that there is $\theta>0$ such that, for every $(t, x, y, z) \in[0,1] \times$ $\left[-M_{1}, M_{1}\right]^{2} \times \mathbb{R}$ and $0 \leqslant \eta \leqslant 1$,

$$
\begin{equation*}
f(t, x+\eta \theta, y+\theta, z) \leqslant f(t, x, y, z) \tag{27}
\end{equation*}
$$

Then
(3) for $\left.s \in] s_{0}, s_{1}\right]$, $\left(\mathrm{E}_{s}\right)-(3)$ has at least two solutions.

Proof. Step 1. Every solution $u(t)$ of $\left(\mathrm{E}_{s}\right)-(3)$, for $\left.\left.s \in\right] s_{0}, s_{1}\right]$, satisfies $-r<u^{\prime}(t)<M$ and $-r<u(t)<|M|$, with r given by (17) and $t \in[0,1]$.

For first condition, by (25), it will be enough to show that $-r<u^{\prime}(t)$, for every $t \in[0,1]$ and for every solution u of (E_{s})-(3), with $s \leqslant s_{1}$.

Suppose, by contradiction, that there are $\left.s \in] s_{0}, s_{1}\right]$, a solution u of $\left(\mathrm{E}_{s}\right)-(3)$ and $t_{2} \in[0,1]$ such that

$$
u^{\prime}\left(t_{2}\right):=\min _{t \in[0,1]} u^{\prime}(t) \leqslant-r .
$$

By (3), $\left.t_{2} \in\right] 0,1\left[, u^{\prime \prime}\left(t_{2}\right)=0\right.$ and $u^{\prime \prime \prime}\left(t_{2}\right) \geqslant 0$. By (16),

$$
0 \leqslant u^{\prime \prime \prime}\left(t_{2}\right)=s p\left(t_{2}\right)-f\left(t_{2}, u\left(t_{2}\right), u^{\prime}\left(t_{2}\right), u^{\prime \prime}\left(t_{2}\right)\right) \leqslant s_{1} p\left(t_{2}\right)-f\left(t_{2}, u\left(t_{2}\right),-r, 0\right)
$$

If $u\left(t_{2}\right)<-r$, from (17) the following contradiction:

$$
0 \leqslant s_{1} p\left(t_{2}\right)-f\left(t_{2}, u\left(t_{2}\right),-r, 0\right) \leqslant s_{1} p\left(t_{2}\right)-f\left(t_{2},-r,-r, 0\right)<0
$$

is obtained. If $u\left(t_{2}\right) \geqslant-r$, from (15) and (17), the same contradiction is achieved. Then every solution u of $\left(\mathrm{E}_{s}\right)-(3)$, with $s_{0}<s \leqslant s_{1}$, verifies

$$
u^{\prime}(t)>-r, \quad \forall t \in[0,1] .
$$

So, by (25), $-r<u^{\prime}(t)<M$, for every $t \in[0,1]$. Integrating on [$0, t$, we obtain

$$
-r \leqslant-r t<u(t)<M t \leqslant|M|, \quad \forall t \in[0,1] .
$$

Step 2. The number s_{0} is finite.
Suppose that $s_{0}=-\infty$, that is, by Theorem 5 , for every $s \leqslant s_{1}$ problem $\left(\mathrm{E}_{s}\right)-(3)$ has at least a solution. Define $p_{1}:=\min _{t \in[0,1]} p(t)>0$ and take s sufficiently negative such that

$$
m-s>0 \quad \text { and } \quad \frac{(m-s) p_{1}}{16}>M .
$$

If $u(t)$ is a solution of $\left(\mathrm{E}_{S}\right)-(3)$, then, by (26),

$$
u^{\prime \prime \prime}(t)=s p(t)-f\left(t, u(t), u^{\prime}(t), u^{\prime \prime}(t)\right) \leqslant(s-m) p(t)
$$

and, by (3), there is $\left.t_{3} \in\right] 0,1\left[\right.$ such that $u^{\prime \prime}\left(t_{3}\right)=0$. For $t<t_{3}$

$$
u^{\prime \prime}(t)=-\int_{t}^{t_{3}} u^{\prime \prime \prime}(\xi) d \xi \geqslant \int_{t}^{t_{3}}(m-s) p(\xi) d \xi \geqslant(m-s)\left(t_{3}-t\right) p_{1}
$$

For $t \geqslant t_{3}$

$$
u^{\prime \prime}(t)=\int_{t_{3}}^{t} u^{\prime \prime \prime}(\xi) d \xi \leqslant(s-m)\left(t-t_{3}\right) p_{1}
$$

Choose $I=\left[0, \frac{1}{4}\right]$, or $I=\left[\frac{3}{4}, 1\right]$, such that $\left|t_{3}-t\right| \geqslant \frac{1}{4}$, for every $t \in I$. If $I=\left[0, \frac{1}{4}\right]$, then

$$
u^{\prime \prime}(t) \geqslant \frac{(m-s) p_{1}}{4}, \quad \forall t \in I,
$$

and if $I=\left[\frac{3}{4}, 1\right]$, then

$$
u^{\prime \prime}(t) \leqslant \frac{(s-m) p_{1}}{4}, \quad \forall t \in I .
$$

In the first case,

$$
\begin{aligned}
0 & =\int_{0}^{1} u^{\prime \prime}(t) d t=\int_{0}^{\frac{1}{4}} u^{\prime \prime}(t) d t+\int_{\frac{1}{4}}^{1} u^{\prime \prime}(t) d t \geqslant \int_{0}^{\frac{1}{4}} \frac{(m-s) p_{1}}{4} d t-u^{\prime}\left(\frac{1}{4}\right) \\
& =\frac{1}{16}(m-s) p_{1}-u^{\prime}\left(\frac{1}{4}\right)>M-u^{\prime}\left(\frac{1}{4}\right),
\end{aligned}
$$

which is in contradiction with (25).
For $I=\left[\frac{3}{4}, 1\right]$ a similar contradiction is achieved. Therefore, s_{0} is finite.
Step 3. For $\left.s \in] s_{0}, s_{1}\right]\left(\mathrm{E}_{s}\right)-(3)$ has at least two solutions.
As s_{0} is finite, by Theorem 5, for $s_{-1}<s_{0}$, $\left(\mathrm{E}_{s_{-1}}\right)-(3)$ has no solution. By Lemma 2 and Remark 1, we can consider $\rho_{2}>0$ large enough such that the estimate $\left\|u^{\prime \prime}\right\|<\rho_{2}$ holds for every solution u of $\left(\mathrm{E}_{S}\right)-(3)$, with $s \in\left[s_{-1}, s_{1}\right]$.

Let $M_{1}:=\max \{r,|M|\}$ and define the set

$$
\Omega_{2}=\left\{x \in \operatorname{dom} L:\left\|x^{\prime}\right\|<M_{1},\left\|x^{\prime \prime}\right\|<\rho_{2}\right\} .
$$

Then

$$
\begin{equation*}
d\left(L+N_{s_{-1}}, \Omega_{2}\right)=0 \tag{28}
\end{equation*}
$$

By Step 1 , if u is a solution of $\left(\mathrm{E}_{s}\right)-(3)$, with $s \in\left[s_{-1}, s_{1}\right]$, then $u \notin \partial \Omega_{2}$. Defining the convex combination of s_{1} and s_{-1} as $H(\lambda)=(1-\lambda) s_{-1}+\lambda s_{1}$ and considering the corresponding homotopic problems $\left(\mathrm{E}_{H(\lambda)}\right)-(3)$, the degree $d\left(L+N_{H(\lambda)}, \Omega_{2}\right)$ is well defined for every $\lambda \in[0,1]$ and for every $s \in\left[s_{-1}, s_{1}\right]$. Therefore, by (28) and the invariance of the degree

$$
\begin{equation*}
0=d\left(L+N_{s-1}, \Omega_{2}\right)=d\left(L+N_{s}, \Omega_{2}\right), \tag{29}
\end{equation*}
$$

for $s \in\left[s_{-1}, s_{1}\right]$.
Let $\left.\sigma \in] s_{0}, s_{1}\right] \subset\left[s_{-1}, s_{1}\right]$ and $u_{\sigma}(t)$ be a solution of $\left(\mathrm{E}_{\sigma}\right)-(3)$, which exists by Theorem 5. Take $\varepsilon>0$ such that

$$
\begin{equation*}
\left|u_{\sigma}^{\prime}(t)+\varepsilon\right|<M_{1}, \quad \forall t \in[0,1] . \tag{30}
\end{equation*}
$$

Then $\tilde{u}(t):=u_{\sigma}(t)+\varepsilon t$ is a strict upper solution of $\left(\mathrm{E}_{s}\right)-(3)$, with $\sigma<s \leqslant s_{1}$. In fact, by (27) with $\theta=\varepsilon$ and $\eta=t$, for such σ,

$$
\begin{aligned}
\tilde{u}^{\prime \prime \prime}(t) & =u_{\sigma}^{\prime \prime \prime}(t)=\sigma p(t)-f\left(t, u_{\sigma}(t), u_{\sigma}^{\prime}(t), u_{\sigma}^{\prime \prime}(t)\right) \\
& <\operatorname{sp(t)-f(t,u_{\sigma }(t),u_{\sigma }^{\prime }(t),\tilde {u}^{\prime \prime }(t))} \\
& \leqslant s p(t)-f\left(t, u_{\sigma}(t)+\varepsilon t, u_{\sigma}^{\prime}(t)+\varepsilon, \tilde{u}^{\prime \prime}(t)\right) \\
& =\operatorname{sp(t)-f(t,\tilde {u}(t),\tilde {u}^{\prime }(t),\tilde {u}^{\prime \prime }(t)),} \\
\tilde{u}(0) & =0, \quad \tilde{u}^{\prime}(0)=\tilde{u}^{\prime}(1)=\varepsilon>0 .
\end{aligned}
$$

Moreover $\alpha(t):=-r t$ is a strict lower solution of $\left(\mathrm{E}_{S}\right)-(3)$, for $s \leqslant s_{1}$. Indeed, by (17) and (15),

$$
\begin{aligned}
& \alpha^{\prime \prime \prime}(t)=0>s_{1} p(t)-f(t,-r,-r, 0) \geqslant s p(t)-f(t,-r t,-r, 0), \\
& \alpha(0)=0, \quad \alpha^{\prime}(0)=\alpha^{\prime}(1)=-r<0 .
\end{aligned}
$$

By Step $1,-r<u_{\sigma}^{\prime}(t)$ for every $t \in[0,1]$ and therefore $-r<u_{\sigma}^{\prime}(t)+\varepsilon, \forall t \in[0,1]$, that is, $\alpha^{\prime}(t)<\tilde{u}^{\prime}(t)$. Integrating on $[0, t]$

$$
\alpha(t) \leqslant \alpha(t)-\alpha(0)<\tilde{u}(t)-\tilde{u}(0)=\tilde{u}(t),
$$

for every $t \in[0,1]$.
Then, by (30), Lemma 8 and Remark 2, there is $\bar{\rho}_{2}>0$, independent of s, such that for

$$
\Omega_{\varepsilon}=\left\{x \in \operatorname{dom} L: \alpha(t)<x(t)<\tilde{u}(t), \alpha^{\prime}(t)<x^{\prime}(t)<\tilde{u}^{\prime}(t),\left\|x^{\prime \prime}\right\|<\bar{\rho}_{2}\right\}
$$

the degree of $L+N_{s}$ in Ω_{ε} satisfies

$$
\begin{equation*}
\left.\left.d\left(L+N_{s}, \Omega_{\varepsilon}\right)= \pm 1, \quad \text { for } s \in\right] \sigma, s_{1}\right] . \tag{31}
\end{equation*}
$$

Taking ρ_{2} in Ω_{2} large enough such that $\Omega_{\varepsilon} \subset \Omega_{2}$, by (29), (30) and the additivity of the degree, we obtain

$$
\begin{equation*}
\left.\left.d\left(L+N_{s}, \Omega_{2}-\overline{\Omega_{\varepsilon}}\right)=\mp 1, \quad \text { for } s \in\right] \sigma, s_{1}\right] . \tag{32}
\end{equation*}
$$

So, problem $\left(\mathrm{E}_{s}\right)-(3)$ has at least two solutions u_{1}, u_{2} such that $u_{1} \in \Omega_{\varepsilon}$ and $u_{2} \in \Omega_{2}-\overline{\Omega_{\varepsilon}}$, for $\left.\left.s \in\right] s_{0}, s_{1}\right]$, since σ is arbitrary in $\left.] s_{0}, s_{1}\right]$.

Step 4. For $s=s_{0}$, $\left(\mathrm{E}_{s}\right)-(3)$ has at least one solution.
Consider a sequence $\left(s_{m}\right)$ with $\left.\left.s_{m} \in\right] s_{0}, s_{1}\right]$ and $\lim s_{m}=s_{0}$. By Theorem 5, for each $s_{m},\left(\mathrm{E}_{s_{m}}\right)-(3)$ has a solution u_{m}. Using the estimates of Step 1, it is clear that $\left\|u_{m}\right\|<M_{1},\left\|u_{m}^{\prime}\right\|<M_{1}$ independently of m, and, by Remark 1 , there is $\tilde{\rho}_{2}>0$ large enough such that $\left\|u_{m}^{\prime \prime}\right\|<\tilde{\rho}_{2}$, independently of m. Then sequences (u_{m}) and $\left(u_{m}^{\prime}\right), m \in \mathbb{N}$, are bounded in $C([0,1])$. By the Arzelà-Ascoli theorem, we can take a subsequence of $\left(u_{m}\right)$ that converges in $C^{2}([0,1])$ to a solution $u_{0}(t)$ of $\left(\mathrm{E}_{s_{0}}\right)-(3)$.

Hence, there is at least one solution for $s=s_{0}$.
A variant of Theorem 9 can be obtained replacing f by $-f, x$ by $-x$ and y by $-y$.
Theorem 10. Consider $f:[0,1] \times \mathbb{R}^{3} \rightarrow \mathbb{R}$ a continuous function such that the assumptions of Theorem 6 are fulfilled. Suppose that there is $M>-r$ such that every solution u of $\left(\mathrm{E}_{s}\right)-(3)$, with $s \geqslant s_{1}$, satisfies

$$
u^{\prime}(t)>M, \quad \forall t \in[0,1],
$$

and there exists $m \in \mathbb{R}$ such that

$$
f(t, x, y, z) \leqslant m p(t),
$$

for every $(t, x, y, z) \in[0,1] \times[-r,|M|] \times[-r, M] \times \mathbb{R}$. Then s_{0} provided by Theorem 6 is finite and
(1) if $s>s_{0},\left(\mathrm{E}_{s}\right)-(3)$ has no solution;
(2) if $s=s_{0},\left(\mathrm{E}_{s}\right)-(3)$ has at least one solution.

Moreover, if condition (27) holds then

(3) for $s \in\left[s_{1}, s_{0}\left[\right.\right.$, $\left(\mathrm{E}_{s}\right)-(3)$ has at least two solutions.

Example. Consider a particular case of problem (12)-(13) with $n=m=1, k=4, b=d=B=C=0, a, c>0$ and $p(t) \equiv 1$, that is
(P) $\left\{\begin{array}{l}u^{\prime \prime \prime}(t)+\left|u^{\prime \prime}(t)\right|^{\mu}-4\left(u^{\prime}(t)\right)^{3}+(u(t))^{3}=s, \\ u(0)=u^{\prime}(0)=u^{\prime}(1)=0,\end{array}\right.$
with $\mu \in[0,2]$. The function $f(t, x, y, z)=|z|^{\mu}-4 y^{3}+x^{3}$ is continuous, verifies the Nagumo-type assumptions in E, given by (14), and monotonicity conditions (15) and (16). Consider s_{1} and $r>0$ large enough such that

$$
0<s_{1}<f(t, x,-r, 0)=4 r^{3}+x^{3}
$$

holds for every $x \leqslant-r$. Therefore by Theorem 5 there is $s_{0}<s_{1}$ such that (P) has no solution for $s<s_{0}$ (if $s_{0}=-\infty$, (P) has a solution for every $\left.s<s_{1}\right)$ and for $s_{0}<s \leqslant s_{1}$ problem (P) has at least a solution.

For r_{*} given by Lemma 2 define the set

$$
E_{1}=\left\{(t, x, y, z) \in[0,1] \times \mathbb{R}^{3}:|x| \leqslant 1,|y| \leqslant 1,|z| \leqslant r_{*}\right\} \subset E .
$$

Therefore, following the arguments of the proof of Theorem 4, for $f: E_{1} \rightarrow \mathbb{R}$ every solution u of (P) verifies $\left|u^{\prime}(t)\right| \leqslant 1$ in $[0,1]$ and condition (26) holds with $m=-\left(5+r_{*}^{\mu}\right)$. Moreover, for $0 \leqslant \eta \leqslant 1$ and $\theta \geqslant \frac{5+\sqrt{29}}{2}$, the inequality

$$
f(t, x+\eta \theta, y+\theta, z)=(x+\eta \theta)^{3}-4(y+\theta)^{3}+|z|^{\mu} \leqslant f(t, x, y, z)
$$

is verified for $(t, x, y, z) \in[0,1] \times[-1,1]^{2} \times \mathbb{R}$. So, by Theorem $9, s_{0}$ is finite and for $s_{0}<s \leqslant s_{1}$ problem (P) has at least two solutions.

References

[1] F. Bernis, L.A. Peletier, Two problems from draining flows involving third-order ordinary differential equations, SIAM J. Math. Anal. 27 (2) (1996) 515-527.
[2] C. de Coster, P. Habets, Upper and Lower Solutions in the Theory of ODE Boundary Value Problems: Classical and Recent Results, Recherches de Mathématique, vol. 52, Institut de Mathématique Pure et Appliquée, Université Catholique de Louvain, April 1996.
[3] L. Danziger, G. Elmergreen, The thyroid-pituitary homeostatic mechanism, Bull. Math. Biophys. 18 (1956) 1-13.
[4] C. Fabry, J. Mawhin, M.N. Nkashama, A multiplicity result for periodic solutions of forced nonlinear second order ordinary differential equations, Bull. London Math. Soc. 18 (1986) 173-180.
[5] M.R. Grossinho, F. Minhós, Existence result for some third order separated boundary value problems, Nonlinear Anal. 47 (2001) $2407-2418$.
[6] M.R. Grossinho, F. Minhós, A.I. Santos, Solvability of some third-order boundary value problems with asymmetric unbounded nonlinearities, Nonlinear Anal. 62 (2005) 1235-1250.
[7] M.R. Grossinho, F. Minhós, A.I. Santos, Existence result for a third-order ODE with nonlinear boundary conditions in presence of a sign-type Nagumo control, J. Math. Anal. Appl. 309 (2005) 271-283.
[8] X. Liu, H. Chen, Y. Lü, Explicit solutions of the generalized KdV equations with higher order nonlinearity, Appl. Math. Comput. 171 (2005) 315-319.
[9] J. Mawhin, Topological Degree Methods in Nonlinear Boundary Value Problems, Reg. Conf. Ser. Math., vol. 40, American Mathematical Society, Providence, RI, 1979.
[10] M. Nagumo, Über die differentialgleichung $y^{\prime \prime}=f\left(t, y, y^{\prime}\right)$, Proc. Phys. Math. Soc. Japan 19 (1937) 861-866.
[11] M. Senkyrik, Existence of multiple solutions for a third order three-point regular boundary value problem, Math. Bohem. 119 (2) (1994) 113-121.
[12] E.O. Tuck, L.W. Schwartz, A numerical and asymptotic study of some third-order ordinary differential equations relevant to draining and coating flows, SIAM Rev. 32 (3) (1990) 453-469.

[^0]: E-mail address: fminhos@uevora.pt.
 1 With partial support of CRUP, Acção E-99/06.

