

Available online at www.sciencedirect.com

J. Math. Anal. Appl. 339 (2008) 1342-1353

On some third order nonlinear boundary value problems: Existence, location and multiplicity results

Feliz Manuel Minhós 1

Departamento de Matemática, Universidade de Évora, Centro de Investigação em Matemática e Aplicações da UE, Rua Romão Ramalho, 7000-671 Évora, Portugal

Received 18 April 2007

Available online 11 August 2007

Submitted by Goong Chen

Abstract

We prove an Ambrosetti-Prodi type result for the third order fully nonlinear equation

$$u'''(t) + f(t, u(t), u'(t), u''(t)) = sp(t)$$

with $f:[0,1]\times\mathbb{R}^3\to\mathbb{R}$ and $p:[0,1]\to\mathbb{R}^+$ continuous functions, $s\in\mathbb{R}$, under several two-point separated boundary conditions. From a Nagumo-type growth condition, an *a priori* estimate on u'' is obtained. An existence and location result will be proved, by degree theory, for $s\in\mathbb{R}$ such that there exist lower and upper solutions. The location part can be used to prove the existence of positive solutions if a non-negative lower solution is considered. The existence, nonexistence and multiplicity of solutions will be discussed as s varies.

© 2007 Elsevier Inc. All rights reserved.

Keywords: Nagumo-type conditions; Lower and upper solution; Topological degree; Ambrosetti-Prodi problems

1. Introduction

In this paper we study the following third order fully nonlinear equation

$$u'''(t) + f(t, u(t), u'(t), u''(t)) = sp(t),$$
(E_s)

for $f:[0,1]\times\mathbb{R}^3\to\mathbb{R}$ and $p:[0,1]\to\mathbb{R}^+$ continuous functions and s a real parameter, with several types of two-point boundary conditions.

If the boundary conditions are

$$u(0) = A,$$
 $au'(0) - bu''(0) = B,$ $cu'(1) + du''(1) = C,$ (1)

for $a, b, c, d, A, B, C \in \mathbb{R}$ and $b, d \ge 0$ such that $a^2 + b > 0$ and $c^2 + d > 0$ an existence result is proved, for values of s such that there are lower and upper solutions to the problem (E_s) –(1).

E-mail address: fminhos@uevora.pt.

¹ With partial support of CRUP, Acção E-99/06.

In Section 3 we consider boundary conditions

$$u(0) = 0,$$
 $au'(0) - bu''(0) = 0,$ $cu'(1) + du''(1) = 0$ (2)

with $a, b, c, d \ge 0$ such that a + b > 0, c + d > 0 and proving that the existence of solutions for the problem (E_s) –(2) depends on s.

Considering, in (2), b = d = 0 with a, c > 0 the two-point boundary conditions are

$$u(0) = u'(0) = u'(1) = 0,$$
 (3)

an Ambrosetti–Prodi type result is obtained in Section 4. That is, we prove that there are $s_0, s_1 \in \mathbb{R}$ such that (E_s) –(3) has no solution if $s < s_0$, it has at least one solution if $s = s_0$ and (E_s) –(3) has at least two solutions for $s \in [s_0, s_1]$.

Equation (E_s) can be seen as a generalized model for various physical, natural or physiological phenomena such as the flow of a thin film of viscous fluid over a solid surface [1,12], the solitary waves solution of the Korteweg–de Vries equation [8] or the thyroid-pituitary interaction [3]. The problem (E_s)–(1) can model the static deflection of an elastic beam with linear supports at both endpoints.

The arguments used were suggested by several papers namely [4], applied to second order periodic problems [11], to third order three points boundary value problems [5–7], for two-point boundary value problems. In short, they make use of a Nagumo-type growth condition [10], the upper and lower solutions technique [2], and Leray–Schauder degree theory [9].

2. Preliminary results

In the following, C([0, 1]) denotes the space of continuous functions with the norm

$$||x|| = \max_{t \in [0,1]} |x(t)|.$$

Moreover, $C^k([0, 1])$ denotes the space of real valued functions with continuous *i*-derivative in [0, 1], for i = 1, ..., k, equipped with the norm

$$||x||_{C^k} = \max_{0 \le i \le k} \{ |x^{(i)}(t)| : t \in [0, 1] \}.$$

Some growth conditions on the nonlinearity of (E_s) will be assumed in the following. The first one is given by the next definition and provides also an *a priori* estimate for the second derivative of solutions u of (E_s) , if some bounds on u and u' are verified.

Definition 1. A continuous function $g:[0,1]\times\mathbb{R}^3\to\mathbb{R}$ is said to satisfy Nagumo-type condition in

$$E = \left\{ (t, x, y, z) \in [0, 1] \times \mathbb{R}^3 \colon \gamma_0(t) \leqslant x \leqslant \Gamma_0(t), \ \gamma_1(t) \leqslant y \leqslant \Gamma_1(t) \right\},$$

with γ_0 , γ_1 , Γ_0 and Γ_1 continuous functions such that $\gamma_0(t) \leqslant \Gamma_0(t)$, $\gamma_1(t) \leqslant \Gamma_1(t)$, for every $t \in [0, 1]$, if there exists a continuous function $h_E : \mathbb{R}_0^+ \to [k, +\infty[$, for some fixed k > 0, such that

$$|g(t, x, y, z)| \le h_E(|z|), \quad \forall (t, x, y, z) \in E,$$
(4)

with

$$\int_{0}^{+\infty} \frac{\xi}{h_E(\xi)} d\xi = +\infty. \tag{5}$$

If these assumptions hold for every $E \subset [0, 1] \times \mathbb{R}^3$, given above, then g is said to satisfy Nagumo-type conditions.

Lemma 2. Let $f:[0,1]\times\mathbb{R}^3\to\mathbb{R}$ be a continuous function that satisfies Nagumo-type conditions (4) and (5) in

$$E = \left\{ (t, x, y, z) \in [0, 1] \times \mathbb{R}^3 \colon \gamma_0(t) \leqslant x \leqslant \Gamma_0(t), \ \gamma_1(t) \leqslant y \leqslant \Gamma_1(t) \right\},\tag{6}$$

where $\gamma_0, \gamma_1, \Gamma_0, \Gamma_1$ are continuous functions. Then there is $r_* > 0$ (depending only on the parameter s and on the functions p, h_E, γ_1 and Γ_1) such that every solution u(t) of (E_s) verifying

$$\gamma_0(t) \leqslant u(t) \leqslant \Gamma_0(t), \qquad \gamma_1(t) \leqslant u'(t) \leqslant \Gamma_1(t)$$

for every $t \in [0, 1]$, satisfies

$$||u''|| < r_*$$
.

Remark 1. We observe that r_* can be taken independent of s as long as s belongs to some bounded set.

Proof. Considering the non-negative number

$$\eta = \max \{ \Gamma_1(1) - \gamma_1(0), \Gamma_1(0) - \gamma_1(1) \}$$

and $r > \eta$ such that

$$\int_{n}^{t} \frac{\xi}{h_{E}(\xi) + |s| \|p\|} d\xi \geqslant \max_{t \in [0,1]} \Gamma_{1}(t) - \min_{t \in [0,1]} \gamma_{1}(t),$$

then the proof follows from [5, Lemma 1], as (E_s) is a particular case of the equation there assumed. \Box

The appropriate definition of lower and upper-solutions for problem (E_s) –(1) is now given.

Definition 3. Consider $a, b, c, d, A, B, C \in \mathbb{R}$ such that $b, d \ge 0$, $a^2 + b > 0$ and $c^2 + d > 0$.

(i) A function $\alpha(t) \in C^3([0,1]) \cap C^2([0,1])$ is a lower solution of (E_s) –(1) if

$$\alpha'''(t) + f(t, \alpha(t), \alpha'(t), \alpha''(t)) \geqslant sp(t), \quad \text{if } t \in]0, 1[,$$

and

$$\alpha(0) \leqslant A$$
, $a\alpha'(0) - b\alpha''(0) \leqslant B$, $c\alpha'(1) + d\alpha''(1) \leqslant C$.

(ii) A function $\beta(t) \in C^3(]0, 1[) \cap C^2([0, 1])$ is an upper solution of (E_s) –(1) if

$$\beta'''(t) + f(t, \beta(t), \beta'(t), \beta''(t)) \leq sp(t), \quad \text{if } t \in]0, 1[,$$

and

$$\beta(0) \geqslant A$$
, $a\beta'(0) - b\beta''(0) \geqslant B$, $c\beta'(1) + d\beta''(1) \geqslant C$.

For s such that there are upper and lower solutions of (E_s) –(1) with first derivative "well ordered," an existence result and some information concerning the location of the solution of (E_s) –(1) and its derivative are obtained.

Theorem 4. Let $f:[0,1]\times\mathbb{R}^3\to\mathbb{R}$ be a continuous function. Suppose that there are lower and upper solutions of (E_s) –(1), $\alpha(t)$ and $\beta(t)$, respectively, such that, for $t\in[0,1]$,

$$\alpha'(t) \leqslant \beta'(t)$$

and f satisfies Nagumo-type conditions (4) and (5) in

$$E_* = \{(t, x, y, z) \in [0, 1] \times \mathbb{R}^3 \colon \alpha(t) \leqslant x \leqslant \beta(t), \ \alpha'(t) \leqslant y \leqslant \beta'(t) \}.$$

If f verifies

$$f(t,\alpha(t),y,z) \leqslant f(t,x,y,z) \leqslant f(t,\beta(t),y,z), \tag{7}$$

for fixed $(t, y, z) \in [0, 1] \times \mathbb{R}^2$ and $\alpha(t) \leq x \leq \beta(t)$, then (E_s) –(1) has at least one solution $u(t) \in C^3([0, 1])$ satisfying $\alpha(t) \leq u(t) \leq \beta(t)$, $\alpha'(t) \leq u'(t) \leq \beta'(t)$, $\forall t \in [0, 1]$.

Proof. Define the auxiliary continuous functions

$$\delta_0(t,x) = \begin{cases} \beta(t) & \text{if } x > \beta(t), \\ x & \text{if } \alpha(t) \leqslant x \leqslant \beta(t), \\ \alpha(t) & \text{if } x < \alpha^{(i)}(t), \end{cases}$$
(8)

$$\delta_{1}(t, y) = \begin{cases} \beta'(t) & \text{if } y > \beta'(t), \\ y & \text{if } \alpha'(t) \leqslant y \leqslant \beta'(t), \\ \alpha'(t) & \text{if } y < \alpha'(t), \end{cases}$$
(9)

and, for $\lambda \in [0, 1]$, the modified problem composed, by

$$u'''(t) + \lambda f(t, \delta_0(t, u(t)), \delta_1(t, u'(t)), u''(t)) - u'(t) + \lambda \delta_1(t, u'(t)) = \lambda s p(t)$$

$$\tag{10}$$

and the boundary conditions

$$u(0) = \lambda A$$

$$u'(0) = \lambda \left[B - a\delta_1(0, u'(0)) + bu''(0) + \delta_1(0, u'(0)) \right],$$

$$u'(1) = \lambda \left[C - c\delta_1(1, u'(1)) - du''(1) + \delta_1(1, u'(1)) \right].$$
(11)

Taking $r_1 > 0$ such that, for every $t \in [0, 1]$,

$$-r_1 \leq \alpha'(t) \leq \beta'(t) \leq r_1,$$

$$sp(t) - f(t, \alpha(t), \alpha'(t), 0) - r_1 - \alpha'(t) < 0,$$

$$sp(t) - f(t, \beta(t), \beta'(t), 0) + r_1 - \beta'(t) > 0$$

and

$$|B + (1 - a)\beta'(0)| < r_1,$$
 $|B + (1 - a)\alpha'(0)| < r_1,$
 $|C + (1 - c)\beta'(1)| < r_1,$ $|C + (1 - c)\alpha'(1)| < r_1$

the proof follows the arguments used in [5, Theorem 1]. So, only the following details due to a more general boundary conditions are included.

In Step 1 it is proved that every solution u of (10)–(11) satisfies $|u'(t)| < r_1$ and $|u(t)| < r_0$, for every $t \in [0, 1]$ and $r_0 := r_1 + |A|$, independently of λ .

In Step 2, the set

$$E_r = \{(t, x, y, z) \in [0, 1] \times \mathbb{R}^3 \colon |x| \leqslant r_0, |y| \leqslant r_1 \}$$

and the function $F_{\lambda}: E_r \to \mathbb{R}$ given by

$$F_{\lambda}(t, x, y, z) := \lambda f(t, \delta_0(t, x), \delta_1(t, y), z) - y + \lambda \delta_1(t, y)$$

are considered. As $|F_{\lambda}(t, x, y, z)| \leq 2r_1 + h_{E_*}(|z|)$ and

$$\int_{0}^{+\infty} \frac{z}{2r_1 + h_{E_*}(z)} dz = +\infty$$

then F_{λ} satisfies a Nagumo-type condition in E_* and the assumptions of Lemma 2 are verified.

In Step 3 the nonlinear operator \mathcal{N}_{λ} is defined by

$$\mathcal{N}_{\lambda}u = \left(-\lambda f\left(t, \delta_{0}\left(t, u(t)\right), \delta_{1}\left(t, u'(t)\right), u''(t)\right) + u'(t) - \lambda \delta_{1}\left(t, u'(t)\right) + \lambda sp(t), \lambda A, B_{\lambda}, C_{\lambda}\right)$$

with

$$B_{\lambda} := \lambda [B - a\delta_1(0, u'(0)) + bu''(0) + \delta_1(0, u'(0))],$$

$$C_{\lambda} := \lambda [C - c\delta_1(1, u'(1)) - du''(1) + \delta_1(1, u'(1))]$$

and the Leray-Schauder degree is evaluated in the set

$$\Omega = \left\{ x \in C^2([0,1]) \colon \|x\| < r_0, \ \|x'\| < r_1, \ \|x''\| < r_2 \right\}. \qquad \Box$$

Example. Consider the differential equation

$$u'''(t) + |u''(t)|^{\theta} - k[u'(t)]^{2n+1} + [u(t)]^{2m+1} = sp(t)$$
(12)

for $t \in [0, 1]$, $\theta \in [0, 2]$, $n, m \in \mathbb{N}$, k > 0, $s \in \mathbb{R}$ and $p : [0, 1] \to \mathbb{R}^+$ a continuous function, with the boundary conditions

$$u(0) = 0$$
, $au'(0) - bu''(0) = B$, $cu'(1) + du''(1) = C$, (13)

for $B, C \in \mathbb{R}$, $a, b, c, d \ge 0$ with a + b > 0 and c + d > 0.

If a, c, B and C are such that $|B| \le a$ and $|C| \le c$ then functions $\alpha, \beta : [0, 1] \to \mathbb{R}$ given by $\alpha(t) = -t$ and $\beta(t) = t$ are, respectively, lower and upper solutions of problem (12)–(13) for $|s| \le \frac{k}{\|p\|}$. As

$$f(t, x, y, z) = |z|^{\theta} - ky^{2n+1} + x^{2m+1}$$

is continuous and verifies Nagumo-type assumptions (4) and (5) in

$$E = \{(t, x, y, z) \in [0, 1] \times \mathbb{R}^3 \colon |x| \leqslant t, \ |y| \leqslant 1\}$$
(14)

for $h_E(z) = k + 1 + |z|^{\theta}$ then, by Theorem 4, problem (12) has at least one solution u(t) such that

$$-t \le u(t) \le t$$
, $-1 \le u'(t) \le 1$, $\forall t \in [0, 1]$,

for $|s| \leqslant \frac{k}{\|p\|}$.

3. Existence and nonexistence results

A first discussion concerning the dependence on s of the existence and nonexistence of a solution will be given in the special case that A = B = C = 0 and $a, b, c, d \ge 0$ with a + b > 0, c + d > 0, that is, for (E_s) –(2). Lower and upper solutions definition for this problem are obtained considering in Definition 3 these restrictions.

Theorem 5. Let $f:[0,1]\times\mathbb{R}^3\to\mathbb{R}$ be a continuous function satisfying a Nagumo-type condition and such that

(i) for $(t, v, z) \in [0, 1] \times \mathbb{R}^2$

$$x_1 \geqslant x_2 \quad \Rightarrow \quad f(t, x_1, y, z) \geqslant f(t, x_2, y, z); \tag{15}$$

(ii) for $(t, x, z) \in [0, 1] \times \mathbb{R}^2$

$$y_1 \geqslant y_2 \implies f(t, x, y_1, z) \leqslant f(t, x, y_2, z);$$
 (16)

(iii) there are $s_1 \in \mathbb{R}$ and r > 0 such that

$$\frac{f(t,0,0,0)}{p(t)} < s_1 < \frac{f(t,x,-r,0)}{p(t)},\tag{17}$$

for every $t \in [0, 1]$ and every $x \le -r$. Then there is $s_0 < s_1$ (with the possibility that $s_0 = -\infty$) such that

- (1) for $s < s_0$, (E_s)–(2) has no solution;
- (2) for $s_0 < s \le s_1$, (E_s)–(2) has at least one solution.

Proof. Step 1. There is $s^* < s_1$ such that (E_{s^*}) –(2) has a solution.

Defining

$$s^* = \max \left\{ \frac{f(t, 0, 0, 0)}{p(t)}, \ t \in [0, 1] \right\},\$$

by (17), there exists $t^* \in [0, 1]$ such that

$$\frac{f(t,0,0,0)}{p(t)} \leqslant s^* = \frac{f(t^*,0,0,0)}{p(t^*)} < s_1, \quad \forall t \in [0,1],$$

and, by the first inequality, $\beta(t) \equiv 0$ is an upper solution of (E_{s^*}) –(2).

The function $\alpha(t) = -r \ t$ is a lower solution of (E_{s^*}) –(2). In fact, as $\alpha(t) \ge -r$, $\alpha'(t) = -r$ and $\alpha''(t) = \alpha'''(t) \equiv 0$, then, by (17) and (15),

$$\alpha'''(t) = 0 > s_1 p(t) - f(t, -r, -r, 0) \geqslant s_1 p(t) - f(t, -rt, -r, 0) > s^* p(t) - f(t, -rt, -r, 0).$$
(18)

So, by Theorem 4, there is, at least a solution of (E_{s^*}) –(2) with $s^* < s_1$.

Step 2. If (E_s) –(2) has a solution for $s = \sigma < s_1$, then it has at least one solution for $s \in [\sigma, s_1]$.

Suppose that (E_{σ}) –(2) has a solution $u_{\sigma}(t)$. For s such that $\sigma \leq s \leq s_1$,

$$u_{\sigma}^{\prime\prime\prime}(t) = \sigma p(t) - f\left(t, u_{\sigma}(t), u_{\sigma}^{\prime}(t), u_{\sigma}^{\prime\prime}(t)\right) \leqslant sp(t) - f\left(t, u_{\sigma}(t), u_{\sigma}^{\prime\prime}(t), u_{\sigma}^{\prime\prime}(t)\right)$$

and so $u_{\sigma}(t)$ is an upper solution of (E_s) –(2) for every s such that $\sigma \leq s \leq s_1$.

For r > 0 given by (17) take $R \ge r$ large enough such that

$$u'_{\sigma}(0) \geqslant -R, \quad u'_{\sigma}(1) \geqslant -R \quad \text{and} \quad \min_{t \in [0,1]} u_{\sigma}(t) \geqslant -R.$$
 (19)

Since, by (17) and (15), for $s \leq s_1$,

$$0 > s_1 p(t) - f(t, -R, -r, 0) \ge sp(t) - f(t, -Rt, -R, 0)$$

and $-aR \le 0$, $-cR \le 0$ then $\alpha(t) = -Rt$ is a lower solution of (E_s) –(2) for $s \le s_1$.

To apply Theorem 4 the condition

$$-R \leqslant u_{\sigma}'(t), \quad \forall t \in [0, 1], \tag{20}$$

must be verified. Suppose that (20) is not true. Therefore there is $t \in [0, 1]$ such that $u'_{\sigma}(t) < -R$. Defining

$$\min_{t \in [0,1]} u'_{\sigma}(t) := u'_{\sigma}(t_0) \quad (< -R)$$

then, by (19), $t_0 \in]0, 1[$, $u_{\sigma}''(t_0) = 0$, $u_{\sigma}'''(t_0) \ge 0$ and, by (16), (19) and (17), the following contradiction

$$0 \le u_{\sigma}^{"'}(t_0) = \sigma p(t_0) - f(t_0, u_{\sigma}(t_0), u_{\sigma}'(t_0), u_{\sigma}''(t_0))$$

$$\le \sigma p(t_0) - f(t_0, u_{\sigma}(t_0), -R, 0) \le s_1 p(t_0) - f(t_0, -R, -R, 0) < 0$$

is obtained. So $-R \le u'_{\sigma}(t)$, for every $t \in [0, 1]$, and, by Theorem 4, problem (E_s) –(2) has at least a solution u(t) for every s such that $\sigma \le s \le s_1$.

Step 3. There is $s_0 \in \mathbb{R}$ *such that:*

- for $s < s_0$, (E_s) –(2) has no solution;
- for $s \in]s_0, s_1]$, (E_s) –(2) has at least a solution.

Let $S = \{s \in \mathbb{R}: (E_s)-(2) \text{ has at least a solution}\}$. As, by Step 1, $s^* \in S$ then $S \neq \emptyset$. Defining $s_0 = \inf S$, by Step 1, $s_0 \le s^* < s_1$ and, by Step 2, $(E_s)-(2)$ has at least a solution for $s \in]s_0, s_1]$ and $(E_s)-(2)$ has no solution for $s < s_0$. Observe that if $s_0 = -\infty$ then, by Step 2, $(E_s)-(2)$ has a solution for every $s \le s_1$. \square

A variant of Theorem 5 can be obtained replacing, in (17), f by -f and x by -x.

Theorem 6. Let $f:[0,1]\times\mathbb{R}^3\to\mathbb{R}$ be a continuous function satisfying a Nagumo-type condition and growth assumptions (15) and (16). If there are $s_1\in\mathbb{R}$ and r>0 such that

$$\frac{f(t,0,0,0)}{p(t)} > s_1 > \frac{f(t,x,r,0)}{p(t)},$$

for every $t \in [0, 1]$ and every $x \ge r$, then there is $s_0 > s_1$ (with the possibility that $s_0 = +\infty$) such that

- (1) for $s > s_0$, (E_s)–(2) has no solution;
- (2) for $s_0 > s \ge s_1$, (E_s) –(2) has at least one solution.

4. Multiplicity results

In the particular case of boundary conditions (1) where b = d = A = B = C = 0 and a, c > 0 is proved the existence of a second solution for problem (E_s) –(3) as a consequence of a non-null degree for the same operator in two disjoint sets.

The arguments are based on strict lower and upper solutions and some new assumptions on the nonlinearity.

Definition 7. Consider $\alpha, \beta : [0, 1] \to \mathbb{R}$ such that $\alpha, \beta \in C^3([0, 1]) \cap C^2([0, 1])$.

(i) $\alpha(t)$ is a strict lower solution of (E_s) –(3) if

$$\alpha'''(t) + f(t, \alpha(t), \alpha'(t), \alpha''(t)) > sp(t), \quad \text{if } t \in [0, 1[$$

and

$$\alpha(0) \le 0, \quad \alpha'(0) < 0, \quad \alpha'(1) < 0.$$
 (21)

(ii) $\beta(t)$ is a strict upper solution of (E_s) –(3) if

$$\beta'''(t) + f(t, \beta(t), \beta'(t), \beta''(t)) < sp(t), \text{ if } t \in]0, 1[,$$

and

$$\beta(0) \geqslant 0$$
, $\beta'(0) > 0$, $\beta'(1) > 0$.

Define the set $X = \{x \in C^2([0, 1]): x(0) = x'(0) = x'(1) = 0\}$ and the operators $L : \text{dom } L \to C([0, 1])$, with $\text{dom } L = C^3([0, 1]) \cap X$, given by Lu = u''' and, for $s \in \mathbb{R}$, $N_s : C^2([0, 1]) \cap X \to C([0, 1])$ given by

$$N_s u = f(t, u(t), u'(t), u''(t)) - sp(t).$$

For an open and bounded set $\Omega \subset X$, the operator $L + N_s$ is L-compact in $\overline{\Omega}$ [9]. Note that in dom L the equation $Lu + N_su = 0$ is equivalent to problem (E_s) –(3).

The next result will be an important tool used to evaluate the Leray-Schauder topological degree.

Lemma 8. Consider a continuous function $f:[0,1]\times\mathbb{R}^3\to\mathbb{R}$ verifying a Nagumo-type condition and (15). If there are strict lower and upper solutions of (E_s) –(3), $\alpha(t)$ and $\beta(t)$, respectively, such that

$$\alpha'(t) < \beta'(t), \quad \forall t \in [0, 1], \tag{22}$$

then there is $\rho_2 > 0$ such that $d(L + N_s, \Omega) = \pm 1$ for

$$\Omega = \left\{ x \in \text{dom } L \colon \alpha(t) < x(t) < \beta(t), \ \alpha'(t) < x'(t) < \beta'(t), \ \|x''\| < \rho_2 \right\}.$$

Remark 2. The set Ω can be taken the same for (E_s) –(3), independent of s, as long as α and β are strict lower and upper solutions for (E_s) –(3) and s belongs to a bounded set.

Proof. For the auxiliary functions δ_0 , δ_1 defined in (8) and (9) consider the modified problem

$$\begin{cases} u'''(t) + F(t, u(t), u'(t), u''(t)) = sp(t), \\ u(0) = u'(0) = u'(1) = 0, \end{cases}$$
 (23)

where $F:[0,1]\times\mathbb{R}^3\to\mathbb{R}$ is the continuous function given by

$$F(t, x, y, z) = f(t, \delta_0(t, x), \delta_1(t, y), z) - y + \delta_1(t, y)$$

and define the operator $F_s: C^2([0,1]) \cap X \to C([0,1])$ by

$$F_s u = F(t, u(t), u'(t), u''(t)) - sp(t).$$

With these definitions problem (23) is equivalent to the equation $Lu + F_su = 0$ in dom L. For $\lambda \in [0, 1]$ and $u \in \text{dom } L$ consider the homotopy

$$H_{\lambda}u := Lu - (1 - \lambda)u'' + \lambda F_{s}u$$

and take $\rho_1 > 0$ large enough such that, for every $t \in [0, 1]$,

$$-\rho_1 \leqslant \alpha'(t) < \beta'(t) \leqslant \rho_1,$$

$$sp(t) - f(t, \alpha(t), \alpha'(t), 0) - \rho_1 - \alpha'(t) < 0$$

and

$$sp(t) - f(t, \beta(t), \beta'(t), 0) + \rho_1 - \beta'(t) > 0.$$

Following the arguments referred in the proof of Theorem 4, there is $\rho_2 > 0$ such that every solution u(t) of $H_{\lambda}u = 0$ satisfies $||u'|| < \rho_1$ and $||u''|| < \rho_2$, independently of $\lambda \in [0, 1]$. Defining

$$\Omega_1 = \{ x \in \text{dom } L \colon ||x'|| < \rho_1, ||x''|| < \rho_2 \}$$

then, every solution u of $H_{\lambda}u = 0$ belongs to Ω_1 for every $\lambda \in [0, 1]$, $u \notin \partial \Omega_1$ and the degree $d(H_{\lambda}, \Omega_1)$ is well defined, for every $\lambda \in [0, 1]$.

For $\lambda = 0$ the equation $H_0 u = 0$, that is, the linear problem

$$\begin{cases} u'''(t) - u''(t) = 0, \\ u(0) = u'(0) = u'(1) = 0 \end{cases}$$

has only the trivial solution and, by degree theory, $d(H_0, \Omega_1) = \pm 1$. By the invariance under homotopy

$$\pm 1 = d(H_0, \Omega_1) = d(H_1, \Omega_1) = d(L + F_s, \Omega_1). \tag{24}$$

In the sequel it is proved that if $u \in \Omega_1$ is a solution of $Lu + F_s u = 0$ then $u \in \Omega$.

In fact, by (24), there is $u_1(t) \in \Omega_1$ solution of $Lu + F_s u = 0$. Assume, by contradiction, that there is $t \in [0, 1]$ such that $u_1'(t) \leq \alpha'(t)$ and define

$$\min_{t \in [0,1]} \left[u_1'(t) - \alpha'(t) \right] := u_1'(t_1) - \alpha'(t_1) \quad (\leqslant 0).$$

From (21) $t_1 \in]0, 1[, u_1''(t_1) - \alpha''(t_1) = 0$ and $u_1'''(t_1) - \alpha'''(t_1) \ge 0$. By (15), the following contradiction:

$$u_1'''(t_1) = sp(t_1) - F(t_1, u_1(t_1), u_1'(t_1), u_1''(t_1))$$

$$= sp(t_1) - f(t_1, \delta_0(t_1, u_1(t_1)), \delta_1(t_1, u_1'(t_1)), u_1''(t_1)) + u_1'(t_1) - \delta_1(t_1, u_1'(t_1))$$

$$\leq sp(t_1) - f(t_1, \alpha(t_1), \alpha'(t_1), \alpha''(t_1)) + u_1'(t_1) - \alpha'(t_1)$$

$$\leq sp(t_1) - f(t_1, \alpha(t_1), \alpha'(t_1), \alpha''(t_1)) < \alpha'''(t_1)$$

is achieved. Therefore $u_1'(t) > \alpha'(t)$, for $t \in [0, 1]$. In a similar way it can be proved that $u_1'(t) < \beta'(t)$, for every $t \in [0, 1]$ and so $u_1 \in \Omega$.

As the equations $Lu + F_s u = 0$ and $Lu + N_s u = 0$ are equivalent on Ω then

$$d(L+F_s,\Omega_1)=d(L+F_s,\Omega)=d(L+N_s,\Omega)=\pm 1,$$

by (24) and the excision property of the degree. \Box

The main result is attained assuming that f is bounded from below and it satisfies some adequate condition of monotonicity-type which requires different "speeds" of growth.

Theorem 9. Let $f:[0,1]\times\mathbb{R}^3\to\mathbb{R}$ be a continuous function such that the assumptions of Theorem 5 are fulfilled. Suppose that there is M>-r such that every solution u of (E_s) –(3), with $s\leqslant s_1$, satisfies

$$u'(t) < M, \quad \forall t \in [0, 1],$$
 (25)

and there exists $m \in \mathbb{R}$ such that

$$f(t, x, y, z) \geqslant mp(t), \tag{26}$$

for every $(t, x, y, z) \in [0, 1] \times [-r, |M|] \times [-r, M] \times \mathbb{R}$, with r given by (17). Then s_0 , provided by Theorem 5, is finite and

- (1) if $s < s_0$, (E_s) –(3) has no solution;
- (2) if $s = s_0$, (E_s)–(3) has at least one solution.

Moreover, let $M_1 := \max\{r, |M|\}$ and assume that there is $\theta > 0$ such that, for every $(t, x, y, z) \in [0, 1] \times [-M_1, M_1]^2 \times \mathbb{R}$ and $0 \le \eta \le 1$,

$$f(t, x + \eta\theta, y + \theta, z) \le f(t, x, y, z). \tag{27}$$

Then

(3) for $s \in]s_0, s_1]$, (E_s) –(3) has at least two solutions.

Proof. Step 1. Every solution u(t) of (E_s) –(3), for $s \in]s_0, s_1]$, satisfies -r < u'(t) < M and -r < u(t) < |M|, with r given by (17) and $t \in [0, 1]$.

For first condition, by (25), it will be enough to show that -r < u'(t), for every $t \in [0, 1]$ and for every solution u of (E_s) –(3), with $s \le s_1$.

Suppose, by contradiction, that there are $s \in [s_0, s_1]$, a solution u of (E_s) –(3) and $t_2 \in [0, 1]$ such that

$$u'(t_2) := \min_{t \in [0, 1]} u'(t) \leqslant -r.$$

By (3), $t_2 \in]0, 1[$, $u''(t_2) = 0$ and $u'''(t_2) \ge 0$. By (16),

$$0 \leqslant u'''(t_2) = sp(t_2) - f(t_2, u(t_2), u'(t_2), u''(t_2)) \leqslant s_1 p(t_2) - f(t_2, u(t_2), -r, 0).$$

If $u(t_2) < -r$, from (17) the following contradiction:

$$0 \le s_1 p(t_2) - f(t_2, u(t_2), -r, 0) \le s_1 p(t_2) - f(t_2, -r, -r, 0) < 0$$

is obtained. If $u(t_2) \ge -r$, from (15) and (17), the same contradiction is achieved. Then every solution u of (E_s) –(3), with $s_0 < s \le s_1$, verifies

$$u'(t) > -r$$
, $\forall t \in [0, 1]$.

So, by (25), -r < u'(t) < M, for every $t \in [0, 1]$. Integrating on [0, t], we obtain

$$-r \leqslant -rt < u(t) < Mt \leqslant |M|, \quad \forall t \in [0, 1].$$

Step 2. The number s_0 is finite.

Suppose that $s_0 = -\infty$, that is, by Theorem 5, for every $s \le s_1$ problem (E_s) –(3) has at least a solution. Define $p_1 := \min_{t \in [0,1]} p(t) > 0$ and take s sufficiently negative such that

$$m - s > 0$$
 and $\frac{(m - s)p_1}{16} > M$.

If u(t) is a solution of (E_s) –(3), then, by (26),

$$u'''(t) = sp(t) - f(t, u(t), u'(t), u''(t)) \le (s - m)p(t)$$

and, by (3), there is $t_3 \in (0, 1)$ such that $u''(t_3) = 0$. For $t < t_3$

$$u''(t) = -\int_{t}^{t_3} u'''(\xi) d\xi \geqslant \int_{t}^{t_3} (m-s) p(\xi) d\xi \geqslant (m-s)(t_3-t) p_1.$$

For $t \ge t_3$

$$u''(t) = \int_{t_3}^t u'''(\xi) d\xi \leqslant (s - m)(t - t_3) p_1.$$

Choose $I = [0, \frac{1}{4}]$, or $I = [\frac{3}{4}, 1]$, such that $|t_3 - t| \ge \frac{1}{4}$, for every $t \in I$. If $I = [0, \frac{1}{4}]$, then

$$u''(t) \geqslant \frac{(m-s)p_1}{4}, \quad \forall t \in I,$$

and if $I = [\frac{3}{4}, 1]$, then

$$u''(t) \leqslant \frac{(s-m)p_1}{4}, \quad \forall t \in I.$$

In the first case,

$$0 = \int_{0}^{1} u''(t) dt = \int_{0}^{\frac{1}{4}} u''(t) dt + \int_{\frac{1}{4}}^{1} u''(t) dt \geqslant \int_{0}^{\frac{1}{4}} \frac{(m-s)p_{1}}{4} dt - u'\left(\frac{1}{4}\right)$$
$$= \frac{1}{16}(m-s)p_{1} - u'\left(\frac{1}{4}\right) > M - u'\left(\frac{1}{4}\right),$$

which is in contradiction with (25).

For $I = \begin{bmatrix} \frac{3}{4}, 1 \end{bmatrix}$ a similar contradiction is achieved. Therefore, s_0 is finite.

Step 3. For $s \in]s_0, s_1]$ (E_s)–(3) has at least two solutions.

As s_0 is finite, by Theorem 5, for $s_{-1} < s_0$, $(E_{s_{-1}})$ –(3) has no solution. By Lemma 2 and Remark 1, we can consider $\rho_2 > 0$ large enough such that the estimate $||u''|| < \rho_2$ holds for every solution u of (E_s) –(3), with $s \in [s_{-1}, s_1]$.

Let $M_1 := \max\{r, |M|\}$ and define the set

$$\Omega_2 = \{ x \in \text{dom } L \colon ||x'|| < M_1, ||x''|| < \rho_2 \}.$$

Then

$$d(L + N_{s-1}, \Omega_2) = 0. (28)$$

By Step 1, if u is a solution of (E_s) –(3), with $s \in [s_{-1}, s_1]$, then $u \notin \partial \Omega_2$. Defining the convex combination of s_1 and s_{-1} as $H(\lambda) = (1 - \lambda)s_{-1} + \lambda s_1$ and considering the corresponding homotopic problems $(E_{H(\lambda)})$ –(3), the degree $d(L + N_{H(\lambda)}, \Omega_2)$ is well defined for every $\lambda \in [0, 1]$ and for every $s \in [s_{-1}, s_1]$. Therefore, by (28) and the invariance of the degree

$$0 = d(L + N_{s-1}, \Omega_2) = d(L + N_s, \Omega_2), \tag{29}$$

for $s \in [s_{-1}, s_1]$.

Let $\sigma \in [s_0, s_1] \subset [s_{-1}, s_1]$ and $u_{\sigma}(t)$ be a solution of (E_{σ}) –(3), which exists by Theorem 5. Take $\varepsilon > 0$ such that

$$|u'_{\sigma}(t) + \varepsilon| < M_1, \quad \forall t \in [0, 1]. \tag{30}$$

Then $\tilde{u}(t) := u_{\sigma}(t) + \varepsilon t$ is a strict upper solution of (E_s) –(3), with $\sigma < s \le s_1$. In fact, by (27) with $\theta = \varepsilon$ and $\eta = t$, for such σ ,

$$\begin{split} \tilde{u}'''(t) &= u_{\sigma}'''(t) = \sigma p(t) - f\left(t, u_{\sigma}(t), u_{\sigma}'(t), u_{\sigma}''(t)\right) \\ &< sp(t) - f\left(t, u_{\sigma}(t), u_{\sigma}'(t), \tilde{u}''(t)\right) \\ &\leqslant sp(t) - f\left(t, u_{\sigma}(t) + \varepsilon t, u_{\sigma}'(t) + \varepsilon, \tilde{u}''(t)\right) \\ &= sp(t) - f\left(t, \tilde{u}(t), \tilde{u}'(t), \tilde{u}''(t)\right), \end{split}$$

$$\tilde{u}(0) = 0, \qquad \tilde{u}'(0) = \tilde{u}'(1) = \varepsilon > 0.$$

Moreover $\alpha(t) := -r t$ is a strict lower solution of (E_s) –(3), for $s \le s_1$. Indeed, by (17) and (15),

$$\alpha'''(t) = 0 > s_1 p(t) - f(t, -r, -r, 0) \ge sp(t) - f(t, -rt, -r, 0),$$

$$\alpha(0) = 0, \qquad \alpha'(0) = \alpha'(1) = -r < 0.$$

By Step 1, $-r < u'_{\sigma}(t)$ for every $t \in [0, 1]$ and therefore $-r < u'_{\sigma}(t) + \varepsilon$, $\forall t \in [0, 1]$, that is, $\alpha'(t) < \tilde{u}'(t)$. Integrating on [0, t]

$$\alpha(t) \leqslant \alpha(t) - \alpha(0) < \tilde{u}(t) - \tilde{u}(0) = \tilde{u}(t),$$

for every $t \in [0, 1]$.

Then, by (30), Lemma 8 and Remark 2, there is $\bar{\rho}_2 > 0$, independent of s, such that for

$$\Omega_{\varepsilon} = \left\{ x \in \operatorname{dom} L: \ \alpha(t) < x(t) < \tilde{u}(t), \ \alpha'(t) < x'(t) < \tilde{u}'(t), \ \|x''\| < \overline{\rho}_2 \right\}$$

the degree of $L + N_s$ in Ω_{ε} satisfies

$$d(L+N_s, \Omega_{\varepsilon}) = \pm 1, \quad \text{for } s \in]\sigma, s_1].$$
 (31)

Taking ρ_2 in Ω_2 large enough such that $\Omega_{\varepsilon} \subset \Omega_2$, by (29), (30) and the additivity of the degree, we obtain

$$d(L+N_s, \Omega_2 - \overline{\Omega_\varepsilon}) = \pm 1, \quad \text{for } s \in]\sigma, s_1]. \tag{32}$$

So, problem (E_s) –(3) has at least two solutions u_1, u_2 such that $u_1 \in \Omega_{\varepsilon}$ and $u_2 \in \Omega_2 - \overline{\Omega_{\varepsilon}}$, for $s \in]s_0, s_1]$, since σ is arbitrary in $]s_0, s_1]$.

Step 4. For $s = s_0$, (E_s) –(3) has at least one solution.

Consider a sequence (s_m) with $s_m \in]s_0, s_1]$ and $\lim s_m = s_0$. By Theorem 5, for each s_m , (E_{s_m}) –(3) has a solution u_m . Using the estimates of Step 1, it is clear that $||u_m|| < M_1$, $||u_m'|| < M_1$ independently of m, and, by Remark 1, there is $\tilde{\rho}_2 > 0$ large enough such that $||u_m''|| < \tilde{\rho}_2$, independently of m. Then sequences (u_m) and (u_m') , $m \in \mathbb{N}$, are bounded in C([0, 1]). By the Arzelà–Ascoli theorem, we can take a subsequence of (u_m) that converges in $C^2([0, 1])$ to a solution $u_0(t)$ of (E_{s_0}) –(3).

Hence, there is at least one solution for $s = s_0$. \square

A variant of Theorem 9 can be obtained replacing f by -f, x by -x and y by -y.

Theorem 10. Consider $f:[0,1]\times\mathbb{R}^3\to\mathbb{R}$ a continuous function such that the assumptions of Theorem 6 are fulfilled. Suppose that there is M>-r such that every solution u of (E_s) –(3), with $s\geqslant s_1$, satisfies

$$u'(t) > M$$
, $\forall t \in [0, 1]$,

and there exists $m \in \mathbb{R}$ such that

$$f(t, x, y, z) \leqslant mp(t)$$
,

for every $(t, x, y, z) \in [0, 1] \times [-r, |M|] \times [-r, M] \times \mathbb{R}$. Then s_0 provided by Theorem 6 is finite and

- (1) if $s > s_0$, (E_s)–(3) has no solution;
- (2) if $s = s_0$, (E_s)–(3) has at least one solution.

Moreover, if condition (27) holds then

(3) for $s \in [s_1, s_0[, (E_s)-(3)]$ has at least two solutions.

Example. Consider a particular case of problem (12)–(13) with n = m = 1, k = 4, b = d = B = C = 0, a, c > 0 and $p(t) \equiv 1$, that is

(P)
$$\begin{cases} u'''(t) + |u''(t)|^{\mu} - 4(u'(t))^3 + (u(t))^3 = s, \\ u(0) = u'(0) = u'(1) = 0, \end{cases}$$

with $\mu \in [0, 2]$. The function $f(t, x, y, z) = |z|^{\mu} - 4y^3 + x^3$ is continuous, verifies the Nagumo-type assumptions in E, given by (14), and monotonicity conditions (15) and (16). Consider s_1 and r > 0 large enough such that

$$0 < s_1 < f(t, x, -r, 0) = 4r^3 + x^3$$

holds for every $x \le -r$. Therefore by Theorem 5 there is $s_0 < s_1$ such that (P) has no solution for $s < s_0$ (if $s_0 = -\infty$, (P) has a solution for every $s < s_1$) and for $s_0 < s \le s_1$ problem (P) has at least a solution.

For r_* given by Lemma 2 define the set

$$E_1 = \left\{ (t, x, y, z) \in [0, 1] \times \mathbb{R}^3 \colon |x| \le 1, \ |y| \le 1, \ |z| \le r_* \right\} \subset E.$$

Therefore, following the arguments of the proof of Theorem 4, for $f: E_1 \to \mathbb{R}$ every solution u of (P) verifies $|u'(t)| \le 1$ in [0,1] and condition (26) holds with $m = -(5 + r_*^{\mu})$. Moreover, for $0 \le \eta \le 1$ and $\theta \ge \frac{5 + \sqrt{29}}{2}$, the inequality

$$f(t, x + \eta \theta, y + \theta, z) = (x + \eta \theta)^3 - 4(y + \theta)^3 + |z|^{\mu} \le f(t, x, y, z)$$

is verified for $(t, x, y, z) \in [0, 1] \times [-1, 1]^2 \times \mathbb{R}$. So, by Theorem 9, s_0 is finite and for $s_0 < s \le s_1$ problem (P) has at least two solutions.

References

- [1] F. Bernis, L.A. Peletier, Two problems from draining flows involving third-order ordinary differential equations, SIAM J. Math. Anal. 27 (2) (1996) 515–527.
- [2] C. de Coster, P. Habets, Upper and Lower Solutions in the Theory of ODE Boundary Value Problems: Classical and Recent Results, Recherches de Mathématique, vol. 52, Institut de Mathématique Pure et Appliquée, Université Catholique de Louvain, April 1996.
- [3] L. Danziger, G. Elmergreen, The thyroid-pituitary homeostatic mechanism, Bull. Math. Biophys. 18 (1956) 1–13.
- [4] C. Fabry, J. Mawhin, M.N. Nkashama, A multiplicity result for periodic solutions of forced nonlinear second order ordinary differential equations, Bull. London Math. Soc. 18 (1986) 173–180.
- [5] M.R. Grossinho, F. Minhós, Existence result for some third order separated boundary value problems, Nonlinear Anal. 47 (2001) 2407–2418.
- [6] M.R. Grossinho, F. Minhós, A.I. Santos, Solvability of some third-order boundary value problems with asymmetric unbounded nonlinearities, Nonlinear Anal. 62 (2005) 1235–1250.
- [7] M.R. Grossinho, F. Minhós, A.I. Santos, Existence result for a third-order ODE with nonlinear boundary conditions in presence of a sign-type Nagumo control, J. Math. Anal. Appl. 309 (2005) 271–283.
- [8] X. Liu, H. Chen, Y. Lü, Explicit solutions of the generalized KdV equations with higher order nonlinearity, Appl. Math. Comput. 171 (2005) 315–319.
- [9] J. Mawhin, Topological Degree Methods in Nonlinear Boundary Value Problems, Reg. Conf. Ser. Math., vol. 40, American Mathematical Society, Providence, RI, 1979.
- [10] M. Nagumo, Über die differentialgleichung y'' = f(t, y, y'), Proc. Phys. Math. Soc. Japan 19 (1937) 861–866.
- [11] M. Senkyrik, Existence of multiple solutions for a third order three-point regular boundary value problem, Math. Bohem. 119 (2) (1994) 113–121.
- [12] E.O. Tuck, L.W. Schwartz, A numerical and asymptotic study of some third-order ordinary differential equations relevant to draining and coating flows, SIAM Rev. 32 (3) (1990) 453–469.