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ABSTRACT

Many problems in pure and applied mathematics entail studying the structure of

solutions to F (x, y) = 0, where F is a nonlinear operator between Banach spaces

and y is a real parameter. A parameter value where the structure of solutions of F

changes is called a bifurcation point. The particular method of analysis for bifurcation

depends on the dimension of the kernel of DxF (0, λ), the linearization of F .

The purpose of our study was to examine some consequences of a recent

theorem on bifurcations with 2-dimensional kernels. This resent theorem was com-

pared to previous methods. Also, some specific classes of equations were identified in

which the theorem always holds, and an algebraic example was found that illustrates

bifurcations with a 2-dimensional kernel.
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CHAPTER I

INTRODUCTION

Many problems in pure and applied mathematics entail studying the structure of

solutions to F (x, y) = 0, where F : U × V → Z is a continuous nonlinear map,

U × V ⊆ X × Y is open, and X, Y , and Z are Banach spaces. Typically, y is a

parameter, and Y is one-dimensional. A bifurcation is a change in the structure of the

solutions at a particular parameter value. The study of bifurcations arises naturally

from the mathematical description of the states of physical systems as these states

undergo changes in stability [1]. These descriptions often take the form of nonlinear

differential equations whose solutions correspond to the state of the system.

Figure 1.1: Pitchfork bifurcation

The solution to a bifurcation problem is often described graphically by a

bifurcation diagram. A simple example is depicted in Figure 1.1. The point labeled

y0 is not a bifurcation point; at y0 any small change in the parameter will not change

1



change the structure of the solutions. However, the point labeled y1 is a bifurcation

point. Values less than y1 yield only one solution, whereas greater values yield three.

Bifurcations of the type in Figure 1.1 are appropriately called pitchfork bifurcations.

Bifurcations, such as the one at y1, are often associated with a loss of stability of the

solution x = 0.

Bifurcation problems are often formulated so that F (0, y) = 0, ∀y ∈ Y , so

the line x = 0 is a branch of solutions, referred to as the trivial branch of solutions. A

concern thus becomes identifying the nontrivial branches of solutions, which typically

emanate from the trivial branch at bifurcation points. Hence, we must know the

bifurcation points. These can be found using DxF (x, y), the linearization of F (x, y)

with respect to x. The Implicit Function Theorem implies that the points where this

linearization has no bounded inverse are the candidates for the bifurcation points,

and hence, are the candidates for the points where the structure of the solution set

changes.

The Implicit Function Theorem provides necessary conditions for bifurcation.

However, these conditions are not sufficient; results giving sufficient conditions for

bifurcation typically depend on both the dimension of the kernel of DxF (x, y) and

the dimension of the parameter space. This is plausible because the dimension of the

kernel of DxF (x, y) at a bifurcation point is a determining factor in the existence of

a bounded inverse. There are several methods for analyzing bifurcations when the

dimension of the kernel is one. In particular, the Crandall-Rabinowitz Theorem is an

important theorem providing sufficient conditions for bifurcation when the dimension
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of the kernel of the linearization and the dimension of the parameter space are both

one. The proof of this theorem relies on the Implicit Function Theorem and can be

found in [2].

Problems with higher dimension kernels and one-dimensional parameter

spaces are less readily analyzed. A recently published theorem by Kömer et al. [3]

provides a relatively simple method for analyzing bifurcations when the dimension

of the kernel of the linearization is two, and the dimension of the parameter space is

one. While other methods currently exist for problems with higher dimension kernel,

these methods are often difficult to use in practice [2].

The purpose of this thesis is to explore some specific consequences of the new

result of Krömer et al. and to construct several examples illustrating applications of

Krömer’s result. We begin by presenting sufficient background to state the theorem.

This background includes a discussion of the reduction method of Lyapunov-Schmidt.

Specific examples are given that meet the different sufficiency conditions of each

theorem. Next, we discuss several algebraic examples illustrating Krömer’s Theorem.

To conclude, we analyze a differential operator that meets the sufficiency conditions

of the theorem by Krömer et al. and not the other theorems. The final chapter

presents a variation on the Crandall-Rabinowitz Theorem that is related to problems

with higher dimension kernels.
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CHAPTER II

BACKGROUND

In this chapter we present the background material necessary to state the bifurcation

theorem of Krömer et al.

2.1 The Implicit Function Theorem and Fredholm Operators

There are several methods for examining the solution sets for nonlinear mappings.

Many of these methods rely at some point upon the Implicit Function Theorem.

Proof of this theorem can be found in [4].

Theorem 2.1.1 (Implicit Function Theorem). Suppose X, Y, Z are Banach spaces,

U ⊂ X, V ⊂ Y are open sets, F : U×V → Z is continuously differentiable, (x0, y0) ∈

U × V , F (x0, y0) = 0, and DxF (x0, y0) has a bounded inverse. Then there is a

neighborhood U1×V1 ⊂ U ×V of (x0, y0) and a function f : V1 → U1, with f(y0) = x0

such that F (x, y) = 0 for (x, y) ∈ U1×V1 if and only if x = f(y). If F ∈ Ck(U×V, Z),

k ≥ 1 or analytic in a neighborhood of (x0, y0), then f ∈ Ck(V1, X) or is analytic in

a neighborhood of y0 [5].

Bifurcation problems on infinite-dimensional Banach spaces can often be re-

duced to problems on finite-dimensional spaces. A commonly used method for this is
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the Reduction Method of Lyapunov-Schmidt, which relies on the Implicit Function

Theorem. A sufficient condition to apply the Method of Lyapunov-Schmidt is that

F satisfy the following definition:

Definition 2.1.2. A continuous mapping F : U → Z, where X and Z are Banach

spaces and U is open in X, is a nonlinear Fredholm operator if it is Fréchet differen-

tiable on U and if DxF (x) has the following properties:

(i) dimN(DxF (x)) <∞ where N(DxF ) is the kernel of DxF ,

(ii) codimR(DxF (x)) <∞ where R(DxF ) is the range of DxF ,

(iii) R(DxF (x)) is closed in Z [2].

The Lyapunov-Schmidt method exploits the fact that the kernel of the lin-

earization of a Fredholm operator F has finite dimension to split the domain and

range of F by projecting the entire Banach spaces X and Z onto finite-dimensional

subspaces. To further explain the Lyapunov-Schmidt reduction requires some back-

ground information from functional analysis on projection operations in Banach

spaces.

2.2 Functional Analysis Background

Definition 2.2.1. Let X be a Banach space, and let M,N ⊂ X be linear manifolds.

M and N are complementary subspaces of X if M + N = X and M ∩ N = {0}. If

M and N are complementary subspaces of X, we write X = M ⊕N [6].

Definition 2.2.2. Let X be a Banach space, and let M ⊂ X be a linear manifold.

M has finite codimension if there is a finite-dimensional linear manifold N such that

X = M ⊕N .
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Definition 2.2.3. Let X be a Banach space, and let P : X → X be a linear trans-

formation. Then P is a projection if P 2 = P .

The next several observations establish some conditions under which a linear

manifold M of a Banach space X has a complementary subspace and is the image

of a continuous projection on X. These results, which are well-known, are collected

here for convenience. Theorems 2.2.4, 2.2.5, and 2.2.6 are exercises in [6].

Theorem 2.2.4. Let X be a Banach space and let P : X → X be a projection. If P

is continuous, then M = R(P ) and N = N(P ) are closed, complementary subspaces

of X [6].

Proof. First note that since P is a bounded, linear operator, N is a closed, linear

subspace of X [6]. Now let Pxn ⊂M such that Pxn → x /∈M . Then (Pxn−x)→ 0,

and since P is continuous, (P 2xn−Px) = (Pxn−Px)→ 0. Hence x = Px, which is

a contradiction, so x ∈M and M is closed.

Next, P 2x = Px = y ∈ M implies P 2x = Py, and y = Py. Thus, M ∩N =

{0}. Recall thatM+N = {m+n | m ∈M,n ∈ N}. Clearly, sinceM,N ⊆ X, we have

M +N ⊆ X. Now, let x ∈ X, and note that x can be written as x = (I −P )x+Px.

Since P (I −P )x = (P −P 2)x = 0, we have that (I −P )x ∈ N , so x is the sum of an

element in N and an element in M . Hence, X ⊆M +N .

Also, there are cases when a projection is not needed in order to know of the

existence of a complementary space, as seen in the following theorem.
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Theorem 2.2.5. Let X be a Banach space and let P : X → X be a projection. If

R(P ) and N(P ) are closed subspaces of X, then P is continuous.

Proof. Since P is a projection, we know (I −P ) : X → N(P ). Let x ∈ N(P )∩R(P ),

so Px = 0. Then for y ∈ X such that Py = x, we have x = Py = P 2y = Px = 0,

which implies that y = 0. Hence, R(P ) ∩N(P ) = {0}.

Now for xn ⊂ X such that xn → x, suppose that Pxn → y for some y ∈ R(P ).

Then (I −P )xn = xn−Pxn → x− y ∈ N(P ) because N(P ) is closed. Also, P maps

to R(P ), so 0 = P (x−y) = Px−Py = Px−y, since y ∈ R(P ), and P is a projection.

Hence, Px = y, so if x = 0, then it must also be that y = 0, so the graph of P is

closed. Then by the Closed Graph Theorem [6], P is continuous.

Theorem 2.2.6. Let X be a Banach space and M be a finite-dimensional linear

manifold in X. Then there is a continuous projection of X onto M and M has a

closed complementary subspace [6].

Proof. Since M has finite dimension, M is closed [6], and we have M

= span{x1, . . . , xn}. Then for 1 ≤ i ≤ n, define a linear functional fi : M → R by

fi(x) = fi(α1x1 + · · · + αnxn) = αi. Let ‖x‖ = maxni=1{|α1|}, and note that since

M has finite dimension, all norms are equivalent [6]. It is clear then that each fi

is bounded since |fi(x)| ≤ ‖x‖. By the Hahn-Banach Theorem, there is a bounded

linear functional Fi : X → R such that Fi |M= fi.

Now define P : X →M by P (w) =
∑n

i=1 Fi(w)xi. Observe that

‖P (w)‖ =

∥∥∥∥∥
n∑
i=1

Fi(w)xi

∥∥∥∥∥ ≤
n∑
i=1

‖Fi(w)xi‖ ≤

(
n∑
i=1

‖Fi‖‖xi‖

)
‖w‖.
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Hence, P is bounded. Since each Fi(w) ∈ R, we have
∑n

i=1 Fi(w)xi ∈M . Then

P 2(w) = P

(
n∑
i=1

Fi(w)xi

)

=
n∑
i=1

Fi

(
n∑
i=1

Fi(w)xi

)
xi

=
n∑
i=1

fi

(
n∑
i=1

Fi(w)xi

)
xi

=
n∑
i=1

Fi(w)xi = P (w).

Hence, P is a projection, and then by Theorem 2.2.4, N(P ) is complementary to

M .

Theorem 2.2.7. Let X be a Banach space and M be a closed linear manifold in X

with finite codimension. Then there is a continuous projection of X onto M .

Proof. By Definition 2.1.2, there is a finite-dimensional linear manifold N such that

X = M⊕N . For x ∈ X, write x = m+n, where m ∈M and n ∈ N . Define Px = m.

Then P 2 = P , R(P ) = M , and N(P ) = N . Also, note M and N are closed, so by

Theorem 2.2.5, P is continuous.

2.3 Reduction Method of Lyapunov-Schmidt

The information presented in Section 2.2 provides the tools necessary to explain the

Reduction Method of Lyapunov-Schmidt. We begin by assuming that F is a map

from U × V into Z, where U is open in X, V is open in Y , and X, Y, and Z are

8



Figure 2.1: Partitioning of the spaces X and Z

Banach spaces. Also, we assume

F (x0, y0) = 0 for some (x0, y0) ∈ U × V,
F ∈ C(U × V, Z),

DxF ∈ C(U × V, L(X,Z)).

(2.1)

We assume that F (·, y0) is a nonlinear Fredholm operator. We define

N = N(DxF (x0, y0)) and R = R(DxF (x0, y0)). Since DxF (x0, y0) is continuous, we

know N is closed, and since F is a Fredholm operator, we know dimN < ∞ and

that R is closed with finite codimension. Finally, by Theorems 2.2.6 and 2.2.7, we

can write X = N ⊕ X0 and Z = R ⊕ Z0, where X0 and Z0 are closed, and we

can define continuous projections P : X → N and Q : Z → Z0. We note that Z0 is

finite-dimensional.

Clearly, we have that x = Px+ (I − P )x. In a similar, though less intuitive

fashion, the equation F (x, y) = 0 can be written equivalently as the two equations

QF (x, y) = 0,

(I −Q)F (x, y) = 0.
(2.2)

9



Figure 2.2: Projections P and Q

To see this, begin by assuming F (x, y) = 0. Then it is clear that QF (x, y) = 0 and

(I−Q)F (x, y) = 0 are both true. Now, assume QF (x, y) = 0 and (I−Q)F (x, y) = 0.

Then we have QF (x, y) = (I − Q)F (x, y), and because QF (x, y) ∈ Z0 and (I −

Q)F (x, y) ∈ R are members of two complementary spaces, it must be that F (x, y) =

0. It follows that the equation F (x, y) = 0 is equivalent to the system of equations

QF (Px+ (I − P )x, y) = 0 (2.3)

(I −Q)F (Px+ (I − P )x, y) = 0. (2.4)

Hence, we have effectively “split” the equation F (x, y) = 0 by using the linearization

of F to define complementary spaces.

10



Now define a function G : U1 ×W1 × V1 → R by

G(v, w, y) = (I −Q)F (v + w, y) (2.5)

where v = Px ∈ U1 ⊂ N and w = (I − P )x ∈ W1 ⊂ X0. Note for v0 = Px0 and

w0 = (I −P )x0 that DwG(v0, w0, y0) = (I −Q)DxF (x0, y0), which as a map from X0

to R is bijective and bounded [2]. Then by the Implicit Function Theorem, we have

a function ψ : U0 × V0 → X0, where U0 × V0 is a neighborhood of (v0, y0), such that

G(v + ψ(v, y), y) = 0.

Then using the implicit function ψ in (2.3), we define Φ: W0 × V0 → Z0 by

Φ(v, y) = QF (v + ψ(v, y), y). Thus we have reduced (2.3) and (2.4) to

Φ(v, y) = 0. (2.6)

Equation (2.6) is called the bifurcation function; studying F (x, y) = 0 is equivalent

to studying (2.6) near the bifurcation point y0. However, Φ: W0 × V0 → Z0, so this

method has reduced the problem to a finite dimensional one.

11



CHAPTER III

A THEOREM OF KROMER ET AL.

The Implicit Function theorem provides a necessary but not sufficient condition for

the existence of a solution branching from the trivial branch at a bifurcation point.

When the kernel of the linearization about the trivial branch is one-dimensional, the

Crandall-Rabinowitz theorem is a well-known theorem that provides a sufficient con-

dition for bifurcation. However, the Crandall-Rabinowitz theorem does not directly

generalize to higher-dimensional problems depending on a single real parameter. Re-

cently, Kromer et al. [3] offered a method for proving the existence of local continua

through a bifurcation point when the kernel of the linearization is two-dimensional.

In this section we briefly describe the results of Kromer et al.

3.1 Background for the Theorem

We consider the non-linear problem F (x, λ) = 0, where F : U×V → Z, where U ⊂ X

is open, V ⊂ R is open, and both X and Z are Banach spaces. We assume that

F (0, λ) = 0 for all λ ∈ R,
∃λ0 ∈ V such that F (·, λ0) is a Fredholm operator

dimN(DxF (0, λ0)) = codimR(DxF (0, λ0)) = 2,

F ∈ C2(U × V, Z), where 0 ∈ U ⊂ X and λ0 ∈ V ⊂ R.

(3.1)

12



After performing the Method of Lyapunov-Schmidt to F (x, λ) = 0, we are

left with Φ(v, λ) = 0, where Φ: U0 × V0 → Z0, using the notation from Section 2.3.

Next we write the Taylor expansion about (0, λ0) of Φ. To do so, introduce the

following notation

Φji(v) =
1

j!i!
Di
vD

j
λΦ(0, λ0)[v, ..., v︸ ︷︷ ︸

i

]. (3.2)

Hence, we can write

Φ(v, λ) =
n∑
j=0
i=1

λjΦji(v) +R(v, λ). (3.3)

We let k be the order of the first non-zero pure v-derivative of Φ at (0, λ0). Then we

write

Φ(v, λ) = Φ0k(v) + λΦ11v +R(v, λ). (3.4)

It can be shown that the remainder term R(v, λ) in (3.4) contains the following terms:

• terms of order 0 in λ and order greater than or equal to k + 1 in v,

• terms of order 1 in λ and order greater than or equal to 2 in v,

• terms of order greater than or equal to 2 in λ.

See Table 3.1, which represents the terms in the Taylor expansion of Φ. The top

row is the order of the λ-derivative, and the left-most column is the order of the

v-derivative. Terms left in the remainder are labeled with an R in the table, and

terms that vanish are labeled in the table with 0.

Let {v̂1, v̂2} be a basis for N , so ∀v ∈ N , we can write v = x1v̂1 + x2v̂2, for

x1, x2 ∈ R. The following theorem is proved in [3].

13



λ

v

0 1 2 3 · · ·

0 0 0 0 0 · · ·
1 0 Φ11v R R · · ·
2 0 R R R · · ·
...

...
...

...
...

k Φ0k(v) R R R · · ·
k+1 R R R R · · ·

...
...

...
...

...
. . .

Table 3.1: Taylor expansion of Φ(v, λ).

Theorem 3.1.1. Let F satisfy the hypotheses (3.1). Let Rπ/2 denote the rotation

Rπ/2v = −x2v̂1 + x1v̂2;

observe that 〈v,Rπ/2v〉 = 0 for all v ∈ Z0.
(3.5)

Assume that

Φ11 = QD2
xλF (0, λ0) : N → Z0

is an isomorphism
(3.6)

and that there exist ṽ1, ṽ2 ∈ N with ‖ṽ1‖ = ‖ṽ2‖ = 1 such that

〈Φ0k(ṽ1), Rπ/2Φ11ṽ1〉 < 0,

〈Φ0k(ṽ2), Rπ/2Φ11ṽ2〉 > 0.
(3.7)

Then there exists a local continuum C ⊂ X ×R of non-trivial solutions of F through

(0, λ0), and C/{(0, λ0)} consists of at least two components [3].

We see in several examples in the next chapter that the hypotheses of this the-

orem are straightforward to check. However, the theorem provides little information

about the nature of the bifurcation branches.
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CHAPTER IV

BIFURCATION IN SPECIFIC CASES

In this chapter, we begin by illustrating a specific example in R3 of the Lyapunov-

Schmidt reduction and an application of Theorem 3.1.1. This is followed by two

different generalizations of this example; both establish a set of sufficient conditions

to apply Theorem 3.1.1. The chapter concludes with a discussion of the theorem from

Krömer et al. as compared to classical methods for studying bifurcation problems with

two-dimensional kernels.

4.1 Example in R3

Consider the map F : R3 × R→ R3 defined by

F (x) = F (x1, x2, x3, λ) =


f1(x1, λ)

f2(x2, λ)

f3(x3)

 =


x1 sin(λ) + x1 sin(x1)

x2 sin(λ) + x2 sin(x2)

sin(x3)

 , (4.1)

where x = (x1, x2, x3). Let λ0 = 0. One checks that

f1(0, λ) = 0, f2(0, λ) = 0, f3(0) = 0,

Dx1f1(0, λ0) = 0, Dx2f2(0, λ0) = 0, Dx3f3(0) = 1,

D2
x1λ
f1(0, λ0) = 1, D2

x2λ
f2(0, λ0) = 1.

(4.2)

Also,

D2
x1
f1(0, λ0) = cos(0) + cos(0)− 0 sin(0) = 2,

D2
x2
f2(0, λ0) = cos(0) + cos(0)− 0 sin(0) = 2.

(4.3)
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Next, we note that DxF (x, λ) equals
sin(λ) + sin(x1) + x1 cos(x1) 0 0

0 sin(λ) + sin(x2) + x2 cos(x2) 0

0 0 cos(x3)

 , (4.4)

and hence

DxF (0, λ0) =


0 0 0

0 0 0

0 0 1

 . (4.5)

Clearly, (4.5) implies that

dim [N (DxF (0, λ0))] = codim [R (DxF (0, λ0))] = 2.

Note that F satisfies (2.1) and is a Fredholm operator, so the method of

Lyapunov-Schmidt can be applied to this example. Let N = N (DxF (0, λ0)) and

R = R (DxF (0, λ0)). Moreover, let X0 and Z0 be their respective complements.

From (4.3), it is clear that N = Z0 = {(x1, x2, 0) : x1, x2 ∈ R} and X0 = R

= {(0, 0, x3) : x3 ∈ R}. Hence, the projections P : R3 → N and Q : R3 → Z0 are

both defined by (x1, x2, x3) 7→ (x1, x2, 0). Also, the map G(v, w, λ) = (I − Q)F (v +

w, λ) defined by (2.5) is (v, w, λ) = ((x1, x2, 0), (0, 0, x3), λ) 7→ (0, 0, x3). Hence,

DwG(0, 0, λ0) is the same as the right hand side of (4.5), which is bijective as a map

from X0 to R. Here, the implicit function ψ is identically 0. See the paragraph

containing (2.5). We have

Φ(v, λ) = QF (v + ψ(v, λ), λ) =


f1(x1, λ)

f2(x2, λ)

0


=


x1 sin(λ) + x1 sin(x1)

x2 sin(λ) + x2 sin(x2)

0

 = 0.

(4.6)
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Note that in this situation Φ does not depend on the implicit function ψ.

Now we verify that Φ satisfies the hypothesis of Theorem (5.1). For notational

convenience, we drop the third component of Φ, which is identically 0, and we write

v = (x1, x2, 0) as just (x1, x2). We Taylor expand Φ about (0, λ0),

Φ(v, λ) = (λ− λ0)D
2
vλΦ(0, λ0)v + 1

2
D2
vΦ(0, λ0)[v, v] +R(v, λ). (4.7)

From (4.1), we see that

DvΦ (0, λ) v =

(
sin(λ) 0

0 sin(λ)

)
v.

It follows that

D2
vλΦ (0, λ0) v =

(
1 0

0 1

)
v =

(
x1

x2

)
,

and hence, D2
vλ(0, λ0) is an isomorphism, fulfilling the hypothesis in (3.6).

For the next computation, we have

D2
vΦ(0, λ0)[v, v] =


(x1, x2) ·

(
2 0

0 0

)(
x1

x2

)
(x1, x2) ·

(
0 0

0 2

)(
x1

x2

)
 = 2

(
x1

2

x2
2

)
.

Then substituting into (4.7), we have

Φ(v, λ) = (λ− λ0)

(
x1

x2

)
+

(
x1

2

x2
2

)
+R(v, λ). (4.8)

To satisfy the hypothesis (3.7) of Theorem 3.1.1, it remains to show that

there exist c̃, d̃ ∈ R2 with c̃ =

(
c1
c2

)
, d̃ =

(
d1

d2

)
, and ‖c̃‖ = ‖d̃‖ = 1 such that(

c1
2

c2
2

)
·

[(
0 −1

1 0

)(
c1

c2

)]
< 0,(

d1
2

d2
2

)
·

[(
0 −1

1 0

)(
d1

d2

)]
> 0,

(4.9)
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Figure 4.1: Unit vectors c̃ and d̃, which satisfy hypothesis (3.7) of Theorem 3.1.1

or

c1c2(c2 − c1) < 0,

d1d2(d2 − d1) > 0.
(4.10)

The inequalities in (4.10) are true, thus satisfying hypothesis (3.7), for any unit

vector c̃1 = (cos θ1, sin θ1) where θ1 ∈
(
0, π

4

)
∪
(
π
2
, π
)
∪
(

5π
4
, 3π

2

)
and any unit vector

d̃2 = (cos θ2, sin θ2) where θ2 ∈
(
π
4
, π

2

)
∪
(
π, 5π

4

)
∪
(

3π
2
, 2π
)
, as illustrated in Figure 4.1.

For example, we can pick

c̃ =

(√
3/2

1/2

)
, d̃ =

(
1/2√
3/2

)
.

At this point, we have satisfied all of the hypotheses of Theorem 3.1.1, so the

result hold.
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4.2 Generalization of Example in R2

The example in Section 4.1 suggests the following result, which generalizes the ex-

ample and a is special case of Theorem 3.1.1.

Theorem 4.2.1. Let F satisfy (3.1), and let N,X0, R, and Z0 be as in Section 2.3.

Let {v̂1, v̂2} be a basis for N , so ∀v ∈ N , we can write v = x1v̂1 +x2v̂2, for x1, x2 ∈ R.

Also, let {ẑ1, ẑ2} be a basis for Z0. Suppose that by using the method of Lyapunov-

Schmidt F (x, λ) = 0 is reduced to

Φ(v, λ) = Φ(x1v̂1 + x2v̂2, λ) = f1(x1, λ)ẑ1 + f2(x2, λ)ẑ2 = 0,

where fi : R → R for i = 1, 2. Suppose there are constants α1, α2 ∈ R such that

α1 6= 0, α2 6= 0, and

D2
x1λ
f1(0, λ0) = α1, D2

x2λ
f2(0, λ0) = α2. (4.11)

Suppose that Dj
x1
f1(0, λ0) = Dj

x2
f2(0, λ0) = 0 for 1 ≤ j < k, and further suppose that

Dk
x1
f1(0, λ0) = α3, Dk

x2
f2(0, λ0) = α4, (4.12)

where α3 and α4 are not both 0. Then there exists a local continuum C ⊂ X × R

of non-trivial solutions of F through (0, λ0), and C/{(0, λ0)} consists of at least two

components.

Proof. We verify that the hypotheses of Theorem 3.1.1 hold in this situation. Using

the bases {v̂1, v̂2} and {ẑ1, ẑ2}, we let x = (x1, x2) and see that Φ(v, λ) = 0 yields

Φ̃(x, λ) = Φ̃(x1, x2, λ) =

(
f1(x1, λ)

f2(x2, λ)

)
=

(
0

0

)
. (4.13)
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First, we check hypothesis (3.6). Let v = (v1, v2) ∈ R2. Here QD2
xλF (0, λ0) =

D2
xλΦ̃(0, λ0), and

D2
xλΦ̃(0, λ0)v = Dλ

(
Dx1f1 0

0 Dx2f2

)
v =

(
α1 0

0 α2

)
v,

which is an isomorphism because by assumption (4.11), both α1 and α2 are non-zero.

Now we check hypothesis (3.7). We claim that for j ≥ 1,

Dj
xΦ̃(0, λ0)[v, . . . , v] =

(
Dj
x1
f1(0, λ0) 0

0 Dj
x2
f2(0, λ0)

)(
v1
j

v2
j

)
. (4.14)

Note first that for j = 1, (4.14) is clear.

Suppose that for j ≥ 1,

Dj
xΦ̃(0, λ0)[v, . . . , v] =

(
Dj
x1
f1(0, λ0) 0

0 Dj
x2
f2(0, λ0)

)(
v1
j

v2
j

)
, (4.15)

and observe that to find Dj+1
x Φ̃(0, λ0)[v, . . . , v], we first compute

Dx

[(
Dj
x1
f1(x1, λ0) 0

0 Dj
x2
f2(x2, λ0)

)(
v1
j

v2
j

)]

=

(
Dj+1
x1

f1(x1, λ0)v1
j 0

0 Dj+1
x2

f2(x2, λ0)v2
j

)
.

Evaluating with x1 = x2 = 0 and letting this matrix act on v yields

Dj+1
x Φ̃(0, λ0)[v, . . . , v] =

(
Dj+1
x1

f1(0, λ0) 0

0 Dj+1
x2

f2(0, λ0)

)(
v1
j+1

v2
j+1

)
. (4.16)

Hence, the claim follows by induction. Then, using our assumption (4.12) about the

k-derivatives, we have

Φ̃(v, λ) = (λ− λ0)

(
α1 0

0 α2

)
v

+
1

k

(
α3 0

0 α4

)(
v1
k

v2
k

)
+R(v, λ).
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Figure 4.2: Unit vectors c̃ and d̃, which satisfy hypothesis (3.7) of Theorem 3.1.1

To satisfy hypothesis (3.7) of Theorem 3.1.1, it remains to show that there

exist c̃ =

(
c1
c2

)
and d̃ =

(
d1

d2

)
with ‖c̃‖ = ‖d̃‖ = 1 such that

[(
α3 0

0 α4

)(
c1
k

c2
k

)]
·

[(
0 −α1

α2 0

)(
c1

c2

)]
< 0[(

α3 0

0 α4

)(
d1
k

d2
k

)]
·

[(
0 −α1

α2 0

)(
d1

d2

)]
> 0,

or

(c1c2)
[(
ck−1
1 , ck−1

2

)
· (−α1α3, α2α4)

]
< 0,

(d1d2)
[(
dk−1

1 , dk−1
2

)
· (−α1α3, α2α4)

]
> 0.

(4.17)

There are always vectors c̃ and d̃ to satisfy this provided the inner products

are not 0. Since (−α1α3, α2α4) 6= 0, ck−1 and dk−1 are required to be neither the

zero vector nor orthogonal to (−α1α3, α2α4). The inequalities in (4.17) are thus true,

satisfying hypothesis (3.7). See Figure 4.2.
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4.3 General Example in R3

The example in Section (4.1) also suggests the following result, which is another

generalization of the example in Section 4.1 and a special case of Theorem 3.1.1.

Theorem 4.3.1. Let F satisfy (3.1), and let N,X0, R, and Z0 be as in Section 2.3.

Let {v̂1, v̂2} be a basis for N , so ∀v ∈ N , we can write v = x1v̂1 +x2v̂2, for x1, x2 ∈ R.

Also, let {ẑ1, ẑ2} be a basis for Z0. Suppose that by using the method of Lyapunov-

Schmidt F (x, λ) = 0 is reduced to

Φ(v, λ) = Φ(x1v̂1 + x2v̂2, λ) = f1(x1, x2, λ)ẑ1 + f2(x1, x2, λ)ẑ2 = 0. (4.18)

Also, suppose there are constants αi, βi, γi ∈ R with 1 ≤ i ≤ 4,

Dxf1(0, 0, λ0) = (0, 0), Dxf2(0, 0, λ0) = (0, 0),

D2
xλf1(0, 0, λ0) = (α1, 0), D2

xλf2(0, 0, λ0) = (0, α2),(
D2
x1
f1 D2

x1x2
f1

Dx2x1f1 D2
x2
f1

)
=

(
β1 β2

β2 β4

)
,

(
D2
x1
f2 D2

x1x2
f2

D2
x2x1

f2 D2
x2
f2

)
=

(
γ1 γ2

γ2 γ4

)
,

where the second partial derivatives in the last two equalities are evaluated at (0, 0, λ0).

Finally, suppose that α1, α2, β4, γ1 6= 0, and the following quantities are not both zero:

2α2γ2 − α1β1 and α2γ4 − 2α1β2. (4.19)

Then there exists a local continuum C ⊂ X ×R of non-trivial solutions of F through

(0, λ0), and C/{(0, λ0)} consists of at least two components.

Proof. As in the previous proof, we verify that the hypotheses of Theorem 3.1.1 hold

in this situation. Using the bases {v̂1, v̂2} and {ẑ1, ẑ2}, we see that Φ(v, λ) = 0 is

22



equivalent to

Φ̃(x, λ) = Φ̃(x1, x2, λ) =

(
f1(x1, x2, λ)

f2(x1, x2, λ)

)
=

(
0

0

)
, (4.20)

where x = (x1, x2).

First, we verify that hypothesis (3.6) holds in this situation. Let v = (v1, v2) ∈

R2. Here

QD2
xλF (0, λ0) = D2

xλΦ̃ (0, λ0) v =

(
α1 0

0 α2

)
v,

which is an isomorphism because both α1 and α2 are non-zero by assumption.

Now we check hypothesis (3.7). Note that D2
vΦ̃(0, λ0)[v, v] equals

(v1, v2) ·

(
β1 β2

β2 β4

)(
v1

v2

)
(v1, v2) ·

(
γ1 γ2

γ2 γ4

)(
v1

v2

)
 =

(
β1v1v1 + 2β2v1v2 + β4v2v2

γ1v1v1 + 2γ2v1v2 + γ4v2v2

)
.

Hence, we have

Φ(v, λ) = (λ− λ0)

(
α1 0

0 α2

)
v

+
1

2

(
β1v1v1 + 2β2v1v2 + β4v2v2

γ1v1v1 + 2γ2v1v2 + γ4v2v2

)
+R(v, λ).

To satisfy hypothesis (3.7) of Theorem 3.1.1, it remains to show that there

exist c̃, d̃ ∈ R2 with c̃ =

(
c1
c2

)
and d̃ =

(
d1

d2

)
with ‖c̃‖ = ‖d̃‖ = 1 such that

(
β1c1c1 + 2β2c1c2 + β4c2c2

γ1c1c1 + 2γ2c1c2 + γ4c2c2

)
·

[(
0 −α1

α2 0

)(
c1

c2

)]
< 0(

β1d1d1 + 2β2d1d2 + β4d2d2

γ1d1d1 + 2γ2d1d2 + γ4d2d2

)
·

[(
0 −α1

α2 0

)(
d1

d2

)]
> 0.
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Let m ∈ R2 with m =

(
m1

m2

)
and ‖m‖ = 1, and let θ denote the expression

(
β1v1v1 + 2β2v1v2 + β4v2v2

γ1v1v1 + 2γ2v1v2 + γ4v2m2

)
·

[(
0 −α1

α2 0

)(
v1

m2

)]
.

Then θ equals

−α1β1m1
2m2 − 2α1β2m1m2

2 − α1β4m2
3 + α2γ1m1

3 + 2α2γ2m1
2m2 + α2γ4m1m2

2

= m1
2 [α2γ1m1 + (2α2γ2 − α1β1)m2] +m2

2 [(α2γ4 − 2α1β2)m1 − α1β4m2] .

Then define w = (α2γ1, 2α2γ2 − α1β1) and z = (α2γ4 − 2α1β2,−α1β4), so we have

θ = (m1
2,m2

2) · (m · w,m · z). (4.21)

Existence of vectors c̃ and d̃ is thus dependent on the vectors w and z, and

hypothesis (4.19) gives w, z are not both the zero vector. We have

θ = (m1
2,m2

2) · (m · w,m · z) = m1
2(m · w) +m2

2(m · z).

If either m · w or m · z is zero, the choice of c̃ and d̃ becomes clear. Also, if w = z,

then m · w = m · z, so choose c̃ to be any vector in the third quadrant and d̃ in the

first quadrant. If w ⊥ z, then choosing c̃ and d̃ to be ±w or ±z reduces the sum

m1
2(m ·w) +m2

2(m · z) to one term whose sign is determined by the sign of w or z.

Now suppose w 6= z and w · z 6= 0, so without loss of generality, we have the

following situation: with regard to the quantity m1
2(m · w) + m2

2(m · z). Note that

m · w (and hence, m1
2(m · w)) will be approach 0 for m chosen near w⊥. Thus, the

sign of m1
2(m · w) + m2

2(m · z) is determined by the sign of m. Should w⊥ happen

to be the 0 vector, choose m near z⊥.
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Figure 4.3: Unit vector m, which determines c̃ and d̃, satisfying hypothesis (3.7) of
Theorem 3.1.1

Hence, provided w and z are not both 0, there are vectors c̃, d̃ ∈ R2, thus

satisfying all hypotheses of Theorem 3.1.1.

4.4 A Comparison to Other Techniques for Two-Dimensional Kernels

Theorem 3.1.1 provides a method for finding a nontrivial solution curve for single-

parameter bifurcation problems with a two dimensional kernel. Classical analytical

techniques based on the Implicit Function theorem can also be used to analyze single

parameter bifurcation problems with two-dimensional kernels. In this section, we

give a class of algebraic examples to which Theorem 3.1.1 applies but to which the

classical analytical techniques cannot be applied.

First we describe briefly the classical analytical techniques appropriate for

single parameter problems with two-dimensional kernels. We consider F (x, λ) = 0,

where F satisfies (3.1) and is a Fredholm operator. Let Φ(v, λ) = 0 be the reduced
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problem after applying the method of Lyapunov-Schmidt. Also, we call an operator

regular if it is invertible.

Theorem 4.4.1 (Kielhofer). Suppose Φ satisfies

Φ02[v0, v0] + Φ11v0 = 0 for some v0 6= 0,

2Φ02[v0, ·] + Φ11 is regular in L(N,Z0).
(4.22)

Then there is a nontrivial solution curve with ṽ(0) = ṽ0,

{
(λṽ(λ), λ)

∣∣∣∣λ ∈ (−δ, δ)
}

(4.23)

of Φ(v, λ) = 0 [2].

Proof of this theorem can be found in [2]. Note that the conclusion here

gives information regarding the smoothness of the branching solution. We note that

by contrast, Theorem 3.1.1 presents a more relaxed set of sufficient conditions for

establishing the existence of non-trivial solutions. These conditions are easier to

verify in practice than the conditions in (4.22). On the other hand, Theorem 3.1.1

provides only the existence of a local continuum of non-trivial solutions consisting

of at least two components. In particular, there is no further information about the

behavior or smoothness of the branching solutions.

The purpose the examples in this section is to explore differences between

these two methods. In particular, we provide an example where Theorem 3.1.1 can

be applied, but Theorem 4.4.1 cannot. The example in Section 4.3 addresses the

same problem as the methods of Theorem 3.1.1 and 4.4.1, but begins in a less general

setting. While making use of Theorem 3.1.1, our next claim requires a set of conditions
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more specific than Theorem 3.1.1. The goal is to eventually establish how much more

specific we must be with the conditions of Theorem 3.1.1 in order to gain more

information about the non-trivial solution curve.

Theorem 4.4.2. With regard to a specific instance of the hypotheses of Theorem

4.3.1, the sufficiency conditions of Theorem 3.1.1 are met, but the conditions of The-

orem 4.4.1 are not.

Proof. It was shown in an earlier proof that Theorem 3.1.1 holds with the hypotheses

from Theorem 4.3.1. Further suppose that

β2 = γ2 = 0,

β1 = β4 = γ1 = γ4 = 1
2
,

α1 = α2 = 1.

If Φ02[v0, v0] + Φ11v0 = 0 for some v0 6= 0, then the conditions of Theorem 4.4.1 with

these hypotheses yield(
β1v1v1 + 2β2v1v2 + β4v2v2 + α1v1

γ1v1v1 + 2γ2v1v2 + γ4v2v2 + α2v2

)
=

(
1
2
v1

2 + 1
2
v2

2 + v1

1
2
v1

2 + 1
2
v2

2 + v2

)
=

(
0

0

)
.

This implies that 1 + v1 + v2 = 0. Moreover, we also have

2Φ02[v0, ·] + Φ11 =


2

(
β1 β2

β2 β4

)(
v1

v2

)
2

(
γ1 γ2

γ2 γ4

)(
v1

v2

)
+

(
α1 0

0 α2

)

=

(
2β1v1 + 2β2v2 + α1 2β2v1 + 2β4v2

2γ1v1 + 2γ2v2 2γ2v1 + 2γ4v2 + α2

)

=

(
v1 + 1 v2

v1 v2 + 1

)
,
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which must be regular. Note however that this is not the case because

(v1 + 1)(v2 + 1)− v1v2 = (v1 + v2 + 1) + v1v2 − v1v2 = 0.

Hence, it is not possible under these circumstances to satisfy the sufficiency conditions

of Theorem 4.4.1. Recall however, that the sufficiency conditions of Theorem 3.1.1

were met.
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CHAPTER V

AN ALGEBRAIC APPROACH

Theorem 3.1.1 provides sufficient conditions for the existence of a local continuum of

nontrivial solutions for a bifurcation problem with a two-dimensional kernel. In this

chapter, we construct an example with a specific bifurcation equation, and plot its

bifurcation branches. We then use the method outlined in the proof of Theorem 3.1.1

[3] on the same bifurcation equation to generate an example of the results provided

by Theorem 3.1.1.

5.1 The Bifurcation Equation Graphically

Let F satisfy (3.1), and let N,X0, R, and Z0 be as in Section 2.3. Let {v̂1, v̂2} be

a basis for N , so ∀v ∈ N , we can write v = x1v̂1 + x2v̂2, for x1, x2 ∈ R. Also, let

{ẑ1, ẑ2} be a basis for Z0. Suppose that by using the method of Lyapunov-Schmidt

F (x, λ) = 0 is reduced to

Φ(v, λ) = Φ(x1v̂1 + x2v̂2, λ) = f1(x1, λ)ẑ1 + f2(x2, λ)ẑ2 = 0,

where fi : R → R for i = 1, 2. Here, we assume k = 2, where k is the order of the

first non-zero v-derivative. We also suppose that all but three remainder terms in the

Taylor expansion of Φ, about a particular solution (0, λ0), vanish.
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λ

0 1 2 3 · · ·

0 0 0 0 0 · · ·
1 0 Φ11v 0 0 · · ·
2 Φ02(v) R 0 0 · · ·
3 R R 0 0 · · ·
4 0 0 0 0 · · ·
...

...
...

...
...

. . .

Table 5.1: Taylor expansion of a specific Φ(v, λ)

Specifically, we assume that the Taylor expansion of Φ is

Φ(v, λ) = λΦ11v + Φ02(v) + Φ03(v) + λΦ12(v) + λΦ13(v)

= λDvDλΦ(0, λ0)v + 1
2
D2
vΦ(0, λ0)(v)

+1
6
D3
vΦ(0, λ0)(v) + 1

2
λD2

vDλΦ(0, λ0)(v) + 1
6
λD3

vDλΦ(0, λ0)(v)

(5.1)

Next, we must calculate partial derivatives. We will represent the first v-derivative

using the gradient and the second v-derivative with a Hessian. To simplify calculations

and maintain a degree of generality, we assign a sequence of variables to the derivative

entries of each of the matrices. For example,

λDvDλΦ(0, λ0)v = λDλ

(
Dx1f1 Dx2f1

Dx1f2 Dx2f2

)
v

= λ

(
α1 α2

α3 α4

)
v = λ

(
α1v1 + α2v2

α3v1 + α4v2

)
,

(5.2)

where we have assumed(
D2
x1λ
f1 D2

x2λ
f2

D2
x1λ
f2 D2

x2λ
f2

)
=

(
α1 α2

α3 α4

)
.

30



Also,

1
2
D2
vΦ(0, λ0)(v) = 1

2
Dx(DxΦ(0, λ0))[v, v]

= 1
2
Dx

(
Dx1f1 Dx2f1

Dx1f2 Dx2f2

)
[v, v]

= 1
2


[v1, v2] ·

(
β1 β2

β3 β4

)(
v1

v2

)
[v1, v2] ·

(
γ1 γ2

γ3 γ4

)(
v1

v2

)


= 1
2

(
β1v1v1 + β2v1v2 + β3v2v1 + β4v2v2

γ1v1v1 + γ2v1v2 + γ3v2v1 + γ4v2v2

)

= 1
2

(
β1v1v1 + β2v1v2 + β3v2v2

γ1v1v1 + γ2v1v2 + γ3v2v2

)
after reindexing.

(5.3)

where we have assumed(
D2
x1
f1 D2

x1x2
f1

Dx2x1f1 D2
x2
f1

)
=

(
β1 β2

β2 β4

)
,

(
D2
x1
f2 D2

x1x2
f2

D2
x2x1

f2 D2
x2
f2

)
=

(
γ1 γ2

γ2 γ4

)
.

After similar calculations for the last three terms of Φ, we have

Φ(v, λ) = λ

(
α1v1 + α2v2

α3v1 + α4v2

)

+1
2

(
β1v1

2 + β2v1v2 + β3v2
2

γ1v1
2 + γ2v1v2 + γ3v2

2

)

+1
6

(
a1v1

3 + a2v1
2v2 + a3v1v2

2 + a4v2
3

b1v1
3 + b2v1

2v2 + b3v1v2
2 + b4v2

3

)

+1
2
λ

(
c1v1

2 + c2v1v2 + c3v2
2

d1v1
2 + d2v1v2 + d3v2

2

)

+1
6
λ

(
e1v1

3 + e2v1
2v2 + e3v1v2

2 + e4v2
3

f1v1
3 + f2v1

2v2 + f3v1v2
2 + f4v2

3

)

(5.4)

This illustrates how difficulty often arises in dealing with bifurcation equa-

tions with higher dimensional kernels. Even while using our very conservative re-

straints, this example has quickly become cumbersome. For simplicity of calculation,
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Figure 5.1: The intersection of the zero sets of φ1 and φ2 correspond with the solution
set of Φ(v, λ) = 0. The non-trivial solutions are indicated by the red lines.

32



we suppose at this point that {αi}4i=1 = {1, 0, 0, 1}. We further suppose that any

coefficient of a term containing both v1 and v2 to be 0, and all others to be the

appropriate constants such that all non-zero coefficients are 1. We then have

Φ(v, λ) = λ

(
v1

v2

)
+

(
v1

2 + v2
2

v1
2 + v2

2

)

+

(
v1

3 + v2
3

v1
3 + v2

3

)
+ λ

(
v1

2 + v2
2

v1
2 + v2

2

)
+ λ

(
v1

3 + v2
3

v1
3 + v2

3

) (5.5)

If we regard Φ as two functions, one in the first component and one in the second,

we define

φ1(v1, v2, λ) = λv1 + v1
2 + v2

2

+v1
3 + v2

3 + λv1
2 + λv2

2 + λv1
3 + λv2

3

φ2(v1, v2, λ) = λv2 + v1
2 + v2

2

+v1
3 + v2

3 + λv1
2 + λv2

2 + λv1
3 + λv2

3,

(5.6)

Then the solutions of Φ = 0 correspond with the intersection of the surfaces φ1 = 0

and φ2 = 0. These surfaces are plotted together in Figure 5.1. Since φ1 = φ2 = 0

implies

φ1(v1, v2, λ)− φ2(v1, v2, λ) = λ (v1 − v2) , (5.7)

our solutions are the intersection of the surfaces where v1 = v2. This is illustrated by

the red line in Figure 5.1.

5.2 Krömer’s Method

We now provide an example of the non-trivial solution branches as they result from

Theorem 3.1.1. To do this, we follow the steps outlined in the proof [3]. Suppose Φ
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is as in the previous section. We first make the substitutions v = sṽ, where ‖ṽ‖ = 1,

and λ = sλ̃ yield:

Φ(ṽ, λ̃, s) = s2λ̃Φ11ṽ + s2Φ02(ṽ) + s3Φ03(ṽ) + s3λ̃Φ12(ṽ) + s4λ̃Φ13(ṽ)

= s2
(
λ̃Φ11ṽ + Φ02(ṽ) + sΦ03(ṽ) + sλ̃Φ12(ṽ) + s2λ̃Φ13(ṽ)

)
,

(5.8)

so we can define

Φ̃(ṽ, λ̃, s) = λ̃Φ11ṽ + Φ02(ṽ) + sΦ03(ṽ) + sλ̃Φ12(ṽ) + s2λ̃Φ13(ṽ). (5.9)

We can also make this substitution in φ1 and φ2, and after removing a factor of s2,

define

φ̃1(v1, v2, λ̃, s) = λ̃v1 + v1
2 + v2

2

+sv1
3 + sv2

3 + sλ̃v1
2 + sλ̃v2

2 + s2λ̃v1
3 + s2λ̃v2

3,

φ̃2(v1, v2, λ̃, s) = λ̃v2 + v1
2 + v2

2

+sv1
3 + sv2

3 + sλ̃v1
2 + sλ̃v2

2 + s2λ̃v1
3 + s2λ̃v2

3.

(5.10)

Also, we have Φ̃(ṽ, λ̃, s) = 0 if and only if

φ̃1(v1, v2, λ̃, s) = φ̃2(v1, v2, λ̃, s) = 0. (5.11)

We now reformulate the problem as in the proof of Theorem 3.1.1 [3]. Define

f1(ṽ, λ̃, s) =

(
φ1(v1, v2, λ̃, s)

φ2(v1, v2, λ̃, s)

)
·

(
v1

v2

)
, (5.12)

f2(ṽ, λ̃, s) =

(
φ1(v1, v2, λ̃, s)

φ2(v1, v2, λ̃, s)

)
·

(
−v2

v1

)
. (5.13)

Note now that for s 6= 0, Φ̃(ṽ, λ̃, s) = 0 if and only of f1(ṽ, λ̃, s) = f2(ṽ, λ̃, s) = 0.

Since we have explicit definitions of f1 and f2, we can solve for λ̃ in f1 = 0 and

substitute the resulting function into f2 = 0. Then we will have a function in ṽ and
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s only, whose solutions (for s 6= 0) are the nontrivial solution branches of Φ(v, λ) = 0

near (0, λ0).

We have that (5.12) yields(
λ̃v1 + v1

2 + v2
2 + sv1

3 + sv2
3 + sλ̃v1

2 + sλ̃v2
2 + s2λ̃v1

3 + s2λ̃v2
3
)
v1

+
(
λ̃v2 + v1

2 + v2
2 + sv1

3 + sv2
3 + sλ̃v1

2 + sλ̃v2
2 + s2λ̃v1

3 + s2λ̃v2
3
)
v2

= λ̃ (v1
2 + sv1

3 + sv2
2v1 + s2v1

4 + s2v2
3v1 + v2

2 + sv1
2v2 + sv2

3 + s2v1
3v2 + s2v2

4)

+v1
3 + v2

2v1 + sv1
4 + sv2

3v1 + v1
2v2 + v2

3 + sv1
3v2 + sv2

4 = 0.

(5.14)

Similarly, we have that (5.13) yields(
λ̃v2 + v1

2 + v2
2 + sv1

3 + sv2
3 + sλ̃v1

2 + sλ̃v2
2 + s2λ̃v1

3 + s2λ̃v2
3
)
v2

−
(
λ̃v1 + v1

2 + v2
2 + sv1

3 + sv2
3 + sλ̃v1

2 + sλ̃v2
2 + s2λ̃v1

3 + s2λ̃v2
3
)
v1

= λ̃ (v2
2 + sv1

2v2 + sv2
3 + s2v1

3v2 + s2v2
4 − v1

2 − sv1
3 − sv2

2v1 − s2v1
4 − s2v2

3v1)

+v1
2v2 + v2

3 + sv1
3v2 + sv2

4 − v1
3 − v2

2v1 − sv1
4 − sv2

3v1 = 0.

(5.15)

Since v1 and v2 are orthogonal unit vectors, we have v1
2 + v2

2 = 1, so simplifying

yields

f1(ṽ, λ̃, s) = λ̃ (1 + s(v1 + v2) + s2(v1
4 + v1v2 + v2

4))

+v1 + v2 + s(v1 + v2)(v1
3 + v2

3) = 0,
(5.16)

and

f2(ṽ, λ̃, s) = λ̃ (v2
2 − v1

2 + s(v2 − v1) + s2(v2 − v1)(v2
3 + v1

3))

+v2 − v1 + s(v2 − v1)(v2
3 + v1

3) = 0.
(5.17)

Solving (5.16) for λ̃ yields

λ̃(ṽ, s) = − v1 + v2 + s(v1 + v2)(v1
3 + v2

3)

1 + s(v1 + v2) + s2(v1
4 + v1v2 + v2

4)
. (5.18)
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Then we can define g(v1, v2, s) = f2(ṽ, λ̃(ṽ, s), s) =

v2 − v1 + s(v2 − v1)(v2
3 + v1

3)

−
(

v1 + v2 + s(v1 + v2)(v1
3 + v2

3)

1 + s(v1 + v2) + s2(v1
4 + v1v2 + v2

4)

)
(v2

2 − v1
2)

−
(

v1 + v2 + s(v1 + v2)(v1
3 + v2

3)

1 + s(v1 + v2) + s2(v1
4 + v1v2 + v2

4)

)
(s(v2 − v1)))

−
(

v1 + v2 + s(v1 + v2)(v1
3 + v2

3)

1 + s(v1 + v2) + s2(v1
4 + v1v2 + v2

4)

)
(s2(v2 − v1)(v2

3 + v1
3)) .

(5.19)

Define g(θ, s) by substituting v1 = cos θ and v2 = sin θ. After simplifying, we have

g(θ, s) = − 2s sin θ cos3 θ + sin θ − s sin θ cos θ + s− 2s cos2 θ − cos θ

s sin θ + s2 sin θ cos θ + 2s2 cos4 θ + s2 − 2s2 cos2 θ + s cos θ + 1
(5.20)

The graph of g(θ, s) in Figure 5.2 is a bifurcation diagram, depicting the behavior of

the nontrivial solutions of Φ = 0 for s in a neighborhood of 0. Since s is a parameter-

ization relating v and λ, this is equivalent to a neighborhood of the bifurcation point,

(0, λ0). Note that in this neighborhood, θ = π
4
, and this is equivalent in rectangular

coordinates to v1 = v2, as we saw in Section 5.1. We can generate another bifurcation

diagram by defining a function h(v1, v2, s) by translating g(θ, s) back into rectangular

coordinates, so

h(v1, v2, s) =

− (v1
2 + v2

2 + v1
3 + v2

3)(v2
3 − v1

3 − v1v2
2 + v2v1

2)

s2 (v1
2 + v1

3 + v1v2
2 + v1

4 + v1v2
3 + v2

2 + v2v1
2 + v2

3 + v2v1
3 + v2

4)
.

(5.21)

The 1
s2

factor is a result of the s2 that was removed from Φ to define Φ̃ in (5.9), so

h(v1, v2) =

− (v1
2 + v2

2 + v1
3 + v2

3)(v2
3 − v1

3 − v1v2
2 + v2v1

2)

(v1
2 + v1

3 + v1v2
2 + v1

4 + v1v2
3 + v2

2 + v2v1
2 + v2

3 + v2v1
3 + v2

4)
.

(5.22)

This bifurcation diagram can be seen in Figure 5.3.
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Figure 5.2: Bifurcation diagram g(s, θ)

Figure 5.3: Bifurcation diagram h(v1, v2)
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CHAPTER VI

A DIFFERENTIAL OPERATOR EXAMPLE

We now examine the application of Theorem 3.1.1 to an infinite-dimensional problem.

We consider a nonlinear boundary-value problem

u
′′′′

+ λu
′′

+ 4u+ u3 = 0,

0 ≤ x ≤ π,
(6.1)

u(0) = u(π) = 0,

u
′′
(0) = u

′′
(π) = 0.

(6.2)

Consider (6.1) as an operator

F : X × R→ Z by

F (u, λ) = u
′′′′

+ λu
′′

+ 4u+ u3, where
(6.3)

X = {u ∈ C4 ([0, π],R) : u satisfies (6.2)} ,
Z = C ([0, π],R) .

(6.4)

Our bifurcation problem takes the form

F (u, λ) = 0. (6.5)

We must check that hypotheses (3.1), (3.6), and (3.7) of Theorem 3.1.1 are

satisfied. Part of checking (3.1) is verifying that F (·, λ) is Fréchet differentiable, and

part of checking this is showing that DuF (0, λ) is a bounded operator. For differential

operators, this entails addressing certain technicalities related to the choice of function

spaces. These are not central to our main goal of applying Theorem 3.1.1, so while we
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do eventually work in L2 ([0, π]), we do not show below that DuF (0, λ) is bounded.

See [7] and [8].

We begin by analyzing the linearization of F . Then we perform the reduction

method of Lyapunov-Schmidt and verify that the kernel of the linearization and the

codimension of the range of the linearization both have dimension two. Finally,

we calculate partial derivatives in order to generate the Taylor expansion of the

bifurcation equation and verify (3.6) and (3.7). We conclude this chapter with some

plots of the graph of the bifurcation equation.

6.1 The Linearization of F

We start by noting that u0 = 0, the zero function, is a solution to (6.5) for any λ.

Next we linearize about the trivial branch. To calculate DuF (0, λ), we set u = u0 +εŭ

in (6.5), and take the partial derivative with respect to ε. We get

∂
∂ε



(u0 + εŭ)
′′′′

+ λ (u0 + εŭ)
′′

+ 4 (u0 + εŭ) + (u0 + εŭ)3 = 0,

u0(0) + εŭ(0) = 0,

u0(π) + εŭ(π) = 0,

(u0 + εŭ)
′′

(0) = 0,

(u0 + εŭ)
′′

(π) = 0,

(6.6)

which yields

ŭ
′′′′

+ λŭ
′′

+ 4ŭ+ 3 (u0 + εŭ)2 ŭ = 0,

ŭ(0) = 0, ŭ(π) = 0,

ŭ
′′
(0) = 0, ŭ

′′
(π) = 0.

(6.7)
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Then setting ε = 0 gives

ŭ
′′′′

+ λŭ
′′

+ 4ŭ+ 3u0
2ŭ = 0,

ŭ(0) = 0, ŭ(π) = 0,

ŭ
′′
(0) = 0, ŭ

′′
(π) = 0.

(6.8)

Hence, the linearization DuF (0, λ)ŭ = 0 of (6.5) about the trivial branch corresponds

to the linear boundary-value problem

ŭ
′′′′

+ λŭ
′′

+ 4ŭ = 0,

ŭ(0) = ŭ(π) = 0,

ŭ
′′
(0) = ŭ

′′
(π) = 0.

(6.9)

To find the candidates for bifurcation points of (6.5), we must find the values

of λ for which the Implicit Function Theorem fails, or where DuF (0, λ) does not have

a bounded inverse. It is sufficient to locate values where N (DuF (0, λ)) has dimension

greater than 0, which correspond to points where (6.9) has non-trivial solutions.

6.2 Analysis of DuF (0, λ)

To find the general solution to (6.9), observe that (6.9) yields the characteristic equa-

tion m4 + λm2 + 4 = 0, which has roots

m = ±
√
−λ±

√
λ2−16
2

. (6.10)

We assume λ > 4, in which case the 4 roots are distinct. Then the general solution is

ŭ = c1e
s

√
−λ+
√
λ2−16
2 + c2e

s

√
−λ−
√
λ2−16

2 + c3e
−s
√
−λ−
√
λ2−16

2 + c4e
−s
√
−λ−
√
λ2−16

2 .

(6.11)

To rewrite (6.11) in a more useful form, we consider how the roots (6.10)

depend on λ. Consider the functions f and g defined by
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Figure 6.1: Left to right: i ·m1(λ), i ·m2(λ), i ·m3(λ), i ·m4(λ)

f(λ) = −λ+
√
λ2−16
2

and g(λ) = −λ−
√
λ2−16
2

.

Note that for λ ≥ 4, it is alway the case that −λ±
√
λ2 − 16 ≤ 0, and note also that

f(λ) → 0 and g(λ) → −∞ as λ → ∞. Noting that the function h : C → C defined

by h(z) = z1/2 takes a point with argument θ to a point with argument θ
2
, we define

functions mi, i = 1, . . . , 4, by

i ·m1(λ) =
√
−λ+

√
λ2−16
2

= i
√

λ−
√
λ2−16
2

,

i ·m2(λ) = −
√
−λ−

√
λ2−16
2

= i
√

λ+
√
λ2−16
2

,

i ·m3(λ) = −
√
−λ+

√
λ2−16
2

= −i
√

λ−
√
λ2−16
2

= −im1(λ),

i ·m4(λ) =
√
−λ−

√
λ2−16
2

= −i
√

λ+
√
λ2−16
2

= −im2(λ).

(6.12)

These functions are sketched parametrically in Figure 6.1. For λ > 4, im1 and im3

are conjugates, and im2 and im4 are conjugates. Hence, in the usual way, we can

rewrite the general solution (6.11) for λ > 4 as

ŭ = c1 cos(sm1(λ)) + c2 cos(sm2(λ)) + c3 sin(sm1(λ)) + c4 sin(sm2(λ)). (6.13)
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To enforce the boundary conditions in (6.9), we note that

ŭ
′

= −c1m1(λ) sin(sm1(λ))− c2m2(λ) sin(sm2(λ))

+c3m1(λ) cos(sm1(λ)) + c4m2(λ) cos(sm2(λ))

ŭ
′′

= −c1(m1(λ))2 cos(sm1(λ))− c2m2((λ))2 cos(sm2(λ))

−c3(m1(λ))2 sin(sm1(λ))− c4(m2(λ))2 sin(sm2(λ))

(6.14)

Imposing the boundary conditions, we have

ŭ(0) = 0 = c1 cos(0) + c2 cos(0) + c3 sin(0) + c4 sin(0)

= c1 + c2,

ŭ(π) = 0 = c1 cos(πm1(λ)) + c2 cos(πm2(λ))

+c3 sin(πm1(λ)) + c4 sin(πm2(λ)),

ŭ
′′
(0) = 0 = −c1(m1(λ))2 cos(0)− c2m2((λ))2 cos(0)

−c3(m1(λ))2 sin(0)− c4(m2(λ))2 sin(0)

= −c1(m1(λ))2 − c2(m2(λ))2,

ŭ
′′
(π) = 0 = −c1(m1(λ))2 cos(πm1(λ))− c2(m2(λ))2 cos(πm2(λ))

−c3(m1(λ))2 sin(πm1(λ))− c4(m2(λ))2 sin(πm2(λ)).

(6.15)

If we define A by
1 1 0 0

cos(πm1) cos(πm2) sin(πm1) sin(πm2)

−m1
2 −m2

2 0 0

−m1
2 cos(πm1) −m2

2 cos(πm2) −m1
2 sin(πm1) −m2

2 sin(πm2)

 , (6.16)

then (6.16) is equivalent to

A


c1

c2

c3

c4

 = 0. (6.17)
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Figure 6.2: det(A) as a function of λ

Therefore the λ values for which the determinant of A is zero are the values for which

(6.9) has non-trivial solutions. A straightforward computation shows that

det(A) = (λ2 − 16) sin(πm1(λ)) sin(πm2(λ)). (6.18)

Since we assume that λ > 4, det(A) = 0 exactly when m1(λ) ∈ N or m2(λ) ∈ N,

which happens when λ = n2 + 4n−2 with n ∈ N. Figure 6.2 shows a graph of det(A)

as a function of λ.

The first value of λ greater than 4 for which det(A) = 0 is λ = 5, and

m1(5) = 1, m2(5) = 2. Also, for λ = 5,
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A =


1 1 0 0

−1 1 0 0

−1 −4 0 0

1 −4 0 0

 ∼


1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

 . (6.19)

Note that 
0

0

1

0

 ,


0

0

0

1


is a basis for the null space of A for λ = 5. These two vectors have entries that

correspond to the four ci values from the general solution (6.13), so using the general

solution, we have {sin(s), sin(2s)} as a basis for N(DuF (0, 5)). Now we seek to estab-

lish a bifurcation for (6.5) at λ = 5 by performing the Lyapunov-Schmidt reduction

and then applying Theorem 3.1.1.

As preparation for the Lyapunov-Schmidt reduction, we study the range of

DuF (0, 5). We consider DuF (0, 5) as a map from L2(0, π) to L2(0, π) [8] with

domDuF (0, 5) =
{
u : u

′′′
is a.c. on [0, π], u

′′′′ ∈ L2(0π), u satisfies (6.9)
}
. (6.20)

Also, we have by definition

dom [DuF (0, 5)]∗ = {g ∈ L2 | u 7→ 〈DuF (0, 5)u, g〉 bounded on domDuF (0, 5)},

where [DuF (0, 5)]∗ is the adjoint of DuF (0, 5). To find the adjoint, we pick u ∈

domDuF (0, 5), and let g ∈ L2(0, π) such that g
′′′

is a.c. and g
′′′′ ∈ L2(0, π). We then

compute
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〈DuF (0, 5)u, g〉 =
〈
u
′′′′

+ 5u′′ + 4u, g
〉

=

∫ π

0

(
u
′′′′

+ 5u
′′

+ 4u
)
g (6.21)

=

∫ π

0

u
′′′′
g + 5

∫ π

0

u
′′
g + 4

∫ π

0

ug (6.22)

We evaluate the first two integrals in (6.22) using integration by parts. The first

integral is

∫ π

0

u
′′′′
g = u

′′′
g

∣∣∣∣π
0

−
∫ π

0

u
′′′
g
′

= u
′′′
g

∣∣∣∣π
0

− u′′g′
∣∣∣∣π
0

+

∫ π

0

u
′′
g
′′

= u
′′′
g

∣∣∣∣π
0

− u′′g′
∣∣∣∣π
0

+ u
′
g
′′
∣∣∣∣π
0

−
∫ π

0

u
′
g
′′′

= u
′′′
g

∣∣∣∣π
0

− u′′g′
∣∣∣∣π
0

+ u
′
g
′′
∣∣∣∣π
0

+ ug
′′′
∣∣∣∣π
0

−
∫ π

0

ug
′′′′

= u
′′′
g

∣∣∣∣π
0

+ u
′
g
′′
∣∣∣∣π
0

+

∫ π

0

ug
′′′′
,

(6.23)

where in the last equality in (6.23) we use that u satisfies the boundary conditions

(6.9). The second integral in (6.22) is

5

∫ π

0

u
′′
g = 5u

′
g

∣∣∣∣π
0

− 5

∫ π

0

u
′
g
′

= 5u
′
g

∣∣∣∣π
0

− ug′
∣∣∣∣π
0

+ 5

∫ π

0

ug
′′

= 5u
′
g

∣∣∣∣π
0

+ 5

∫ π

0

ug
′′
,

(6.24)

where again, we have used (6.9). Hence, if we require g to satisfy the same boundary
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conditions (6.9) as u, then

〈DuF (05)u, g〉 =

∫ π

0

ug
′′′′

+ 5

∫ π

0

ug
′′

+ 4

∫ π

0

ug

=

∫ π

0

u
(
g
′′′′

+ 5g
′′

+ 4g
)

=
〈
u, g

′′′′
+ 5g

′′
+ 4g

〉
.

(6.25)

If follows thatDuF (0, 5) is self-adjoint. Moreover, since [R (DuF (0, 5))]⊥ = N([DuF (0, 5)]∗)

[6] and {sin(s), sin(2s)} is a basis for N(DuF (0, 5)) = N([DuF (0, 5)]∗), we know

{sin(s), sin(2s)} is a basis for [R (DuF (0, 5))]⊥.

6.3 Lyapunov-Schmidt Reduction

Now we apply the method of Lyapunov-Schmidt to find the bifurcation equation for

the nonlinear problem F (u, λ) = 0 defined in (6.2) to (6.5). The first step is to define

the appropriate projections. We let N = N(DuF (0, 5)) and Z0 = [R (DuF (0, 5))]⊥.

Noting that
∫ π

0
sin(s) sin(2s)ds = 0, we normalize the elements of {sin(s), sin(2s)}

to get
{√

2
π

sin(s),
√

2
π

sin(2s)
}

, which, by the result in the previous section, is an

orthonormal basis for both N and Z0. We set φ1 =
√

2
π

sin(s) and φ2 =
√

2
π

sin(2s).

Next we define

L1(f) = 〈f, φ1〉 =

∫ π

0

fφ1ds,

L2(f) = 〈f, φ2〉 =

∫ π

0

fφ2ds.

(6.26)

We then define the projections P : X → N and Q : Z → Z0 by

Pf = Qf = L1(f)φ1 + L2(f)φ2. (6.27)
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Now, just as in Section 2.3, the equation F (u, λ) = 0 can be rewritten as the

pair of equations

QF (Pu+ (I − P )u, λ) = 0,

(I −Q)F (Pu+ (I − P )u, λ) = 0.
(6.28)

Then we define

G(x,w, λ) = (I −Q)F (x+ w, λ) = 0, where x ∈ N,w ∈ N⊥. (6.29)

We apply the Implicit Function theorem to (6.29), which yields a function ψ : W0 ×

V0 → N⊥ such that W0 is a neighborhood of 0 in N and V0 is a neighborhood of 5 in

R, and G(x+ψ(x, λ), λ) = 0 on W0×V0. Hence, we have reduced solving F (u, λ) = 0

to the finite-dimensional problem

QF (x+ ψ(x, λ), λ) = 0, (6.30)

where

W0 × V0 3 (x, λ) 7→ QF (x+ ψ(x, λ), λ) ∈ Z0 (6.31)

and W0 × V0 ⊂ N × R with N and Z0 both 2 dimensional. Now we introduce

coordinates. For any x ∈ N , we can write x = x1φ1 + x2φ2 and define

F̃ (x1, x2, λ) = F (x1φ1 + x2φ2 + ψ(x1φ1 + x2φ2, λ), λ), (6.32)

h1(x1, x2, λ) = L1(QF̃ (x1, x2, λ)),

h2(x1, x2, λ) = L2(QF̃ (x1, x2, λ)),
(6.33)

H(x1, x2, λ) =

(
h1(x1, x2, λ)

h2(x1, x2, λ)

)
. (6.34)
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Then H : R2 × R → R2, and (6.30) is equivalent to H(x1, x2, λ) = 0. We note that

for any λ ∈ V0, we have

h1(0, 0, λ) = L1(QF̃ (0, 0, λ))

= L1(QF (ψ(0, λ), λ)) = 0

h2(0, 0, λ) = L2(QF̃ (0, 0, λ))

= L2(QF (ψ(0, λ), λ)) = 0

(6.35)

6.4 Verifying the Hypothesis of Theorem 3.1.1

In this section, we verify the hypotheses of Theorem 3.1.1 for F (u, λ) = 0 at λ = 5.

Note that here H plays the role of Φ in the statement of Theorem 3.1.1, so the

hypotheses we need to check are on H11 and H0k. Checking the hypotheses entails

generating the Taylor expansion of H around the bifurcation point (0, 0, 5). In the

course of taking partial derivatives of H, we must compute various derivatives of F

with respect to u. We showed above in (6.6) to (6.8) that DuF (u0, 5)v1 = v
′′′′
1 +5v

′′
1 +

4v1 + 3u0
2v1. To compute higher order derivatives, we let u0 = u00 + εv2. Then

∂
∂ε
DuF (u00 + εv2)v1 = ∂

∂ε

(
v
′′′′
1 + 5v

′′
1 + 4v1 + 3(u00 + εv2)

2v1

)
, so

DuuF (u00, 5)[v2, v1] = 6u00v1v2.
(6.36)

Then since DuuF (u00, 5)[v1, v2] = 6u00v1v2, we let u00 = u0 + εv3 and calculate

DuuuF (u0, 5)[v3, v2, v1] = ∂
∂ε
DuuF (u0, 5)[v1, v2]

= ∂
∂ε

[6(u0 + εv3)v1v2]

= 6v1v2v3.

(6.37)

Then we have
DuF (0, 5)v1 = v

′′′′
1 + 5v

′′
1 + 4v1,

DuuF (0, 5)[v2, v1] = 0,

DuuuF (0, 5)[v3, v2, v1] = 6v1v2v3.

(6.38)
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The computation of the partial derivatives of h1 and h2 at (0, 0, 5) are similar.

These computations are carried out in Appendix B. The partial derivatives of h1 and

h2 also require derivatives of the implicit function ψ(x, λ), and these can be seen in

Appendix A. From these appendices, we have the following results:

∂hi
∂xj

(0, 0, 5) =
∂2hi
∂xj2

(0, 0, 5) = 0 for 1 ≤ i, j ≤ 2, (6.39)

∂3hn
∂xi∂xj∂xk

(0, 0, 5) = 6LnQφiφjφk for 1 ≤ n, i, j, k ≤ 2, (6.40)

∂2h1

∂λ∂x1

(0, 0, 5) = L1Qφ1
′′

= −1, (6.41)

∂2h2

∂λ∂x2

(0, 0, 5) = L2Qφ2
′′

= −4, (6.42)

∂2h1

∂λ∂x2

(0, 0, 5) =
∂2h2

∂λ∂x1

(0, 0, 5) = 0. (6.43)

From (6.39) it follows that both H01 and H02 are the zero operator, where we

are using the notation introduced in (3.2). Also, letting x = (x1, x2), we have that

H03(x) =
1

3!
D3
xH(0, 0, 5)[x, x, x] =

(
D3
xh1(0, 0, 5)[x, x, x]

D3
xh2(0, 0, 5)[x, x, x]

)
, (6.44)
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and we have that

D3
xh1(0, 0, 5)[x, x, x]

=


(x1, x2) ·

(
∂x1x1x1h1(0, 0, 5) ∂x1x1x2h1(0, 0, 5)

∂x1x2x1h1(0, 0, 5) ∂x1x2x2h1(0, 0, 5)

)(
x1

x2

)

(x1, x2) ·

(
∂x2x1x1h1(0, 0, 5) ∂x2x1x2h1(0, 0, 5)

∂x2x2x1h1(0, 0, 5) ∂x2x2x2h1(0, 0, 5)

)(
x1

x2

)
 · (x1, x2)

=


(x1, x2) ·

(
9
π

0

0 6
π

)(
x1

x2

)

(x1, x2) ·

(
0 6

π

6
π

0

)(
x1

x2

)
 · (x1, x2)

= 9
π
x1

3 + 18
π
x1x2

2

D3
xh2(0, 0, 5)[x, x, x]

=


(x1, x2) ·

(
∂x1x1x1h2(0, 0, 5) ∂x1x1x2h2(0, 0, 5)

∂x1x2x1h2(0, 0, 5) ∂x1x2x2h2(0, 0, 5)

)(
x1

x2

)

(x1, x2) ·

(
∂x2x1x1h2(0, 0, 5) ∂x2x1x2h2(0, 0, 5)

∂x2x2x1h2(0, 0, 5) ∂x2x2x2h2(0, 0, 5)

)(
x1

x2

)
 · (x1, x2)

=


(x1, x2) ·

(
0 6

π

6
π

0

)(
x1

x2

)

(x1, x2) ·

(
6
π

0

0 9
π

)(
x1

x2

)
 · (x1, x2)

= 18
π
x1

2x2 + 9
π
x2

3.

(6.45)

H03(x) =
1

3!

(
9
π
x1

3 + 18
π
x1x2

2

18
π
x1

2x2 + 9
π
x2

3

)
=

(
3
2π
x1

3 + 3
π
x1x2

2

3
π
x1

2x2 + 3
2π
x2

3

)
. (6.46)
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Note that in (6.46) and in several places below we use ∂xih for ∂h
∂xi

, etc., to save space.

Next we compute

H11x = DλxH(0, 0, 5)x =

(
Dλxh1(0, 0, 5)

Dλxh2(0, 0, 5)

)
x

=

(
(∂λx1h1(0, 0, 5), ∂λx2h1(0, 0, 5))

(∂λx1h2(0, 0, 5), ∂λx2h2(0, 0, 5))

)
x

=

(
−1 0

0 −4

)
x

=

(
−x1

−4x2

)
.

(6.47)

Finally, using (6.46) and (6.47), we have the Taylor expansion of H around

the bifurcation point (0, 0, 5):

H(x1, x2, λ) = H(x, λ) = (λ− 5)H11x+H03(x) +R(x, λ)

= (λ− 5)

(
−x1

−4x2

)
+

(
3
2π
x1

3 + 3
π
x1x2

2

3
π
x1

2x2 + 3
2π
x2

3

)
+R(x, λ).

(6.48)

H11 is clearly an isomorphism from R2 → R2, so (3.6) is satisfied. To satisfy

hypothesis (3.7) of Theorem 3.1.1, it remains to show that there exist c̃, d̃ ∈ R2 with

c̃ =

(
c1
c2

)
, d̃ =

(
d1

d2

)
, and ‖c̃‖ = ‖d̃‖ = 1 such that(
3
2π
c1

3 + 3
π
c1c2

2

3
π
c1

2c2 + 3
2π
c2

3

)
·

[(
0 4

−1 0

)(
c1

c2

)]
< 0,(

3
2π
d1

3 + 3
π
d1d2

2

3
π
d1

2d2 + 3
2π
d2

3

)
·

[(
0 4

−1 0

)(
d1

d2

)]
> 0.

(6.49)

This is equivalent to

3
2π
c1c2 (2c1

2 + 7c2
2) < 0,

3
2π
d1d2

(
2d1

2 + 7d2
2
)

> 0.
(6.50)

Since 2c1
2 + 7c2

2 > 0, ∀c1 ∈ R, it is clear that this condition is met for any c̃ in the

second or fourth quadrant and any d̃ in the first or third quadrant. We then have
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Figure 6.3: These graphs are two different views of the intersection of the zero sets of
φ1 and φ2 approximate the solution set of H(x1, x2, λ) in a neighborhood of (0, 0, 5).
The non-trivial solutions are indicated by the red lines.
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from Theorem 3.1.1 that there is a local continuum of nontrivial solutions of F (x, λ)

through (0, 5).

Because we have computed the Taylor expansion for the bifurcation equation

in this case, we can, as in Section 5.1, sketch approximately the graph of the nontrivial

branches. Recall H(x1, x2, λ) from (6.48). We define

φ1(x1, x2, λ) = (5− λ)x1 + 3
2π
x1

3 + 3
π
x1x2

2,

φ2(x1, x2, λ) = (5− λ)4x2 + 3
π
x1

2x2 + 3
2π
x2

3.
(6.51)

Then plotting the solution sets to φ1 and φ2 yields two surfaces, and as in Section 5.1,

the intersection of the two surfaces approximates the solution set to H(x1, x2, λ) = 0

for (x1, x2, λ) near (0, 0, 5). This can be seen in Figure 6.3. The non-trivial solutions

are indicated by the red lines.
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CHAPTER VII

THE CRANDALL-RABINOWITZ THEOREM

7.1 The Crandall-Rabinowitz Theorem

The Crandall-Rabinowitz Theorem is a well-known result that provides a sufficient

condition for bifurcation in problems for which the kernel of the linearization is one-

dimensional. In this section we note a variation on the Crandall-Rabinowitz Theorem

relevant for problems in which the kernel has dimension greater than one.

First we state the standard Crandall-Rabinowitz Theorem. We assume

F : X × R → Z, where X and Z are Banach Spaces, and we also assume that F

satisfies
F (0, λ) = 0 for all λ ∈ R,

and ∃λ0 ∈ R such that

dimN(DxF (0, λ0)) = codimR(DxF (0, λ0)) = 1.

(7.1)

Theorem 7.1.1 (Crandall-Rabinowitz Theorem). Let F satisfy the conditions in

(7.1) and suppose

F ∈ C2(U × V, Z), where F is a Fredholm operator on U,

0 ∈ U ⊂ X, U open in X, and λ0 ∈ V ⊂ R, V open in R,
N(DxF (0, λ0)) = span[v̂0], v̂0 ∈ X, ‖v̂0‖ = 1,

D2
xλF (0, λ0)v̂0 /∈ R(DxF (0, λ0)).

(7.2)

Then there is a nontrivial continuously differentiable curve through (0, λ0),{(
x(s), λ(s)

)∣∣∣∣ s ∈ (−δ, δ),
(
x(0), λ(0)

)
= (0, λ0)

}
,
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such that

F (x(s), λ(s)) = 0 for s ∈ (−δ, δ),

and all solution to F (x, λ) in a neighborhood of (0, λ0) are on the trivial solution line

or on this nontrivial curve [2].

Shortly we present a result whose proof is based on the basic idea in the proof

of the Crandall-Rabinowitz Theorem. We illustrate this idea by considering the stan-

dard example of the pitchfork bifurcation. Hence, we define G : R2 → R by G(x, λ) =

x3+λx. We emphasize that the point of this discussion is to illustrate the basic idea in

the proof of the Crandall-Rabinowitz Theorem, not to analyze the equation G(x, λ).

We know from elementary algebra that G(x, λ) = 0 has a pitchfork bifurcation at

λ0 = 0, as seen in Figure 7.1. To illustrate the idea of the proof, we note that

dimN(DxG(0, 0)) = codimR(DxG(0, 0)) = 1, (7.3)

and hence, ṽ0 = 1 is a basis for N(DxG(0, 0)). Also,

D2
xλG(0, 0)v̂0 = v̂0 /∈ R(DxG(0, 0)) = 0,

so the hypotheses of the Crandall-Rabinowitz Theorem are satisfied.

Having noted that G(0, λ) = 0 for all λ ∈ R, we have the line x = 0 as the

trivial branch of solutions. Now we write

G(x, λ) =

∫ 1

0

d

dt
G(tx, λ)dt =

∫ 1

0

DxG(tx, λ)xdt = x

∫ 1

0

DxG(tx, λ)dt. (7.4)

We define

G̃(x, λ) =

∫ 1

0

DxG(tx, λ)dt

= (x2 + λ) .

(7.5)
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Figure 7.1: G(x, λ) = 0

After “factoring out” x, the idea now is to apply the Implicit Function Theorem to the

equation G̃(x, λ) = 0 in order to describe λ in terms of x. Because G(x, λ) = xG̃(x, λ),

a non-trivial branch of solutions to G̃(x, λ) = 0 corresponds to a non-trivial branch

of solutions to the original equation. We have that

DλG̃(0, 0) =

∫ 1

0

D2
xλG(0, 0)dt

= D2
xλG(0, 0) 6= 0.

(7.6)

Hence, the Implicit Function Theorem implies that λ = λ̂(x) = −x2, and this de-

scribes the non-trivial solution curve. We see that, loosely speaking, the basic hy-

pothesis DxλF (0, λ0)v /∈ R(DxF (0, λ0) in (7.2) is used in the proof to show that

the Implicit Function Theorem applies to the equation after factoring out the trivial

branch.
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7.2 Crandall-Rabinowitz in 2 Dimensions

We show in this section that the key assumption in the Crandall-Rabinowitz Theorem,

that D2
xλF (0, λ0)v̂0 /∈ R(DxF (0, λ0)), is sufficient to guarantee the existence of non-

trivial solutions near (0, λ0) even when N(Dx(0, λ0)) has dimension greater than one.

Theorem 7.2.1. Let X and Z be Banach spaces, and let F : X × R → Z such that

F ∈ C2(U × V, Z) where 0 ∈ U ⊂ X, U is open, and V is open in R. Suppose

F (0, λ) = 0, ∀λ ∈ R. Also, suppose λ0 ∈ V such that F (0, λ0) is a Fredholm operator

on U and dimN(DxF (0, λ0)) = 2, and codimR(DxF (0, λ0)) = 1. Let {v̂1, v̂2} be a

basis for N , and suppose D2
xλF (0, λ0)v̂1 /∈ R(DxF (0, λ0). Under these conditions,

there exists a nontrivial continuously differentiable curve through (0, λ0).

Proof. Applying the Lyapunov-Schmidt reduction gives that solving F (x, λ) = 0 near

(0, λ0) is equivalent to solving

Φ(v, λ) = 0, where

(0, λ0) ∈ Ũ1 × V1 ⊂ N × R and Φ: Ũ1 × V1 → Z0 with dimZ0 = 1, and

Φ ∈ C2(Ũ1 × V1, Z0)

(7.7)

We know that Φ(0, λ) = 0 for all λ ∈ V2. Since N has 2 dimensions, by introducing

coordinates, we can write v ∈ N as v = (v1, v2) and write Φ(v, λ) as Φ(v1, v2, λ). We

have

d
dt

Φ(tv̂1, λ) = DvΦ(tv̂1, λ)v̂1, (7.8)

and hence

Φ(v̂1, λ) =

∫ 1

0

d

dt
Φ(tv̂1, λ)dt

=

∫ 1

0

DvΦ(tv̂1, λ)v̂1dt.

(7.9)
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Next we let s ∈ (−δ, δ) and observe that

Φ(sv̂1, λ) =

∫ 1

0

DvΦ(stv̂1, λ)sv̂1dt

= s
∫ 1

0
DvΦ(stv̂1, λ)v̂1dt.

(7.10)

Then we define

Φ̃(s, λ) =

∫ 1

0

DvΦ(stv̂1, λ)v̂1dt. (7.11)

Having factored out an s, we now seek to use the Implicit Function Theorem. We

calculate DλΦ̃(0, λ0). Since

DλΦ̃(0, λ) = Dλ

∫ 1

0

DvΦ(0, λ)v̂1dt

= Dλ (DvΦ(0, λ)v̂1) ,

(7.12)

we must calculate Dλ(DvΦ(v, λ)v̂1), which, recalling the definition of Φ in the para-

graph containing (2.6), entails computing

Dλ {QDxF (v + ψ(v, λ), λ)(v̂1 +Dvψ(v, λ)v̂1)}
= Dλ[QDxF (v + ψ(v, λ), λ)](v̂1 +Dvψ(v, λ)v̂1)

+QDxF (v + ψ(v + λ), λ)Dλ[(v̂1 +Dvψ(v, λ)v̂1)]

= QD2
xxF (v + ψ(v, λ), λ)[Dλψ(v, λ), v̂1 +Dvψ(v, λ)v̂1]

+[QD2
xλF (v + ψ(v, λ), λ)](v̂1 +Dvψ(v, λ)v̂1)

+QDxF (v + ψ(v, λ), λ)D2
λv1
ψ(v, λ)v̂1.

(7.13)

Then substituting (v, λ) = (0, λ0), we have

DλΦ̃(0, λ0) = QD2
xxF (0 + ψ(0, λ0), λ0)[Dλψ(0, λ0), v̂1 +Dvψ(0, λ0)v̂1]

+QD2
xλF (0 + ψ(0, λ0), λ0)(v̂1 +Dvψ(0, λ0)v̂1)

+QDxF (0 + ψ(0, λ0), λ0)D
2
λvψ(0, λ0)v̂1

= QD2
xxF (0, λ0)[v̂1, 0] +QD2

xλF (0, λ0)v̂1

+QDxF (0, λ0)D
2
λvψ(0, λ0)v̂1

= QD2
xλF (0, λ0)v̂1.

(7.14)

Recall that Q projects onto Z0, which is complementary to R(DxF (0, λ0)),

and recall that by hypothesis DxλF (0, λ0)v̂1 /∈ R(DxF (0, λ0)), so the previous calcu-

lation shows that DλΦ̃(0, λ0) = QD2
xλF (0, λ0)v̂1 6= 0.

58



Then by the Implicit Function Theorem, there is δ > 0 and a continuously

differentiable function φ : (−δ, δ) → V2 ⊂ V1, with V2 open and λ0 ∈ V2, such that

φ(0) = λ0 and such that Φ̃(s, λ) = 0 for (s, λ) ∈ (−δ, δ)× V2 if and only if λ = φ(s).

Hence, Φ̃(s, φ(s)) = 0 for all s ∈ (−δ, δ). Then we have

Φ(sv̂1, φ(s)) = sΦ̃(s, φ(s)) = 0 for s ∈ (−δ, δ), (7.15)

and hence, we have a non-trivial branch of solutions through (0, λ0).

Note that in the proof, Φ is a map from R2 × R→ R, and hence, we expect

in general that the non-trivial branch is contained in a larger set of solutions forming

a surface. It is for this reason that Theorem 7.2.1 does not assert that all non-trivial

solutions in a neighborhood of the bifurcation point are on the non-trivial branch.

We illustrate this in an example by defining F : R2×R→ R by F (x1, x2, λ) =

x1
3 + λx1 + x2

2. Then the verify the hypotheses of Theorem 7.2.1, we calculate

DxF (x1, x2, λ) =

(
3x1

2 + λ

2x2

)
,

DxλF (x1, x2, λ) =

(
1

0

)
.

(7.16)

Evaluating these at (0, 0, 0), we have

DxF (0, 0, 0) =

(
0

0

)
, DxλF (0, 0, 0) =

(
1

0

)
, (7.17)

and it is clearly the case that dimN(DxF (0, 0, λ0)) = 2, and codimR(DxF (0, 0, λ0)) =

1. Moreover, if we have {1, 1} as a basis for N , then D2
xλF (0, 0, λ0)1 = 1. Note that

1 /∈ R(DxF (0, 0, λ0). Thus, the results of Theorem 7.2.1 hold.
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We illustrate the results by following the procedure outlined in the proof.

Note that

F (x1, λ) =

∫ 1

0

d

dt
F (tx1, λ)dt

=

∫ 1

0

DxF (tx1, λ)xdt

= x

∫ 1

0

DxF (tx1, λ)dt,

(7.18)

so define

F̃ (x1, λ) =

∫ 1

0

DxF (tx1, λ)dt

= x1
2 + λ.

(7.19)

This yields a nontrivial solution curve , λ = −x1
2, which can be seen in Figure

7.2. Note, however, that the nontrivial solution is not the only nontrivial solution

for F through the bifurcation point, (0, 0, 0). This can be seen in Figure 7.2. The

non-trivial solution curve provided by Theorem 7.2.1 is indicated by the red line.
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Figure 7.2: These graphs are two different views of the zero set of F (x1, x2, λ) in a
neighborhood of (0, 0, 0). The non-trivial solution curve provided by Theorem 7.2.1
is indicated by the red line.
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CHAPTER VIII

CONCLUSION

The main goal of this thesis is to examine several special cases of a recent theorem of

Krömer et al. on bifurcation with two dimensional kernel. We also develop a number

of examples of applications of the theorem.

We began by developing the background necessary to state the theorem, in-

cluding an extensive treatment of the reduction method of Lyapunov-Schmidt. Then

we presented two special cases of the theorem that identify specific classes of equations

in which the theorem always holds, and we used these to construct several examples

illustrating applications of Krömer’s result. Specific examples are given that meet the

different sufficiency conditions of the theorem of Krömer et al. and classical bifur-

cation theorems. An algebraic example illustrating the results of Krömer’s Theorem

was presented.

Additionally, we analyzed a non-linear boundary value problem that meets

the sufficiency conditions of the theorem by Krömer et al. and not the classical theo-

rems. Finally, we presented a variation on the Crandall-Rabinowitz Theorem that is

related to problems with kernels of dimension two.
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APPENDIX A

DERIVATIVES OF ψ

From the Implicit Function Theorem we know that (I − Q)F (x + ψ(x, λ), λ) = 0

∀(x, λ) in a neighborhood of (0, 5), and we will exploint this fact to find ways to

define the derivatives of ψ(x, λ). We now calculate Dx(I −Q)F (0, 5) in order to find

Dxψ(0, 5). Since we already have that (I −Q)F (x+ ψ(x, λ), λ) = 0,

0 = Dx(I −Q)F (x+ ψ(x, λ), λ), so

0 = (I −Q)DuF (x+ ψ(x, λ), λ)(IN +Dxψ(x, λ)), so

0 = (I −Q)DuF (x+ ψ(x, λ), λ)Dxψ(x, λ).

(A.1)

Evaluating this at (0, 5), we have

0 = (I −Q)DuF (ψ(0, 5), 5)Dxψ(0, 5)

= (I −Q)DuF (0, 5)Dxψ(0, 5) since ψ(0, 5) = 0 by (6.30).
(A.2)

Since (I −Q) maps to R = ranDuF (0, 5), it must be that Dxψ(0, 5) = 0. We can use

this to calculate Dxx(I −Q)F (0, 5) in order to find Dxxψ(0, 5).

0 = Dx [(I −Q)DuF (x+ ψ(x, λ), λ)(IN +Dxψ(x, λ))] , so

0 = (I −Q)DuuF (x+ ψ(x, λ), λ)[IN +Dxψ(x, λ), IN +Dxψ(x, λ)]

+(I −Q)DuF (x+ ψ(x, λ), λ)Dxxψ(x, λ), so

0 = (I −Q)DuuF (0, 5)[IN , IN ] + (I −Q)DuF (0, 5)Dxxψ(0, 5), so

0 = (I −Q)DuF (0, 5)Dxxψ(0, 5) by (6.38).

(A.3)
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Since (I −Q)DuF (0, 5) : N⊥ → Z0 is bijective, it must then be that Dxxψ(0, 5) = 0.

Again we can use A.3 to calculate Dxxx(I −Q)F (0, 5) in order to find Dxxxψ(0, 5).

0 =

Dx

[
(I −Q)DuuF (x+ ψ(x, λ), λ)[IN +Dxψ(x, λ), IN +Dxψ(x, λ)]

+ (I −Q)DuF (x+ ψ(x, λ), λ)Dxxψ(x, λ)

]
, so

0 =

(I −Q)DuuuF (x+ ψ(x, λ), λ) · [IN +Dxψ(x, λ), IN +Dxψ(x, λ), IN +Dxψ(x, λ)]

+(I −Q)DuuF (x+ ψ(x, λ), λ)[Dxxψ(x, λ), IN +Dxψ(x, λ)]

+(I −Q)DuuF (x+ ψ(x, λ), λ)[IN +Dxψ(x, λ), Dxxψ(x, λ)]

+(I −Q)DuuF (x+ ψ(x, λ), λ)[IN +Dxψ(x, λ), Dxxψ(x, λ)]

+(I −Q)DuF (x+ ψ(x, λ), λ)Dxxxψ(x, λ), so

0 =

(I −Q)DuuuF (0, 5)[IN +Dxψ(0, 5), IN +Dxψ(0, 5), IN +Dxψ(0, 5)]

+(I −Q)DuuF (0, 5)[Dxxψ(0, 5), IN +Dxψ(0, 5)]

+2(I −Q)DuuF (0, 5)[Dxxψ(0, 5), Dxxψ(0, 5)]

+(I −Q)DuF (x+ ψ(x, λ), λ)Dxxxψ(x, λ), so

0 =

(I −Q)DuuuF (0, 5)[IN , IN , IN ] + (I −Q)DuF (0, 5)Dxxxψ(0, 5) by (6.30).

(A.4)

Then since (I −Q)DuF (0, 5) is bijetive, we have

Dxxxψ(0, 5) = −
(
(I −Q)DuF (0, 5)

)−1(
(I −Q)DuuuF (0, 5)[IN , IN , IN ]

)
6= 0.

(A.5)
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APPENDIX B

PARTIAL DERIVATIVES FOR THE TAYLOR EXPANSION OF H

B.1 Partial Derivatives with Respect to x

We must calculate the first three partial derivatives of h1 with respect to x1. We

begin by calculating ∂h1

∂x1
(0, 0, 5). We have

∂

∂x1

{
L1(QF̃ (x1, 0, 5))

}
= L1

(
Q ∂
∂x1
F̃ (x1, 0, 5)

)
= L1Q

∂
∂x1
F (x1φ1 + ψ(x1φ1, 5), 5)

= L1QDuF (x1φ1 + ψ(x1φ1, 5), 5) (φ1 +Dxψ(x1φ1, 5)φ1) .

(B.1)

Hence, evaluating at (0, 0, 5), we have

∂h1

∂x1

(0, 0, 5) = L1QDuF (0, 5) (φ1 +Dxψ(0, 5)φ1)

= L1QDuF (0, 5) (φ1) = 0 by (B.2) and (6.38).
(B.2)

Next we compute ∂2h1

∂x1
2 (0, 0, 5). Using (B.1), we compute

∂

∂x1

{
L1QDuF (x1φ1 + ψ(x1φ1, 5), 5) (φ1 +Dxψ(x1φ1, 5)φ1)

}
= L1Q

∂
∂x1

[
DuF (x1φ1 + ψ(x1φ1, 5), 5) (φ1 +Dxψ(x1φ1, 5)φ1)

]

= L1Q
∂
∂x1

[
DuF (x1φ1 + ψ(x1φ1, 5), 5)

]
(φ1 +Dxψ(x1φ1, 5)φ1)

+L1QDuF (x1φ1 + ψ(x1φ1, 5), 5) ∂
∂x1

[
φ1 +Dxψ(x1φ1, 5)φ1

]

= L1QDuuF (x1φ1 + ψ(x1φ1, 5), 5) [φ1 +Dxψ(x1φ1, 5)φ1, φ1 +Dxψ(x1φ1, 5)φ1]

+L1QDuF (x1φ1 + ψ(x1φ1, 5), 5)Dxxψ(x1φ1, 5) [φ1, φ1] .

(B.3)
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Hence, evaluating at (0, 0, 5), we have

∂2h1

∂x1
2
(0, 0, 5) = L1QDuuF (0, 5)[φ1, φ1], since Dxψ(0, 5)φ1 = 0 by (A.2)

+L1QDuF (0, 5)Dxxψ(0, 5) [φ1, φ1]

= L1QDuuF (0, 5) [φ1, φ1] = 0 by (6.38).

(B.4)

Next we compute ∂3h1

∂x1
3 (0, 0, 5). Using (B.3), we compute

∂

∂x1

{
L1QDuuF (x1φ1 + ψ(x1φ1, 5), 5) · [φ1 +Dxψ(x1φ1, 5)φ1, φ1 +Dxψ(x1φ1, 5)φ1]

+ L1QDuF (x1φ1 + ψ(x1φ1, 5), 5)Dxxψ(x1φ1, 5) [φ1, φ1]

}
(B.5)

= L1Q
∂
∂x1

[
DuuF (x1φ1 + ψ(x1φ1, 5), 5) · [φ1 +Dxψ(x1φ1, 5)φ1, φ1 +Dxψ(x1φ1, 5)φ1]

]
+L1Q

∂
∂x1

[
DuF (x1φ1 + ψ(x1φ1, 5), 5)Dxxψ(x1φ1, 5) [φ1, φ1]

]
(B.6)

The first term of (B.6) equals

L1Q
∂
∂x1

[
DuuF (x1φ1 + ψ(x1φ1, 5), 5)

]
· [φ1 +Dxψ(x1φ1, 5)φ1, φ1 +Dxψ(x1φ1, 5)φ1]

+L1QDuuF (x1φ1 + ψ(x1φ1, 5), 5) ∂
∂x1

[
[φ1 +Dxψ(x1φ1, 5)φ1, φ1 +Dxψ(x1φ1, 5)φ1]

]

= L1QDuuuF (x1φ1 + ψ(x1φ1, 5), 5)

· [φ1 +Dxψ(x1φ1, 5)φ1, φ1 +Dxψ(x1φ1, 5)φ1, φ1 +Dxψ(x1φ1, 5)φ1]

+L1QDuuF (x1φ1 + ψ(x1φ1, 5), 5)

· [Dxxψ(x1φ1, 5)[φ1, φ1], φ1 +Dxψ(x1φ1, 5)φ1]

+L1QDuuF (x1φ1 + ψ(x1φ1, 5), 5)

· [φ1 +Dxψ(x1φ1, 5)φ1, Dxxψ(x1φ1, 5)[φ1, φ1]]

(B.7)
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The second term of (B.6) equals

L1Q
∂

∂x1

[
DuF (x1φ1 + ψ(x1φ1, 5), 5)

]
Dxxψ(x1φ1, 5) [φ1, φ1]

+L1QDuF (x1φ1 + ψ(x1φ1, 5), 5)
∂

∂x1

[
Dxxψ(x1φ1, 5) [φ1, φ1]

]

= L1QDuuF (x1φ1 + ψ(x1φ1, 5), 5) [φ1 +Dxψ(x1φ1, 5)φ1, Dxxψ(x1φ1, 5) [φ1, φ1]]

+L1QDuF (x1φ1 + ψ(x1φ1, 5), 5)Dxxxψ(x1φ1, 5) [φ1, φ1, φ1]

(B.8)

Using (B.7) and (B.8), and evaluating at (0, 0, 5), we have

∂3h1

∂x1
3
(0, 0, 5) = L1QDuuuF (0, 5)[φ1, φ1, φ1]

+L1QDuuF (0, 5) [Dxxψ(0, 5)[φ1, φ1], φ1 +Dxψ(0, 5)φ1]

+L1QDuuF (0, 5) [φ1 +Dxψ(0, 5)φ1, Dxxψ(0, 5)[φ1, φ1]]

+L1QDuuF (0, 5) [φ1 +Dxψ(0, 5)φ1, Dxx(0, 5)[φ1, φ1]]

+L1QDuF (0, 5)Dxxxψ(0, 5)[φ1, φ1, φ1]

= L1QDuuuF (0, 5)[φ1, φ1, φ1]

+L1QDuuF (0, 5) [0, φ1]

+2L1QDuuF (0, 5) [φ1, 0] , by (6.29)

+L1QDuF (0, 5)Dxxxψ(0, 5)[φ1, φ1, φ1]

= L1QDuuuF (0, 5)[φ1, φ1, φ1], by (6.38)

= L1Q6φ1φ1φ1, again, by (6.38).

(B.9)

As the only difference between h1 and h2 is the use of L2 rather than L1, and

derivatives with respect to x2 rather than x1 only change φ1 to φ2, we may use these

calculations for the other third order partial derivatives with respect to x.
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B.2 Mixed Partial Derivatives

We now calculate, ∂2h1

∂λ∂x1
(0, 0, 5), the partial derivative of h1 with respect to x1, then

λ. Using (B.1), we compute

∂

∂λ

{
L1QDuF (x1φ1 + ψ(x1φ1, λ), λ) (φ1 +Dxψ(x1φ1, λ)φ1)

}
(B.10)

= ∂
∂λ

[
L1QDuF (x1φ1 + ψ(x1φ1, λ), λ)

]
(φ1 +Dxψ(x1φ1, λ)φ1)

+L1QDuF (x1φ1 + ψ(x1φ1, λ), λ) ∂
∂λ

[
(φ1 +Dxψ(x1φ1, λ)φ1)

]
= L1QD

2
uuF (x1φ1 + ψ(x1φ1, λ), λ)[Dλψ(x1φ1, λ), φ1 +Dxψ(x1φ1, λ)φ1]

+QD2
uλF (x1φ1 + ψ(x1φ1, λ), λ)(φ1 +Dxψ(x1φ1, λ)φ1)

+L1QDuF (x1φ1 + ψ(x1φ1, λ), λ)D2
λxψ(x1φ1, λ)φ1

(B.11)

Hence, evaluating at (0, 0, 5), we have

∂2h1

∂λ∂x1

(0, 0, 5) = L1QD
2
uuF (0, 5), λ)[Dλψ(0, 5), φ1 +Dxψ(0, 5)φ1]

+ L1QD
2
uλF (0, 5)(φ1 +Dxψ(0, 5)φ1)

+ L1QDuF (0, 5)D2
λxψ(0, 5)φ1

= L1QD
2
uλF (0, 5)φ1.

(B.12)

Thus, we have

D2
uλF (u0, 5)[v1] = ∂

∂λ
DuF (u0, λ)v1

= ∂
∂λ

(
v
′′′′
1 + λv

′′
1 + 4v1 + 3u0

2v1

)
= v1

′′
, so

∂2h1

∂λ∂x1

(0, 0, 5) = L1Qφ1
′′
.

(B.13)

These calculations may also be used for the other mixed partial derivatives,

∂2h1

∂λ∂x2
(0, 0, 5), ∂2h2

∂λ∂x1
(0, 0, 5), and ∂2h2

∂λ∂x2
(0, 0, 5).
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B.3 Evaluating Derivatives

Note first that for f ∈ X,

L1Qf = L1 [L1fφ1 + L2fφ2]

= L1

[∫ π

0

fφ1dsφ1 +

∫ π

0

fφ2dsφ2

]
=

∫ π

0

fφ1ds

∫ π

0

φ1
2ds+

∫ π

0

fφ2ds

∫ π

0

φ1φ2ds

=

∫ π

0

fφ1ds(1) +

∫ π

0

fφ2ds(0)

=

∫ π

0

fφ1

= L1f.

(B.14)

Since Q projects f to Z0, making it a linear combination of {φ1, φ2}, the basis of Z0.

L1 and L2 use the fact that φ1 and φ2 are orthonormal to produce the coefficients of

the basis elements. For a function f ∈ X projected by Q, since L1f and L2f are the

coefficients of the basis elements, we have that L1Q = L1 and similarly, L2Q = L2.

Now we can calculate the following:

∂3h1

∂x1
3
(0, 0, 5) = L1QDuuuF (0, 5)[φ1, φ1, φ1]

= L1Q6φ1φ1φ1

= 6L1

(√
2π
π

sin(s)
)3

= 24
π2

∫ π

0

sin4(s)ds

= 24
π2 · 3π

8

= 9
π
.

(B.15)

∂3h2

∂x1
3
(0, 0, 5) = L2QDuuuF (0, 5)[φ1, φ1, φ1]

= L2Q6φ1φ1φ1

= 6L2

(√
2π
π

sin(s)
)3

= 24
π2

∫ π

0

sin3(s) sin(2s)ds

= 0.

(B.16)
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∂3h1

∂x2
3
(0, 0, 5) = L1QDuuuF (0, 5)[φ2, φ2, φ2]

= L1Q6φ2φ2φ2

= 6L1

(√
2π
π

sin(2s)
)3

= 24
π2

∫ π

0

sin3(2s) sin(s)ds

= 24
π2 · 0

= 0.

(B.17)

∂3h2

∂x2
3
(0, 0, 5) = L2QDuuuF (0, 5)[φ2, φ2, φ2]

= L2Q6φ2φ2φ2

= 6L2

(√
2π
π

sin(2s)
)3

= 24
π2

∫ π

0

sin4(2s)ds

= 24
π2 · 3π

8

= 9
π
.

(B.18)

∂3h1

∂x1
2∂x2

(0, 0, 5) =
∂3h1

∂x2∂x1
2
(0, 0, 5)

= L1QDuuuF (0, 5)[φ2, φ1, φ1]

= L1Q6φ2φ1φ1

= 6L1

(√
2π
π

)3

sin(2s) sin2(s)

= 24
π2

∫ π

0

sin3(s) sin(2s)ds

= 24
π2 · 0

= 0.

(B.19)

∂3h2

∂x1
2∂x2

(0, 0, 5) =
∂3h2

∂x2∂x1
2
(0, 0, 5)

= L2QDuuuF (0, 5)[φ2, φ1, φ1]

= L2Q6φ2φ1φ1

= 6L2

(√
2π
π

)3

sin(2s) sin2(s)

= 24
π2

∫ π

0

sin4(s)ds

= 24
π2 · π4

= 6
π
.

(B.20)
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∂3h1

∂x1∂x2
2
(0, 0, 5) =

∂3h1

∂x2
2∂x1

(0, 0, 5)

= L1QDuuuF (0, 5)[φ2, φ2, φ1]

= L1Q6φ2φ2φ1

= 6L1

(√
2π
π

)3

sin(s) sin2(2s)

= 24
π2

∫ π

0

sin2(s) sin2(2s)ds

= 24
π2 · π4

= 6
π
.

(B.21)

∂3h2

∂x1∂x2
2
(0, 0, 5) =

∂3h2

∂x2
2∂x1

(0, 0, 5)

= L2QDuuuF (0, 5)[φ2, φ2, φ1]

= L2Q6φ2φ2φ1

= 6L2

(√
2π
π

)3

sin(s) sin2(2s)

= 24
π2

∫ π

0

sin(s) sin3(2s)ds

= 24
π2 · 0

= 0.

(B.22)

∂2h1

∂λ∂x1

= L1Qφ
′′
1

= −
√

2π
π
L1sin(s)

= − 2
π

∫ π

0

sin2(s)ds

= −1.

(B.23)

∂2h1

∂λ∂x2

= L1Qφ
′′
2

= −4
√

2π
π
L1 sin(2s) = 0.

(B.24)

∂2h2

∂λ∂x2

= L2Qφ
′′
2

= −4
√

2π
π
L2sin(2s)

= − 8
π

∫ π

0

sin2(2s)ds

= − 8
π
· π

2

= −4.

(B.25)

73



∂2h2

∂λ∂x1

= L2Qφ
′′
1

= −
√

2π
π
L2 sin(s) = 0.

(B.26)
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