Spanning trails containing given edges

Zhi-Hong Chen
Butler University, chen@butler.edu

Weiqi Luo
Wei-Guo Chen

Follow this and additional works at: http:// digitalcommons.butler.edu/facsch_papers
Part of the Computer Sciences Commons, and the Mathematics Commons

Recommended Citation

Chen, Zhi-Hong; Luo, Weiqi; and Chen, Wei-Guo, "Spanning trails containing given edges" Discrete Mathematics / (2006): 87-98.
Available at http://digitalcommons.butler.edu/facsch_papers/142

Spanning trails containing given edges

Weiqi Luo ${ }^{\text {a }}$, Zhi-Hong Chen ${ }^{\text {b }}$, Wei-Guo Chen ${ }^{\text {c }}$

Abstract

A graph G is Eulerian-connected if for any u and v in $V(G), G$ has a spanning (u, v)-trail. A graph G is edge-Eulerian-connected if for any e^{\prime} and $e^{\prime \prime}$ in $E(G), G$ has a spanning ($e^{\prime}, e^{\prime \prime}$)-trail. For an integer $r \geqslant 0$, a graph is called r-Eulerian-connected if for any $X \subseteq E(G)$ with $|X| \leqslant r$, and for any $u, v \in V(G), G$ has a spanning (u, v)-trail T such that $X \subseteq E(T)$. The r-edge-Eulerianconnectivity of a graph can be defined similarly. Let $\theta(r)$ be the minimum value of k such that every k-edge-connected graph is r-Eulerian-connected. Catlin proved that $\theta(0)=4$. We shall show that $\theta(r)=4$ for $0 \leqslant r \leqslant 2$, and $\theta(r)=r+1$ for $r \geqslant 3$. Results on r-edge-Eulerian connectivity are also discussed. (C) 2005 Elsevier B.V. All rights reserved.

Keywords: Connectivity; Spanning trails; Supereulerian graphs; Collapsible graphs

1. Introduction

We follow the notation of Bondy and Murty [1], except that graphs have no loops. A graph G is Hamiltonianconnected if for every pair of vertices u, v of G, there is a Hamiltonian (u, v)-path in G. For a graph G, a trail is a vertex-edge alternating sequence $v_{0}, e_{1}, v_{1}, e_{2}, \ldots, e_{k-1}, v_{k-1}, e_{k}, v_{k}$ such that all the e_{i} 's are distinct and $e_{i}=v_{i-1} v_{i}$ for all i. Let $e^{\prime}, e^{\prime \prime} \in E(G)$. A trail in G whose first edge is e^{\prime} and whose last edge is $e^{\prime \prime}$ is called an ($e^{\prime}, e^{\prime \prime}$)-trail. For $u, v \in V(G)$, a (u, v)-trail of G is a trail in G whose origin is u and whose terminus is v. A trail H is called a dominating trail of G if every edge of G is incident with at least one vertex of H in G. A trail H is called a spanning trail if $V(H)=V(G)$. If $u=v$, then a (u, v)-trail in G is a closed trail, which is also called a Eulerian subgraph of G. A graph is called supereulerian if it has a spanning closed trail. The collection of all supereulerian graphs is denoted by $\mathscr{P} \mathscr{L}$.

A graph G is Eulerian-connected if for any u, v in $V(G)$ (including the case $u=v$), G has a spanning (u, v)-trail. A graph is called r-Eulerian-connected if for any $X \subseteq E(G)$ with $|X| \leqslant r$, and for any $u, v \in V(G), G$ has a spanning
(u, v)-trail T such that $X \subseteq E(T)$. For an integer $r \geqslant 0$, the collection of all r-Eulerian-connected graphs is denoted by $\mathscr{E} \mathscr{L}(r)$. Obviously, $\mathscr{E} \mathscr{L}(r) \subseteq \mathscr{S} \mathscr{L}$ for all $r \geqslant 0$.

A graph G is edge-Eulerian-connected if for any $e^{\prime}, e^{\prime \prime}$ in $E(G), G$ has a spanning ($\left.e^{\prime}, e^{\prime \prime}\right)$-trail. A graph is called r-edge-Eulerian-connected if for any $X \subseteq E(G)$ with $|X| \leqslant r$ and for any $e^{\prime}, e^{\prime \prime} \in E(G), G$ has a spanning $\left(e^{\prime}, e^{\prime \prime}\right)$-trail T such that $X \subseteq E(T)$. For an integer $r \geqslant 0$, the collection of all r-edge-Eulerian-connected graphs is denoted by $\mathscr{E} \mathscr{E}(r)$.

Many studies have been done on Eulerian graphs (see [7]). For the literature on the subject of supereulerian graphs, see surveys [3,6]. Harary and Nash-Williams [9] demonstrated the relationship between Eulerian subgraphs and Hamiltonian cycles in the line graph of G. Zhan [14] studied $\left(e^{\prime}, e^{\prime \prime}\right)$-trails of a graph G for the Hamiltonian connectivity of the line graph of G. In the study of spanning trails of graphs [2], Catlin introduced the concept of collapsible graphs. For a graph G, let $\mathrm{O}(G)$ be the set of odd degree vertices of G and let R be an even subset of $V(G)$. A subgraph H_{R} of G is called a spanning R-trail if H_{R} is a spanning connected subgraph such that $\mathrm{O}\left(H_{R}\right)=R$. A graph G is collapsible if for every even subset $R \subseteq V(G), G$ has a spanning R-trail. We will regard an empty set as an even subset and K_{1} as both collapsible and supereulerian. The collection of all collapsible graphs is denoted by $\mathscr{C} \mathscr{L}$. By the definition of collapsible graphs, we have:

Proposition A. Let G be a collapsible graph. Then each of the following holds
(i) G is supereulerian.
(ii) G is Eulerian-connected.

Proof. For any vertices $u, v \in V(G)$. Let $R=\emptyset$ if $u=v$, or $R=\{u, v\}$ if $u \neq v$. Since G is collapsible, it has a spanning subgraph H_{R} such that $\mathrm{O}\left(H_{R}\right)=R$. Therefore, H_{R} is a spanning Eulerian subgraph of G if $R=\emptyset$, or H_{R} is a (u, v)-spanning trail of G.

Let $X \subseteq E(G)$ and let R be an even subset of $V(G)$. A spanning R-trail H_{R} of G such that $X \subseteq E\left(H_{R}\right)$ is called a spanning (R, X)-trail, and denoted by $H_{R}(X)$. A graph is called strongly r-Eulerian-connected if for any $X \subseteq E(G)$ with $|X| \leqslant r$ and for any even subset $R \subseteq V(G), G$ has a spanning R-trail H_{R} such that $X \subseteq E\left(H_{R}\right)$ (i.e. G has a $\left.H_{R}(X)\right)$. The collection of all strongly r-Eulerian-connected graphs is denoted by $\mathscr{S} \mathscr{E}(r)$.

For an integer r, define $\mathscr{L}(r)$ to be the family of graphs such that $G \in \mathscr{L}(r)$ if and only if for any subset $X \subseteq E(G)$ with $|X| \leqslant r, G$ has an spanning Eulerian subgraph H such that $X \subseteq E(H)$. Define $f(r)$ to be the minimum value of k such that every k-edge-connected graph G is in $\mathscr{L}(r)$. In [12], Lai found $f(r)$ for all the values of r (see Corollary 3.6). Let $\theta(r)$ be the minimum value of k such that every k-edge-connected graph is in $\mathscr{E} \mathscr{L}(r)$ and let $\psi(r)$ be the minimum value of k such that every k-edge-connected graph is in $\mathscr{S} \mathscr{E}(r)$. Since $\mathscr{S} \mathscr{E}(r) \subseteq \mathscr{E} \mathscr{L}(r) \subseteq \mathscr{L}(r)$,

$$
\begin{equation*}
f(r) \leqslant \theta(r) \leqslant \psi(r) \tag{1}
\end{equation*}
$$

Let $\xi(r)$ be the minimum value of k such that every k-edge-connected graph is in $\mathscr{E} \mathscr{E}(r)$. In this paper, we will determine the values of $\theta(r), \psi(r)$, and $\xi(r)$ for all $r \geqslant 0$.

In the next section, we will present Catlin's reduction method and some preliminary results which are needed in our proofs. Our main results are in Sections 3 and 4. We will present our results on r-Eulerian-connected graphs, and give the values of $\theta(r)$ and $\psi(r)$ for all $r \geqslant 0$. Section 4 contains results on the r-edge-Eulerian connected graphs.

2. Catlin's reduction method and preliminary results

Let H be a connected subgraph of G. The contraction G / H is obtained from G by contracting each edge of H and deleting the resulting loops. In [2], Catlin showed that every graph G has a unique collection of pairwise vertex-disjoint maximal collapsible subgraphs $H_{1}, H_{2}, \ldots, H_{k}$ such that $\bigcup_{i=1}^{k} V\left(H_{i}\right)=V(G)$. The reduction of G is obtained from G by contracting each of H_{i} into a vertex v_{i} for all i, and is denoted by G^{\prime}. Each H_{i} is called a preimage of v_{i} in G, and v_{i} is called the contraction image of H_{i} in G^{\prime}. A vertex v in G^{\prime} is called a trivial contraction if its preimage in G is K_{1}. A graph G is reduced if G is the reduction of some graph. Let $F(G)$ be the minimum number of edges that must be added to G so that the resulting graph has 2 edge-disjoint spanning trees.

Theorem 2.1 (Catlin [2]). Let G be a graph, and let G^{\prime} be the reduction of G. Each of the following holds.
(i) G is supereulerian if and only if G^{\prime} is supereulerian.
(ii) G is collapsible if and only if $G^{\prime} \cong K_{1}$
(iii) $\left|E\left(G^{\prime}\right)\right|+F\left(G^{\prime}\right)=2\left|V\left(G^{\prime}\right)\right|-2$.

In [10], Jaeger proved that a graph with two edge-disjoint spanning trees is supereulerian. In [2], Catlin proved that if G has two edge-disjoint spanning trees, then G is collapsible. It is well known now that a $2 k$-edge-connected graph has k edge-disjoint spanning trees $[8,11,13]$. Thus, we have:

Theorem 2.2. If G is 4-edge-connected, then G is collapsible.
In [4], Catlin proved:
Theorem 2.3 (Catlin [4]). Let G be a graph and let $k \geqslant 1$ be an integer. The following are equivalent:
(i) G is $2 k$-edge-connected;
(ii) For any $X \subseteq E(G)$ with $|X| \leqslant k, G-X$ has k edge-disjoint spanning trees.

Corollary 2.4 (Catlin [4]). Let G be a graph and let $k \geqslant 1$ be an integer. The following are equivalent:
(i) G is $(2 k+1)$-edge-connected;
(ii) For any $X \subseteq E(G)$ with $|X| \leqslant k+1, G-X$ has k-edge-disjoint spanning trees.

The following theorems will be needed in our proofs.
Theorem 2.5 (Catlin et al. [5]). Let G be a connected graph. If $F(G) \leqslant 2$, then either G is collapsible, or the reduction of G is in $\left\{K_{2}, K_{2, t}: t \geqslant 1\right\}$.

Let e be an edge in G. Edge e is subdivided when it is replaced by a path of length 2 whose internal vertex, denoted by $v(e)$, has degree 2 in the resulting graph. The process of taking an edge e and replacing it by that path of length 2 is called subdividing e. Let G be a graph and let $X \subseteq E(G)$. Let G_{X} be the graph obtained from G by subdividing each edge in X. Then $V\left(G_{X}\right)=V(G) \cup\{v(e)$ for each $e \in X\}$.

Lemma 2.6. Let $k \geqslant 2$ be an integer. Let G be a connected graph and let $X \subseteq E(G)$. Let R be an even subset of $V(G)$. Then each of the following holds
(i) G has a spanning (R, X)-trail $H_{R}(X)$ if and only if G_{X} has a spanning R-trail. In particular, G has a spanning closed trail H such that $X \subseteq E(H)$ if and only if G_{X} is supereulerian.
(ii) If G_{X} is collapsible, then G_{X} has a spanning R-trail.
(iii) Let $X=X_{1} \cup X_{2}$ with $X_{1} \cap X_{2}=\emptyset$. Then $F\left(G_{X}\right) \leqslant F\left(\left(G-X_{1}\right)_{X_{2}}\right)$.
(iv) If G has k edge-disjoint spanning trees, then for any $X \subseteq E(G)$ with $|X| \leqslant 2 k-2, F\left(G_{X}\right) \leqslant 2$.

Proof. (i) and (ii) follow from the definitions of collapsibility and G_{X}.
(iii) Let $p=F\left(\left(G-X_{1}\right)_{X_{2}}\right)$. Let E_{p} be the p edge set such that $\left(G-X_{1}\right)_{X_{2}}+E_{p}$ has 2-edge-disjoint spanning trees $\left(T_{1}\right.$ and $\left.T_{2}\right)$. Let $X_{1}=\left\{e_{1}, e_{2}, \ldots, e_{s}\right\}$ and each $e_{i}=u_{i} v_{i}(1 \leqslant i \leqslant s)$. By the definition of G_{X}, we know that G_{X} can be obtained from $\left(G-X_{1}\right)_{X_{2}}$ by joining each pair of u_{i} and v_{i} by a path $P_{i}=u_{i} v\left(e_{i}\right) v_{i}$ where $v\left(e_{i}\right)$ is a new vertex. Therefore, $T_{1}+\bigcup_{i=1}^{s}\left\{u_{i} v\left(e_{i}\right)\right\}$ and $T_{2}+\bigcup_{i=1}^{s}\left\{v\left(e_{i}\right) v_{i}\right\}$ are two edge-disjoint spanning trees in $G_{X}+E_{p}$, and so $F\left(G_{X}\right) \leqslant p=F\left(\left(G-X_{1}\right)_{X_{2}}\right)$.
(iv) Let $T_{1}, T_{2}, \ldots, T_{k}$ be k edge-disjoint spanning trees of G. Without lost of generality, we may assume that

$$
\begin{equation*}
\left|X \cap E\left(T_{1}\right)\right| \leqslant\left|X \cap E\left(T_{2}\right)\right| \leqslant \cdots \leqslant\left|X \cap E\left(T_{k}\right)\right| . \tag{2}
\end{equation*}
$$

Since $k \geqslant 2,|X| \leqslant 2 k-2, T_{i}$'s are edge-disjoint, and by (2),

$$
\begin{equation*}
\left|X \cap E\left(T_{1}\right)\right|+\left|X \cap E\left(T_{2}\right)\right| \leqslant 2 \tag{3}
\end{equation*}
$$

Let $X=\left\{e_{1}, e_{2}, \ldots, e_{p}\right\}$ where $p \leqslant 2 k-2$, and let $e_{i}=u_{i} v_{i}$ for all $1 \leqslant i \leqslant p$. Since G_{X} is the graph obtained from G by subdividing $e_{i}(1 \leqslant i \leqslant p), V\left(G_{X}\right)=V(G) \cup\left\{v\left(e_{i}\right): 1 \leqslant i \leqslant p\right\}$, and $E\left(G_{X}\right)=(E(G)-X) \cup\left\{u_{i} v\left(e_{i}\right), v\left(e_{i}\right) v_{i}\right.$: $1 \leqslant i \leqslant p\}$.

Case $1 .\left|X \cap E\left(T_{1}\right)\right|+\left|X \cap E\left(T_{2}\right)\right|=0$.
Then $T_{1}+\bigcup_{i=1}^{p}\left\{u_{i} v\left(e_{i}\right)\right\}$ and $T_{2}+\bigcup_{i=1}^{p}\left\{v\left(e_{i}\right) v_{i}\right\}$ are two edge-disjoint spanning trees in G_{X} and so $F\left(G_{X}\right)=0 \leqslant 2$.
Case 2. $\left|X \cap E\left(T_{1}\right)\right|+\left|X \cap E\left(T_{2}\right)\right|=1$.
By (2) and (3), $\left|X \cap E\left(T_{1}\right)\right|=0$ and $\left|X \cap E\left(T_{2}\right)\right|=1$. Let $e_{2}=u_{2} v_{2}$ be the edge in $X \cap E\left(T_{2}\right)$. Then $T_{2}^{\prime}=T_{2}-$ $e_{2}+\left\{u_{2} v\left(e_{2}\right), v\left(e_{2}\right) v_{2}\right\} \bigcup_{i \neq 2}^{p}\left\{v\left(e_{i}\right) v_{i}\right\}$ is a spanning tree in G_{X}. To obtain another spanning tree which covers $v\left(e_{2}\right)$, we can add an edge $e^{\prime}=u_{1} v\left(e_{2}\right)$ to G_{X}. Then $T_{1}^{\prime}=T_{1}+\left\{e^{\prime}\right\} \bigcup_{i \neq 2}^{p}\left\{u_{i} v\left(e_{i}\right)\right\}$ is a spanning tree in $G_{X}+e^{\prime}$. Therefore, T_{1}^{\prime} and T_{2}^{\prime} are two edge-disjoint spanning trees in $G_{X}+e^{\prime}$. This shows that $F\left(G_{X}\right)=1 \leqslant 2$.

Case 3. $\left|X \cap E\left(T_{1}\right)\right|+\left|X \cap E\left(T_{2}\right)\right|=2$.
By (2) and (3), either $\left|X \cap E\left(T_{1}\right)\right|=\left|X \cap E\left(T_{2}\right)\right|=1$, or $\left|X \cap E\left(T_{1}\right)\right|=0$ and $\left|X \cap E\left(T_{2}\right)\right|=2$. We prove $F\left(G_{X}\right) \leqslant 2$ for the case $\left|X \cap E\left(T_{1}\right)\right|=\left|X \cap E\left(T_{2}\right)\right|=1$ here. The case $\left|X \cap E\left(T_{1}\right)\right|=0$ and $\left|X \cap E\left(T_{2}\right)\right|=2$ can be proved similarly.

Let $e_{1} \in X \cap E\left(T_{1}\right)$ and $e_{2} \in X \cap E\left(T_{2}\right)$. Then $T_{1}^{\prime}=T_{1}-e_{1}+\left\{u_{1} v\left(e_{1}\right), v\left(e_{1}\right) v_{1}\right\} \bigcup_{i=3}^{p}\left\{u_{i} v\left(e_{i}\right)\right\}$ is a tree containing $V\left(G_{X}\right)-v\left(e_{2}\right)$, and $T_{2}^{\prime}=T_{2}-e_{2}+\left\{u_{2} v\left(e_{2}\right), v\left(e_{2}\right) v_{2}\right\} \bigcup_{i=3}^{p}\left\{v\left(e_{i}\right) v_{i}\right\}$ is a tree containing $V\left(G_{X}\right)-v\left(e_{1}\right)$. Therefore, adding two new edges $e^{\prime}=u_{1} v\left(e_{2}\right)$ and $e^{\prime \prime}=v\left(e_{1}\right) v_{2}$ to G_{X}, we have two edge-disjoint spanning trees $T_{1}^{\prime}+e^{\prime}$ and $T_{2}^{\prime}+e^{\prime \prime}$ in $G_{X}+\left\{e^{\prime}, e^{\prime \prime}\right\}$. This shows that $F\left(G_{X}\right) \leqslant 2$. The proof is complete.

Lemma 2.7. Let G be a graph with $\kappa^{\prime}(G) \geqslant 3$, and let $X \subseteq E(G)$. Let G_{X} be the graph obtained from G by subdividing each edge in X. If the reduction of G_{X} is $K_{2, t}$, then each of the following holds.
(i) Every degree 2 vertex in G_{X}^{\prime} is a vertex obtained by subdividing an edge in X.
(ii) $|X| \geqslant t \geqslant \kappa^{\prime}(G)$, and X is an edge cut of G.
(iii) There is a subset $X_{1} \subseteq X$ with $t=\left|X_{1}\right|$ such that each path between the two vertices of degree t in $K_{2, t}$ is obtained by subdividing an edge in X_{1}. Furthermore, $G_{X}-X_{1}$ has only two collapsible components (say H_{1} and H_{2}) such that $V\left(G_{X}\right)=V\left(H_{1}\right) \cup V\left(H_{2}\right) \bigcup_{e \in E_{1}}\{v(e)\}$, and $G_{X}^{\prime}=K_{2, t}$ is obtained by contracting H_{1} and H_{2} (i.e. $\left.G_{X}^{\prime}=\left(G_{X} / H_{1}\right) / H_{2}=K_{2, t}\right)$.

Proof. Let $E\left(G_{X}^{\prime}\right)=E\left(K_{2, t}\right)=\left\{u w_{i}, w_{i} v\right\}(1 \leqslant i \leqslant t)$ where each w_{i} is a degree 2 vertex in G_{X}^{\prime}. Note that w_{i} is a trivial contraction, and (i) holds. Otherwise the two edges incident with w_{i} will form an edge-cut of G, contrary to that $\kappa^{\prime}(G) \geqslant 3$. Hence, each path $u w_{i} v$ is obtained by subdividing an edge in X and so $t \leqslant|X|$.

Let $E^{\prime}=\left\{u w_{i}: 1 \leqslant i \leqslant t\right\}$. Then E^{\prime} is an edge-cut of G_{X}^{\prime}. Since each path $u w_{i} v$ in G_{X} is obtained by subdividing an edge $e \in X \subseteq E(G)$, we have an edge set $X_{1} \subseteq X$ such that each edge in X_{1} corresponding to a path $u w_{i} v$ in G_{X}, and $\left|X_{1}\right|=\left|E^{\prime}\right|=t$. Therefore, X_{1} is an edge cut in G. Since $X_{1} \subseteq X, X$ is an edge-cut of G and $|X| \geqslant\left|E^{\prime}\right|=t \geqslant \kappa^{\prime}(G)$.

Note $V\left(G_{X}^{\prime}\right)=\left\{u, v, w_{i}: 1 \leqslant i \leqslant t\right\}$ where $d(u)=d(v)=t$. Let H_{1} be the preimage of u, and let H_{2} be the preimage of v. Therefore, G_{X}^{\prime} is obtained by subdividing each edge in X_{1}, and then contracting H_{1} and H_{2}, respectively. Statement (iii) is proved.

Lemma 2.8. Let G be an r-edge-connected graph $(r \geqslant 4)$. Let $X \subseteq E(G)$. Let G_{X} be the graph obtained from G by subdividing each edge in X. Let G_{X}^{\prime} be the reduction of G_{X} and let V_{r} be the set of vertices of degree less than r in G_{X}^{\prime}. Let $D_{i}=\left\{v \in V\left(G_{X}^{\prime}\right): d(v)=i\right\}(i \geqslant 2)$. If $F\left(G_{X}^{\prime}\right) \geqslant 3$, then each of the following holds:
(i) each vertex in V_{r} has degree 2 (i.e. $V_{r}=D_{2}$) and $\left|V_{r}\right| \leqslant|X|$.
(ii) $(r-4)\left|V\left(G_{X}^{\prime}\right)\right|+10 \leqslant(r-2)\left|V_{r}\right| \leqslant(r-2)|X|$.
(iii) $10+(r-4)\left|D_{r}\right|+(r-3)\left|D_{r+1}\right|+\cdots+\leqslant 2\left|V_{r}\right| \leqslant 2|X|$.

Proof. Since the degree of each vertex u in V_{r} is less than r, u must be a trivial contraction in G_{X}^{\prime}. Otherwise, the edges incident with u will form an edge cut with size less than r, contrary to $\kappa^{\prime}(G) \geqslant r$. Therefore, $V_{r} \subseteq V\left(G_{X}\right)-V(G)$,
a subset of the vertices obtained in the process of subdividing each edge in X. Thus each vertex in V_{r} has degree 2 and

$$
\begin{equation*}
\left|V_{r}\right| \leqslant|X| . \tag{4}
\end{equation*}
$$

Let $c=\left|V\left(G_{X}^{\prime}\right)\right|$. Since $F\left(G_{X}^{\prime}\right) \geqslant 3$, by (iii) of Theorem 2.1,

$$
\left|E\left(G_{X}^{\prime}\right)\right|=2\left|V\left(G_{X}^{\prime}\right)\right|-2-F\left(G_{X}^{\prime}\right) \leqslant 2 c-5 .
$$

Hence,

$$
\begin{equation*}
\sum_{v \in V\left(G_{X}^{\prime}\right)} d(v)=2\left|E\left(G_{X}^{\prime}\right)\right| \leqslant 4 c-10 \tag{5}
\end{equation*}
$$

Since $\kappa^{\prime}\left(G_{X}\right) \geqslant 2, \delta\left(G_{X}^{\prime}\right) \geqslant 2$. Then by (5)

$$
\begin{equation*}
2\left|V_{r}\right|+r\left(c-\left|V_{r}\right|\right) \leqslant 2\left|V_{r}\right|+\sum_{v \notin V_{r}} d(v)=\sum_{v \in V\left(G_{X}^{\prime}\right)} d(v)=2\left|E\left(G_{X}^{\prime}\right)\right| \leqslant 4 c-10 . \tag{6}
\end{equation*}
$$

By (4), (6), and $c=\left|V\left(G_{X}^{\prime}\right)\right|$,

$$
\begin{equation*}
(r-4)\left|V\left(G_{X}^{\prime}\right)\right|+10 \leqslant(r-2)\left|V_{r}\right| \leqslant(r-2)|X| . \tag{7}
\end{equation*}
$$

By (6), and $V\left(G_{X}^{\prime}\right)=V_{r} \bigcup_{i=r} D_{i}$,

$$
2\left|V_{r}\right|+r\left|D_{r}\right|+(r+1)\left|D_{r+1}\right|+\cdots \leqslant 4\left(\left|V_{r}\right|+\left|D_{r}\right|+\left|D_{r+1}\right|+\cdots\right)-10 .
$$

Hence,

$$
10+(r-4)\left|D_{r}\right|+(r-3)\left|D_{r+1}\right|+\cdots \leqslant 2\left|V_{r}\right| \leqslant 2|X| .
$$

Lemma 2.9. Let G be a graph and let $e_{1}, e_{2} \in E(G)$ and let $X \subseteq E(G)$. Let $X_{0}=X \cup\left\{e_{1}, e_{2}\right\}$. Let $G_{X_{0}}$ be the graph obtained from G by subdividing each edge in X_{0}. Let $v\left(e_{1}\right)$ and $v\left(e_{2}\right)$ be the two vertices subdividing e_{1} and e_{2}, respectively. Then
(i) If $G_{X_{0}}$ has a spanning $\left(v\left(e_{1}\right), v\left(e_{2}\right)\right)$-trail, then G has a spanning $\left(e_{1}, e_{2}\right)$-trail containing X.
(ii) If $G_{X_{0}}$ is collapsible, then G has a spanning $\left(e_{1}, e_{2}\right)$-trail containing X.

Proof. Follows from the definitions of collapsibility and $G_{X_{0}}$.

3. The r-Eulerian-connected graphs

The Petersen graph and many other 3-edge-connected graphs have no spanning closed trails. Thus, for any $r \geqslant 0$, $\psi(r) \geqslant \theta(r) \geqslant 4$. By Theorem 2.2, we know that $\psi(0)=\theta(0)=4$. The following example shows that for $r \geqslant 3$, $\psi(r) \geqslant \theta(r) \geqslant r+1$.

Example 1. Let $r \geqslant 3$ be an integer, and let n and m be two integers such that $n \geqslant r+1$ and $m \geqslant r+1$. Let $G_{1}=K_{n}$ with $V\left(G_{1}\right)=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$, and let $G_{2}=K_{m}$ with $V\left(G_{2}\right)=\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$. Define the graph G to be the graph obtained from G_{1} and G_{2} by connecting G_{1} and G_{2} with the new edge set $X=\left\{e_{1}, e_{2}, \ldots, e_{r}\right\}$ where $e_{i}=u_{i} v_{i}$ for all $i=1,2, \ldots, r$. Then G is an r-edge-connected graph. If r is even, then we choose u from G_{1}, and v from G_{2}. If r is an odd integer, then we choose u and v both from G_{1}. Then G has no spanning (u, v)-trails containing all the edges of X. This example also shows that G has no spanning ($e^{\prime}, e^{\prime \prime}$)-trails containing all the edges of X for some pair of $e^{\prime}, e^{\prime \prime} \in E(G)$. See Fig. 1 below for the case $r=4$ where $X=\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$ and $G_{1} \cong G_{2} \cong K_{5}$. This shows that $\psi(r) \geqslant \theta(r) \geqslant r+1$. In the following, we will show that $\psi(r)=\theta(r)=r+1$.

This example suggests the following necessary condition for r Eulerian-connected graphs, and the lower bounds for $\psi(r), \theta(r)$ and $\xi(r)$.

Fig. 1.

Theorem 3.0. Let $r \geqslant 3$. Then $\psi(r) \geqslant \theta(r) \geqslant r+1$ and $\xi(r) \geqslant r+1$. Furthermore, if G is an r-Eulerian-connected graph, then G is $(r+1)$-edge-connected.

Proof. By way of contradiction, suppose that the edge-connectivity of G is $k \leqslant r$. Let X be an edge cut with $|X|=k$ and let H_{1} and H_{2} be two components of $G-X$. If $|X|=k$ is even, we can choose a vertex u from H_{1} and a vertex v from H_{2}. Then G has no spanning (u, v) trail that contains X, a contradiction. If $|X|=k$ is odd, then we can choose a vertex u from H_{1}. Since X has odd number of edges, G does not have a closed trail that starts and ends at u containing X, a contradiction again.

For a real number x, let $\lfloor x\rfloor$ be the largest integer that is less than or equal to x.
Theorem 3.1. Let $r \geqslant 4$ be an integer and let $k=\left\lfloor\frac{r}{2}\right\rfloor$. Let G be an r-edge-connected graph and let $X \subseteq E(G)$ with $|X| \leqslant r+k-2$. it Then one of the following holds:
(i) G_{X} is collapsible, or
(ii) X is an edge cut of G and $|X| \geqslant r$.

Proof. Let $X \subseteq E(G)$ with $|X| \leqslant r+k-2$. Define G_{X} as before and assume that G_{X} is not collapsible. We will show that the reduction G_{X}^{\prime} is $K_{2, t}$ with $t \geqslant 2$ first. Consider the following two cases:

Case 1. r is even. Then $r=2 k$, and $|X| \leqslant 3 k-2$.
Since $|X| \leqslant 3 k-2$, we can choose a subset X_{1} of X and let $X_{2}=X-X_{1}$, such that $\left|X_{1}\right| \leqslant k$ and $\left|X_{2}\right| \leqslant 2 k-2$. By Theorem 2.3, $G-X_{1}$ has k-edge-disjointed spanning trees. Then by Lemma 2.6(iv), $F\left(\left(G-X_{1}\right)_{X_{2}}\right) \leqslant 2$. By Lemma 2.6 (iii), $F\left(G_{X}\right) \leqslant F\left(\left(G-X_{1}\right)_{X_{2}}\right) \leqslant 2$. Since G_{X} is not collapsible, by Theorem $2.5, G_{X}^{\prime} \in\left\{K_{2}, K_{2, t}\right\}(t \geqslant 1)$. Since G is r-edge-connected $(r \geqslant 4), G_{X}$ is 2-edge-connected. Therefore, $G_{X}^{\prime}=K_{2, t}(t \geqslant 2)$.

Case 2. r is odd. Then $r=2 k+1$ and $|X| \leqslant 3 k-1$.
Let X_{1} be a subset of X and let $X_{2}=X-X_{1}$ such that $\left|X_{1}\right| \leqslant k+1$ and $\left|X_{2}\right| \leqslant 2 k-2$. By Corollary $2.4, G-X_{1}$ has k-edge-disjointed spanning trees. By Lemma 2.6(iii) and (iv), $F\left(G_{X}\right) \leqslant F\left(\left(G-X_{1}\right)_{X_{2}}\right) \leqslant 2$. Using the same argument for the case 1 above, we have $G_{X}^{\prime}=K_{2, t}(t \geqslant 2)$.

Therefore, by Lemma 2.7, Theorem 3.1 is proved.
From the proof of Theorem 3.1, we have the following:
Theorem 3.1'. Let $r \geqslant 4$ be an integer and let $k=\left\lfloor\frac{r}{2}\right\rfloor$. Let G be an r-edge-connected graph. Let $X \subseteq E(G)$ with $|X| \leqslant r+k-2$ and let G_{X} be the graph obtained from G by subdividing every edge in X. Let G_{X}^{\prime} be the reduction of G_{X}. Then exactly one of the following holds
(i) G_{X} is collapsible, or
(ii) G_{X} can be contracted to $K_{2, t}$ (i.e. $G_{X}^{\prime}=K_{2, t}$) in such a way that each degree vertex in $K_{2, t}$ is a trivial contraction and $r \leqslant t \leqslant|X|$.

Theorem 3.2. Let $r \geqslant 4$ be an integer and let $k=\left\lfloor\frac{r}{2}\right\rfloor$. Let G be an r-edge-connected graph. Let $X \subseteq E(G)$ with $|X| \leqslant r+k-2$. Then one of the following holds
(i) for any even subset $R \subseteq V(G)$, G has a spanning R-trail H_{R} such that $X \subseteq E\left(H_{R}\right)$, or
(ii) X is an edge cut of G and $|X| \geqslant r$.

Proof. For a given edge set $X \subseteq E(G)$, by Lemma 2.6(ii), if G_{X} is collapsible, then G has a spanning (R, X)-trail for any even subset $R \subseteq V(G)$. Theorem 3.2 follows from Theorem 3.1.

Corollary 3.3. Let $r \geqslant 4$ be an integer, and let $k=\left\lfloor\frac{r}{2}\right\rfloor$. Let G be an r-edge-connected graph. Let $X \subseteq E(G)$ with $|X| \leqslant r+k-2$. If X is not an edge cut of G, then G has a spanning (R, X)-trail for any even subset $R \subseteq V(G)$.

Proof. Following Theorem 3.1 and Lemma 2.6 immediately.
Corollary 3.4. Let $r \geqslant 3$. Then G is strongly r-Eulerian-connected if and only if G is $(r+1)$-edge-connected.
Proof. The necessary condition follows from Theorem 3.0. For the sufficient condition, let $X \subseteq E(G)$ with $|X| \leqslant r$. Then $|X|<\kappa^{\prime}(G)=r+1 . X$ is not an edge cut of G and by Theorem 3.2, the statement holds.

Theorem 3.5. Let $r \geqslant 0$. Then

$$
\psi(r)=\theta(r)= \begin{cases}4 & \text { if } 0 \leqslant r \leqslant 2 \\ r+1 & \text { if } r \geqslant 3\end{cases}
$$

Proof. Since there exist 3-edge-connected graphs which are not supereulerian, $\psi(r) \geqslant \theta(r) \geqslant 4$ for $r \geqslant 0$. By Theorem 3.1, if G is 4 -edge-connected, then any edge set X with $|X| \leqslant 2$ can not be an edge cut of G. Therefore G_{X} is collapsible, and so $\theta(r)=\psi(r) \leqslant 4$ if $r \leqslant 2$. For $r \geqslant 3$, it follows from Corollary 3.4 that $\psi(r)=\theta(r)=r+1$.

Corollary 3.6 (Lai [12]). Let $r \geqslant 0$ be an integer. Then

$$
f(r)= \begin{cases}4, & 0 \leqslant r \leqslant 2 \\ r+1, & r \geqslant 3 \text { and } r \text { is odd } \\ r, & r \geqslant 4 \text { and } r \text { is even. }\end{cases}
$$

Proof. Since there exist 3-edge-connected graphs that are not supereulerian, $f(r) \geqslant 4$. Since $f(r) \leqslant \theta(r)$, by Theorem 3.1, $f(r)=4$ if $r \leqslant 2$. For $r \geqslant 3$, if r is odd, Example 1 with an odd number r shows that $f(r) \geqslant r+1$. By Theorem 3.1, since $f(r) \leqslant \theta(r) \leqslant r+1, f(r)=r+1$ if r is odd. If r is even, by Theorem 3.1', for any r-edge-connected graph G and any $X \subseteq E(G)$ with $|X| \leqslant r$, either G_{X} is collapsible or the reduction $G_{X}^{\prime} \cong K_{2, r}$. Since $K_{2, r}$ is supereulerian when r is even and all collapsible graphs are supereulerian, G_{X} is supereulerian. Then by Lemma 2.6(i), G has a spanning Eulerian subgraph H with $X \subseteq E(H)$. Therefore, $f(r)=r$ if r is even.

Corollary 3.6 implies that if G is 4-edge-connected, then for any $X \subseteq E(G)$ with $|X| \leqslant 4, G$ has a spanning Eulerian subgraph H such that $X \subseteq E(H)$. Here we have:

Theorem 3.7. Let G be 4-edge-connected graph. Let $X \subseteq E(G)$ with $|X| \leqslant 5$. Let G_{X} be the graph obtained from G by subdividing each edge in X. Let $D_{i}=\left\{v \in V\left(G_{X}^{\prime}\right) \mid d(v)=i\right\}(i \geqslant 2)$. Then one of the following holds
(i) G_{X} is collapsible, or
(ii) X contains an edge cut X_{1} with $\left|X_{1}\right|=t \geqslant 4$ such that $G-X_{1}$ has only two components (H_{1} and H_{2}), which are collapsible. Furthermore, G_{X} is contractible to $K_{2, t}$ by contracting H_{1} and H_{2} into the two degree t vertices in $K_{2, t}$, or
(iii) G_{X}^{\prime} is an Eulerian graph with $V\left(G_{X}^{\prime}\right)=D_{2} \cup D_{4}$ and $\left|D_{2}\right|=5$.

Proof. Let G_{X}^{\prime} be the reduction of G_{X}. If $G_{X}^{\prime}=K_{1}$, then G_{X} is collapsible and we are done for this case. In the following we will assume that G_{X}^{\prime} is not trivial. Since G is 4-edge-connected, G_{X} is 2-edge-connected. Since $\kappa\left(G_{X}^{\prime}\right) \geqslant \kappa\left(G_{X}\right)$, G_{X}^{\prime} is 2-edge-connected.

Case 1. $F\left(G_{X}^{\prime}\right) \leqslant 2$.
By Theorem 2.5, and $\kappa^{\prime}\left(G_{X}\right) \geqslant 2, G_{X}^{\prime}=K_{2, t}$ for some $t \geqslant 2$. By Lemma 2.7, $|X| \geqslant t \geqslant 4$. Hence, (ii) of Theorem 3.7 holds.

Case 2. $F\left(G_{X}^{\prime}\right) \geqslant 3$.
Since G is 4-edge-connected and $|X| \leqslant 5$, by (i) and (iii) of Lemma 2.7, $V_{r}=D_{2}$ and

$$
10+\left|D_{5}\right|+\cdots+\leqslant 2\left|V_{r}\right| \leqslant 2|X| \leqslant 10 .
$$

This implies that $\left|D_{i}\right|=0$ for all $i \geqslant 5$ and $\left|D_{2}\right|=5$. Therefore, each vertex in $V\left(G_{X}^{\prime}\right)$ has degree 2 or 4 . Hence, G_{X}^{\prime} is Eulerian and $\left|D_{2}\right|=5$.

Corollary 3.8. Let G be a 4 -edge-connected graph. Let $X \subseteq E(G)$ with $|X| \leqslant 5$. Let G_{X} be the graph obtained from G by subdividing each edge in X. Then either G has a spanning Eulerian subgraph H such that $X \subseteq E(H)$, or G_{X} is contractible to $K_{2,5}$ in such a way that each path between the two vertices of degree 5 is obtained by subdividing an edge in X.

Proof. This follows from Theorem 3.7 and Lemma 2.9.

4. The r-edge-Eulerian-connected graphs

We will need the following lemma.
Lemma 4.0. Let G be a 3-edge-connected graph. Let $X \subseteq E(G)$ and let $e^{\prime}, e^{\prime \prime} \in E(G)$. Let $X_{0}=X \cup\left\{e^{\prime}, e^{\prime \prime}\right\}$ and let $G_{X_{0}}$ be the graph obtained from G by subdividing each edge in X_{0}. Suppose that $G_{X_{0}}^{\prime}=K_{2, t}$ where $t \geqslant 3$. If $t>|X|$, then G has a spanning ($e^{\prime}, e^{\prime \prime}$)-trail H such that $X \subseteq E(H)$.

Proof. Let u and v be the two vertices in $K_{2, t}$ with $d(u)=d(v)=t$. By Lemma 2.7, there is an edge set $X_{1} \subseteq X_{0}$ such that each length 2 path between u and v in $K_{2, t}$ is obtained by subdividing an edge in X_{1}. Then $\left|X_{1}\right|=t$. Let $E_{1}=E\left(G_{X_{0}}^{\prime}\right)=E\left(K_{2, t}\right)$. By Lemma 2.7, $G_{X_{0}}-E_{1}$ has two collapsible subgraphs (H_{1} and H_{2}) such that $V\left(G_{X_{0}}\right)=V\left(H_{1}\right) \cup V\left(H_{2}\right) \bigcup_{e \in X_{1}}\{v(e)\}$. Let $e^{\prime}=x_{0}^{\prime} y_{0}^{\prime}, e^{\prime \prime}=x_{0}^{\prime \prime} y_{0}^{\prime \prime}$ and let $x_{0}^{\prime}, x_{0}^{\prime \prime} \in V\left(H_{1}\right)$ and $y_{0}^{\prime}, y_{0}^{\prime \prime} \in V\left(H_{2}\right)$. Since $t>|X|$, at least one of the edges in $\left\{e^{\prime}, e^{\prime \prime}\right\}$ is included in X_{1}. For each $e \in\left\{e^{\prime}, e^{\prime \prime}\right\}, P_{e}$ is defined as a path obtained by subdividing edge e.
For each $H_{i},(i=1,2)$, define

$$
U_{\mathrm{o}}\left(H_{i}\right)=\left\{v \in V\left(H_{i}\right): v \text { is incident with odd number of edges in } E_{1}-\left\{P_{e^{\prime}}, P_{e^{\prime \prime}}\right\}\right\} .
$$

Note that $\left|U_{\mathrm{o}}\left(H_{1}\right)\right|$ is odd if and only if $\left|U_{\mathrm{o}}\left(H_{2}\right)\right|$ is odd. Since H_{i} is collapsible, for any even subset $R_{i} \subseteq V\left(H_{i}\right)$, there is a spanning connected subgraph Γ_{i} with $\mathrm{O}\left(\Gamma_{i}\right)=R_{i}(i=1,2)$. In the following we will show that a spanning $\left(v\left(e^{\prime}\right), v\left(e^{\prime \prime}\right)\right)$-trail Γ can be constructed from Γ_{1} and Γ_{2} by adding all the edges in E_{1} and an edge $e_{\Gamma_{1}}$ to connect $v\left(e^{\prime}\right)$ (or an edge $e_{\Gamma_{2}}$ to connect $v\left(e^{\prime \prime}\right)$, or both) such that $\mathrm{O}(\Gamma)=\left\{v\left(e^{\prime}\right), v\left(e^{\prime \prime}\right)\right\}$.

Case 1. Both e^{\prime} and $e^{\prime \prime}$ are in X_{1}.
Note that G may not be simple and we may have three possible situations:
(a) $x_{0}^{\prime}=x_{0}^{\prime \prime}$ and $y_{0}^{\prime}=y_{0}^{\prime \prime}$,
(b) $x_{0}^{\prime}=x_{0}^{\prime \prime}$ and $y_{0}^{\prime} \neq y_{0}^{\prime \prime}$,
(c) $x_{0}^{\prime} \neq x_{0}^{\prime \prime}$ and $y_{0}^{\prime} \neq y_{0}^{\prime \prime}$.

The following Tables 1-3 show the selections of the even subset $R_{i} \subseteq V\left(H_{i}\right)$ for Γ_{i} and $e_{\Gamma_{i}}(i=1,2)$ for all possible cases.

For each case with the selection of $R_{1}, R_{2}, e_{\Gamma_{1}}$ and $e_{\Gamma_{2}}$, define

$$
\Gamma=G_{X_{0}}\left[E\left(\Gamma_{1}\right) \cup E\left(\Gamma_{2}\right) \cup E_{1} \cup\left\{e_{\Gamma_{1}}, e_{\Gamma_{2}}\right\}\right] .
$$

By the definition of $\Gamma, V(\Gamma)=V\left(\Gamma_{1}\right) \cup V\left(\Gamma_{2}\right) \bigcup_{e \in X_{1}}\{v(e)\} \cup\left\{v\left(e^{\prime}\right), v\left(e^{\prime \prime}\right)\right\}$, and $v\left(e^{\prime}\right)$ and $v\left(e^{\prime \prime}\right)$ have degree 1 in Γ. Since Γ_{i} is a connected spanning subgraph of $H_{i}, V\left(\Gamma_{i}\right)=V\left(H_{i}\right)(i=1,2) . \Gamma_{1}$ and Γ_{2} are connected by the paths in E_{1}, and $v\left(e^{\prime}\right)$ and $v\left(e^{\prime \prime}\right)$ are connected to Γ_{i} by $e_{\Gamma_{i}}$. Thus, $V(\Gamma)=V\left(G_{X_{0}}\right)$ and Γ is a connected spanning subgraph

Table 1
When $x_{0}^{\prime}=x_{0}^{\prime \prime}$ and $y_{0}^{\prime}=y_{0}^{\prime \prime}$, let $x_{0}=x_{0}^{\prime}=x_{0}^{\prime \prime}$ and $y_{0}=y_{0}^{\prime}=y_{0}^{\prime \prime}$

$\left\|U_{\mathrm{o}}\left(H_{1}\right)\right\|$	x_{0} and y_{0}	R_{1}	R_{2}	$e_{\Gamma_{1}}$	$e_{\Gamma_{2}}$
Odd	$x_{0} \in U_{\mathrm{o}}\left(H_{1}\right), y_{0} \in U_{\mathrm{o}}\left(H_{2}\right)$	$U_{\mathrm{o}}\left(H_{1}\right)-x_{0}$	$U_{\mathrm{o}}\left(H_{2}\right)-y_{0}$	$x_{0} v\left(e^{\prime}\right)$	$v\left(e^{\prime \prime}\right) y_{0}$
	$x_{0} \notin U_{\mathrm{o}}\left(H_{1}\right), y_{0} \in U_{\mathrm{o}}\left(H_{2}\right)$	$U_{\mathrm{O}}\left(H_{1}\right) \cup\left\{x_{0}\right\}$	$U_{\mathrm{o}}\left(H_{2}\right)-y_{0}$	$x_{0} v\left(e^{\prime}\right)$	$v\left(e^{\prime \prime}\right) y_{0}$
	$x_{0} \in U_{\mathrm{o}}\left(H_{1}\right), y_{0} \notin U_{\mathrm{O}}\left(H_{2}\right)$	$U_{\mathrm{o}}\left(H_{1}\right)-x_{0}$	$U_{\mathrm{o}}\left(H_{2}\right) \cup\left\{y_{0}\right\}$	$x_{0} v\left(e^{\prime}\right)$	$v\left(e^{\prime \prime}\right) y_{0}$
	$x_{0} \notin U_{\mathrm{o}}\left(H_{1}\right), y_{0} \notin U_{\mathrm{o}}\left(H_{2}\right)$	$U_{\mathrm{o}}\left(H_{1}\right) \cup\left\{x_{0}\right\}$	$U_{\mathrm{o}}\left(H_{2}\right) \cup\left\{y_{0}\right\}$	$x_{0} v\left(e^{\prime}\right)$	$v\left(e^{\prime \prime}\right) y_{0}$
Even		$U_{\mathrm{o}}\left(H_{1}\right)$	$U_{\mathrm{o}}\left(H_{2}\right)$	$x_{0} v\left(e^{\prime}\right)$	$x_{0} v\left(e^{\prime \prime}\right)$

Table 2
When $x_{0}^{\prime}=x_{0}^{\prime \prime}$ and $y_{0}^{\prime} \neq y_{0}^{\prime \prime}$, let $x_{0}=x_{0}^{\prime}=x_{0}^{\prime \prime}$

$\left\|U_{\mathrm{o}}\left(H_{1}\right)\right\|$	x_{0}, and $y_{0}^{\prime \prime}$	R_{1}	R_{2}	$e_{\Gamma_{1}}$	$e_{\Gamma_{2}}$
Odd	$x_{0} \in U_{\mathrm{o}}\left(H_{1}\right), y_{0}^{\prime \prime} \in U_{\mathrm{O}}\left(H_{2}\right)$	$U_{\mathrm{o}}\left(H_{1}\right)-x_{0}$	$U_{\mathrm{o}}\left(H_{2}\right)-y_{0}^{\prime \prime}$	$x_{0} v\left(e^{\prime}\right)$	$v\left(e^{\prime \prime}\right) y_{0}^{\prime \prime}$
	$x_{0} \in U_{\mathrm{o}}\left(H_{1}\right), y_{0}^{\prime \prime} \notin U_{\mathrm{o}}\left(H_{2}\right)$	$U_{\mathrm{o}}\left(H_{1}\right)-x_{0}$	$U_{\mathrm{o}}\left(H_{2}\right) \cup\left\{y_{0}^{\prime \prime}\right\}$	$x_{0} v\left(e^{\prime}\right)$	$v\left(e^{\prime \prime}\right) y_{0}^{\prime \prime}$
	$x_{0} \notin U_{\mathrm{o}}\left(H_{1}\right), y_{0}^{\prime \prime} \in U_{\mathrm{O}}\left(H_{2}\right)$	$U_{\mathrm{O}}\left(H_{1}\right) \cup\left\{x_{0}\right\}$	$U_{\mathrm{o}}\left(H_{2}\right)-y_{0}^{\prime \prime}$	$x_{0} v\left(e^{\prime}\right)$	$v\left(e^{\prime \prime}\right) y_{0}^{\prime \prime}$
	$x_{0} \notin U_{\mathrm{o}}\left(H_{1}\right), y_{0}^{\prime \prime} \notin U_{\mathrm{o}}\left(H_{2}\right)$	$U_{\mathrm{o}}\left(H_{1}\right) \cup\left\{x_{0}\right\}$	$U_{\mathrm{o}}\left(H_{2}\right) \cup\left\{y_{0}^{\prime \prime}\right\}$	$x_{0} v\left(e^{\prime}\right)$	$v\left(e^{\prime \prime}\right) y_{0}^{\prime \prime}$
Even		$U_{\mathrm{o}}\left(H_{1}\right)$	$U_{\mathrm{o}}\left(H_{2}\right)$	$x_{0} v\left(e^{\prime}\right)$	$x_{0} v\left(e^{\prime \prime}\right)$

Table 3
When $x_{0}^{\prime} \neq x_{0}^{\prime \prime}$ and $y_{0}^{\prime} \neq y_{0}^{\prime \prime}$

$\left\|U_{0}\left(H_{1}\right)\right\|$	x_{0}^{\prime}, and $y_{0}^{\prime \prime}$	R_{1}	R_{2}	$e_{\Gamma_{1}}$	$e_{\Gamma_{2}}$
Odd	$x_{0}^{\prime} \in U_{0}\left(H_{1}\right), y_{0}^{\prime \prime} \in U_{0}\left(H_{2}\right)$	$U_{0}\left(H_{1}\right)-x_{0}^{\prime}$	$U_{0}\left(H_{2}\right)-y_{0}^{\prime \prime}$	$x_{0}^{\prime} v\left(e^{\prime}\right)$	$v\left(e^{\prime \prime}\right) y_{0}^{\prime \prime}$
	$x_{0}^{\prime} \in U_{0}\left(H_{1}\right), y_{0}^{\prime \prime} \notin U_{\mathrm{o}}\left(H_{2}\right)$	$U_{0}\left(H_{1}\right)-x_{0}^{\prime}$	$U_{\mathrm{o}}\left(H_{2}\right) \cup\left\{y_{0}^{\prime \prime}\right\}$	$x_{0}^{\prime} v\left(e^{\prime}\right)$	$v\left(e^{\prime \prime}\right) y_{0}^{\prime \prime}$
	$x_{0}^{\prime} \notin U_{\mathrm{o}}\left(H_{1}\right), y_{0}^{\prime \prime} \in U_{\mathrm{o}}\left(H_{2}\right)$	$U_{0}\left(H_{1}\right) \cup\left\{x_{0}^{\prime}\right\}$	$U_{0}\left(H_{2}\right)-y_{0}^{\prime \prime}$	$x_{0}^{\prime} v\left(e^{\prime}\right)$	$v\left(e^{\prime \prime}\right) y_{0}^{\prime \prime}$
	$x_{0}^{\prime} \notin U_{\mathrm{o}}\left(H_{1}\right), y_{0}^{\prime \prime} \notin U_{\mathrm{o}}\left(H_{2}\right)$	$U_{0}\left(H_{1}\right) \cup\left\{x_{0}^{\prime}\right\}$	$U_{\mathrm{o}}\left(H_{2}\right) \cup\left\{y_{0}^{\prime \prime}\right\}$	$x_{0}^{\prime} v\left(e^{\prime}\right)$	$v\left(e^{\prime \prime}\right) y_{0}^{\prime \prime}$
Even	$x_{0}^{\prime} \in U_{0}\left(H_{1}\right), x_{0}^{\prime \prime} \in U_{0}\left(H_{1}\right)$	$U_{\mathrm{o}}\left(H_{1}\right)-\left\{x_{0}^{\prime}, x_{0}^{\prime \prime}\right\}$		$x_{0}^{\prime} v\left(e^{\prime}\right)$	$x_{0}^{\prime \prime} v\left(e^{\prime \prime}\right)$
	$x_{0}^{\prime} \notin U_{0}\left(H_{1}\right), x_{0}^{\prime \prime} \in U_{\mathrm{o}}\left(H_{1}\right)$	$\left(U_{\mathrm{o}}\left(H_{1}\right)-\left\{x_{0}^{\prime \prime}\right\}\right) \cup\left\{x_{0}^{\prime}\right\}$	$U_{\mathrm{o}}\left(H_{2}\right)$	$x_{0}^{\prime} v\left(e^{\prime}\right)$	$x_{0}^{\prime \prime} v\left(e^{\prime \prime}\right)$
	$x_{0}^{\prime} \in U_{\mathrm{o}}\left(H_{1}\right), x_{0}^{\prime \prime} \notin U_{\mathrm{o}}\left(H_{1}\right)$	$\left(U_{\mathrm{o}}\left(H_{1}\right)-\left\{x_{0}^{\prime}\right\}\right) \cup\left\{x_{0}^{\prime \prime}\right\}$	$U_{0}\left(H_{2}\right)$	$x_{0}^{\prime} v\left(e^{\prime}\right)$	$x_{0}^{\prime \prime} v\left(e^{\prime \prime}\right)$
	$x_{0}^{\prime} \notin U_{\mathrm{o}}\left(H_{1}\right), x_{0}^{\prime \prime} \notin U_{\mathrm{o}}\left(H_{1}\right)$	$U_{\mathrm{o}}\left(H_{1}\right) \cup\left\{x_{0}^{\prime}, x_{0}^{\prime \prime}\right\}$	$U_{\mathrm{o}}\left(H_{2}\right)$	$x_{0}^{\prime} v\left(e^{\prime}\right)$	$x_{0}^{\prime \prime} v\left(e^{\prime \prime}\right)$

of $G_{X_{0}}$. To show that $\mathrm{O}(\Gamma)=\left\{v\left(e^{\prime}\right), v\left(e^{\prime \prime}\right)\right\}$, we can check each case listed in Tables 1-3. For instance, with the cases in Table 1, if $v \notin R_{1} \cup R_{2}, v$ has even degree in Γ_{1} or Γ_{2} or v has degree 2 as a vertex obtained by subdividing an edge in X_{1}. If $v \in R_{1}$ and $v \neq x_{0}$ (or $v \in R_{2}$ and $v \neq y_{0}$), then since odd number of edges incident with v in E_{1} are added, v has an even degree in Γ. If $v=x_{0}$ (or y_{0}), by the definition of $e_{\Gamma_{1}}$ and $e_{\Gamma_{2}}, x_{0}$ has an even degree in Γ. Hence, $\mathrm{O}(\Gamma)=\left\{v\left(e^{\prime}\right), v\left(e^{\prime \prime}\right)\right\}$, and Γ is a spanning $\left(v\left(e^{\prime}\right), v\left(e^{\prime \prime}\right)\right)$-trail in $G_{X_{0}}$. By Lemma 2.9, G has a spanning $\left(e^{\prime}, e^{\prime \prime}\right)$-trail containing X.

Case 2. One of e^{\prime} and $e^{\prime \prime}$ is in X_{1} (say $e^{\prime} \in X_{1}$).
Since $e^{\prime \prime} \notin X_{1}$, we may assume that the path obtained by subdividing $e^{\prime \prime}$ is in H_{1}. Then $v\left(e^{\prime \prime}\right) \in V\left(H_{1}\right)$. For this case, we only need to choose $e_{\Gamma_{1}}$ to connect $v\left(e^{\prime}\right)$ in Γ.

For each case in Table 4, define

$$
\Gamma=G_{X_{0}}\left[E\left(\Gamma_{1}\right) \cup E\left(\Gamma_{2}\right) \cup E_{1} \cup\left\{e_{\Gamma_{1}}\right\}\right] .
$$

Therefore, Γ is a spanning connected subgraph of $G_{X_{0}}$ such that $\mathrm{O}(\Gamma)=\left\{v\left(e^{\prime}\right), v\left(e^{\prime \prime}\right)\right\}$. The Lemma is proved.
In [14], Zhan proved the following:
Theorem 4.1 (Zhan [14]). If G is a 4-edge-connected graph, then for any edges $e_{1}, e_{2} \in E(G)$ there is a spanning $\left(e_{1}, e_{2}\right)$-trail in G.

Table 4
$e^{\prime} \in X_{1}$, and $v\left(e^{\prime \prime}\right) \in V\left(H_{1}\right)$

$\left\|U_{\mathrm{o}}\left(H_{1}\right)\right\|$	x_{0}^{\prime}, and y_{0}^{\prime}	R_{1}	R_{2}	$e_{\Gamma_{1}}$
Odd	$y_{0}^{\prime} \in U_{0}\left(H_{2}\right)$	$U_{0}\left(H_{1}\right) \cup\left\{v\left(e^{\prime \prime}\right)\right\}$	$U_{0}\left(H_{2}\right)-y_{0}^{\prime}$	$v\left(e^{\prime}\right) y_{0}^{\prime}$
	$y_{0}^{\prime} \notin U_{0}\left(H_{2}\right)$	$U_{\mathrm{o}}\left(H_{1}\right) \cup\left\{v\left(e^{\prime \prime}\right)\right\}$	$U_{0}\left(H_{2}\right) \cup\left\{y_{0}^{\prime}\right\}$	$v\left(e^{\prime}\right) y_{0}^{\prime}$
Even	$x_{0}^{\prime} \in U_{\mathrm{o}}\left(H_{1}\right)$	$\left(U_{\mathrm{o}}\left(H_{1}\right)-\left\{x_{0}^{\prime}\right\}\right) \cup\left\{v\left(e^{\prime \prime}\right)\right\}$	$U_{0}\left(H_{2}\right)$	$x_{0}^{\prime} v\left(e^{\prime}\right)$
	$x_{0}^{\prime} \notin U_{0}\left(H_{1}\right)$	$U_{\mathrm{o}}\left(H_{1}\right) \cup\left\{x_{0}^{\prime}, v\left(e^{\prime \prime}\right)\right\}$	$x_{0}^{\prime} v\left(e^{\prime}\right)$	

Theorem 4.1 can be improved.
Theorem 4.2. Let $r \in\{3,4\}$. If G is an $(r+1)$-edge-connected graph, then for any $X \subseteq E(G)$ with $|X| \leqslant r-1$, and for any $e_{1}, e_{2} \in E(G), G$ has a spanning (e_{1}, e_{2})-trail H in G such that $X \subseteq E(H)$.

Proof. Let $X_{0}=X \cup\left\{e_{1}, e_{2}\right\}$. Let $G_{X_{0}}$ be the graph obtained from G by subdividing each edge in X_{0}. Since $r \in\{3,4\}$, $k=\lfloor(r+1) / 2\rfloor=2$. Then $\left|X_{0}\right| \leqslant|X|+2 \leqslant r+1=(r+1)+k-2$. By Theorem 3.1', either $G_{X_{0}}$ is collapsible or $G_{X_{0}}$ is contractible to $K_{2, t}$ with $t \geqslant r$. If $G_{X_{0}}$ is collapsible, then by Lemma 2.9, G has a spanning (e_{1}, e_{2})-trail containing X. If $G_{X_{0}}$ is contractible to $K_{2, t}$ with $t \geqslant 4$, since $t \geqslant r>|X|$, by Lemma 4.0, G has a spanning (e_{1}, e_{2})-trail containing the edge set X.

For graphs with edge-connectivity at least 5, we have
Theorem 4.3. Let G be an $(r+1)$-edge-connected graph $(r \geqslant 4)$. Let $X \subseteq E(G)$ with $|X| \leqslant r$. Then G is an r-edge-Eulerian-connected.

Proof. Let e_{1} and e_{2} be two arbitrary edges in G and let $X_{0}=X \cup\left\{e_{1}, e_{2}\right\}$. Let $G_{X_{0}}$ be the graph obtained from G by subdividing each edge in X_{0}.

Case 1. $r \geqslant 5$.
Then $r+1 \geqslant 6$, and so $k=\lfloor(r+1) / 2\rfloor \geqslant 3$. Then $\left|X_{0}\right| \leqslant|X|+2 \leqslant r+2 \leqslant(r+1)+k-2$. By Theorem 3.1', either $G_{X_{0}}$ is collapsible or $G_{X_{0}}$ is contractible to $K_{2, t}$ with $\left|X_{0}\right| \geqslant t \geqslant(r+1)$. By Lemma 2.9 and Lemma 4.0, both cases imply that G has a spanning (e_{1}, e_{2})-trail H such that $X \subseteq E(H)$. Theorem 4.3 is proved for this case.

Case 2. $r=4$.
Then G is 5-edge-connected and $\left|X_{0}\right| \leqslant 6$. Let $G_{X_{0}}^{\prime}$ be the reduction of $G_{X_{0}}$. If $F\left(G_{X_{0}}^{\prime}\right) \leqslant 2$, then $G_{X_{0}}$ is either collapsible or contractible to $K_{2, t}$ with $t \geqslant(r+1)$ and so we are done. Next we assume that $F\left(G_{X_{0}}^{\prime}\right) \geqslant 3$.
Claim. If $v \in D_{2} \subseteq V\left(G_{X_{0}}^{\prime}\right)$, then the degree of each of the two neighbors of v is greater than 2 .
Since $\delta(G) \geqslant \kappa^{\prime}(G) \geqslant 5$, each vertex of degree 2 in $G_{X_{0}}^{\prime}$ is obtained by subdividing an edge in X_{0}. If a degree vertex has a neighbor which is also degree, then this will contradict to the definition of $G_{X_{0}}$.

By Lemma 2.8, we have

$$
\begin{equation*}
\left|V\left(G_{X_{0}}^{\prime}\right)\right|+10 \leqslant 3\left|D_{2}\right| \leqslant 3\left|X_{0}\right| . \tag{8}
\end{equation*}
$$

If $\left|D_{2}\right| \leqslant 5$, then by (8), $\left|V\left(G_{X_{0}}^{\prime}\right)\right| \leqslant\left|D_{2}\right| \leqslant 5$, contrary to the claim above. Therefore, $\left|D_{2}\right|=\left|X_{0}\right|=6$. By (8) and $\left|D_{2}\right|=6$,

$$
\left|V\left(G_{X_{0}}^{\prime}\right)\right| \leqslant 8 .
$$

Therefore, $G_{X_{0}}^{\prime}$ is a 2-edge-connected graph with 6 vertices of degree 2 and at most two vertices of degree at least 5 . By the claim above, vertices of degree 2 are not adjacent to each other. Therefore, $G_{X_{0}}^{\prime}=K_{2,6}$, contrary to $F\left(G_{X_{0}}^{\prime}\right) \geqslant 3$. The theorem is proved.

Let r be an integer. Theorem 4.2 shows that if G is 4-edge-connected, then G is 2-edge-Eulerian-connected. If $r \geqslant 4$ and if G is $(r+1)$-edge-connected, then G is r-edge-Eulerian-connected. Combining Theorems 4.2, 4.3 and 3.0, we have:

Corollary 4.4. Let $r \geqslant 0$ be an integer. Then

$$
\xi(r)= \begin{cases}4, & 0 \leqslant r \leqslant 2 \\ r+1, & r \geqslant 4\end{cases}
$$

Remark. The case $\xi(3)$ is still open. Theorem 4.2 implies that if G is 5 -edge-connected, then G is 3 -edge-Eulerianconnected, and so $\xi(3) \leqslant 5$. We conjecture that $\xi(3)=4$. The following theorem provides some supports for this conjecture.

Theorem 4.5. Let G be a 4-edge-connected graph and let $X \subseteq E(G)$ with $|X| \leqslant 3$. For any two adjacent edges e^{\prime} and $e^{\prime \prime}, G$ has a spanning $\left(e^{\prime}, e^{\prime \prime}\right)$-trail H such that $X \subseteq E(H)$.

Proof. Let $X_{0}=X \cup\left\{e^{\prime}, e^{\prime \prime}\right\}$. Let $G_{X_{0}}$ be the graph obtained from G by subdividing each edge in X_{0}. Let $v\left(e^{\prime}\right)$ and $v\left(e^{\prime \prime}\right)$ be the two vertices obtained in the process of subdividing e^{\prime} and $e^{\prime \prime}$. If $G_{X_{0}}$ is collapsible, then $G_{X_{0}}$ has a spanning connected subgraph H such that $\mathrm{O}(H)=\left\{v\left(e^{\prime}\right), v\left(e^{\prime \prime}\right)\right\}$. By Lemma 2.9, G has a spanning $\left(e^{\prime}, e^{\prime \prime}\right)$-trail containing X. We are done in this case. Next, we assume that $G_{X_{0}}$ is not collapsible.

Let $G_{X_{0}}^{\prime}$ be the reduction of $G_{X_{0}}$. By Theorem 3.7, either $G_{X_{0}}^{\prime}=K_{2, t}$ with $t \geqslant 4$ or $G_{X_{0}}^{\prime}$ is Eulerian with $V\left(G_{X_{0}}\right)=$ $D_{2} \cup D_{4}$ and $\left|D_{2}\right|=5$, where D_{i} is the set of vertices of degree i in $G_{X_{0}}^{\prime}$. If $G_{X_{0}}^{\prime}=K_{2, t}$ with $t \geqslant 4$, then by Lemma 4.0, G has a spanning ($e^{\prime}, e^{\prime \prime}$)-trail H such that $X \subseteq E(H)$. We are done for this case.

For the case that $G_{X_{0}}^{\prime}$ is Eulerian, let v be the vertex incident with both e^{\prime} and $e^{\prime \prime}$. Let $e_{1}=v\left(e^{\prime}\right) v$ and $e_{2}=v\left(e^{\prime \prime}\right) v$. Then $G_{X_{0}}^{\prime}-\left\{e_{1}, e_{2}\right\}$ is connected. Otherwise, $\left\{e^{\prime}, e^{\prime \prime}\right\}$ is an edge cut of G, contrary to that G is 4-edge-connected. Therefore, $G_{X_{0}}^{\prime}-\left\{e_{1}, e_{2}\right\}$ is a connected graph with only two odd degree vertices at $v\left(e^{\prime}\right)$ and $v\left(e^{\prime \prime}\right)$. Let $U_{4}=\{u \in$ $D_{4}: u$ is a non-trivial contraction\}. For each vertex $u \in U_{4}$, let $H(u)$ be the preimage of u in $G_{X_{0}}$. Then $H(u)$ is collapsible. Let

$$
V_{u}=\left\{x \in V(H(u)): x \text { is incident with odd number of edges in } G_{X_{0}}^{\prime}-\left\{e_{1}, e_{2}\right\}\right\}
$$

Since $d(u)$ in $G_{X_{0}}^{\prime}-\left\{e_{1}, e_{2}\right\}$ is even, $\left|V_{u}\right|$ is even or 0 . Since $H(u)$ is collapsible, $H(u)$ has a spanning connected subgraph Γ_{u} such that $O\left(\Gamma_{u}\right)=V_{u}$. Let $E_{0}=E\left(G_{X_{0}}\right)-\left\{e_{1}, e_{2}\right\}$ and let

$$
\Gamma=G_{X_{0}}\left[\bigcup_{u \in U_{4}} E\left(\Gamma_{u}\right) \cup E_{0}\right]
$$

Then Γ is a spanning connected subgraph of $G_{X_{0}}$ such that $\mathrm{O}(\Gamma)=\left\{v\left(e^{\prime}\right), v\left(e^{\prime \prime}\right)\right\}$. Therefore, $G_{X_{0}}$ has a spanning ($v\left(e^{\prime}\right), v\left(e^{\prime \prime}\right)$)-trail. By Lemma 2.9, G has a spanning ($\left.e^{\prime}, e^{\prime \prime}\right)$-trail containing X. The proof is complete.

Acknowledgements

Much of the work for this paper was done while Zhi-Hong Chen was enjoying the hospitality of the JiNan University, Guangzhou, P.R China, which is herewith most gratefully acknowledged.

References

[1] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, American Elsevier, New York, 1976.
[2] P.A. Catlin, A reduction method to find spanning Eulerian subgraphs, J. Graph Theory 12 (1988) 29-45.
[3] P.A. Catlin, Supereulerian graphs: a survey, J. Graph Theory 16 (1992) 177-196.
[4] P.A. Catlin, Edge-connectivity and edge-disjoint spanning trees, Ars Combin., accepted.
[5] P.A. Catlin, Z. Han, H.-J. Lai, Graphs without spanning closed trails, Discrete Math. 160 (1996) 81-91.
[6] Z.-H. Chen, H.-J. Lai, Reduction techniques for supereulerian graphs and related topics-a survey, in: Ku, Tung-Hsin (Eds.), Combinatorics and Graph Theory 95, vol. 1, World Scientific, Singapore, pp. 53-69.
[7] Herbert Fleischner, Eulerian Graphs and Related Topics, North-Holland, Part 1, vols. 1 and 2, 1990, 1991.
[8] D. Gusfield, Connectivity and edge-disjoint spanning trees, Inform. Process. Lett. 16 (1983) 87-89.
[9] H. Harary, C.St.J.A. Nash-Williams, On Eulerian and Hamiltonian graphs and line graphs, Canad. Math. Bull. 9 (1965) 701-710.
[10] F. Jaeger, A note on sub-Eulerian graphs, J. Graph Theory 3 (1979) 91-93.
[11] S. Kundu, Bounds on the number of edge-disjoint spanning trees, J. Combin. Theory 7 (1974) 199-203.
[12] H.-J. Lai, Eulerian subgraphs containing given edges, Discrete Math. 230 (2001) 63-69.
[13] V.P. Polesskii, A lower bound for the reliability of information networks, Prob. Inf. Transmission 7 (1961) 165-171.
[14] S.-M. Zhan, Hamiltonian connectedness of line graphs, Ars Combin. 22 (1986) 89-95.

