

Butler University Digital Commons @ Butler University

Scholarship and Professional Work - LAS

College of Liberal Arts & Sciences

2006

Spanning trails containing given edges

Zhi-Hong Chen Butler University, chen@butler.edu

Weiqi Luo

Wei-Guo Chen

Follow this and additional works at: http://digitalcommons.butler.edu/facsch_papers Part of the <u>Computer Sciences Commons</u>, and the <u>Mathematics Commons</u>

Recommended Citation

Chen, Zhi-Hong; Luo, Weiqi; and Chen, Wei-Guo, "Spanning trails containing given edges" *Discrete Mathematics* / (2006): 87-98. Available at http://digitalcommons.butler.edu/facsch_papers/142

This Article is brought to you for free and open access by the College of Liberal Arts & Sciences at Digital Commons @ Butler University. It has been accepted for inclusion in Scholarship and Professional Work - LAS by an authorized administrator of Digital Commons @ Butler University. For more information, please contact fgaede@butler.edu.

Spanning trails containing given edges

Weiqi Luo^a, Zhi-Hong Chen^b, Wei-Guo Chen^c

Abstract

A graph G is Eulerian-connected if for any u and v in V(G), G has a spanning (u, v)-trail. A graph G is edge-Eulerian-connected if for any e' and e'' in E(G), G has a spanning (e', e'')-trail. For an integer $r \ge 0$, a graph is called r-Eulerian-connected if for any $X \subseteq E(G)$ with $|X| \le r$, and for any $u, v \in V(G)$, G has a spanning (u, v)-trail T such that $X \subseteq E(T)$. The r-edge-Eulerianconnectivity of a graph can be defined similarly. Let $\theta(r)$ be the minimum value of k such that every k-edge-connected graph is r-Eulerian-connectivity are also discussed.

© 2005 Elsevier B.V. All rights reserved.

Keywords: Connectivity; Spanning trails; Supereulerian graphs; Collapsible graphs

1. Introduction

We follow the notation of Bondy and Murty [1], except that graphs have no loops. A graph G is Hamiltonianconnected if for every pair of vertices u, v of G, there is a Hamiltonian (u, v)-path in G. For a graph G, a trail is a vertex-edge alternating sequence $v_0, e_1, v_1, e_2, \ldots, e_{k-1}, v_{k-1}, e_k, v_k$ such that all the e_i 's are distinct and $e_i = v_{i-1}v_i$ for all *i*. Let $e', e'' \in E(G)$. A trail in G whose first edge is e' and whose last edge is e'' is called an (e', e'')-trail. For $u, v \in V(G)$, a (u, v)-trail of G is a trail in G whose origin is u and whose terminus is v. A trail H is called a dominating trail of G if every edge of G is incident with at least one vertex of H in G. A trail H is called a spanning trail if V(H) = V(G). If u = v, then a (u, v)-trail in G is a closed trail, which is also called a *Eulerian subgraph* of G. A graph is called supereulerian if it has a spanning closed trail. The collection of all supereulerian graphs is denoted by \mathscr{SL} .

A graph G is Eulerian-connected if for any u, v in V(G) (including the case u = v), G has a spanning (u, v)-trail. A graph is called r-Eulerian-connected if for any $X \subseteq E(G)$ with $|X| \leq r$, and for any $u, v \in V(G)$, G has a spanning (u, v)-trail *T* such that $X \subseteq E(T)$. For an integer $r \ge 0$, the collection of all *r*-Eulerian-connected graphs is denoted by $\mathscr{EL}(r)$. Obviously, $\mathscr{EL}(r) \subseteq \mathscr{SL}$ for all $r \ge 0$.

A graph *G* is *edge-Eulerian-connected* if for any e', e'' in E(G), *G* has a spanning (e', e'')-trail. A graph is called *r*-edge-Eulerian-connected if for any $X \subseteq E(G)$ with $|X| \leq r$ and for any e', $e'' \in E(G)$, *G* has a spanning (e', e'')-trail *T* such that $X \subseteq E(T)$. For an integer $r \geq 0$, the collection of all *r*-edge-Eulerian-connected graphs is denoted by $\mathscr{E}(r)$.

Many studies have been done on Eulerian graphs (see [7]). For the literature on the subject of supereulerian graphs, see surveys [3,6]. Harary and Nash-Williams [9] demonstrated the relationship between Eulerian subgraphs and Hamiltonian cycles in the line graph of *G*. Zhan [14] studied (e', e'')-trails of a graph *G* for the Hamiltonian connectivity of the line graph of *G*. In the study of spanning trails of graphs [2], Catlin introduced the concept of *collapsible graphs*. For a graph *G*, let O(*G*) be the set of odd degree vertices of *G* and let *R* be an even subset of V(G). A subgraph H_R of *G* is called a *spanning R-trail* if H_R is a spanning connected subgraph such that $O(H_R) = R$. A graph *G* is *collapsible* if for every even subset $R \subseteq V(G)$, *G* has a spanning *R*-trail. We will regard an empty set as an even subset and K_1 as both collapsible and supereulerian. The collection of all collapsible graphs is denoted by \mathscr{CL} . By the definition of collapsible graphs, we have:

Proposition A. Let G be a collapsible graph. Then each of the following holds

- (i) *G* is supereulerian.
- (ii) G is Eulerian-connected.

Proof. For any vertices $u, v \in V(G)$. Let $R = \emptyset$ if u = v, or $R = \{u, v\}$ if $u \neq v$. Since G is collapsible, it has a spanning subgraph H_R such that $O(H_R) = R$. Therefore, H_R is a spanning Eulerian subgraph of G if $R = \emptyset$, or H_R is a (u, v)-spanning trail of G. \Box

Let $X \subseteq E(G)$ and let R be an even subset of V(G). A spanning R-trail H_R of G such that $X \subseteq E(H_R)$ is called *a* spanning (R, X)-trail, and denoted by $H_R(X)$. A graph is called strongly r-Eulerian-connected if for any $X \subseteq E(G)$ with $|X| \leq r$ and for any even subset $R \subseteq V(G)$, G has a spanning R-trail H_R such that $X \subseteq E(H_R)$ (i.e. G has a $H_R(X)$). The collection of all strongly r-Eulerian-connected graphs is denoted by $\mathscr{GE}(r)$.

For an integer *r*, define $\mathscr{L}(r)$ to be the family of graphs such that $G \in \mathscr{L}(r)$ if and only if for any subset $X \subseteq E(G)$ with $|X| \leq r$, *G* has an spanning Eulerian subgraph *H* such that $X \subseteq E(H)$. Define f(r) to be the minimum value of *k* such that every *k*-edge-connected graph *G* is in $\mathscr{L}(r)$. In [12], Lai found f(r) for all the values of *r* (see Corollary 3.6). Let $\theta(r)$ be the minimum value of *k* such that every *k*-edge-connected graph is in $\mathscr{E}\mathscr{L}(r)$ and let $\psi(r)$ be the minimum value of *k* such that every *k*-edge-connected graph is in $\mathscr{S}\mathscr{E}(r)$. Since $\mathscr{S}\mathscr{E}(r) \subseteq \mathscr{E}\mathscr{L}(r) \subseteq \mathscr{L}(r)$,

$$f(r) \leqslant \theta(r) \leqslant \psi(r). \tag{1}$$

Let $\xi(r)$ be the minimum value of k such that every k-edge-connected graph is in $\mathscr{E}\mathscr{E}(r)$. In this paper, we will determine the values of $\theta(r)$, $\psi(r)$, and $\xi(r)$ for all $r \ge 0$.

In the next section, we will present Catlin's reduction method and some preliminary results which are needed in our proofs. Our main results are in Sections 3 and 4. We will present our results on *r*-Eulerian-connected graphs, and give the values of $\theta(r)$ and $\psi(r)$ for all $r \ge 0$. Section 4 contains results on the *r*-edge-Eulerian connected graphs.

2. Catlin's reduction method and preliminary results

Let *H* be a connected subgraph of *G*. The contraction G/H is obtained from *G* by contracting each edge of *H* and deleting the resulting loops. In [2], Catlin showed that every graph *G* has a unique collection of pairwise vertex-disjoint maximal collapsible subgraphs H_1, H_2, \ldots, H_k such that $\bigcup_{i=1}^k V(H_i) = V(G)$. The *reduction* of *G* is obtained from *G* by contracting each of H_i into a vertex v_i for all *i*, and is denoted by *G'*. Each H_i is called a preimage of v_i in *G*, and v_i is called the contraction image of H_i in *G'*. A vertex *v* in *G'* is called a *trivial contraction* if its preimage in *G* is K_1 . A graph *G* is reduced if *G* is the reduction of some graph. Let F(G) be the minimum number of edges that must be added to *G* so that the resulting graph has 2 edge-disjoint spanning trees.

Theorem 2.1 (*Catlin* [2]). Let G be a graph, and let G' be the reduction of G. Each of the following holds.

- (i) G is supereulerian if and only if G' is supereulerian.
- (ii) *G* is collapsible if and only if $G' \cong K_1$
- (iii) |E(G')| + F(G') = 2|V(G')| 2.

In [10], Jaeger proved that a graph with two edge-disjoint spanning trees is supereulerian. In [2], Catlin proved that if G has two edge-disjoint spanning trees, then G is collapsible. It is well known now that a 2k-edge-connected graph has k edge-disjoint spanning trees [8,11,13]. Thus, we have:

Theorem 2.2. If G is 4-edge-connected, then G is collapsible.

In [4], Catlin proved:

Theorem 2.3 (*Catlin* [4]). Let G be a graph and let $k \ge 1$ be an integer. The following are equivalent:

- (i) *G* is 2*k*-edge-connected;
- (ii) For any $X \subseteq E(G)$ with $|X| \leq k$, G X has k edge-disjoint spanning trees.

Corollary 2.4 (*Catlin* [4]). Let G be a graph and let $k \ge 1$ be an integer. The following are equivalent:

- (i) G is (2k + 1)-edge-connected;
- (ii) For any $X \subseteq E(G)$ with $|X| \leq k + 1$, G X has k-edge-disjoint spanning trees.

The following theorems will be needed in our proofs.

Theorem 2.5 (*Catlin et al.* [5]). Let G be a connected graph. If $F(G) \leq 2$, then either G is collapsible, or the reduction of G is in $\{K_2, K_{2,t} : t \geq 1\}$.

Let *e* be an edge in *G*. Edge *e* is *subdivided* when it is replaced by a path of length 2 whose internal vertex, denoted by v(e), has degree 2 in the resulting graph. The process of taking an edge *e* and replacing it by that path of length 2 is called subdividing *e*. Let *G* be a graph and let $X \subseteq E(G)$. Let G_X be the graph obtained from *G* by subdividing each edge in *X*. Then $V(G_X) = V(G) \cup \{v(e) \text{ for each } e \in X\}$.

Lemma 2.6. Let $k \ge 2$ be an integer. Let *G* be a connected graph and let $X \subseteq E(G)$. Let *R* be an even subset of V(G). Then each of the following holds

- (i) G has a spanning (R, X)-trail $H_R(X)$ if and only if G_X has a spanning R-trail. In particular, G has a spanning closed trail H such that $X \subseteq E(H)$ if and only if G_X is supereulerian.
- (ii) If G_X is collapsible, then G_X has a spanning *R*-trail.
- (iii) Let $X = X_1 \cup X_2$ with $X_1 \cap X_2 = \emptyset$. Then $F(G_X) \leq F((G X_1)_{X_2})$.
- (iv) If G has k edge-disjoint spanning trees, then for any $X \subseteq E(G)$ with $|X| \leq 2k 2$, $F(G_X) \leq 2$.

Proof. (i) and (ii) follow from the definitions of collapsibility and G_X .

(iii) Let $p = F((G - X_1)_{X_2})$. Let E_p be the p edge set such that $(G - X_1)_{X_2} + E_p$ has 2-edge-disjoint spanning trees $(T_1 \text{ and } T_2)$. Let $X_1 = \{e_1, e_2, \dots, e_s\}$ and each $e_i = u_i v_i$ $(1 \le i \le s)$. By the definition of G_X , we know that G_X can be obtained from $(G - X_1)_{X_2}$ by joining each pair of u_i and v_i by a path $P_i = u_i v(e_i)v_i$ where $v(e_i)$ is a new vertex. Therefore, $T_1 + \bigcup_{i=1}^s \{u_i v(e_i)\}$ and $T_2 + \bigcup_{i=1}^s \{v(e_i)v_i\}$ are two edge-disjoint spanning trees in $G_X + E_p$, and so $F(G_X) \le p = F((G - X_1)_{X_2})$.

(iv) Let T_1, T_2, \ldots, T_k be k edge-disjoint spanning trees of G. Without lost of generality, we may assume that

$$|X \cap E(T_1)| \leq |X \cap E(T_2)| \leq \dots \leq |X \cap E(T_k)|.$$
⁽²⁾

Since $k \ge 2$, $|X| \le 2k - 2$, T_i 's are edge-disjoint, and by (2),

 $|X \cap E(T_1)| + |X \cap E(T_2)| \leq 2.$

Let $X = \{e_1, e_2, \dots, e_p\}$ where $p \leq 2k - 2$, and let $e_i = u_i v_i$ for all $1 \leq i \leq p$. Since G_X is the graph obtained from G by subdividing e_i $(1 \leq i \leq p)$, $V(G_X) = V(G) \cup \{v(e_i) : 1 \leq i \leq p\}$, and $E(G_X) = (E(G) - X) \cup \{u_i v(e_i), v(e_i)v_i : 1 \leq i \leq p\}$.

Case 1. $|X \cap E(T_1)| + |X \cap E(T_2)| = 0$.

Then $T_1 + \bigcup_{i=1}^p \{u_i v(e_i)\}$ and $T_2 + \bigcup_{i=1}^p \{v(e_i)v_i\}$ are two edge-disjoint spanning trees in G_X and so $F(G_X) = 0 \leq 2$. Case 2. $|X \cap E(T_1)| + |X \cap E(T_2)| = 1$.

By (2) and (3), $|X \cap E(T_1)| = 0$ and $|X \cap E(T_2)| = 1$. Let $e_2 = u_2v_2$ be the edge in $X \cap E(T_2)$. Then $T'_2 = T_2 - e_2 + \{u_2v(e_2), v(e_2)v_2\} \bigcup_{i\neq 2}^p \{v(e_i)v_i\}$ is a spanning tree in G_X . To obtain another spanning tree which covers $v(e_2)$, we can add an edge $e' = u_1v(e_2)$ to G_X . Then $T'_1 = T_1 + \{e'\} \bigcup_{i\neq 2}^p \{u_iv(e_i)\}$ is a spanning tree in $G_X + e'$. Therefore, T'_1 and T'_2 are two edge-disjoint spanning trees in $G_X + e'$. This shows that $F(G_X) = 1 \leq 2$.

Case 3. $|X \cap E(T_1)| + |X \cap E(T_2)| = 2.$

By (2) and (3), either $|X \cap E(T_1)| = |X \cap E(T_2)| = 1$, or $|X \cap E(T_1)| = 0$ and $|X \cap E(T_2)| = 2$. We prove $F(G_X) \le 2$ for the case $|X \cap E(T_1)| = |X \cap E(T_2)| = 1$ here. The case $|X \cap E(T_1)| = 0$ and $|X \cap E(T_2)| = 2$ can be proved similarly.

Let $e_1 \in X \cap E(T_1)$ and $e_2 \in X \cap E(T_2)$. Then $T'_1 = T_1 - e_1 + \{u_1v(e_1), v(e_1)v_1\} \bigcup_{i=3}^p \{u_iv(e_i)\}$ is a tree containing $V(G_X) - v(e_2)$, and $T'_2 = T_2 - e_2 + \{u_2v(e_2), v(e_2)v_2\} \bigcup_{i=3}^p \{v(e_i)v_i\}$ is a tree containing $V(G_X) - v(e_1)$. Therefore, adding two new edges $e' = u_1v(e_2)$ and $e'' = v(e_1)v_2$ to G_X , we have two edge-disjoint spanning trees $T'_1 + e'$ and $T'_2 + e''$ in $G_X + \{e', e''\}$. This shows that $F(G_X) \leq 2$. The proof is complete. \Box

Lemma 2.7. Let G be a graph with $\kappa'(G) \ge 3$, and let $X \subseteq E(G)$. Let G_X be the graph obtained from G by subdividing each edge in X. If the reduction of G_X is $K_{2,t}$, then each of the following holds.

- (i) Every degree 2 vertex in G'_X is a vertex obtained by subdividing an edge in X.
- (ii) $|X| \ge t \ge \kappa'(G)$, and X is an edge cut of G.
- (iii) There is a subset $X_1 \subseteq X$ with $t = |X_1|$ such that each path between the two vertices of degree t in $K_{2,t}$ is obtained by subdividing an edge in X_1 . Furthermore, $G_X - X_1$ has only two collapsible components (say H_1 and H_2) such that $V(G_X) = V(H_1) \cup V(H_2) \bigcup_{e \in E_1} \{v(e)\}$, and $G'_X = K_{2,t}$ is obtained by contracting H_1 and H_2 (i.e. $G'_X = (G_X/H_1)/H_2 = K_{2,t}$).

Proof. Let $E(G'_X) = E(K_{2,t}) = \{uw_i, w_iv\}$ $(1 \le i \le t)$ where each w_i is a degree 2 vertex in G'_X . Note that w_i is a trivial contraction, and (i) holds. Otherwise the two edges incident with w_i will form an edge-cut of G, contrary to that $\kappa'(G) \ge 3$. Hence, each path uw_iv is obtained by subdividing an edge in X and so $t \le |X|$.

Let $E' = \{uw_i : 1 \le i \le t\}$. Then E' is an edge-cut of G'_X . Since each path uw_iv in G_X is obtained by subdividing an edge $e \in X \subseteq E(G)$, we have an edge set $X_1 \subseteq X$ such that each edge in X_1 corresponding to a path uw_iv in G_X , and $|X_1| = |E'| = t$. Therefore, X_1 is an edge cut in G. Since $X_1 \subseteq X$, X is an edge-cut of G and $|X| \ge |E'| = t \ge \kappa'(G)$.

Note $V(G'_X) = \{u, v, w_i : 1 \le i \le t\}$ where d(u) = d(v) = t. Let H_1 be the preimage of u, and let H_2 be the preimage of v. Therefore, G'_X is obtained by subdividing each edge in X_1 , and then contracting H_1 and H_2 , respectively. Statement (iii) is proved. \Box

Lemma 2.8. Let G be an r-edge-connected graph $(r \ge 4)$. Let $X \subseteq E(G)$. Let G_X be the graph obtained from G by subdividing each edge in X. Let G'_X be the reduction of G_X and let V_r be the set of vertices of degree less than r in G'_X . Let $D_i = \{v \in V(G'_X) : d(v) = i\}$ $(i \ge 2)$. If $F(G'_X) \ge 3$, then each of the following holds:

(i) each vertex in V_r has degree 2 (i.e. $V_r = D_2$) and $|V_r| \leq |X|$.

(ii) $(r-4)|V(G'_X)| + 10 \leq (r-2)|V_r| \leq (r-2)|X|$.

(iii) $10 + (r-4)|D_r| + (r-3)|D_{r+1}| + \dots + \leq 2|V_r| \leq 2|X|.$

Proof. Since the degree of each vertex u in V_r is less than r, u must be a trivial contraction in G'_X . Otherwise, the edges incident with u will form an edge cut with size less than r, contrary to $\kappa'(G) \ge r$. Therefore, $V_r \subseteq V(G_X) - V(G)$,

a subset of the vertices obtained in the process of subdividing each edge in X. Thus each vertex in V_r has degree 2 and

$$|V_r| \leqslant |X|. \tag{4}$$

Let $c = |V(G'_X)|$. Since $F(G'_X) \ge 3$, by (iii) of Theorem 2.1,

$$|E(G'_X)| = 2|V(G'_X)| - 2 - F(G'_X) \leq 2c - 5.$$

Hence,

$$\sum_{v \in V(G'_X)} d(v) = 2|E(G'_X)| \leqslant 4c - 10.$$
(5)

Since $\kappa'(G_X) \ge 2$, $\delta(G'_X) \ge 2$. Then by (5)

$$2|V_r| + r(c - |V_r|) \leq 2|V_r| + \sum_{v \notin V_r} d(v) = \sum_{v \in V(G'_X)} d(v) = 2|E(G'_X)| \leq 4c - 10.$$
(6)

By (4), (6), and $c = |V(G'_X)|$,

$$(r-4)|V(G'_X)| + 10 \leqslant (r-2)|V_r| \leqslant (r-2)|X|.$$
(7)

By (6), and $V(G'_X) = V_r \bigcup_{i=r} D_i$,

$$2|V_r| + r|D_r| + (r+1)|D_{r+1}| + \dots \leq 4(|V_r| + |D_r| + |D_{r+1}| + \dots) - 10.$$

Hence,

$$10 + (r-4)|D_r| + (r-3)|D_{r+1}| + \dots \leq 2|V_r| \leq 2|X|.$$

Lemma 2.9. Let G be a graph and let $e_1, e_2 \in E(G)$ and let $X \subseteq E(G)$. Let $X_0 = X \cup \{e_1, e_2\}$. Let G_{X_0} be the graph obtained from G by subdividing each edge in X_0 . Let $v(e_1)$ and $v(e_2)$ be the two vertices subdividing e_1 and e_2 , respectively. Then

(i) If G_{X_0} has a spanning $(v(e_1), v(e_2))$ -trail, then G has a spanning (e_1, e_2) -trail containing X.

(ii) If G_{X_0} is collapsible, then G has a spanning (e_1, e_2) -trail containing X.

Proof. Follows from the definitions of collapsibility and G_{X_0} .

3. The *r*-Eulerian-connected graphs

The Petersen graph and many other 3-edge-connected graphs have no spanning closed trails. Thus, for any $r \ge 0$, $\psi(r) \ge \theta(r) \ge 4$. By Theorem 2.2, we know that $\psi(0) = \theta(0) = 4$. The following example shows that for $r \ge 3$, $\psi(r) \ge \theta(r) \ge r + 1$.

Example 1. Let $r \ge 3$ be an integer, and let n and m be two integers such that $n \ge r + 1$ and $m \ge r + 1$. Let $G_1 = K_n$ with $V(G_1) = \{u_1, u_2, \ldots, u_n\}$, and let $G_2 = K_m$ with $V(G_2) = \{v_1, v_2, \ldots, v_m\}$. Define the graph G to be the graph obtained from G_1 and G_2 by connecting G_1 and G_2 with the new edge set $X = \{e_1, e_2, \ldots, e_r\}$ where $e_i = u_i v_i$ for all $i = 1, 2, \ldots, r$. Then G is an r-edge-connected graph. If r is even, then we choose u from G_1 , and v from G_2 . If r is an odd integer, then we choose u and v both from G_1 . Then G has no spanning (u, v)-trails containing all the edges of X. This example also shows that G has no spanning (e', e'')-trails containing all the edges of X for some pair of $e', e'' \in E(G)$. See Fig. 1 below for the case r = 4 where $X = \{e_1, e_2, e_3, e_4\}$ and $G_1 \cong G_2 \cong K_5$. This shows that $\psi(r) \ge \theta(r) \ge r + 1$. In the following, we will show that $\psi(r) = \theta(r) = r + 1$.

This example suggests the following necessary condition for *r* Eulerian-connected graphs, and the lower bounds for $\psi(r)$, $\theta(r)$ and $\xi(r)$.

Fig. 1.

Theorem 3.0. Let $r \ge 3$. Then $\psi(r) \ge \theta(r) \ge r + 1$ and $\xi(r) \ge r + 1$. Furthermore, if G is an r-Eulerian-connected graph, then G is (r + 1)-edge-connected.

Proof. By way of contradiction, suppose that the edge-connectivity of *G* is $k \le r$. Let *X* be an edge cut with |X| = k and let H_1 and H_2 be two components of G - X. If |X| = k is even, we can choose a vertex *u* from H_1 and a vertex *v* from H_2 . Then *G* has no spanning (u, v) trail that contains *X*, a contradiction. If |X| = k is odd, then we can choose a vertex *u* from H_1 . Since *X* has odd number of edges, *G* does not have a closed trail that starts and ends at *u* containing *X*, a contradiction again. \Box

For a real number x, let $\lfloor x \rfloor$ be the largest integer that is less than or equal to x.

Theorem 3.1. Let $r \ge 4$ be an integer and let $k = \lfloor \frac{r}{2} \rfloor$. Let *G* be an *r*-edge-connected graph and let $X \subseteq E(G)$ with $|X| \le r + k - 2$. it Then one of the following holds:

(i) G_X is collapsible, or

(ii) *X* is an edge cut of *G* and $|X| \ge r$.

Proof. Let $X \subseteq E(G)$ with $|X| \leq r + k - 2$. Define G_X as before and assume that G_X is not collapsible. We will show that the reduction G'_X is $K_{2,t}$ with $t \geq 2$ first. Consider the following two cases:

Case 1. *r* is even. Then r = 2k, and $|X| \leq 3k - 2$.

Since $|X| \leq 3k - 2$, we can choose a subset X_1 of X and let $X_2 = X - X_1$, such that $|X_1| \leq k$ and $|X_2| \leq 2k - 2$. By Theorem 2.3, $G - X_1$ has k-edge-disjointed spanning trees. Then by Lemma 2.6(iv), $F((G - X_1)_{X_2}) \leq 2$. By Lemma 2.6(iii), $F(G_X) \leq F((G - X_1)_{X_2}) \leq 2$. Since G_X is not collapsible, by Theorem 2.5, $G'_X \in \{K_2, K_{2,t}\}$ $(t \geq 1)$. Since G is r-edge-connected $(r \geq 4)$, G_X is 2-edge-connected. Therefore, $G'_X = K_{2,t}$ $(t \geq 2)$.

Case 2. r is odd. Then r = 2k + 1 and $|X| \leq 3k - 1$.

Let X_1 be a subset of X and let $X_2 = X - X_1$ such that $|X_1| \le k + 1$ and $|X_2| \le 2k - 2$. By Corollary 2.4, $G - X_1$ has k-edge-disjointed spanning trees. By Lemma 2.6(iii) and (iv), $F(G_X) \le F((G - X_1)_{X_2}) \le 2$. Using the same argument for the case 1 above, we have $G'_X = K_{2,t}$ ($t \ge 2$).

Therefore, by Lemma 2.7, Theorem 3.1 is proved. \Box

From the proof of Theorem 3.1, we have the following:

Theorem 3.1'. Let $r \ge 4$ be an integer and let $k = \lfloor \frac{r}{2} \rfloor$. Let *G* be an *r*-edge-connected graph. Let $X \subseteq E(G)$ with $|X| \le r + k - 2$ and let G_X be the graph obtained from *G* by subdividing every edge in *X*. Let G'_X be the reduction of G_X . Then exactly one of the following holds

- (i) G_X is collapsible, or
- (ii) G_X can be contracted to $K_{2,t}$ (i.e. $G'_X = K_{2,t}$) in such a way that each degree vertex in $K_{2,t}$ is a trivial contraction and $r \le t \le |X|$.

Theorem 3.2. Let $r \ge 4$ be an integer and let $k = \lfloor \frac{r}{2} \rfloor$. Let *G* be an *r*-edge-connected graph. Let $X \subseteq E(G)$ with $|X| \le r + k - 2$. Then one of the following holds

- (i) for any even subset $R \subseteq V(G)$, G has a spanning R-trail H_R such that $X \subseteq E(H_R)$, or
- (ii) *X* is an edge cut of *G* and $|X| \ge r$.

Proof. For a given edge set $X \subseteq E(G)$, by Lemma 2.6(ii), if G_X is collapsible, then G has a spanning (R, X)-trail for any even subset $R \subseteq V(G)$. Theorem 3.2 follows from Theorem 3.1. \Box

Corollary 3.3. Let $r \ge 4$ be an integer, and let $k = \lfloor \frac{r}{2} \rfloor$. Let *G* be an *r*-edge-connected graph. Let $X \subseteq E(G)$ with $|X| \le r + k - 2$. If *X* is not an edge cut of *G*, then *G* has a spanning (R, X)-trail for any even subset $R \subseteq V(G)$.

Proof. Following Theorem 3.1 and Lemma 2.6 immediately.

Corollary 3.4. Let $r \ge 3$. Then G is strongly r-Eulerian-connected if and only if G is (r + 1)-edge-connected.

Proof. The necessary condition follows from Theorem 3.0. For the sufficient condition, let $X \subseteq E(G)$ with $|X| \leq r$. Then $|X| < \kappa'(G) = r + 1$. *X* is not an edge cut of *G* and by Theorem 3.2, the statement holds. \Box

Theorem 3.5. Let $r \ge 0$. Then

 $\psi(r) = \theta(r) = \begin{cases} 4 & \text{if } 0 \leq r \leq 2, \\ r+1 & \text{if } r \geq 3. \end{cases}$

Proof. Since there exist 3-edge-connected graphs which are not supereulerian, $\psi(r) \ge \theta(r) \ge 4$ for $r \ge 0$. By Theorem 3.1, if *G* is 4-edge-connected, then any edge set *X* with $|X| \le 2$ can not be an edge cut of *G*. Therefore G_X is collapsible, and so $\theta(r) = \psi(r) \le 4$ if $r \le 2$. For $r \ge 3$, it follows from Corollary 3.4 that $\psi(r) = \theta(r) = r + 1$. \Box

Corollary 3.6 (*Lai* [12]). Let $r \ge 0$ be an integer. Then

$$f(r) = \begin{cases} 4, & 0 \leq r \leq 2, \\ r+1, & r \geq 3 \text{ and } r \text{ is odd,} \\ r, & r \geq 4 \text{ and } r \text{ is even.} \end{cases}$$

Proof. Since there exist 3-edge-connected graphs that are not supereulerian, $f(r) \ge 4$. Since $f(r) \le \theta(r)$, by Theorem 3.1, f(r) = 4 if $r \le 2$. For $r \ge 3$, if r is odd, Example 1 with an odd number r shows that $f(r) \ge r + 1$. By Theorem 3.1, since $f(r) \le \theta(r) \le r + 1$, f(r) = r + 1 if r is odd. If r is even, by Theorem 3.1', for any r-edge-connected graph G and any $X \subseteq E(G)$ with $|X| \le r$, either G_X is collapsible or the reduction $G'_X \cong K_{2,r}$. Since $K_{2,r}$ is supereulerian when r is even and all collapsible graphs are supereulerian, G_X is supereulerian. Then by Lemma 2.6(i), G has a spanning Eulerian subgraph H with $X \subseteq E(H)$. Therefore, f(r) = r if r is even. \Box

Corollary 3.6 implies that if *G* is 4-edge-connected, then for any $X \subseteq E(G)$ with $|X| \leq 4$, *G* has a spanning Eulerian subgraph *H* such that $X \subseteq E(H)$. Here we have:

Theorem 3.7. Let G be 4-edge-connected graph. Let $X \subseteq E(G)$ with $|X| \leq 5$. Let G_X be the graph obtained from G by subdividing each edge in X. Let $D_i = \{v \in V(G'_X) | d(v) = i\}$ $(i \geq 2)$. Then one of the following holds

- (i) G_X is collapsible, or
- (ii) X contains an edge cut X_1 with $|X_1| = t \ge 4$ such that $G X_1$ has only two components (H_1 and H_2), which are collapsible. Furthermore, G_X is contractible to $K_{2,t}$ by contracting H_1 and H_2 into the two degree t vertices in $K_{2,t}$, or
- (iii) G'_X is an Eulerian graph with $V(G'_X) = D_2 \cup D_4$ and $|D_2| = 5$.

Proof. Let G'_X be the reduction of G_X . If $G'_X = K_1$, then G_X is collapsible and we are done for this case. In the following we will assume that G'_X is not trivial. Since G is 4-edge-connected, G_X is 2-edge-connected. Since $\kappa(G'_X) \ge \kappa(G_X)$, G'_X is 2-edge-connected.

Case 1. $F(G'_X) \leq 2$.

By Theorem 2.5, and $\kappa'(G_X) \ge 2$, $G'_X = K_{2,t}$ for some $t \ge 2$. By Lemma 2.7, $|X| \ge t \ge 4$. Hence, (ii) of Theorem 3.7 holds.

Case 2. $F(G'_{\mathbf{v}}) \ge 3$. Since G is 4-edge-connected and $|X| \leq 5$, by (i) and (iii) of Lemma 2.7, $V_r = D_2$ and

 $10 + |D_5| + \dots + \leq 2|V_r| \leq 2|X| \leq 10.$

This implies that $|D_i| = 0$ for all $i \ge 5$ and $|D_2| = 5$. Therefore, each vertex in $V(G'_X)$ has degree 2 or 4. Hence, G'_X is Eulerian and $|D_2| = 5$.

Corollary 3.8. Let G be a 4-edge-connected graph. Let $X \subseteq E(G)$ with $|X| \leq 5$. Let G_X be the graph obtained from *G* by subdividing each edge in *X*. Then either *G* has a spanning Eulerian subgraph *H* such that $X \subseteq E(H)$, or G_X is contractible to $K_{2,5}$ in such a way that each path between the two vertices of degree 5 is obtained by subdividing an edge in X.

Proof. This follows from Theorem 3.7 and Lemma 2.9. \Box

4. The *r*-edge-Eulerian-connected graphs

We will need the following lemma.

Lemma 4.0. Let G be a 3-edge-connected graph. Let $X \subseteq E(G)$ and let e', $e'' \in E(G)$. Let $X_0 = X \cup \{e', e''\}$ and let G_{X_0} be the graph obtained from G by subdividing each edge in X_0 . Suppose that $G'_{X_0} = K_{2,t}$ where $t \ge 3$. If t > |X|, then G has a spanning (e', e'')-trail H such that $X \subseteq E(H)$.

Proof. Let u and v be the two vertices in $K_{2,t}$ with d(u) = d(v) = t. By Lemma 2.7, there is an edge set $X_1 \subseteq X_0$ such that each length 2 path between u and v in $K_{2,t}$ is obtained by subdividing an edge in X_1 . Then $|X_1| = t$. Let $E_1 = E(G'_{X_0}) = E(K_{2,t})$. By Lemma 2.7, $G_{X_0} - E_1$ has two collapsible subgraphs (H_1 and H_2) such that $V(G_{X_0}) = V(H_1) \cup V(H_2) \bigcup_{e \in X_1} \{v(e)\}$. Let $e' = x'_0 y'_0$, $e'' = x''_0 y''_0$ and let $x'_0, x''_0 \in V(H_1)$ and $y'_0, y''_0 \in V(H_2)$. Since t > |X|, at least one of the edges in $\{e', e''\}$ is included in X_1 . For each $e \in \{e', e''\}$, P_e is defined as a path obtained by subdividing edge e.

For each H_i , (i = 1, 2), define

 $U_0(H_i) = \{v \in V(H_i) : v \text{ is incident with odd number of edges in } E_1 - \{P_{e'}, P_{e''}\}\}$

Note that $|U_0(H_1)|$ is odd if and only if $|U_0(H_2)|$ is odd. Since H_i is collapsible, for any even subset $R_i \subseteq V(H_i)$, there is a spanning connected subgraph Γ_i with $O(\Gamma_i) = R_i$ (i = 1, 2). In the following we will show that a spanning (v(e'), v(e'))-trail Γ can be constructed from Γ_1 and Γ_2 by adding all the edges in E_1 and an edge e_{Γ_1} to connect v(e')(or an edge e_{Γ_2} to connect v(e''), or both) such that $O(\Gamma) = \{v(e'), v(e'')\}$.

Case 1. Both e' and e'' are in X_1 .

Note that G may not be simple and we may have three possible situations:

- (a) $x'_0 = x''_0$ and $y'_0 = y''_0$,
- (b) $x'_0 = x''_0$ and $y'_0 \neq y''_0$, (c) $x'_0 \neq x''_0$ and $y'_0 \neq y''_0$.

The following Tables 1–3 show the selections of the even subset $R_i \subseteq V(H_i)$ for Γ_i and e_{Γ_i} (i = 1, 2) for all possible cases.

For each case with the selection of R_1 , R_2 , e_{Γ_1} and e_{Γ_2} , define

$$\Gamma = G_{X_0}[E(\Gamma_1) \cup E(\Gamma_2) \cup E_1 \cup \{e_{\Gamma_1}, e_{\Gamma_2}\}].$$

By the definition of Γ , $V(\Gamma) = V(\Gamma_1) \cup V(\Gamma_2) \bigcup_{e \in X_1} \{v(e)\} \cup \{v(e'), v(e'')\}$, and v(e') and v(e'') have degree 1 in Γ . Since Γ_i is a connected spanning subgraph of H_i , $V(\Gamma_i) = V(H_i)$ (i = 1, 2). Γ_1 and Γ_2 are connected by the paths in E_1 , and v(e') and v(e'') are connected to Γ_i by e_{Γ_i} . Thus, $V(\Gamma) = V(G_{X_0})$ and Γ is a connected spanning subgraph

Table 1 When $x'_0 = x''_0$ and $y'_0 = y''_0$, let $x_0 = x'_0 = x''_0$ and $y_0 = y'_0 = y''_0$

$ U_0(H_1) $	x_0 and y_0	<i>R</i> ₁	<i>R</i> ₂	e_{Γ_1}	e_{Γ_2}
Odd	$\begin{aligned} x_0 &\in U_0(H_1), y_0 \in U_0(H_2) \\ x_0 &\notin U_0(H_1), y_0 \in U_0(H_2) \\ x_0 &\in U_0(H_1), y_0 \notin U_0(H_2) \\ x_0 &\notin U_0(H_1), y_0 \notin U_0(H_2) \end{aligned}$	$U_{0}(H_{1}) - x_{0}$ $U_{0}(H_{1}) \cup \{x_{0}\}$ $U_{0}(H_{1}) - x_{0}$ $U_{0}(H_{1}) \cup \{x_{0}\}$	$U_{0}(H_{2}) - y_{0}$ $U_{0}(H_{2}) - y_{0}$ $U_{0}(H_{2}) \cup \{y_{0}\}$ $U_{0}(H_{2}) \cup \{y_{0}\}$	$ x_0 v(e') x_0 v(e') x_0 v(e') x_0 v(e') $	$v(e'')y_0 v(e'')y_0 v(e'')y_0 v(e'')y_0$
Even		$U_0(H_1)$	$U_0(H_2)$	$x_0v(e')$	$x_0v(e'')$

Table 2		
When $x'_0 = x''_0$ and y'_0	$\neq y_0''$, let x_0	$=x_0'=x_0''$

$ U_0(H_1) $	x_0 , and y_0''	<i>R</i> ₁	<i>R</i> ₂	e_{Γ_1}	e_{Γ_2}
Odd	$\begin{aligned} x_0 &\in U_0(H_1), y_0'' \in U_0(H_2) \\ x_0 &\in U_0(H_1), y_0'' \notin U_0(H_2) \\ x_0 &\notin U_0(H_1), y_0'' \in U_0(H_2) \\ x_0 &\notin U_0(H_1), y_0'' \notin U_0(H_2) \end{aligned}$	$U_{0}(H_{1}) - x_{0}$ $U_{0}(H_{1}) - x_{0}$ $U_{0}(H_{1}) \cup \{x_{0}\}$ $U_{0}(H_{1}) \cup \{x_{0}\}$	$\begin{array}{l} U_{0}(H_{2})-y_{0}''\\ U_{0}(H_{2})\cup\{y_{0}''\}\\ U_{0}(H_{2})-y_{0}''\\ U_{0}(H_{2})-y_{0}''\\ U_{0}(H_{2})\cup\{y_{0}''\} \end{array}$	$ x_0 v(e') x_0 v(e') x_0 v(e') x_0 v(e') $	$v(e'')y_0'' \\ v(e'')y_0'' \\ v(e'')y_0'' \\ v(e'')y_0'' \\ v(e'')y_0''$
Even		$U_0(H_1)$	$U_0(H_2)$	$x_0v(e')$	$x_0v(e'')$

Table 3 When $x'_0 \neq x''_0$ and $y'_0 \neq y''_0$

$ U_0(H_1) $	x'_0 , and y''_0	<i>R</i> ₁	<i>R</i> ₂	e_{Γ_1}	e_{Γ_2}
Odd	$\begin{array}{l} x_0' \in U_0(H_1), y_0'' \in U_0(H_2) \\ x_0' \in U_0(H_1), y_0'' \notin U_0(H_2) \\ x_0' \notin U_0(H_1), y_0'' \in U_0(H_2) \\ x_0' \notin U_0(H_1), y_0'' \notin U_0(H_2) \end{array}$	$U_{0}(H_{1}) - x'_{0}$ $U_{0}(H_{1}) - x'_{0}$ $U_{0}(H_{1}) \cup \{x'_{0}\}$ $U_{0}(H_{1}) \cup \{x'_{0}\}$	$U_{0}(H_{2}) - y_{0}''$ $U_{0}(H_{2}) \cup \{y_{0}''\}$ $U_{0}(H_{2}) - y_{0}''$ $U_{0}(H_{2}) \cup \{y_{0}''\}$	$ x'_{0}v(e') x'_{0}v(e') x'_{0}v(e') x'_{0}v(e') $	$v(e'')y_0''$ $v(e'')y_0''$ $v(e'')y_0''$ $v(e'')y_0''$
Even	$ \begin{array}{l} x_0' \in U_0(H_1), x_0'' \in U_0(H_1) \\ x_0' \notin U_0(H_1), x_0'' \in U_0(H_1) \\ x_0' \in U_0(H_1), x_0'' \notin U_0(H_1) \\ x_0' \notin U_0(H_1), x_0'' \notin U_0(H_1) \end{array} $	$U_{o}(H_{1}) - \{x'_{0}, x''_{0}\} \\ (U_{o}(H_{1}) - \{x''_{0}\}) \cup \{x'_{0}\} \\ (U_{o}(H_{1}) - \{x'_{0}\}) \cup \{x''_{0}\} \\ U_{o}(H_{1}) \cup \{x'_{0}, x''_{0}\}$	$U_{0}(H_{2}) \\ U_{0}(H_{2}) \\ U_{0}(H_{2}) \\ U_{0}(H_{2})$	$\begin{array}{c} x_{0}^{\prime}v(e^{\prime}) \\ x_{0}^{\prime}v(e^{\prime}) \\ x_{0}^{\prime}v(e^{\prime}) \\ x_{0}^{\prime}v(e^{\prime}) \end{array}$	$\begin{array}{c} x_0''v(e'') \\ x_0''v(e'') \\ x_0''v(e'') \\ x_0''v(e'') \end{array}$

of G_{X_0} . To show that $O(\Gamma) = \{v(e'), v(e'')\}$, we can check each case listed in Tables 1–3. For instance, with the cases in Table 1, if $v \notin R_1 \cup R_2$, v has even degree in Γ_1 or Γ_2 or v has degree 2 as a vertex obtained by subdividing an edge in X_1 . If $v \notin R_1$ and $v \neq x_0$ (or $v \notin R_2$ and $v \neq y_0$), then since odd number of edges incident with v in E_1 are added, v has an even degree in Γ . If $v = x_0$ (or y_0), by the definition of e_{Γ_1} and e_{Γ_2} , x_0 has an even degree in Γ . Hence, $O(\Gamma) = \{v(e'), v(e'')\}$, and Γ is a spanning (v(e'), v(e''))-trail in G_{X_0} . By Lemma 2.9, G has a spanning (e', e'')-trail containing X.

Case 2. One of e' and e'' is in X_1 (say $e' \in X_1$).

Since $e'' \notin X_1$, we may assume that the path obtained by subdividing e'' is in H_1 . Then $v(e'') \in V(H_1)$. For this case, we only need to choose e_{Γ_1} to connect v(e') in Γ .

For each case in Table 4, define

 $\Gamma = G_{X_0}[E(\Gamma_1) \cup E(\Gamma_2) \cup E_1 \cup \{e_{\Gamma_1}\}].$

Therefore, Γ is a spanning connected subgraph of G_{X_0} such that $O(\Gamma) = \{v(e'), v(e'')\}$. The Lemma is proved. \Box

In [14], Zhan proved the following:

Theorem 4.1 (*Zhan* [14]). If G is a 4-edge-connected graph, then for any edges $e_1, e_2 \in E(G)$ there is a spanning (e_1, e_2) -trail in G.

$e' \in X_1$, and $v(e'') \in V(H_1)$				
$ U_0(H_1) $	x'_0 , and y'_0	R_1	<i>R</i> ₂	e_{Γ_1}
Odd	$y'_0 \in U_0(H_2)$ $y'_0 \notin U_0(H_2)$	$U_{o}(H_{1}) \cup \{v(e'')\} \\ U_{o}(H_{1}) \cup \{v(e'')\}$	$U_{0}(H_{2}) - y'_{0}$ $U_{0}(H_{2}) \cup \{y'_{0}\}$	$v(e')y'_0 \\ v(e')y'_0$
Even	$\begin{array}{l} x_0' \in U_0(H_1) \\ x_0' \notin U_0(H_1) \end{array}$	$ \begin{array}{l} (U_0(H_1) - \{x'_0\}) \cup \{v(e'')\} \\ U_0(H_1) \cup \{x'_0, v(e'')\} \end{array} $	$U_{0}(H_{2})$ $U_{0}(H_{2})$	$\begin{array}{c} x_0' v(e') \\ x_0' v(e') \end{array}$

Theorem 4.1 can be improved.

Table 4

Theorem 4.2. Let $r \in \{3, 4\}$. If G is an (r + 1)-edge-connected graph, then for any $X \subseteq E(G)$ with $|X| \leq r - 1$, and for any $e_1, e_2 \in E(G)$, G has a spanning (e_1, e_2) -trail H in G such that $X \subseteq E(H)$.

Proof. Let $X_0 = X \cup \{e_1, e_2\}$. Let G_{X_0} be the graph obtained from *G* by subdividing each edge in X_0 . Since $r \in \{3, 4\}$, $k = \lfloor (r+1)/2 \rfloor = 2$. Then $|X_0| \leq |X| + 2 \leq r+1 = (r+1)+k-2$. By Theorem 3.1', either G_{X_0} is collapsible or G_{X_0} is contractible to $K_{2,t}$ with $t \geq r$. If G_{X_0} is collapsible, then by Lemma 2.9, *G* has a spanning (e_1, e_2) -trail containing *X*. If G_{X_0} is contractible to $K_{2,t}$ with $t \geq 4$, since $t \geq r > |X|$, by Lemma 4.0, *G* has a spanning (e_1, e_2) -trail containing the edge set *X*. \Box

For graphs with edge-connectivity at least 5, we have

Theorem 4.3. Let G be an (r + 1)-edge-connected graph $(r \ge 4)$. Let $X \subseteq E(G)$ with $|X| \le r$. Then G is an r-edge-Eulerian-connected.

Proof. Let e_1 and e_2 be two arbitrary edges in G and let $X_0 = X \cup \{e_1, e_2\}$. Let G_{X_0} be the graph obtained from G by subdividing each edge in X_0 .

Case 1. $r \ge 5$.

Then $r + 1 \ge 6$, and so $k = \lfloor (r + 1)/2 \rfloor \ge 3$. Then $|X_0| \le |X| + 2 \le r + 2 \le (r + 1) + k - 2$. By Theorem 3.1', either G_{X_0} is collapsible or G_{X_0} is contractible to $K_{2,t}$ with $|X_0| \ge t \ge (r + 1)$. By Lemma 2.9 and Lemma 4.0, both cases imply that *G* has a spanning (e_1, e_2) -trail *H* such that $X \subseteq E(H)$. Theorem 4.3 is proved for this case.

Case 2.
$$r = 4$$

Then *G* is 5-edge-connected and $|X_0| \leq 6$. Let G'_{X_0} be the reduction of G_{X_0} . If $F(G'_{X_0}) \leq 2$, then G_{X_0} is either collapsible or contractible to $K_{2,t}$ with $t \geq (r+1)$ and so we are done. Next we assume that $F(G'_{X_0}) \geq 3$.

Claim. If $v \in D_2 \subseteq V(G'_{X_0})$, then the degree of each of the two neighbors of v is greater than 2.

Since $\delta(G) \ge \kappa'(G) \ge 5$, each vertex of degree 2 in G'_{X_0} is obtained by subdividing an edge in X_0 . If a degree vertex has a neighbor which is also degree, then this will contradict to the definition of G_{X_0} .

By Lemma 2.8, we have

$$|V(G'_{X_0})| + 10 \leqslant 3|D_2| \leqslant 3|X_0|. \tag{8}$$

If $|D_2| \leq 5$, then by (8), $|V(G'_{X_0})| \leq |D_2| \leq 5$, contrary to the claim above. Therefore, $|D_2| = |X_0| = 6$. By (8) and $|D_2| = 6$,

 $|V(G'_{X_0})| \leq 8.$

Therefore, G'_{X_0} is a 2-edge-connected graph with 6 vertices of degree 2 and at most two vertices of degree at least 5. By the claim above, vertices of degree 2 are not adjacent to each other. Therefore, $G'_{X_0} = K_{2,6}$, contrary to $F(G'_{X_0}) \ge 3$. The theorem is proved. \Box

Let *r* be an integer. Theorem 4.2 shows that if *G* is 4-edge-connected, then *G* is 2-edge-Eulerian-connected. If $r \ge 4$ and if *G* is (r + 1)-edge-connected, then *G* is *r*-edge-Eulerian-connected. Combining Theorems 4.2, 4.3 and 3.0, we have:

Corollary 4.4. Let $r \ge 0$ be an integer. Then

$$\xi(r) = \begin{cases} 4, & 0 \le r \le 2, \\ r+1, & r \ge 4. \end{cases}$$

Remark. The case $\xi(3)$ is still open. Theorem 4.2 implies that if G is 5-edge-connected, then G is 3-edge-Eulerianconnected, and so $\xi(3) \leq 5$. We conjecture that $\xi(3) = 4$. The following theorem provides some supports for this conjecture.

Theorem 4.5. Let G be a 4-edge-connected graph and let $X \subseteq E(G)$ with $|X| \leq 3$. For any two adjacent edges e' and e'', G has a spanning (e', e'')-trail H such that $X \subseteq E(H)$.

Proof. Let $X_0 = X \cup \{e', e''\}$. Let G_{X_0} be the graph obtained from G by subdividing each edge in X_0 . Let v(e') and v(e'') be the two vertices obtained in the process of subdividing e' and e''. If G_{X_0} is collapsible, then G_{X_0} has a spanning connected subgraph H such that $O(H) = \{v(e'), v(e'')\}$. By Lemma 2.9, G has a spanning (e', e'')-trail containing X. We are done in this case. Next, we assume that G_{X_0} is not collapsible.

Let G'_{X_0} be the reduction of G_{X_0} . By Theorem 3.7, either $G'_{X_0} = K_{2,t}$ with $t \ge 4$ or G'_{X_0} is Eulerian with $V(G_{X_0}) = D_2 \cup D_4$ and $|D_2| = 5$, where D_i is the set of vertices of degree *i* in G'_{X_0} . If $G'_{X_0} = K_{2,t}$ with $t \ge 4$, then by Lemma 4.0, *G* has a spanning (e', e'')-trail *H* such that $X \subseteq E(H)$. We are done for this case.

For the case that G'_{X_0} is Eulerian, let v be the vertex incident with both e' and e''. Let $e_1 = v(e')v$ and $e_2 = v(e'')v$. Then $G'_{X_0} - \{e_1, e_2\}$ is connected. Otherwise, $\{e', e''\}$ is an edge cut of G, contrary to that G is 4-edge-connected. Therefore, $G'_{X_0} - \{e_1, e_2\}$ is a connected graph with only two odd degree vertices at v(e') and v(e''). Let $U_4 = \{u \in D_4 : u \text{ is a non-trivial contraction}\}$. For each vertex $u \in U_4$, let H(u) be the preimage of u in G_{X_0} . Then H(u) is collapsible. Let

 $V_u = \{x \in V(H(u)) : x \text{ is incident with odd number of edges in } G'_{X_0} - \{e_1, e_2\}\}.$

Since d(u) in $G'_{X_0} - \{e_1, e_2\}$ is even, $|V_u|$ is even or 0. Since H(u) is collapsible, H(u) has a spanning connected subgraph Γ_u such that $O(\Gamma_u) = V_u$. Let $E_0 = E(G_{X_0}) - \{e_1, e_2\}$ and let

$$\Gamma = G_{X_0} \left[\bigcup_{u \in U_4} E(\Gamma_u) \cup E_0 \right].$$

Then Γ is a spanning connected subgraph of G_{X_0} such that $O(\Gamma) = \{v(e'), v(e'')\}$. Therefore, G_{X_0} has a spanning (v(e'), v(e''))-trail. By Lemma 2.9, G has a spanning (e', e'')-trail containing X. The proof is complete. \Box

Acknowledgements

Much of the work for this paper was done while Zhi-Hong Chen was enjoying the hospitality of the JiNan University, Guangzhou, P.R China, which is herewith most gratefully acknowledged.

References

- [1] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, American Elsevier, New York, 1976.
- [2] P.A. Catlin, A reduction method to find spanning Eulerian subgraphs, J. Graph Theory 12 (1988) 29-45.
- [3] P.A. Catlin, Supereulerian graphs: a survey, J. Graph Theory 16 (1992) 177-196.
- [4] P.A. Catlin, Edge-connectivity and edge-disjoint spanning trees, Ars Combin., accepted.
- [5] P.A. Catlin, Z. Han, H.-J. Lai, Graphs without spanning closed trails, Discrete Math. 160 (1996) 81-91.
- [6] Z.-H. Chen, H.-J. Lai, Reduction techniques for supereulerian graphs and related topics—a survey, in: Ku, Tung-Hsin (Eds.), Combinatorics and Graph Theory 95, vol. 1, World Scientific, Singapore, pp. 53–69.
- [7] Herbert Fleischner, Eulerian Graphs and Related Topics, North-Holland, Part 1, vols. 1 and 2, 1990, 1991.
- [8] D. Gusfield, Connectivity and edge-disjoint spanning trees, Inform. Process. Lett. 16 (1983) 87-89.
- [9] H. Harary, C.St.J.A. Nash-Williams, On Eulerian and Hamiltonian graphs and line graphs, Canad. Math. Bull. 9 (1965) 701-710.
- [10] F. Jaeger, A note on sub-Eulerian graphs, J. Graph Theory 3 (1979) 91-93.
- [11] S. Kundu, Bounds on the number of edge-disjoint spanning trees, J. Combin. Theory 7 (1974) 199-203.
- [12] H.-J. Lai, Eulerian subgraphs containing given edges, Discrete Math. 230 (2001) 63-69.
- [13] V.P. Polesskii, A lower bound for the reliability of information networks, Prob. Inf. Transmission 7 (1961) 165-171.
- [14] S.-M. Zhan, Hamiltonian connectedness of line graphs, Ars Combin. 22 (1986) 89-95.