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Spanning trails containing given edges

Weigi Luo?, Zhi-Hong Chen®, Wei-Guo Chen®

Abstract

A graph G is Eulerian-connected if for any « and v in V(G), G has a spanning (u, v)-trail. A graph G is edge-Eulerian-connected
if for any ¢’ and ¢ in E(G), G has a spanning (e’, ¢”)-trail. For an integer r >0, a graph is called r-Eulerian-connected if for any
X € E(G) with [ X|<r, and for any u, v € V(G), G has a spanning (u, v)-trail T such that X € E(T). The r-edge-Eulerian-
connectivity of a graph can be defined similarly, Let 8(r) be the minimum value of k such that every k-edge-connected graph is
r-Eulerian-connected. Catlin proved that #(0) = 4. We shall show that 8(r) =4 for 0<r €2, and 0(r) =r + 1 for r 2 3. Results on
r-edge-Eulerian connectivity are also discussed.
© 2005 Elsevier B.V. All rights reserved.

Keywords: Connectivity; Spanning trails; Superenlerian graphs; Collapsible graphs

1. Introduction

We follow the notation of Bondy and Murty [1], except that graphs have no loops. A graph G is Hamiltonian-
connected if for every pair of vertices u, v of G, there is a Hamiltonian (u, v)-path in G. For a graph G, a trail is a
vertex-edge alternating sequence v, ey, v1, €2, ..., €k—1, Vk—1, €k, Uk such that all the ¢;’s are distinct and ¢; = v;_jv;
for all i. Let ¢/, ¢” € E(G). A trail in G whose first edge is ¢’ and whose last edge is ¢” is called an (¢, ¢”)-trail.
For u,v € V(G), a (u, v)-trail of G is a trail in G whose origin is ¥ and whose terminus is v. A trail H is called a
dominating trail of G if every edge of G is incident with at least one vertex of H in G. A trail H is called a spanning
trail if V(H) = V(G). If u = v, then a (u, v)-trail in G is a closed trail, which is also called a Eulerian subgraph of G.
A graph is called supereulerian if it has a spanning closed trail. The collection of all supereulerian graphs is denoted
by ¥ Z.

A graph G is Eulerian-connected if for any u, v in V(G) (including the case u = v), G has a spanning (i, v)-trail.
A graph is called -Eulerian-connected if for any X € E(G) with | X|<r, and for any u, v € V(G), G has a spanning
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(u, v)-trail T such that X € E(T). For an integer r >0, the collection of all 7-Eulerian-connected graphs is denoted by
&L (r). Obviously, £ L (r) C S & forall r >0.

A graph G is edge-Eulerian-connected if for any ¢’, ¢’ in E(G), G has a spanning (¢, ¢”')-trail. A graph is called
r-edge-Eulerian-connected if for any X € E(G) with | X|<r and for any ¢/, ¢” € E(G), G has a spanning (¢, ”)-trail
T'suchthat X € E(T).Foran integer r >0, the collection of all r-edge-Eulerian-connected graphs is denoted by £&'(r).

Many studies have been done on Eulerian graphs (see [7]). For the literature on the subject of supereulerian graphs,
see surveys [3,6]. Harary and Nash-Williams [9] demonstrated the relationship between Eulerian subgraphs and Hamil-
tonian cycles in the line graph of G. Zhan [14] studied (¢’, ¢”)-trails of a graph G for the Hamiltonian connectivity of
the line graph of G. In the study of spanning trails of graphs [2], Catlin introduced the concept of collapsible graphs.
For a graph G, let O(G) be the set of odd degree vertices of G and let R be an even subset of V(G). A subgraph Hg of
G is called a spanning R-trail if Hp is a spanning connected subgraph such that O(Hg) = R. A graph G is collapsible
if for every even subset R € V(G), G has a spanning R-trail. We will regard an empty set as an even subset and K
as both collapsible and supereulerian. The collection of all collapsible graphs is denoted by .. By the definition of
collapsible graphs, we have:

Proposition A. Let G be a collapsible graph. Then each of the following holds

(1) G is supereulerian.
(ii) G is Eulerian-connected.

Proof. For any vertices u, v € V(G). Let R=0 if u = v, or R = {u, v} if u # v. Since G is collapsible, it has a
spanning subgraph Hp such that O(Hg) = R. Therefore, Hp is a spanning Eulerian subgraph of G if R =0, or Hg is
a (u, v)-spanning trail of G. [J

Let X € E(G) and let R be an even subset of V(G). A spanning R-trail Hg of G such that X C E(Hpg) is called a
spanning (R, X)-trail, and denoted by Hr(X). A graph is called strongly r-Eulerian-connected if for any X € E(G)
with | X|<r and for any even subset R € V(G), G has a spanning R-trail Hg such that X € E(Hpg) (i.e. G has a
Hg(X)). The collection of all strongly r-Eulerian-connected graphs is denoted by & (r).

For an integer r, define .Z () to be the family of graphs such that G € .Z(r) if and only if for any subset X C E(G)
with | X| <r, G has an spanning Eulerian subgraph H such that X C E(H). Define f (r) to be the minimum value of k
such that every k-edge-connected graph G is in Z(r). In [12], Lai found f () for all the values of r (see Corollary 3.6).
Let 0(r) be the minimum value of & such that every k-edge-connected graph is in &% (r) and let y/(r) be the minimum
value of k such that every k-edge-connected graph is in & (r). Since ¥ E(r) € EL(r) S L(r),

Fr)<O0r) <y (). ey

Let &(r) be the minimum value of & such that every k-edge-connected graph is in && (r). In this paper, we will determine
the values of 0(r), Y(r), and &(r) for all r >0.

In the next section, we will present Catlin’s reduction method and some preliminary results which are needed in our
proofs. Our main results are in Sections 3 and 4. We will present our results on r-Eulerian-connected graphs, and give
the values of 0(r) and /() for all r >0. Section 4 contains results on the r-edge-Eulerian connected graphs.

2. Catlin’s reduction method and preliminary results

Let H be a connected subgraph of G. The contraction G/H is obtained from G by contracting each edge of H and
deleting the resulting loops. In [2], Catlin showed that every graph G has a unique collection of pairwise vertex-disjoint
maximal collapsible subgraphs Hy, Hj, ..., Hi such that Ule V(H;) = V(G). The reduction of G is obtained from
G by contracting each of H; into a vertex v; for all i, and is denoted by G'. Each H; is called a preimage of v; in G,
and v; is called the contraction image of H; in G'. A vertex v in G’ is called a trivial contraction if its preimage in G is
K. A graph G is reduced if G is the reduction of some graph. Let F'(G) be the minimum number of edges that must
be added to G so that the resulting graph has 2 edge-disjoint spanning trees.

2
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Theorem 2.1 (Catlin [2]). Let G be a graph, and let G’ be the reduction of G. Each of the following holds.

(1) G is supereulerian if and only if G’ is supereulerian.
(ii) G is collapsible if and only if G' ~ K
(iii) |[E(GN|+ F(G') =2|V(G")| — 2.

In [10], Jaeger proved that a graph with two edge-disjoint spanning trees is supereulerian. In [2], Catlin proved that
if G has two edge-disjoint spanning trees, then G is collapsible. It is well known now that a 2k-edge-connected graph
has k edge-disjoint spanning trees [8,11,13]. Thus, we have:

Theorem 2.2. If G is 4-edge-connected, then G is collapsible.
In [4], Catlin proved:
Theorem 2.3 (Catlin [4]). Let G be a graph and let k> 1 be an integer. The following are equivalent:

(1) G is 2k-edge-connected,
(ii) Forany X C E(G) with |X| <k, G — X has k edge-disjoint spanning trees.

Corollary 2.4 (Catlin [4]). Let G be a graph and let k > 1 be an integer. The following are equivalent:

(i) Gis (2k 4 1)-edge-connected,
(i) Forany X C E(G) with | X|<k 4+ 1, G — X has k-edge-disjoint spanning trees.

The following theorems will be needed in our proofs.

Theorem 2.5 (Catlin et al. [5]). Let G be a connected graph. If F (G) <2, then either G is collapsible, or the reduction
of Gisin{K2, Ky, : t 21}

Let e be an edge in G. Edge e is subdivided when it is replaced by a path of length 2 whose internal vertex, denoted
by v(e), has degree 2 in the resulting graph. The process of taking an edge e and replacing it by that path of length 2 is
called subdividing e. Let G be a graph and let X € E(G). Let Gx be the graph obtained from G by subdividing each
edge in X. Then V(Gx) = V(G) U {v(e) foreach e € X}.

Lemma 2.6. Let k >2 be an integer. Let G be a connected graph and let X C E(G). Let R be an even subset of V (G).
Then each of the following holds

(1) G has a spanning (R, X)-trail Hr(X) if and only if G x has a spanning R-trail. In particular, G has a spanning
closed trail H such that X € E(H) if and only if Gx is supereulerian.
(ii) If Gx is collapsible, then G x has a spanning R-trail.
(iii) Let X = X1 U Xo with X1 N Xo =@. Then F(Gx)<F(G — X1)x,).
@iv) If G has k edge-disjoint spanning trees, then for any X C E(G) with |X|<2k —2, F(Gx)<2.

Proof. (i) and (ii) follow from the definitions of collapsibility and G x.

(iii) Let p = F((G — X1)x,). Let E, be the p edge set such that (G — X)x, + E, has 2-edge-disjoint spanning
trees (77 and 7»). Let X1 = {ey, €2, ..., es} and each ¢; = u;v; (1<i <s). By the definition of Gy, we know that Gy
can be obtained from (G — X1)x, by joining each pair of u; and v; by a path P; = u;v(e;)v; where v(e;) is a new
vertex. Therefore, T7 + Ule {ujv(e;)} and T» + U}L] {v(e;)v;} are two edge-disjoint spanning trees in Gx + E, and
s0 F(Gx)<p=F((G—X1)x,).

(iv) Let T1, T», . . ., Ty be k edge-disjoint spanning trees of G. Without lost of generality, we may assume that

IXNET)ISIXNET)|< - <|XNET] 2)


lridenou
Typewritten Text
3


Since k >2, | X| <2k — 2, T;’s are edge-disjoint, and by (2),

XN EM)|+I1XNE(T)|L2. (3)
Let X ={ey, e2,...,ep} where p<2k — 2, and let ¢; = u;v; for all 1 <i < p. Since Gy is the graph obtained from G
by subdividing ¢; (1<i<p), V(Gx) =V(G)U{v(e;) : 1<i<p},and E(Gx) = (E(G) — X) U {u;v(e;), v(ej)v; :
1<i<p}.

Case 1. | X NE(T))|+ |XNE(T>)|=0.

Then Ty + Uf’zl {ujv(ej)} and T» —i—Ule {v(e;)v;} are two edge-disjoint spanning trees in G x and so F(Gx)=0<2.

Case2. | X NE(T)|+ | XNE(Ty)|=1.

By (2) and (3), |[X N E(Ty)| =0and |X N E(T2)| = 1. Let ez = upvy be the edge in X N E(T»). Then Ty = T, —
er + {usv(er), v(ex)vy} Uf £ {v(e;)v;} is a spanning tree in G x. To obtain another spanning tree which covers v(ez),
we can add an edge ¢’ =ujv(ez) to Gx. Then T) =T + {e'} Ufﬁ {u;iv(e;)} is a spanning tree in Gx + ¢’. Therefore,
T| and T are two edge-disjoint spanning trees in G x + ¢’. This shows that F(Gx) = 1<2.

Case3. | X NE(T)|+|XNE(T2)|=2.

By (2) and (3), either | X N E(Ty)|=|XNE(T)|=1,0or | XNE(T))|=0and | X N E(T2)|=2. We prove F(Gx)<2
for the case | X N E(T1)|=|XNE(T>)|=1here. The case | XN E(T})|=0and | X N E(T>2)| =2 can be proved similarly.

Lete; € XNE(T))ande; € XN E(T>). Then T{: T —er+{ujv(er), v(el)vl}UlP:3 {ujv(e;)}is a tree containing
V(Gx)—v(er),and TQ/ =T, — ey 4+ {uzv(ez), viex)va} Uip:3 {v(ei)v;} is atree containing V(G x) — v(eq). Therefore,
adding two new edges ¢’ = ujv(ez) and e” = v(e1)va to Gx, we have two edge-disjoint spanning trees 7| + ¢’ and
T, +¢" in Gx + {¢/, ¢”}. This shows that F(G x) <2. The proof is complete. [J

Lemma 2.7. Let G be a graph with ' (G) >3, and let X C E(G). Let G x be the graph obtained from G by subdividing
each edge in X. If the reduction of Gx is K2 ;, then each of the following holds.

(i) Every degree 2 vertex in G'y is a vertex obtained by subdividing an edge in X.

(i) |X|>t>(G), and X is an edge cut of G.

(iii) Thereis a subset X1 € X witht =|X | such that each path between the two vertices of degree t in K» ; is obtained
by subdividing an edge in X1. Furthermore, Gx — X1 has only two collapsible components (say Hy and H>)
such that V(Gx) = V(Hy) U V(H>) UeeEl {v(e)}, and G/X = K> ; is obtained by contracting Hy and H, (i.e.
Gy =(Gx/Hy)/Hy = K3 ).

Proof. Let E(G’X) = E(K2;) = {uw;, wiv} (1<i<r) where each w; is a degree 2 vertex in G’X. Note that w; is a
trivial contraction, and (i) holds. Otherwise the two edges incident with w; will form an edge-cut of G, contrary to that
k' (G) > 3. Hence, each path uw; v is obtained by subdividing an edge in X and so 7 < |X]|.

Let E' = {uw; : 1<i<r}. Then E’ is an edge-cut of G;. Since each path uw;v in G is obtained by subdividing
anedge e € X C E(G), we have an edge set X; C X such that each edge in X corresponding to a path uw;v in Gy,
and |X||=|E’| =t. Therefore, X is an edge cutin G. Since X; C X, X is an edge-cut of G and | X| > |E'| =1 > /(G).

Note V(G’X) ={u, v, w; : 1<i<t}whered(u)=d(v)=t.Let H| be the preimage of u, and let H be the preimage of
v. Therefore, G’X is obtained by subdividing each edge in X1, and then contracting H; and H», respectively. Statement
(iii) is proved. [

Lemma 2.8. Let G be an r-edge-connected graph (r >4). Let X C E(G). Let G x be the graph obtained from G by
subdividing each edge in X. Let G’ be the reduction of G x and let V, be the set of vertices of degree less than r in G'y.
Let D; = {v € V(GYy) : d(v) =i} (i 22).If F(G'y) >3, then each of the following holds:

(i) each vertex in V, has degree 2 (i.e. V., = D») and |V, | <|X].
(i) (r =DIV(GYI+10<(r =)V, < (r = 2)|X].
(i) 10+ (r = DDy + (r = 3)Drg1l + - - + <2[Ve | <2[X].

Proof. Since the degree of each vertex u in V, is less than r, u must be a trivial contraction in G’X. Otherwise, the edges
incident with u will form an edge cut with size less than r, contrary to k' (G) >r. Therefore, V, € V(Gx) — V(G),

4
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a subset of the vertices obtained in the process of subdividing each edge in X. Thus each vertex in V, has degree 2 and
V<X, )
Let ¢ = |V(Gy)|. Since F(G’y) >3, by (iii) of Theorem 2.1,
|[E(Gy)| =2|V(Gy)| —2— F(Gy)<2c —5.
Hence,

Z d(v) =2|E(GY)| <4c — 10. 5)
veV(GY)

Since K¥'(Gx) >2, 5(G/X) >2. Then by (5)
2AVel+r(c— VD2V, + Y dw)= Y d(v)=2|E(GY)|<4c — 10. (6)
VeV VeV (GYy)
By (4), (6), and ¢ = |V (G|,
r = HIV(GOI+ 10K =)V < (r = 2)[X]. )
By (6), and V(Gy) = V; U,_, D,
21V |+ r|Dr| + (r + DIDpg1| + - - <4( Vel + IDr| + [ Dyya| + - ) — 10,
Hence,
10+ =DIDr |+ (r = )NDpya] +--- L2V [<L2[X]. O
Lemma 2.9. Let G be a graph and let ey, ey € E(G) and let X C E(G). Let Xo = X U {ey, e2}. Let Gx, be the

graph obtained from G by subdividing each edge in X(. Let v(e1) and v(ez) be the two vertices subdividing e and ey,
respectively. Then

(i) If Gx, has a spanning (v(e1), v(e2))-trail, then G has a spanning (ey, ez)-trail containing X.
(ii) If Gy, is collapsible, then G has a spanning (ey, e3)-trail containing X.

Proof. Follows from the definitions of collapsibility and Gx,. [

3. The r-Eulerian-connected graphs

The Petersen graph and many other 3-edge-connected graphs have no spanning closed trails. Thus, for any r >0,
W(r)>0(r)>4. By Theorem 2.2, we know that y/(0) = 6(0) = 4. The following example shows that for r >3,
Y(r)Z0(r)>r + 1.

Example 1. Let r >3 be an integer, and let n and m be two integers such thatn>r + 1 and m>r + 1. Let G| = K,
with V(G1) = {uy, ua, ..., u,}, and let Go = K,, with V(G2) = {vy, va, . . ., v, }. Define the graph G to be the graph
obtained from G| and G; by connecting G| and G, with the new edge set X = {ey, e2, ..., e,} where ¢; = u;v; for
alli =1,2,...,r. Then G is an r-edge-connected graph. If r is even, then we choose u from G, and v from G».
If r is an odd integer, then we choose u and v both from Gi. Then G has no spanning (u, v)-trails containing all the
edges of X. This example also shows that G has no spanning (¢’, ¢”")-trails containing all the edges of X for some pair
of ¢/, ¢” € E(G). See Fig. 1 below for the case r = 4 where X = {e], e2, €3, e4} and G| = G, = K5. This shows that
Y(r)=0(r) =r + 1. In the following, we will show that Y(r) = 0(r) =r + 1.

This example suggests the following necessary condition for » Eulerian-connected graphs, and the lower bounds for

¥(r), 0(r) and &(r).
5
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Theorem 3.0. Let r >3. Then y(r)=0(r)>=r + 1 and E(r) >r + 1. Furthermore, if G is an r-Eulerian-connected
graph, then G is (r 4+ 1)-edge-connected.

Proof. By way of contradiction, suppose that the edge-connectivity of G is k <r. Let X be an edge cut with | X| =k
and let H; and H, be two components of G — X. If | X| = k is even, we can choose a vertex u from H; and a vertex v
from H,. Then G has no spanning (u, v) trail that contains X, a contradiction. If | X| = k is odd, then we can choose a
vertex u from Hj. Since X has odd number of edges, G does not have a closed trail that starts and ends at # containing
X, a contradiction again. [

For a real number x, let | x] be the largest integer that is less than or equal to x.

Theorem 3.1. Let r >4 be an integer and let k = L%J Let G be an r-edge-connected graph and let X C E(G) with
|X|<r + k — 2. it Then one of the following holds:

(1) Gy is collapsible, or
(i1) X is an edge cut of G and |X|2>r.

Proof. Let X C E(G) with | X|<r 4k — 2. Define G x as before and assume that G x is not collapsible. We will show
that the reduction G/X is Ko ; with ¢ >2 first. Consider the following two cases:

Case 1. ris even. Then r = 2k, and | X| <3k — 2.

Since | X| <3k — 2, we can choose a subset X of X and let X, = X — X, such that | X| <k and | X»| <2k — 2. By
Theorem 2.3, G — X has k-edge-disjointed spanning trees. Then by Lemma 2.6(iv), F((G — X1)x,) <2. By Lemma
2.6(iii), F(Gx) < F((G — X1)x,) <2. Since Gy is not collapsible, by Theorem 2.5, G’X € {K», K2} (t=1). Since G
is r-edge-connected (r >4), G x is 2-edge-connected. Therefore, G’X =Ky, (t=2).

Case 2. risodd. Thenr =2k 4+ 1 and | X| <3k — 1.

Let X be a subset of X and let X» = X — X such that | X|<k+ 1 and | X»| <2k — 2. By Corollary 2.4, G — X has
k-edge-disjointed spanning trees. By Lemma 2.6(iii) and (iv), F(Gx) < F((G — X1)x,) <2. Using the same argument
for the case 1 above, we have G/X =Ky, (t=2).

Therefore, by Lemma 2.7, Theorem 3.1 is proved. [J

From the proof of Theorem 3.1, we have the following:

Theorem 3.1'. Let r >4 be an integer and let k = L%J Let G be an r-edge-connected graph. Let X C E(G) with
|X|<r +k — 2 and let Gx be the graph obtained from G by subdividing every edge in X. Let G'y be the reduction of
G x. Then exactly one of the following holds

(i) Gy is collapsible, or

(i1) Gx can be contracted to K7 ; (i.e. G/X = K7 ;) in such a way that each degree vertex in K ; is a trivial contraction
andr <t <|X|.

Theorem 3.2. Let r >4 be an integer and let k = L%J Let G be an r-edge-connected graph. Let X C E(G) with
|X|<r + k — 2. Then one of the following holds

(1) for any even subset R € V(G), G has a spanning R-trail Hg such that X C E(Hg), or
(1) Xis an edge cut of G and |X|>r.
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Proof. For a given edge set X € E(G), by Lemma 2.6(ii), if G x is collapsible, then G has a spanning (R, X)-trail for
any even subset R € V(G). Theorem 3.2 follows from Theorem 3.1. [J

Corollary 3.3. Let r >4 be an integer, and let k = L%J Let G be an r-edge-connected graph. Let X C E(G) with
| X|<r +k —2.If X is not an edge cut of G, then G has a spanning (R, X)-trail for any even subset R C V(G).

Proof. Following Theorem 3.1 and Lemma 2.6 immediately. O
Corollary 3.4. Let r >3. Then G is strongly r-Eulerian-connected if and only if G is (r + 1)-edge-connected.

Proof. The necessary condition follows from Theorem 3.0. For the sufficient condition, let X C E(G) with | X|<r.
Then |X| < k'(G) =r + 1. X is not an edge cut of G and by Theorem 3.2, the statement holds. [

Theorem 3.5. Letr >0. Then

4 if0<r<2,
v =00 = {r +1 ifr>3.
Proof. Since there exist 3-edge-connected graphs which are not supereulerian, y(r) > 0(r) >4 for r >0. By Theorem
3.1, if G is 4-edge-connected, then any edge set X with | X | <2 can not be an edge cut of G. Therefore G x is collapsible,
and so 0(r) = Y (r) <4 if r <2. For r >3, it follows from Corollary 3.4 that y(r) =0(r) =r +1. O

Corollary 3.6 (Lai [12]). Let r >0 be an integer. Then

4, 0<r<2,
f(r)={r+1, r>3 and r is odd,
7, r>4 and r is even.

Proof. Since there exist 3-edge-connected graphs that are not supereulerian, f(r) >4. Since f(r) <0(r), by Theorem
3.1, f(r)y=4ifr <2.Forr >3, if ris odd, Example 1 with an odd number r shows that f(r) >r + 1. By Theorem 3.1,
since f(r)<O(r)<r+1, f(r)=r+1if ris odd. If r is even, by Theorem 3.1/, for any r-edge-connected graph G and
any X C E(G) with | X|<r, either Gy is collapsible or the reduction G’y =~ K ,. Since K3, is supereulerian when
r is even and all collapsible graphs are supereulerian, G x is supereulerian. Then by Lemma 2.6(i), G has a spanning
Eulerian subgraph H with X € E(H). Therefore, f(r) =r ifriseven. [

Corollary 3.6 implies that if G is 4-edge-connected, then for any X € E(G) with | X| <4, G has a spanning Eulerian
subgraph H such that X € E(H). Here we have:

Theorem 3.7. Let G be 4-edge-connected graph. Let X C E(G) with | X|<5. Let Gx be the graph obtained from G
by subdividing each edge in X. Let D; = {v € V(G’X) |d(v) =1} (i 22). Then one of the following holds

(i) Gy is collapsible, or
(i1) X contains an edge cut X1 with |X1| =t >4 such that G — X has only two components (H, and Hy), which are
collapsible. Furthermore, Gx is contractible to K, ; by contracting Hy and Hj into the two degree t vertices in
Ky, or
(iii) G'y is an Eulerian graph with V(G'y) = Dy U Dy and | D3| = 5.

Proof. Let G/X be the reduction of G x. If G’X =K, then G is collapsible and we are done for this case. In the following
we will assume that Gy is not trivial. Since G is 4-edge-connected, G x is 2-edge-connected. Since k(G'y) >Kk(Gx),
G'y is 2-edge-connected.

Case 1. F(G'y)<2.

By Theorem 2.5, and k' (G x) =2, G/X = K, forsome t >2. By Lemma 2.7, | X| >t >4. Hence, (ii) of Theorem 3.7
holds.

k4
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Case 2. F(G'y) >3.
Since G is 4-edge-connected and | X| <5, by (i) and (iii) of Lemma 2.7, V, = D, and

104 [Ds| + - - - + <2|V,| <2 X| < 10.

This implies that | D;| = 0 for all i >5 and | D>| = 5. Therefore, each vertex in V (G’y) has degree 2 or 4. Hence, Gy is
Eulerian and |D>| =5. [0

Corollary 3.8. Let G be a 4-edge-connected graph. Let X C E(G) with | X|<5. Let G x be the graph obtained from
G by subdividing each edge in X. Then either G has a spanning Eulerian subgraph H such that X € E(H), or Gx is
contractible to K 5 in such a way that each path between the two vertices of degree 5 is obtained by subdividing an
edge in X.

Proof. This follows from Theorem 3.7 and Lemma 2.9. 0O

4. The r-edge-Eulerian-connected graphs
We will need the following lemma.

Lemma 4.0. Let G be a 3-edge-connected graph. Let X C E(G) andlete’, ¢” € E(G). Let Xo=XU{e’, "} and let
G x, be the graph obtained from G by subdividing each edge in X¢. Suppose that G’X0 = Ko where t 23. If t > |X|,
then G has a spanning (¢’, ¢")-trail H such that X C E(H).

Proof. Let u and v be the two vertices in K> ; with d(u) = d(v) =t. By Lemma 2.7, there is an edge set X; € Xo
such that each length 2 path between u and v in K>, is obtained by subdividing an edge in X;. Then |X| = 1.
Let E| = E(G’XO) = E(K>,). By Lemma 2.7, Gx, — E; has two collapsible subgraphs (H; and H>) such that
V(Gx,) =V (H)UV(H2) U,ex, {v(e)}. Let e =x(yp. ¢ =xgy, and let x), x; € V(Hy) and y), y; € V(H). Since
t > | X|, at least one of the edges in {¢’, ¢”} is included in X ;. For each e € {¢’, ¢”},P, is defined as a path obtained by
subdividing edge e.

For each H;, (i =1, 2), define

Uo(H;) ={v € V(H;) : visincident with odd number of edges in E|{ — {P,’, P.r}}.

Note that |U,(H1)| is odd if and only if |U,(H3)| is odd. Since H; is collapsible, for any even subset R; C V (H;),
there is a spanning connected subgraph I'; with O(I';) = R; (i = 1, 2). In the following we will show that a spanning
(v(e'), v(e"))-trail I' can be constructed from I'y and I', by adding all the edges in E| and an edge er, to connect v(e’)
(or an edge er, to connect v(e”), or both) such that O(I') = {v(e’), v(e”)}.

Case 1. Both ¢’ and ¢” are in X].

Note that G may not be simple and we may have three possible situations:

(@) x(=x{ and y; =y,
(b) xo=xq and y; # g,
(©) xj # x( and y{) # (.

The following Tables 1-3 show the selections of the even subset R; € V (H;) for I'; and ey, (i =1, 2) for all possible
cases.
For each case with the selection of Ry, Ry, ey, and er,, define

I'=Gx[E(I')UE(I'2) U Ey Ufer,, er,}].

By the definition of I', V(I') = V(I'1) U V(I'2) Ueex1 {v(e)} U {v(e), v(e”)}, and v(e’) and v(e”) have degree 1 in
I'. Since I'; is a connected spanning subgraph of H;, V(I';) = V(H;) (i =1,2). I'1 and I'; are connected by the paths
in Ey, and v(e’) and v(e”) are connected to I'; by er,. Thus, V(I') = V(G,) and I' is a connected spanning subgraph

8


lridenou
Typewritten Text
8


Table 1

When x{j = xj and y) = y{, let xg = x{, = x and yo = y, = ¥

|Uo(Hy)| X0 and yp Ry Ry er, er,
Odd x0 € Uo(H1), yo € Uo(Ha) Uo(Hy) — xo Uo(H2) — o xpu(e’) v(e)yo
x0 ¢ Uo(H1), yo € Uo(H2) Uo(H1) U {xo} Uo(Hp) — yo xou(e’) v(e”)yo
x0 € Uo(H1),yo ¢ Uo(Ha) Uo(Hy) — xo Uo(H2) U {yo} xpu(e’) v(e)yo
x0 ¢ Uo(H1), Yo ¢ Uo(Hp) Uo(Hy) U {xo} Uo(H2) U {yo} xgv(e) v(e")yo
Even Uo(Hy) Uo(Hp) xpu(e’) xou(e”)
Table 2
When x() = x and y; # g, let xo = x( = x{]
|Uo(Hy)| x0, and y( R Ry er er,
Odd x0 € Uo(H1), ¥ € Uo(Ha) Uo(H1) — X0 Uo(Ha) — v xou(e) vy
x0 € Uo(H1), yj ¢ Uo(Ha) Uo(H1) — X0 Uo(H2) U {3 xou(e') v(e”)y,
x0 & Uo(H1), ¥ € Uo(Ha) Uo(H1) U {xo} Uo(H2) — ¥ xou(e) vy
x0 & Uo(H1), vy ¢ Uo(Hz) Uo(Hy) U {x0} Uo(Ha) U {y(} xou(e) vy
Even Uo(H1) Uo(Hp) xov(e') xou(e”)
Table 3
/ " / "
When x;, # x; and y;, # ¥,
Uo(H) x(- and y{ R, Ry ery er,
0dd %) € Uo(H1), ¥ € Uo(Ha) Uo(Hy) — ) Uo(H2) — ¥ () vy
x( € Uo(H1), ¥ ¢ Uo(H2) Uo(Hy) — x;, Uo(Ha) U {y xgu(e) v(e”)yy
%) ¢ Uo(HY). (| € Uo(Hy) Uo(H1) U {x}} Uo(H2) — ¥ xov(e') o)y
%) ¢ Uo(Hy), ¥, ¢ Uo(H) Uo(H1) U {x)) Uo(Hy) U {y{) xu(e) v(e")y]
Even x € Uo(H1), x(j € Uo(H) Uo(Hy) — {x x(} Uo(Hp) xgu(e’) xgv(e”)
x4 ¢ Uo(H), x{| € Uo(H1) (Uo(Hy) — (D) U ) Uo(Ha) xv(e) v’
x € Uo(H1), x( ¢ Uo(Hy) (Uo(Hy) — {xoh) U {xg} Uo(Hp) xqu(e’) xgv(e”)
xg ¢ Uo(H1), x( & Uo(H1) Uo(Hy) U {x(), X7} Uo(Hp) xgu(e) xqv(e”)

of G, . To show that O(I") = {v(e’), v(e”)}, we can check each case listed in Tables 1-3. For instance, with the cases
in Table 1, if v ¢ R; U Ry, v has even degree in I'1 or I'> or v has degree 2 as a vertex obtained by subdividing an
edge in X1.If v € Ry and v # xo (or v € Ry and v # yp), then since odd number of edges incident with v in E are
added, v has an even degree in I'. If v = x (or yp), by the definition of e, and er,, xo has an even degree in I'". Hence,
o) = {v(€¢'), v(¢”)}, and I is a spanning (v(e'), v(e”))-trail in Gx,. By Lemma 2.9, G has a spanning (¢’, ¢”)-trail

containing X.

Case 2. One of ¢’ and ¢” is in X (say ¢’ € X}).
Since ¢” ¢ X, we may assume that the path obtained by subdividing ¢” is in Hj. Then v(e”) € V (H}). For this case,
we only need to choose er, to connect v(e’) in I".

For each case in Table 4, define

I'=Gx,[EI') U EUI2) U EUfer,}.

Therefore, I is a spanning connected subgraph of G x, such that O(I') = {v(¢’), v(e¢”)}. The Lemma is proved. O

In [14], Zhan proved the following:

Theorem 4.1 (Zhan [14]). If G is a 4-edge-connected graph, then for any edges ey, ez € E(G) there is a spanning

(e1, e2)-trail in G.
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Table 4
e e X1,and v(e") € V(H)

|Uo(HY)I xg» and yg Ry Ry er

0dd ¥ € Uo(Ha) Uo(Hy) U {u(e")} Uo(Hn) — ¥ vy
¥ & Uo(Hy) Uo(Hy) U {u(e")) Uo(Hn) U {¥)) vy}

Even x(, € Uo(H1) (Uo(H1) — {xh U {v(e”)} Uo(H2) xqu(e’)
x( ¢ Uo(H1) Uo(H1) U {xg), v(e")} Uo(H2) xou(e)

Theorem 4.1 can be improved.

Theorem 4.2. Let r € {3,4}. If G is an (r + 1)-edge-connected graph, then for any X C E(G) with | X|<r — 1, and
forany ey, ez € E(G), G has a spanning (e, e2)-trail H in G such that X C E(H).

Proof. Let Xo =X U{ey, e2}. Let G x, be the graph obtained from G by subdividing each edge in Xy. Since r € {3, 4},
k=[(r+1)/2] =2.Then | Xo|<|X|4+2<r+1=(r+1)+k —2. By Theorem 3.1’, either G, is collapsible or Gx,
is contractible to K> ; with t >r. If G x, is collapsible, then by Lemma 2.9, G has a spanning (ej, e2)-trail containing
X.If Gx, is contractible to K> ; with >4, since t >r > | X[, by Lemma 4.0, G has a spanning (ej, e)-trail containing
the edge set X. [

For graphs with edge-connectivity at least 5, we have

Theorem 4.3. Let G be an (r + 1)-edge-connected graph (r >4). Let X C E(G) with |X|<r. Then G is an r-edge-
Eulerian-connected.

Proof. Let e; and e; be two arbitrary edges in G and let Xg = X U {ey, e2}. Let G x, be the graph obtained from G by
subdividing each edge in Xo.

Case 1.r>5.

Thenr +1>6,andso k= [(r + 1)/2] >3.Then | Xo|<|X|+2<r +2<(r + 1) + k — 2. By Theorem 3.1/, either
G x, is collapsible or G x,, is contractible to K ; with [Xo|>1> (r + 1). By Lemma 2.9 and Lemma 4.0, both cases
imply that G has a spanning (e, e2)-trail H such that X € E(H). Theorem 4.3 is proved for this case.

Case?2.r =4.

Then G is 5-edge-connected and | X¢| <6. Let G’X0 be the reduction of Gy,. If F (G/XO) <2, then Gy, is either
collapsible or contractible to K> ; with ¢ > (r 4+ 1) and so we are done. Next we assume that F' (G’XO) >3.

Claim. If v e Dy C V(G/XO), then the degree of each of the two neighbors of v is greater than 2.

Since 6(G) > k' (G) =5, each vertex of degree 2 in G’X0 is obtained by subdividing an edge in X. If a degree vertex
has a neighbor which is also degree , then this will contradict to the definition of G ,,.

By Lemma 2.8, we have

[V(G'y,) + 10<3|D2| <3| Xol. ®)

If |Dy| <5, then by (8), |V(G’X0)| <|D2| <5, contrary to the claim above. Therefore, |D2| = [Xo| = 6. By (8) and
|Dz| =6,

|V (Gly,)I<8.

Therefore, G/XO is a 2-edge-connected graph with 6 vertices of degree 2 and at most two vertices of degree at least 5.
By the claim above, vertices of degree 2 are not adjacent to each other. Therefore, G’XO = K> ¢, contrary to F' (G’Xo) >3.
The theorem is proved. [l

Let r be an integer. Theorem 4.2 shows that if G is 4-edge-connected, then G is 2-edge-Eulerian-connected. If
r >4 and if G is (r + 1)-edge-connected, then G is r-edge-Eulerian-connected. Combining Theorems 4.2, 4.3 and 3.0,
we have:

10
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Corollary 4.4. Let r >0 be an integer. Then

4, 0<r«?,
& = [r+ 1, r>=4.
Remark. The case £(3) is still open. Theorem 4.2 implies that if G is S-edge-connected, then G is 3-edge-Eulerian-
connected, and so £(3) <5. We conjecture that £(3) = 4. The following theorem provides some supports for this
conjecture.

Theorem 4.5. Let G be a 4-edge-connected graph and let X € E(G) with | X| < 3. For any two adjacent edges ¢’ and
e’, G has a spanning (¢’, e")-trail H such that X < E(H).

Proof. Let Xo = X U {¢/, ¢”}. Let G x, be the graph obtained from G by subdividing each edge in Xy. Let v(e’) and
v(e') be the two vertices obtained in the process of subdividing e’ and ¢”. If G ,, is collapsible, then G x,, has a spanning
connected subgraph H such that O(H) = {v(¢’), v(e")}). By Lemma 2.9, G has a spanning (¢’, ¢”')-trail containing X.
We are done in this case. Next, we assume that G x,, is not collapsible.

Let Gixo be the reduction of G x,. By Theorem 3.7, either G'XO =Ky, witht >4 or Gixo is Eulerian with V(G x,) =
Dy U D4 and | D3| = 5, where D; is the set of vertices of degree i in G’XO. If G’X0 = K, with 7 >4, then by Lemma
4.0, G has a spanning (e’, ¢”)-trail H such that X € E(H). We are done for this case.

For the case that G’X0 is Eulerian, let v be the vertex incident with both ¢’ and e”. Let e; = v(e’)v and e = v(e”)v.
Then G’X0 — {e1, ez} is connected. Otherwise, {¢’, ¢’} is an edge cut of G, contrary to that G is 4-edge-connected.
Therefore, Gy — {e1, e2} is a connected graph with only two odd degree vertices at v(e’) and v(e”). Let Uy = {u €
D4 : u is a non-trivial contraction}. For each vertex u € Us, let H(u) be the preimage of u in Gy,. Then H(u) is
collapsible. Let

Vi ={x € V(H(w)) : x is incident with odd number of edges in G’X0 — {e1, e2}}.

Since d(u) in G’XO — {ey, e2} is even, |V,| is even or 0. Since H (u) is collapsible, H(u) has a spanning connected
subgraph I', such that O(I",) = V,,. Let Eqg = E(Gx,) — {e1, e2} and let

I'=Gy, U E(,) U Ep

uely

Then I is a spanning connected subgraph of G, such that O(I") = {v(e’), v(e™)}. Therefore, G x, has a spanning
(v(e'), v(e"))-trail. By Lemma 2.9, G has a spanning (¢’, ¢”)-trail containing X. The proof is complete. L[|
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