
Butler University
Digital Commons @ Butler University

Scholarship and Professional Work - LAS College of Liberal Arts & Sciences

1997

Genetic Algorithms for the Extended GCD
Problem
Jonathan P. Sorenson
Butler University, jsorenso@butler.edu

Follow this and additional works at: http://digitalcommons.butler.edu/facsch_papers

Part of the Theory and Algorithms Commons

This Article is brought to you for free and open access by the College of Liberal Arts & Sciences at Digital Commons @ Butler University. It has been
accepted for inclusion in Scholarship and Professional Work - LAS by an authorized administrator of Digital Commons @ Butler University. For more
information, please contact fgaede@butler.edu.

Recommended Citation
V. Piehl, J. Sorenson, and N. Tiedeman, Genetic algorithms for the extended GCD problem, to appear in the Journal of Symbolic
Computation. Posters presented at ISSAC’97 and the 1997 CUR Poster Session on Capitol Hill.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digital Commons @ Butler University

https://core.ac.uk/display/62435005?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://digitalcommons.butler.edu?utm_source=digitalcommons.butler.edu%2Ffacsch_papers%2F93&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.butler.edu/facsch_papers?utm_source=digitalcommons.butler.edu%2Ffacsch_papers%2F93&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.butler.edu/las?utm_source=digitalcommons.butler.edu%2Ffacsch_papers%2F93&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.butler.edu/facsch_papers?utm_source=digitalcommons.butler.edu%2Ffacsch_papers%2F93&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=digitalcommons.butler.edu%2Ffacsch_papers%2F93&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:fgaede@butler.edu

Article Submitted to Journal of Symbolic Computation

Genetic Algorithms for the Extended GCD
Problem∗

Valerie Piehl
1
, Jonathan P. Sorenson

2
and Neil

Tiedeman
3

1 North Central High School, 1801 East 86th Street, Indianapolis, Indiana
46240, USA, vpiehl@msdwt.k12.in.us

2 Department of Computer Science and Software Engineering, Butler
University, 4600 Sunset Avenue, Indianapolis Indiana 46208, USA,

sorenson@butler.edu, http://www.butler.edu/∼sorenson
3 SAGIAN, 7451 Winton Dr., Indianapolis, Indiana 46268, USA,

Neil.Tiedeman@sagian.com

Abstract

The extended greatest common divisor (GCD) problem is, given a vector
a = (a1, . . . , an) of positive integers, compute g, the greatest common
divisor of these integers, and find a vector x = (x1, . . . , xn) of integer
coefficients such that

g =
n∑
i=1

aixi.

It is desirable to find a solution vector x where ‖x‖ is small. We present
several genetic algorithms for this problem. Our algorithms search among
small multisubsets of {a1, . . . , an}; a solution for a particular multisubset
is extended to a complete solution by padding x with zeros. We also
present the results of our implementations of these methods.

∗This work was carried out primarily in the Department of Mathematics and Computer
Science at Butler University when the first and third authors were students, and completed
by the second author while on sabbatical at Purdue University during the Fall of 1998.
Preliminary versions of this work were presented at the Council for Undergraduate Research
Poster Session on Capitol Hill, April 1996, and at the ISSAC’97 poster session.
This research was supported by NSF Grant CCR-9626877, the Holcomb Research Institute,
and the Butler Summer Institute.

1

Piehl, Sorenson, and Tiedeman: Gen. Algs. for the Ext. GCD Problem 2

1. Introduction

We present several genetic algorithms for solving the extended greatest common
divisor problem. After defining the problem and discussing previous work, we
will state our results.

The extended greatest common divisor (GCD) problem is, given a vector a =
(a1, . . . , an) of positive integers, compute g, the greatest common divisor of these
integers, and find a vector x = (x1, . . . , xn) of integer coefficients such that

g =
n∑
i=1

aixi.

This problem arises in the computation of Smith and Hermite normal forms of
integer matrices. For this application, to avoid excessive growth in intermediate
results, we want the solution vector x to be “small.” This requirement leads to
what we will call the decision problem version of the extended GCD problem:

Given a vector a of positive integers of length n and a bound k, does
there exist an integer solution vector x such that

g =
n∑
i=1

aixi

and ‖x‖ ≤ k?

Here ‖ · ‖ could be any norm or metric. Examples include the L0 metric and
the L1, L2, and L∞ norms. (Recall that the L0 metric is the number of nonzero
entries, the L1 norm is the sum of the absolute values of the entries, the L2

norm is the Euclidean norm, and the L∞ norm is the maximum entry in absolute
value.) Other choices for ‖ · ‖ are possible, but we will limit our interest to these
four.

Majewski and Havas [1994] showed that the extended GCD decision problem
is NP-complete when using either the L0 metric or the L∞ norm. Rössner and
Seifert [1996] showed that no good approximation algorithms exist for either of
these two choices. It seems likely that this problem is intractable for almost all
norms or metrics of interest. Yet, finding some solution vector x is computable
in polynomial time, and a number of algorithms exist to do this.

Among all known polynomial-time algorithms, the method of Havas et al.
[1995, 1998], based on the LLL lattice-basis reduction algorithm, gives the best
values for ‖x‖ in practice. However, a running time proportional to n4 limits its
practicality. The faster sorting-GCD method of Majewski and Havas [1995b] has
a running time proportional to n2, and gives solution vectors that are nearly as
good as those the LLL method provides. Other algorithms include Blankinship’s
extension of Euclid’s GCD algorithm [Blankinship, 1963], Bradley’s improvement
to Blankinship’s algorithm [Bradley, 1970], and a tree-based method due to
Majewski and Havas [1994]. (See also Lam et al. [2000].) Although these methods

Piehl, Sorenson, and Tiedeman: Gen. Algs. for the Ext. GCD Problem 3

are only linear in n, the quality of their solution vectors is decidedly inferior to
that of the sorting-GCD and LLL methods. Nevertheless, we borrow ideas from
all three of these algorithms.

Storjohann [1997] gave a polynomial-time solution to a modulo-N version of
the extended GCD problem. (See also Mulders and Storjohann [1997].) We will
not discuss this problem variation here.

In light of the intractability of the extended GCD decision problem, it makes
sense to consider heuristic and randomized algorithms for this problem. In this
paper we present several genetic algorithms, randomized heuristic algorithms
based on the biological processes of evolution, for the extended GCD problem.
The basic idea of our algorithms is to select a small multisubset of the entries
of a, compute a solution to the extended GCD problem on this set, and extend
that solution to the entire input vector by padding with zeroes. To compute the
extended GCD of the subset, we look at using an algorithm similar to Bradley’s,
a tree-GCD style algorithm somewhat similar to that of Havas and Majewski,
and the sorting-GCD method. Each of these genetic algorithms, in turn, usually
provide solution vectors that are smaller than the deterministic method upon
which they are based, and have running times roughly linear in n. In fact, our
approach can be applied to any algorithm for the extended GCD problem. We
did not apply our genetic approach to the LLL-based algorithm; as mentioned
earlier, it is rather slow, and we used input vectors with entries of up to 64
bits, where the LLL method would require multiprecision arithmetic to handle
intermediate results. Our hardware supports 64-bit integer arithmetic.

In the next section we present a brief review of the Euclidean algorithm and its
modification to compute the extended GCD. We give a brief overview of genetic
algorithms in Section 3, and present our early attempts at genetic algorithms
for this problem in Section 4. We present our subset-based genetic algorithms in
Section 5. We conclude with a discussion of our experimental results in Section
6.

2. Background

As mentioned in the introduction, the decision problem for the extended GCD is
NP-complete for the L0 metric and the L∞ norm, but it is possible to find some
solution vector x in polynomial time. In this section, we review Euclid’s algo-
rithm for computing GCDs and show how to extend it to compute the solution
vector x. We also discuss a coefficient reduction method due to Bradley.

Euclid’s GCD Algorithm

The Euclidean algorithm is based on the following two simple facts:

gcd(a, 0) = a;

gcd(a, b) = gcd(b, a mod b). (b 6= 0)

Piehl, Sorenson, and Tiedeman: Gen. Algs. for the Ext. GCD Problem 4

From this we obtain the following simple recursive algorithm:

Euclid(a, b; g):

if(b = 0)
g := a;

else
Euclid(b, a mod b; g);

Next, we modify the algorithm to compute coefficients x, y such that gcd(a, b) =
ax+ by:

Euclid(a, b; x, y, g):

if(b = 0)
g := a; x := 1; y := 0;

else
q := ba/bc;
r := a− qb; /* Here r = a mod b. */
Euclid(b, r; w, x, g);
y := w − qx;

To see that this works, in the recursive call we compute w, x so that g = bw+rx.
Plugging in for r, we obtain g = bw + (a− qb)x = ax+ b(w − qx).

This algorithm requires O(log max{a, b}) arithmetic operations (see, for ex-
ample, Bach and Shallit [1996]).

In practice, for efficiency reasons, we used an iterative version of this algorithm.
Other, more efficient algorithms exist for computing GCDs [Jebelean, 1993, 1995,
Schönhage, 1971, Sorenson, 1994, 1995, Weber, 1995], but we used integers of at
most 64 bits, and for this range, Euclid’s algorithm is quite sufficient.

Bradley’s Algorithm

Next, to compute the extended GCD of a list of integers, we apply the following
simple identity:

gcd(a1, . . . , an) = gcd(gcd(a1, a2), a3, . . . , an).

With the proper care regarding the coefficients, this leads to the following algo-
rithm, which is due to Bradley [1970]:

Bradley(a; x, g):

Euclid(a1, a2, y2, z2, g);
for(i := 3; i <= n; i := i+ 1)

Euclid(g, ai, yi, zi, g);
xn := zn;
for(i := n− 1; i >= 2; i := i− 1)

xi = ziyi+1; yi = yiyi+1;
x1 := y2;

This algorithm takes O(n log max{ai}) arithmetic operations in the worst case.

Piehl, Sorenson, and Tiedeman: Gen. Algs. for the Ext. GCD Problem 5

Coefficient Reduction

As an example, on the input vector a = (544, 204, 154, 101), Bradley’s algorithm
generates the solution vector x = (1700,−5100, 750, 1). Observe that the coef-
ficients in x are quite large compared to the original input vector a. We can
perform a simple coefficient reduction technique, also due to Bradley, to improve
our solution. As we use it, the idea is to transform the equation ax + by = m
to ax′ + by′ = m where x′,y′ are smaller than x, y in absolute value. It works as
follows. Let g = gcd(a, b). Note that m is always a multiple of g. Also, WLOG
we assume |a| < |b|. We then set

q := bx/(b/g)c0; truncate towards 0

x′ := x− q(b/g) = x mod (b/g);

y′ := y + q(a/g).

Here we use the floor function subscripted by 0 to mean truncation towards 0,
so that b−2.3c0 = −2.

We modify Bradley’s algorithm above to apply coefficient reduction on pairs
of coefficients in x, moving from right to left. So, on the example input above,
we would first reduce 154 · 750 + 101 · 1, which is already reduced. Next, we
reduce 204 · (−5100) + 154 · 750, giving 204 · (−4561) + 154 · 36. Here a = 154
and b = 204 as we must have |a| < |b|, so b/g = 102, and 750 mod 102 = 36. We
then reduce 544 · 1700 + 204 · (−4561) giving 544 · (−10) + 204 · (−1). The final
solution vector is x = (−10,−1, 36, 1), a great improvement over the solution
before coefficient reduction.

We wish to make one final observation in this section. If we permute the
entries of the input vector a, then Bradley’s algorithm may produce a different
solution vector x in the sense that it is not simply a permutation of the entries
of the original solution vector. To illustrate the point, below are four different
permutations of our example input vector, together with solution vectors as
generated by Bradley’s algorithm with coefficient reduction:

a = (544, 204, 154, 101) x = (−10,−1, 36, 1)
a = (204, 154, 101, 544) x = (−2, 2, 1, 0)
a = (154, 101, 544, 204) x = (−40, 61, 0, 0)
a = (101, 544, 204, 154) x = (237,−44, 0, 0)

3. Genetic Algorithms

In this section, we present a brief overview of genetic algorithms.
The genetic algorithm is a heuristic and randomized method primarily used

to solve optimization-style problems. It is based on the idea of evolution from
biology. The algorithm outline is as follows:

1. Create a population of (suboptimal) solutions to your problem. Each so-
lution is called an individual, and its computer representation should be

Piehl, Sorenson, and Tiedeman: Gen. Algs. for the Ext. GCD Problem 6

thought of as the individual’s DNA. The fitness of an individual should be
a measure of optimality.

2. Repeat the following steps (a generation):

(a) Selection: Eliminate some portion of the population based on their
fitness.

(b) Crossover: Have some pairs of individuals exchange part of their DNA.

(c) Mutation: With some nonzero probability, modify some portion of each
individual’s DNA.

Stop when either a sufficiently optimal solution is found, or if no progress
has been made during the last few iterations.

The algorithm performs a controlled, randomized search of the space of all possi-
ble individuals. If all goes well, the algorithm should converge towards an optimal
solution, although it is difficult to prove this will happen. The challenge in de-
signing a good genetic algorithm is in choosing how to represent an individual’s
DNA, and in defining the three genetic operators (selection, crossover, muta-
tion) so that they are fast to compute and also push the population in the right
direction. Once all this is done, there still remains many parameter choices to
make. One must choose an initial population size, fitness cutoffs, and crossover
and mutation probabilities. These parameters greatly affect the convergence rate
of the algorithm.

We now briefly discuss some of the more common ways to define the genetic
operators. There are, of course, many methods that we do not mention.

Selection. There are two fundamentally different ways to perform selection:
proportionate selection and rank selection. In proportionate selection, each in-
dividual is included in the next generation with a probability proportional to its
fitness as compared to the average fitness of the population. Thus, a highly fit
individual is likely, but not guaranteed, to survive from one generation to the
next. In rank selection, in effect the entire population is sorted by fitness, with a
fixed number of the highest fitness individuals surviving to the next generation.
Thus, a highly fit individual is guaranteed to survive. In both methods, the sur-
viving individuals are often “cloned” at random to fill out the population to its
former size.

Mühlenbein [1997] argues that, in general, rank selection is superior to pro-
portionate selection. However, the implied sorting of the population can slow
down the algorithm considerably.

Crossover. With some fixed probability, adjacent individuals exchange parts
of their DNA. One could choose a point (or locus) at random along the DNA
strand, and the section to the right of that point is swapped. Multiple-point
crossover is also possible. Here, several crossover points are selected, and alter-
nating sections are swapped.

Piehl, Sorenson, and Tiedeman: Gen. Algs. for the Ext. GCD Problem 7

Mutation. With a fixed probability, each locus (bit or word) of the the
DNA strand will mutate. If the DNA locus is a bit, mutation will take the form
of a bit flip. If the DNA locus is more complex, then the form mutation takes
can vary. Mutation should change the individual, but ideally the fitness should
be affected only to a small degree. The literature largely agrees on choosing a
mutation probability that is inversely proportional to the length of the DNA
strand, so that some limited mutation is likely.

For a more thorough introduction to genetic algorithms and further discussion
on the relative merits of the available choices for genetic operators, see, for
example, [Bäck, 1996, Michalewicz, 1996, Mitchell, 1996, Mühlenbein, 1997].

4. First Attempts

It is not customary in research articles to discuss failures. We break with this
tradition here because we learned interesting things from our first two algorithms,
despite the fact that the first algorithm was a complete failure, and the second
was only a partial success.

In our first attempt at designing a genetic algorithm for the extended GCD
problem, we chose the most obvious representation. We used a solution vector as
an individual’s DNA, with fitness defined as inversely proportional to the norm.
Back in Section 2, we observed that permuting the input vector often produced
different solution vectors. So we created our initial population by randomly per-
muting the input vector a and using Bradley’s algorithm to compute different
solution vectors. We then defined our genetic operators as follows:

(a) Selection: We used rank selection; the more fit half of the population was
kept for the next generation.

(b) Crossover: Here we combined the crossover operation with the process of
filling out the population to its former size. We would randomly choose 3
individuals that survived selection, say x, x′, and x′′, and compute a new
individual as x + x′−x′′. It is easy to see that this new individual is in fact
a solution to the extended GCD problem, for

n∑
i=1

ai(xi + x′i − x′′i) =
n∑
i=1

aixi +
n∑
i=1

aix
′
i −

n∑
i=1

aix
′′
i

= g + g − g = g.

(c) Mutation: A solution vector x was mutated by choosing two integers i, j,
with 1 ≤ i < j ≤ n at random, and replacing (x1, . . . , xi, . . . , xj, . . . , xn)
with (x1, . . . , xi + aj, . . . , xj − ai, . . . , xn). It is easy to show this preserves
the GCD.

To our dismay, no matter how we modified the various parameters, we discov-
ered the best solution produced by this algorithm was always present in the

Piehl, Sorenson, and Tiedeman: Gen. Algs. for the Ext. GCD Problem 8

initial population. This is because members of the initial population consisted of
vectors with many zeros, so that mutations and crossovers almost always made
individuals significantly worse. (Recall that mutations should have a relatively
small effect on fitness.) In other words, generating random permutations of the
input was a better method than our genetic algorithm.

Naturally, this observation led to a simple but powerful idea. Apply the ge-
netic algorithm not to the solution vectors themselves, but to the algorithm for
computing the solution vectors: in this case, permutations.

For our second attempt, we represented an individual as a permutation on n
elements. The fitness of an individual is measured by first applying the permu-
tation to the input vector a, computing a solution vector x, and then taking the
norm of x. Again, fitness was inversely proportional to the norm. As the set of
permutations on n elements form a group under function composition, permu-
tations have lots of nice mathematical properties which we used in defining our
genetic operators.

(a) Selection: We used rank selection, retaining about 40% of the previous
generation. We then composed 2–6 individuals chosen at random to create
new individuals to fill out the population to its previous size.

(b) Crossover: With roughly a 20% probability per individual, we chose a sec-
ond individual at random, and performed crossover by writing both per-
mutations as products of 2-cycles. We used single-point crossover on this
product-of-2-cycles representation. For example, if our two individuals were
(1234) and (124), we first write them as products of 2-cycles: (14)(13)(12)
and (14)(12); if the crossover point is after the second 2-cycle, we get
(14)(13) = (134) and (14)(12)(12) = (14).

(c) Mutation: With roughly a 20% probability, we composed a permutation
with a random 2-cycle.

Our initial population had size 12, independent of n.
The parameters mentioned above (12, 40%, 20%, etc.) were calculated by the

third author. As part of his senior honors thesis, he wrote a second genetic
algorithm, whose purpose was to optimize the parameters of our permutation-
based genetic algorithm for the extended GCD problem. Here, an individual was
a list of parameter values, and the fitness of an individual was the time needed
for the extended GCD genetic algorithm to obtain a solution below a fixed norm
using the given parameter settings.

We have a few comments to make about our permutation-based genetic algo-
rithm:

• The algorithm uses O(mn log max{ai}) arithmetic operations per genera-
tion, where m is the population size (we used m = 12). As the number of
generations needed was observed to be independent of n, the overall running
time of the algorithm is essentially linear in n.

Piehl, Sorenson, and Tiedeman: Gen. Algs. for the Ext. GCD Problem 9

• The algorithm does very well when the input vector a has no entry exceeding
16 bits. However, 32 bit inputs yield solution vectors with norms of around
16 bits, and larger inputs led to even worse results. This problem seemed
unaffected by changes in any of the parameter values or by changes in n.
This performance is much worse than that observed by the sorting-GCD
method, for example.

• Most of the solution vectors generated by this method have only 2 or 3
nonzero entries, and solution vectors with more than 4 or 5 nonzero entries
were extremely rare. So in effect, the permutations were actually used by
the algorithm to find small subsets of the input vector entries.

We take particular advantage of the last observation above in the following
section, were we describe a genetic algorithm for finding fixed-sized subsets of
the entries in the input vector.

5. Multisubset-Based Algorithms

All of our multisubset-based algorithms have the same outline.
As a preprocessing step, the input vector a is sorted in ascending order, and

a new position 0 is inserted at the front, where we store a zero. Thus, we now
have 0 = a0 ≤ a1 ≤ · · · ≤ an. Our motivation for this will be explained later.
We compute the GCD of the integers in a. If the GCD is not 1, we divide out
by the common factor, as this makes the entries smaller and does not affect the
solution vector x.

An individual I is a fixed-length list of d positions in the sorted input vector.
Positions may be duplicated, and 0 may be included. An individual is generated
by choosing integers uniformly in the range 0 . . . n at random with replacement.
Thus, if we write z1, z2, . . . , zd for the positions of an individual I, then I repre-
sents the multisubset {az1 , az2 , . . . , azd}. A population of size m consists of the
indivduals I1, . . . , Im.

The fitness of an individual I is computed by finding the extended GCD of
I’s multisubset as defined above. If the GCD computed in this way is not 1,
we assign a fitness of 0. If the GCD is 1, we can construct a solution vector for
all of a simply by using 0 coefficients in x for those entries not included in the
multisubset. The fitness is the reciprocal of the L1 norm of this solution vector.
We chose this norm because it is invariant under the duplication of entries from
a. Scaling is not needed, as we use a rank-based selection algorithm.

Our genetic operators are defined as follows:

(a) Selection: We used tournament selection, a randomized rank-based selec-
tion algorithm. To form a new individual in the next generation, q individ-
uals are chosen at random from the previous generation, and of those q,
the most fit individual is chosen for survival. We used values for q ranging
from 2 to 5. In this method, the probability an individual survives is based

Piehl, Sorenson, and Tiedeman: Gen. Algs. for the Ext. GCD Problem 10

on its rank, not its relative fitness. So we get some of the benefits of rank
selection without the overhead of sorting the population by fitness.

(b) Crossover: For 0 ≤ i < m/2, with a 50% probability, individuals I2i+1 and
I2i+2 perform crossover. We use a simple 2-point crossover.

(c) Mutation: Each entry zj in an individual I’s list is mutated with probabil-
ity 1/d. To mutate, an integer chosen uniformly from the range −3, . . . , 3
is added to zj. This effectively changes one element of the multisubset rep-
resented by I.

We can now explain why the input vector a is sorted. Recall that mutation
should have only a small effect on the fitness of the individual. The idea is that
by adding a small positive or negative integer to a position in an individual, we
replace an entry in its multisubset with another entry that is about the same
size. It is by no means certain this will result in a small change in fitness, but
it is likely, as we expect this entry’s coefficient will be about the same size as
before; this is what we saw in practice.

We chose d and m, the size of an individual and the size of the population,
based on the size of the maximum entry in a; both are linear in log max{ai}.
The constant of proportionality depended on the particular fitness evaluation
method used.

To compute the extended GCD of the multisubset of an individual (that is,
evaluate its fitness), we used one of three algorithms: Bradley’s algorithm, a
tree-based method that we explain below, and the sorting-GCD method. Using
Bradley’s algorithm results in a genetic algorithm with performance similar to,
but somewhat better than, the performance of the permutation-based algorithm
described in the previous section.

The Tree-Based Method

For the Tree-based GCD method, which is based loosely on the algorithm of
Majewski and Havas [1994], we form a complete binary tree, with the members
of the multisubset as leaves. Thus, we require that d be a power of 2.

We process the tree by level from the leaves. For purposes of describing the
algorithm, we will say the root is at level 0, its children are level 1, and so forth.
Thus, a node’s level is the distance to the root. Each internal node stores a
linear combination of its children. For levels ≥ 2, coefficients are chosen from
the set {0,±1}. The two nodes at level 1 are calculated using coefficients from
the set {0,±1,±2}. The root node is calculated using a full Euclidean GCD
computation. We store the coefficients with the children.

Below is an example. We use the input vector a = (80, 426, 184, 87, 359, 278, 114, 36).
Here we have the tree of linear combinations, computed as described above:

Piehl, Sorenson, and Tiedeman: Gen. Algs. for the Ext. GCD Problem 11

80 426 184 87 359 278 114 36

80 87 81 36

7 9

1
��������

XXXXXXXX

��
��

HH
HH

��
��

HH
HH

�
�
@
@

�
�
@
@

�
�
@
@

�
�
@
@

Here is the corresponding tree of coefficients:

1 0 0 1 1 -1 0 1

-1 1 1 -2

4 -3

1
��������

XXXXXXXX

����

HHHH

����

HHHH

�
�
@
@

�
�
@
@

�
�
@
@

�
�
@
@

The idea is to get the GCD (1 in our case) at the root. We can then multiply
the coefficients along each path from the root to each leaf node to obtain the
coefficients of the solution vector. In our example, the solution vector would be
x = (−4, 0, 0, 4,−3, 3, 0, 6).

This method is heuristic, in that it does not guarantee a correct value for the
GCD in the root node, but in practice it gives the correct result with high enough
probability to make it useful in the context of our genetic algorithm. It should
be clear from the description and example above that the coefficient vectors it
produces will generally have a fairly small norm.

6. Implementation Results

In this section, we present the results of our implementations of the various
genetic algorithms discussed in the previous section.

To begin, we wish to demonstrate how the populations evolve under the three
algorithms. For each of these plots, we used n = 10000, and the entries in a were
chosen uniformly at random between 1 and e30. For each genetic algorithm, we
have the generation number along the x-axis, with the L1 norm along the y-axis.
We plot the average norm of the population at each generation, the reciprocal
of the average fitness (recall the fitness of x is 1/‖x‖), and the norm of the
best individual found so far. The averages are only over those individuals that
represent correct solutions to the problem.

First, we have the genetic algorithm using Bradley’s algorithm in Figure 1. In

Piehl, Sorenson, and Tiedeman: Gen. Algs. for the Ext. GCD Problem 12

Figure 1: Genetic Algorithm Evolution

1012

1013

1014

1015

1016

1017

1018

1019

0 10 20 30 40 50 60 70 80 90 100

L1 Norm

Generation

Bradley’s Method

Average Norm
1/(Average Fitness)

Best Norm

Figure 2: Genetic Algorithm Evolution

1010

1011

1012

1013

1014

1015

1016

1017

0 20 40 60 80 100 120 140 160

L1 Norm

Generation

Tree-GCD Method

Average Norm
1/(Average Fitness)

Best Norm

Piehl, Sorenson, and Tiedeman: Gen. Algs. for the Ext. GCD Problem 13

Figure 3: Genetic Algorithm Evolution

150

200

250

300

350

400

450

500

0 5 10 15 20 25 30 35 40 45 50

L1 Norm

Generation

Sorting-GCD Method

Average Norm
1/(Average Fitness)

Best Norm

Figure 2, we have the tree-GCD genetic algorithm, which was explained in some
detail in the previous section. In Figure 3, we have the genetic algorithm based
on the sorting-GCD method. In all three, one can see a period of evolution early
on, with the average fitness reaching a plateau. The algorithms stop once they
detect they have reached a plateau. This is done by keeping a history variable
λ, which is initialized to 0, and after each generation, we set λ = (0.8)λ+ 0.2f ,
where f is the average fitness of the current generation. If λ has not improved in
the last 10 generations, the algorithm stops. In essence, Figures 1–3 show that
the genetic algorithms work.

We implemented 5 algorithms: Bradley’s algorithm, the sorting-GCD method,
and the 3 genetic algorithms mentioned above. All 5 algorithms were run on
the same set of pseudorandom data. We chose integers uniformly from the
range 1 . . . limit, where limit was beic, i = 5, 10, 15, 20, 25, 30, 35, 40, 43. We
chose powers of e for compatibility with results from other papers (for ex-
ample Majewski and Havas [1995a]). The lengths of our input vectors were
n = 10, 100, 1000, 10000, 100000. Note that the sorting-GCD method could not
run for n ≥ 10000 due to memory restrictions (it uses space proportional to
n2). In Figures 4–9, we present the average L1 norms obtained by the various
algorithms.

Piehl, Sorenson, and Tiedeman: Gen. Algs. for the Ext. GCD Problem 14

Figure 4: Extended GCD Norm Results

1

106

1012

1018

1 103 106 109 1012 1015 1018

L1 Norm

Limit

L1 Norm Comparison, n = 10

Bradley
Genetic Bradley

TreeGCD
Sorting GCD

Genetic Sorting GCD

Figure 5: Extended GCD Norm Results

1

106

1012

1018

1 103 106 109 1012 1015 1018

L1 Norm

Limit

L1 Norm Comparison, n = 100

Bradley
Genetic Bradley

TreeGCD
Sorting GCD

Genetic Sorting GCD

Piehl, Sorenson, and Tiedeman: Gen. Algs. for the Ext. GCD Problem 15

Figure 6: Extended GCD Norm Results

1

106

1012

1018

1 103 106 109 1012 1015 1018

L1 Norm

Limit

L1 Norm Comparison, n = 1000

Bradley
Genetic Bradley

TreeGCD
Sorting GCD

Genetic Sorting GCD

Figure 7: Extended GCD Norm Results

1

106

1012

1018

1 103 106 109 1012 1015 1018

L1 Norm

Limit

L1 Norm Comparison, n = 10000

Bradley
Genetic Bradley

TreeGCD
Genetic Sorting GCD

Piehl, Sorenson, and Tiedeman: Gen. Algs. for the Ext. GCD Problem 16

Figure 8: Extended GCD Norm Results

1

106

1012

1018

1 103 106 109 1012 1015 1018

L1 Norm

Limit

L1 Norm Comparison, n = 100000

Bradley
Genetic Bradley

TreeGCD
Genetic Sorting GCD

In Tables 1–5, we give samples of the data we obtained, including all four met-
rics/norms mentioned in the introduction. Note that changing the parameters
of the genetic algorithms does affect the norms obtained.

Our algorithms were optimizing the L1 norm and paid no attention to any
of the other norms. Optimizing for the L∞ norm or the L2 norm would lead to
different results, and would require some changes to the algorithm. For example,
duplicate entries in the multisubsets would need to be removed for fitness calcu-
lation. However, we expect the relative performance of the algorithms would be
the same when optimizing for the L2 or L∞ norms. For the L0 metric, genetic
algorithms are not really necessary, because in practice we can almost always
find a solution vector with 2 nonzero entries; simply find two entries from a that
are relatively prime.

Our code was written in C++, and was run on a Pentium II 233MHz, running
Red Hat Linux 5.1, kernel version 2.0.34. We used the g++ compiler, with -O3 op-
timization. The data in the tables above represent averages of 10 pseudorandom
inputs.

Although not of primary interest, we found that among the genetic algorithms,
the genetic Bradley algorithm was fastest, with the genetic sorting-GCD next,
and the tree-GCD genetic algorithm was the slowest.

Finally, all code used to generate the data shown here is available from the
second author’s web page at http://www.butler.edu/∼sorenson.

Piehl, Sorenson, and Tiedeman: Gen. Algs. for the Ext. GCD Problem 17

Table 1: Bradley’s Algorithm

Limit n L0 L1 L2 L∞ Generations
exp[10] 10 2.4 5131.1 3722.29 3003.3
exp[10] 102 2.2 5895.2 4443.13 3831.7
exp[10] 103 2.3 4539.4 3307.83 2686.3
exp[10] 104 1.4 973.5 735.788 661.3
exp[10] 105 1 1 1 1
exp[20] 10 2.7 124223424 89773333 71007916
exp[20] 102 2.6 109098202 83238293 74979714
exp[20] 103 2.3 115429610 85359830 72385780
exp[20] 104 2.4 1.46488e+08 1.09034e+08 9.2149e+07
exp[20] 105 2.3 1.22298e+08 9.37944e+07 8.26743e+07
exp[30] 10 2.6 1.52625e+12 1.23083e+12 1.13388e+12
exp[30] 102 2.8 1.84404e+12 1.44551e+12 1.32253e+12
exp[30] 103 2.3 2.79907e+12 2.17665e+12 1.92957e+12
exp[30] 104 2.8 2.09763e+12 1.56845e+12 1.39493e+12
exp[30] 105 2.4 3.47518e+12 2.5372e+12 2.06808e+12
exp[40] 10 2.4 5.60223e+16 4.29385e+16 3.7051e+16
exp[40] 102 2.2 5.13667e+16 3.81264e+16 3.24796e+16
exp[40] 103 2.1 5.99606e+16 4.68138e+16 4.21136e+16
exp[40] 104 2.4 6.60131e+16 4.82894e+16 4.04037e+16
exp[40] 105 2.7 3.29392e+16 2.44134e+16 2.04052e+16

Table 2: The Genetic Bradley Algorithm

Limit n L0 L1 L2 L∞ Generations
exp[10] 10 3.5 21.5 14.2564 12 66.6
exp[10] 102 2.8 4.1 2.60524 2.1 71.8
exp[10] 103 2.6 4.3 2.78787 2.3 72.6
exp[10] 104 2.5 3.7 2.4155 1.9 68.3
exp[10] 105 2.7 4.9 3.29406 2.8 66
exp[20] 10 3.2 779689 574167 453636 64.8
exp[20] 102 3.8 1661.8 1263.69 1126.4 75.7
exp[20] 103 3.6 1967.2 1513.35 1313.7 72.5
exp[20] 104 3.9 563.2 408.299 360.6 80
exp[20] 105 4 546.5 429.945 406.1 74.5
exp[30] 10 3.2 2.45731e+09 1971803100 1781246000 71.8
exp[30] 102 4 6.39582e+06 5.15079e+06 4866526 86.6
exp[30] 103 4.3 265942 208853 190929 112.1
exp[30] 104 3.9 874880 669073 590272 96.3
exp[30] 105 4.3 526034 423951 394962 120.6
exp[40] 10 3.4 1.89823e+14 1.48684e+14 1.31929e+14 71
exp[40] 102 3.9 2.87416e+11 2.40097e+11 2.29689e+11 96.3
exp[40] 103 3.9 3.26761e+10 2.60485e+10 2.47175e+10 91.4
exp[40] 104 4 5.09587e+09 4.27824e+09 4.12371e+09 98.5
exp[40] 105 3.8 7.47944e+09 6.43911e+09 6.20406e+09 78.5

Piehl, Sorenson, and Tiedeman: Gen. Algs. for the Ext. GCD Problem 18

Table 3: The Tree-GCD Genetic Algorithm

Limit n L0 L1 L2 L∞ Generations
exp[10] 10 5.1 6.3 2.9647 1.8 64
exp[10] 102 2.9 2.9 1.69528 1 61
exp[10] 103 2 2.1 1.48676 1.1 57.4
exp[10] 104 1.2 1.2 1.08284 1 57.3
exp[10] 105 1.7 1.8 1.37213 1.1 64.4
exp[20] 10 7.5 1368.4 712.827 517.4 86.4
exp[20] 102 10.4 313.4 136.995 75.2 89.6
exp[20] 103 7.6 213.4 70.7983 37.7 92.6
exp[20] 104 8.3 85 36.9939 23.6 86
exp[20] 105 6.9 76.5 37.6748 25.6 85.2
exp[30] 10 8.2 1.09776e+07 4.97237e+06 2.95693e+06 104.7
exp[30] 102 14.1 603532 181316 84965.4 86.9
exp[30] 103 12 642316 212216 87741 85
exp[30] 104 9.1 684442 246797 109648 81
exp[30] 105 9.8 577347 210681 105401 77.8
exp[40] 10 8.1 3.57135e+11 1.47626e+11 9.21625e+10 102.2
exp[40] 102 15.3 1.6656e+10 5.43374e+09 2.73079e+09 102.8
exp[40] 103 14.2 1.42869e+10 5.00247e+09 2.54945e+09 97.2
exp[40] 104 10.2 1.71791e+10 1.192e+10 1.05225e+10 88.3
exp[40] 105 8.7 6.16643e+09 2.2328e+09 1242068050 93.2

Table 4: The Sorting-GCD Algorithm

Limit n L0 L1 L2 L∞ Generations
exp[10] 10 7.9 23.9 10.0037 6.5
exp[10] 102 7.2 7.2 2.66418 1
exp[10] 103 3.8 3.8 1.94142 1
exp[20] 10 9.8 123.9 47.6979 27.6
exp[20] 102 30.8 34.3 6.35692 1.9
exp[20] 103 12.6 12.6 3.51751 1
exp[30] 10 10 1984.5 784.748 526.3
exp[30] 102 76.2 124.5 16.2528 4.8
exp[30] 103 42.3 43.1 6.65854 1.4
exp[40] 10 10 15140.1 6062.39 3795.2
exp[40] 102 89.5 380.1 48.2272 13.4
exp[40] 103 135.8 141.4 12.2563 2.1

Piehl, Sorenson, and Tiedeman: Gen. Algs. for the Ext. GCD Problem 19

Table 5: The Genetic Sorting-GCD Algorithm

Limit n L0 L1 L2 L∞ Generations
exp[10] 10 6 9 3.93723 2.5 45
exp[10] 102 4.4 4.6 2.20733 1.2 45.4
exp[10] 103 4.6 4.7 2.20395 1.1 40.7
exp[10] 104 4.3 4.5 2.18478 1.1 42.9
exp[10] 105 5.2 5.5 2.45082 1.3 46.4
exp[20] 10 9.6 54.6 22.0814 13.5 47.4
exp[20] 102 16.5 18.2 4.66055 2 37.8
exp[20] 103 15.3 17.1 4.52248 1.8 40.9
exp[20] 104 16.2 17 4.28985 1.5 45.1
exp[20] 105 15.4 16.8 4.40803 1.8 42.7
exp[30] 10 10 355.3 138.539 83.5 56.3
exp[30] 102 42.8 55 9.13402 3.1 51.4
exp[30] 103 44.1 49.7 7.80123 2.1 47.2
exp[30] 104 35.6 38.4 6.61106 2 47.1
exp[30] 105 38.7 44 7.37274 2.2 45.1
exp[40] 10 10 4275.4 1695.46 1078 54.1
exp[40] 102 61.7 163.8 24.5038 7.9 55.7
exp[40] 103 85.4 135.5 16.3212 4 46
exp[40] 104 90.2 138.8 16.2389 4 38.2
exp[40] 105 86.4 138.1 16.8467 4.7 50

7. Summary

In this paper, we have presented a multisubset-based framework for constructing
genetic algorithms for the extended GCD problem. This framework allows for
the “plugging in” of any reasonable deterministic algorithm or heuristic method
for computing the extended GCD. The genetic approach is used to look for an
optimal subset of the entries of the input vector to feed to the algorithm that
was “plugged in.”

In conclusion, it seems fair to say that it is possible to construct genetic
algorithms for the extended GCD problem that perform better than known de-
terministic methods for this hard problem. In practice, our genetic sorting-GCD
algorithm was the best overall, obtaining better coefficients that the sorting-GCD
method alone.

References

Eric Bach and Jeffrey O. Shallit. Algorithmic Number Theory, volume 1. MIT
Press, 1996.

Thomas Bäck. Evolutionary algorithms in theory and practice. Oxford University
Press, 1996.

Piehl, Sorenson, and Tiedeman: Gen. Algs. for the Ext. GCD Problem 20

W. A. Blankinship. A new version of the Euclidean algorithm. American Math-
ematical Monthly, 70:742–745, 1963.

Gordon H. Bradley. Algorithm and bound for the greatest common divisor of n
integers. Communications of the ACM, 13(7):433–436, 1970.

David Ford and George Havas. A new algorithm and refined bounds for extended
GCD computation. In Second International Algorithmic Number Theory Sym-
posium, pages 145–150. Springer-Verlag, 1996. LNCS 1122.

George Havas and Bohdan S. Majewski. A hard problem that is almost always
easy. In Algorithms and Computation, pages 216–223. Springer-Verlag, 1994.
LNCS 1004.

George Havas, Bohdan S. Majewski, and Keith R. Matthews. Extended GCD
algorithms. Technical Report 302, University of Queensland, 1995.

George Havas, Bohdan S. Majewski, and Keith R. Matthews. Extended GCD
and Hermite normal form algorithms via lattice basis reduction. Experimental
Mathematics, 7(2):125–136, 1998.

Tudor Jebelean. A generalization of the binary GCD algorithm. In M. Bron-
stein, editor, 1993 ACM International Symposium on Symbolic and Algebraic
Computation, pages 111–116, Kiev, Ukraine, 1993. ACM Press.

Tudor Jebelean. A double-digit Lehmer-Euclid algorithm for finding the GCD
of long integers. Journal of Symbolic Computation, 19:145–157, 1995.

Charles Lam, Jeffrey O. Shallit, and Scott Vanstone. Worst-case analysis of
an algorithm for computing the greatest common divisor of n inputs. In
J. Buchmann, T. Hoholdt, H. Stichtentoth, and H. Tapia-Recillas, editors,
Coding Theory, Cryptography and Related Areas, pages 156–166. Springer-
Verlag, 2000.

Bohdan S. Majewski and George Havas. The complexity of greatest common
divisor computations. In First International Algorithmic Number Theory Sym-
posium, pages 184–193. Springer-Verlag, 1994. LNCS 877.

Bohdan S. Majewski and George Havas. Extended GCD calculation. Congressus
Numerantium, 111:104–114, 1995a.

Bohdan S. Majewski and George Havas. A solution to the extended gcd problem.
In A. H. M. Levelt, editor, 1995 ACM International Symposium on Symbolic
and Algebraic Computation, July 1995b.

Zbigniew Michalewicz. Genetic Algorithms + Data Structures = Evolution Pro-
grams. Springer-Verlag, 3rd edition, 1996.

Piehl, Sorenson, and Tiedeman: Gen. Algs. for the Ext. GCD Problem 21

Melanie Mitchell. An Introduction to Genetic Algorithms. MIT Press, 1996.

Heinz Mühlenbein. Genetic algorithms. In E. Aarts and J. K. Lenstra, editors,
Local Search in Combinatorial Optimization, chapter 6, pages 137–171. Wiley,
1997.

Thom Mulders and Arne Storjohann. The modulo n extended GCD problem
for polynomials. In 1998 ACM International Symposium on Symbolic and
Algebraic Computation, pages 105–112, 1997.

Carsten Rössner and Jean-Pierre Seifert. The complexity of approximate optima
for greatest common divisor computations. In Second International Algorith-
mic Number Theory Symposium, pages 307–322. Springer-Verlag, 1996. LNCS
1122.

A. Schönhage. Schnelle Berechnung von Kettenbruchentwicklungen. Acta Infor-
matica, 1:139–144, 1971.

Jonathan P. Sorenson. Two fast GCD algorithms. Journal of Algorithms, 16:
110–144, 1994.

Jonathan P. Sorenson. An analysis of Lehmer’s Euclidean GCD algorithm. In
A. H. M. Levelt, editor, 1995 ACM International Symposium on Symbolic and
Algebraic Computation, pages 254–258, Montreal, Canada, July 1995. ACM
Press.

Arne Storjohann. A solution to the extended GCD problem with applications. In
1997 ACM International Symposium on Symbolic and Algebraic Computation,
pages 109–116, 1997.

Ken Weber. The accelerated integer GCD algorithm. ACM Transactions on
Mathematical Software, 21(1):111–122, 1995.

	Butler University
	Digital Commons @ Butler University
	1997

	Genetic Algorithms for the Extended GCD Problem
	Jonathan P. Sorenson
	Recommended Citation

	tmp.1267040790.pdf.UEzRN

