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If genetic variation is often positively correlated with population sizes and the presence of nearby populations and suitable
habitats, landscape proxies could inform conservation decisions without genetic analyses. For six Florida scrub endemic plants
(Dicerandra frutescens, Eryngium cuneifolium, Hypericum cumulicola, Liatris ohlingerae, Nolina brittoniana, and Warea carteri), we
relate two measures of genetic variation, expected heterozygosity and alleles per polymorphic locus (APL), to population size and
landscape variables. Presettlement areas were estimated based on soil preferences and GIS soils maps. Four species showed no
genetic patterns related to population or landscape factors. The other two species showed significant but inconsistent patterns.
For Liatris ohlingerae, APL was negatively related to population density and weakly, positively related to remaining presettlement
habitat within 32 km. For Nolina brittoniana, APL increased with population size. The rather weak effects of population area/size
and both past and current landscape structures suggest that genetic variation needs to be directly measured and not inferred for
conservation planning.

1. Introduction

Protecting plant genetic variation is a conservation goal [1],
as genetic variation reflects phylogenetic and population
history, which is associated with fitness and evolutionary
potential [2, 3], and can influence ecosystem processes [4, 5].
While neutral genetic variation is not directly linked to
quantitative genetic traits [6], it may be significantly corre-
lated to fitness [7]. If a large percentage of population-level
genetic variation (as measured by values such as expected
heterozygosity and alleles per polymorphic locus) could be
predicted from such ecological and landscape measures as
population size, isolation, and nearby suitable habitat, then
conservation decisions intended to protect genetic variation
could be made without the need for collection of costly and
time-consuming molecular data.

This study focuses on several factors potentially affecting
within-species genetic patterns. At the species level, genetic
variation tends to be relatively low for endemics as compared

to broadly distributed species [8]. Endemics of the south-
eastern U.S. tended to have higher genetic diversity at both
species and population levels than endemics in general [9].
Within species, population-level genetic variation is affected
by life history, being slightly higher in outcrossing species
[8]. A recent meta-analysis shows that habitat fragmentation
tends to reduce genetic variation, with similar effects sizes for
several measures of genetic variation [10]. More specifically,
some (but not all) individual studies have shown greater
intraspecific genetic variation in larger [3, 11–15], denser
[16], or less-isolated [17–20] populations. Other patterns
include lower genetic variation in degraded and logged habi-
tats [21], clines in allele frequencies [22, 23] discontinuities
among geographically-separated portions of the range [18,
24] or between organisms separated by landscape barriers
[25], higher variation in unglaciated portions of species’
ranges [26], higher genetic variation in core versus marginal
populations [27–30], and differences in genetic variation
between distinct habitats (prairie versus alvar) [31]. Studies
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considering the effects of original habitat patch size, current
patch size, population area, and areas of nearby suitable
habitat within the landscape on local genetic variation are
less common but also show positive relationships [32, 33].
In general, habitat fragmentation tends to decrease genetic
variation of remaining populations [34].

For the endemic-rich Florida scrub [35, 36], such genetic
patterns have been investigated for animals [37, 38] but not
for plants. Florida scrub is a pyrogenic shrubland dominated
by long-lived woody plants, although most of its endemic
species are shorter-lived subshrubs and herbs [39]. Previous
genetic studies of a range of Florida scrub species have
focused on comparisons of species or varieties without
consideration of landscape structure [24, 40–47]. In this
paper, we consider the effects of landscape structure on
genetic variation for six species of plants in Florida scrub
with different spatial distributions and life histories.

Florida scrub species were probably never distributed in a
continuous fashion within their ranges due to specializations
for soil type [54], fire regime [39], canopy gaps [55], and
soil drainage [56], as well as the stochastic nature of their
metapopulation dynamics [57]. Habitat for these scrub
endemics has likely been naturally patchy to different degrees
due to low ocean levels during the Pleistocene [58]. However,
recent agricultural and urban developments have decreased
extent and connectivity of Florida scrub. Only 13% of the
original xeric uplands on the Lake Wales Ridge remain (for
2003, calculated from [59]), down from the estimate of 36%
made roughly 20 years earlier (calculated from [60]). Despite
this ongoing loss, effects of habitat loss and fragmentation on
genetic variation of Florida scrub plants have not previously
been examined.

The study six species Warea carteri Small (Brassicaceae)
[52, 61], Eryngium cuneifolium Small (Apiaceae) [49],
Hypericum cumulicola (Small) W.P. Adams (Clusiaceae) [50],
Dicerandra frutescens Shinners (Lamiaceae) [48], Nolina
brittoniana Nash (Agavaceae) [44], and Liatris ohlingerae
(S.F. Blake) B.L. Rob. (Asteraceae) [51]) vary considerably in
demography, reproductive biology, and habitat requirements
(Table 1). Like many studied Florida scrub plants, the six
subjects of this paper show variation in edaphic specializa-
tion: D. frutescens and E. cuneifolium are soil specialists, while
L. ohlingerae, H. cumulicola, N. brittoniana, and W. carteri
have more generalized soil preferences [8]. Seed dispersal is
passive for most of our study species, and dispersal distances
tend to be short [44].

Our prior isozyme genetic studies have focused largely
on genetic differences among species. We found that five of
these six species (D. frutescens, E.cuneifolium, H. cumulicola,
N. brittoniana, and W. carteri but not L. ohlingerae) had lower
genetic variation than that found in comparable endemic
species elsewhere. Values of He ranged from 0.12 for L.
ohlingerae to less than 0.06 for E. cuneifolium, D. frutescens,
W. carteri, and H. cumulicola [44]. Population differentiation
(Fst) was particularly high for H. cumulicola (0.72) and
ranged from 0.03 to 0.44 for other species [44].

Among the six species, levels of genetic variation were
higher in species with greater demographic stability but
were not related to geographic range size, habitat specificity,

or seed dispersal distances [44]. Nolina brittoniana and W.
carteri exhibited clines in allele frequencies along the major
(north-south) axis of their ranges [47, 53].

In this paper, we test whether within-species population-
level genetic variation is related to variables such as popu-
lation size and nearby available habitat. We define available
habitat by suitable soils (see below). We use geographic
information systems (GIS) to summarize and analyze land-
scape patterns of current populations, and the locations
and sizes of presettlement and extant soil patches that
support, or could support, each of the six species. We then
relate these variables to patterns of population-level genetic
variation determined from allozyme electrophoresis, using
new analyses of previously published data [43, 44].

In developing the appropriate data for this suite of
species, we hope to both inform current conservation
programs for Florida scrub and develop more general
conclusions to support decisions for other suites of narrowly
endemic plant species that have received less examination.
While smaller scale processes undoubtedly contribute to
patterns in observed genetic variation [62], these landscape
scale features are often used as surrogates for identifying pop-
ulation targets for conservation efforts [63–65]. Additional
empirical studies of multiple species in the same landscape
are needed to confirm the validity of this approach [87].

We hypothesize that the six Florida scrub species under
study will have greater genetic variation in larger populations
on larger habitat patches (both extant and presettlement),
in populations with more past or extant suitable habitat in
the vicinity, and in presettlement patches that have retained
larger proportions of intact area. Finally, because current
genetic patterns may not yet be in equilibrium with land use
changes, we hypothesize that genetic variation will be more
closely related to presettlement than to extant landscape
structure.

2. Methods

2.1. Sites, Population Sizes, and Tissue Collections. Sites for
tissue collections and population size estimates were chosen
using distributional data from the Florida Natural Areas
Inventory and Archbold Biological Station. We chose sites
across the species ranges (Figure 1), collecting tissue from
populations separated by at least 1.7 km. Over a three year
period, we sampled 164 populations (13–48 per species;
Table 2) from sites across five counties in central Florida
(Highlands, Lake, Orange, Osceola, and Polk) and three
ridges (Lake Wales, Winter Haven, and Orlando). This
sample included the majority of the known occurrences of
most study species. Most samples come from the Lake Wales
Ridge [66] in Highlands and Polk counties where there are
more protected sites [59, 67].

We estimated population size using a variety of tech-
niques. Smaller populations (generally <200 individuals)
were fully censused. We sampled larger populations using
belt transects, 2–4 m wide, placed in stratified random
fashion to cover the entire area of the population. This
sample was then extrapolated to the total population size
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Table 1: Biological information on our study species.

Species
Life Span and

Life Form∗
Postfire

Recovery
Habitat

Primary
Pollinators
(distance)

[39]

Mating
System

Citations

Dicerandra
frutescens

SL, PSS Seed Bank Florida scrub
Bee-Fly
(long)

Mixed [48]

Eryngium
cuneifolium

SL, PH Seed Bank Florida scrub
Generalist

Insects
(variable)

Mixed [49]

Hypericum
cumulicola

SL, PH Seed Bank Florida scrub Bees (short) Mixed [50]

Liatris
ohlingerae

LL, PH Resprout Florida scrub
Butterflies

(long)
Outcrossing [51]

Nolina
brittoniana

LL, PH Resprout
Sandhill,

Florida Scrub
Generalist

Insects (long)
Outcrossing [44]

Warea carteri A Seed Bank
Sandhill,

Florida Scrub

Generalist
Insects

(variable)

Mixed, High
Self

[52, 53]

∗SL: short lived (<10 years), LL: long lived (>10 years), PSS: perennial subshrub, and PH: perennial herb, A: annual.

Table 2: Variables significant (P < .05) in predicting two measures of genetic variation, Alleles per Polymorphic Locus (APL) and Expected
Heterozygosity (He), in multiple regressions. Np refers to number of populations, Ni refers to mean number of individuals sampled and
scored per population. Variables were variously transformed before correlation analysis (see text). Beta is the standardized regression
coefficient, P refers to significance in model with all significant variables included.

Species Np Ni Fst Genetic Variation Measure Mean Predictor Variable Beta P

Dicerandra frutescens 13 29 0.030
APL 3.58 None

He 0.031 None

Eryngium cuneifolium 16 30 0.445
APL 2.00 None

He 0.054 None

Hypericum cumulicola 34 28 0.724
APL 2.02 None

He 0.023 None

Liatris ohlingerae 28 22 0.120
APL 2.43

Density −0.087 .003

Extant: 32 km +0.250 .033

He 0.121 None

Nolina brittoniana 48 25 0.411
APL 2.53 Population Size +0.488 .009

He 0.069 None

Warea carteri 23 25 0.304
APL 2.30 None

He 0.025 None

by estimating the area. Population edges were determined
by inappropriate habitat for the species, or by a ≥50 m
break between plants. For the clonal Nolina brittoniana, we
considered individuals as rosettes that were at least 1 m apart,
based on patterns of allozyme genotypes [47].

Leaves (or flower buds in the case of H. cumulicola) were
collected for allozyme analysis at the same time population
size estimates were made. For populations of fewer than 30
plants, leaves or buds were collected from all individuals. For
larger populations, we collected leaves from 30 individuals
randomly selected but stratified by spatial location. Thus,
variation in sample size reflects variation in observed
population size, not in sampling effort. Sample sizes for
numbers of individuals sampled and scored per population
were generally >20 (Table 2). Standard genetic parameters,

including percent of polymorphic loci, number of alleles per
locus, and expected heterozygosity, were calculated for each
population, using the software package Biosys [68]. We also
hand calculated the number of alleles per polymorphic locus.
Details of allozyme procedures and results for individual
species are given in several papers [43, 47, 69].

2.2. Defining Suitable Soil Types. Soil properties are an
important dimension of the habitat for many species [70,
71]. For these Florida scrub species, soil requirements are
well known and quite specific [54]. We defined suitable soil
types based on the intersection of known species locations
with digital (1 : 24,000 scale) soil maps prepared by the
Soil Conservation Service [54]. All the suitable soils are
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Figure 1: Minimum convex polygons for distributions of six study species on the Lake Wales Ridge in central Florida.

hyperthermic, uncoated Typic or Spodic Haplaquolls [72]:
sandy, low-nutrient soils that vary in soil color and distance
from the water table. Eryngium cuneifolium, H. cumulicola,
and L. ohlingerae were found primarily on white (St. Lucie
and Archbold sands) and gray (Satellite, Duette, Daytona,
and Pomello sands) sands [54]; these soils were defined as
suitable in the current study. The gray sands have a higher

water table than the white sands. Likewise, D. frutescens is
a specialist for yellow sands with a deep water table (Paola,
Astatula, Tavares, and Orsino sands) [54] and these soils were
considered suitable habitat. Warea carteri is a soil generalist
[54], with yellow and gray sands suitable, and N. brittoniana
occurs over a wide range of soil types [54], with white,
gray, and yellow colored sands suitable. Less than 20% of
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the known occurrences, by species, fall outside these soil
classifications [54].

For this analysis, we defined suitable habitat entirely
based on soil preferences. Weather data (temperature, pre-
cipitation) are available on a km scale, but soil divisions
occur on a much finer (m) scale. In addition, temperature
and precipitation variation across our study area is minimal.
For example, maps of 17 hydrologic variables (rainfall,
humidity, and evaporation) show less than 5% variation
over the study area [73]. Similarly, this area shows very
little variation in temperature variables [74]. Fire history
also affects whether a habitat patch is suitable for individual
scrub species [48, 54] but it was not available for all our
study sites. Likewise, colonization history would affect which
habitat patches would be out of dispersal range, but we lack
these data as well.

2.3. Analytical Methods. We used ARCINFO 9.1 software and
aerial photographs to create a number of spatial coverages for
each species: the populations from which genetic collections
were made, extant home polygons, and other polygons with
suitable habitat. The home polygon was defined as the
merger of the soil polygon from which the collection was
made with all adjoining extant suitable soil polygons. For
example, if the home polygon is a polygon of Archbold sand,
we merged it with adjoining polygons of the similar St. Lucie
white sand, both of which are suitable habitat for white
sand species. Likewise, we merged adjoining soil polygons
with similarly suitable habitat across the landscape. These
mergers were made separately for the presettlement and
extant landscapes. Presettlement areas were inferred from all
suitable soils; extant areas of suitable soils were digitized from
aerial photographs. Extant areas included all intact habitat
patches, including disturbed habitats (considered potential
habitat for the study species), but excluded patches converted
to housing, citrus, industry, or pasture. These coverages
show that individual populations have experienced a wide
range of habitat loss and fragmentation of nearby habitats
(Figure 2).

We used GIS to calculate the areas of suitable habitat
(either extant or presettlement) within 2, 8, and 32 km of
the boundary of the extant or presettlement home polygon.
We buffered in this way rather than buffering around the
exact collection points (as in [75]) for two reasons. First,
buffering the point would have included parts of the home
polygon, which we intended as a separate variable. Second,
we assumed that much of the polygon was occupied by the
population (at one time or another) so that the landscape as
seen from the habitat edges was most relevant in affecting
landscape genetic structure.

We originally identified a total of 20 predictor vari-
ables. For both presettlement and extant landscapes, we
calculated soil patch sizes and areas and proportions of
remaining suitable soils within radii of 2 km, 8 km, and
32 km (Figure 2). We also calculated proportions of original
patches remaining and current population size, area, and
density and the shortest distance from the collection point
to the patch edge. Finally, we calculated isolation indices

for each presettlement and extant patch using the formula
of Hanski and Thomas [76] for all patches within 32 km.
Individual variables were transformed to improve their fit
to assumptions of correlation analysis and multiple regres-
sion.

Within and among species, we noted many strong
correlations among these transformed predictor variables.
We therefore reduced the predictor variables to a set of seven
relatively independent (absolute value of r < 0.42) variables:
population size, population density, extant patch area, extant
area within 32 km, distance to patch edge, presettlement
isolation index, and extant isolation index.

For each population, we summarized genetic variation
as expected heterozygosity and the number of alleles per
polymorphic locus. Other measures of genetic variation
(percent of polymorphic loci, observed heterozygosity) had
strong correlations with these two measures for most of our
study species.

To evaluate the relationship of the set of seven trans-
formed predictor variables to expected heterozygosity and
alleles per polymorphic locus, we performed forward step-
wise multiple regressions for each species. Alleles per poly-
morphic locus did not vary among populations for Eryngium
cuneifolium, so no analysis was done. All analyses were
accomplished using SPSS version 11.5.0 [77].

3. Results

Genetic variation was generally poorly predicted by pop-
ulation and landscape variables (Table 2). For four of the
six species (D. frutescens, E. cuneifolium, H. cumulicola,
and W. carteri), we found no significant relationships
between genetic variation and predictor variables (Table 2).
For the other two species (L. ohlingerae and N. britto-
niana), there were only two significant regressions, those
predicting alleles per polymorphic locus. Although for one
species (L. ohlingerae) the area within a buffer was a
predictor of genetic variation, in no cases did isolation
indices predict genetic variation (Table 2). No regressions
successfully predicted expected heterozygosity from pop-
ulation and landscape variables for any of our six study
species.

For L. ohlingerae, the number of alleles per polymorphic
locus were lower in high density populations and higher
in populations with larger areas of habitat remaining
extant within 32 km (Table 2). The negative relationship
between alleles per polymorphic locus and density (Figure 3)
was opposite to that predicted. Conversely, the weak but
positive relationship between area within 32 km in alleles
per polymorphic locus (Figure 4) was consistent with our
prediction. The two variables together predicted about one
third of the variation in alleles per polymorphic locus
(r2 = 0.34).

For N. brittoniana, the species with the largest number
of populations, alleles per polymorphic locus was higher
for larger extant populations (Table 2, Figure 5), although
this relationship explained less than 15% of the variation
(r2 = 0.14).
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Figure 2: Landscape structure around three representative populations sampled for genetic variation. In each case, the location of the
genetic sample is shown by the filled circle, the dark polygon represents the home polygon of the sample (with the home polygon being the
soil polygon from which the genetic collection was made merged with all adjoining suitable soil polygons), and the light shading represents
suitable soil polygons within the 2 km buffer (shown as a dark line). (a, b) presettlement and extant landscapes, respectively, for Liatris
ohlingerae at Archbold Biological Station West. The population is protected and nearby habitat loss and fragmentation is moderate. (c,
d) presettlement and extant landscapes, respectively, for Hypericum cumulicola at Lizzie Lake. The population is unprotected and nearby
habitat loss and fragmentation is high. (e, f) presettlement and extant landscapes, respectively, for Dicerandra frutescens at Camp Florida.
The population is unprotected and nearby habitat loss and fragmentation is extreme.
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Figure 3: Alleles per polymorphic locus as a function of the natural
log of population density per m2, for Liatris ohlingerae. r = −0.465,
P = .010.
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Figure 4: Alleles per polymorphic locus as a function of the amount
of presettlement habitat remaining within 32 km (ha, Ln scale), for
Liatris ohlingerae. r = 0.264, P = .158. When used in multiple
regression, this relationship was significant (Table 1).

4. Discussion

4.1. Genetic Patterns in Florida Landscapes. The conservation
biology literature often predicts that population-level genetic
variation will be positively correlated with population size [3,
14, 78] and the size and proximity of habitat patches [17, 18,
79]. These predictions were completely unsupported for our
six Florida scrub species based on expected heterozygosity.
Patterns based on alleles per polymorphic locus were weak.

Our only clonal study species, N. brittoniana, was one
of the more genetically variable species and the only one
that showed genetic patterns with population size. Although
clonal spread does not provide for recombination and might
be expected to suppress population-level genetic variation,
some clonal species are genetically diverse [80, 81]. However,
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Figure 5: Alleles per polymorphic locus as a function of the
population size (double natural log transformed), for Nolina
brittoniana. r = 0.376, P = .009.

clonal species that cannot reproduce sexually may have very
limited genetic variation [46, 82]. The genetic variation we
observed in N. brittoniana suggests that occasional seedling
recruitment must occur in this species, although seedlings
are virtually unknown. If seedling recruitment and genetic
diversity are mutually re-enforcing, this may explain the
positive relationship of genetic variation and population size
observed in this species.

For butterfly-pollinated L. ohlingerae, density was nega-
tively related to genetic variation. One observation to explain
this result may be that pollinators travel longer distances
in less dense populations [83, 84], effectively increasing
outcrossing. Density has effects on spatial genetic structure
in other populations [85].

Why did we find such weak correlation between genetic
variation and landscape variables? Because a great deal of
habitat fragmentation in central Florida has occurred in
the last few decades, the general lack of a population size
effect on genetic variation in our study may be due to
the lag time between population reductions due to habitat
fragmentation and genetic deterioration [86, 87]. Habitat
loss and degradation might be slow to impact genetic
diversity (compared to impacts on inbreeding, reproductive
output, and fitness), as found in an analysis of studies of
neotropical tree species [87]. Fragmentation effects increase
with the number of generations for plant populations [6, 10].

To better resolve the complex links between landscape
variables and genetic variation [1, 88], we clearly separated
population size variables and variables related to isolation
in our study (as recommended by Ouborg et al. [13]). The
complex habitat patch shapes for our species resulted in
isolation indices for individual habitat patches were often
idiosyncratic, being heavily weighted by the presence of
nearby, large habitat fragments. Idiosyncratic relationships
of genetic variation to land use history have been found in
other studies [75] and may have affected our analyses.
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Genetic patterns will also clearly be influenced by
differences in the life histories, evolutionary trajectories,
and ecological adaptations of each species. Fragmentation
effects are greatest for common or recently rare (versus
naturally rare) species and for outcrossing (versus selfing)
plants [10]. Our previous analysis showed that the amount
of genetic variation among these species (being highest in
L. ohlingerae and N. brittoniana) was consistent with species
rankings for life span, demographic stability, an outcrossing
breeding system, and longer pollinator dispersal distances
[44]. Population differentiation was highest in H. cumulicola,
which was attributed to its specialized pollination syndrome
and the inferred modest movement patterns of its bee
pollinators [44].

The lack of general patterns detected in our study may
also reflect the stochastic and dynamic nature of most
of these species. Current population size and distribution
are likely not in equilibrium and may not reflect the past
conditions that have influenced genetic patterns [43]. This
is likely particularly true for short-lived species that undergo
continual population fluctuations. Many of our study species
show substantial fluctuations in relation to fire [48, 49], and
lack of fire history data across our study populations may
hamper our ability to understand geographic patterns of
genetic variation. Past events such as bottlenecks, founder
events, low effective population sizes, and local extinctions
may also have affected patterns of genetic variation in
idiosyncratic ways [89, 90].

Unmeasured effects, such as habitat and matrix quality
[91], low sample size, and limited genetic variation, could
have helped improve the statistical signals in our analyses
Limited genetic variation and low statistical power due to
a small number of available populations for some of our
species probably constrain our ability to detect patterns.
Although we included an unusually large number of popula-
tions in our study, and in many cases all known populations,
small numbers of populations for some species still hamper
the analysis. Population numbers were particularly small for
D. frutescens and E. cuneifolium, two species for which we
found no link between geographic and genetic variables. In
addition, low genetic variation is typical for narrow endemics
[92, 93] including our study species [44] and reduces the
power to detect trends. Therefore, we suggest that population
size and landscape variables may be particularly unsuccessful
in predicting genetic variation when species are narrowly
endemic.

4.2. Past and Current Landscape Effects on Genetic Variation.
We predicted that presettlement landscape structure for our
suite of study species would have a stronger influence on
genetic variation than extant landscape structure. However,
we found little effect of landscape structure at either time on
genetic variation.

Few studies have explicitly compared past and extant
landscapes for their effects on landscape genetic structure,
as we attempted in this study. Studies on bush crickets
and butterflies have found that past landscape configuration
and metapopulation structure, respectively, affected pairwise

genetic similarities [94, 95]. In alpine meadow-dwelling but-
terflies, both contemporary and past (40 year) forest covers
had effects on genetic patterns, with past cover affecting
expected heterozygosity [96]. In wood frogs, populations
underwent rapid genetic shifts in response to shifts in recent
landscape structure [97]. However, in a ground beetle, habi-
tat fragmentation did not explain current genetic structure
[98]. In plants, the signature of historical habitat connectivity
has been detected in several studies. For example, genetic
diversity in Anthyllis vulneraria was more closely related to
current fragment area and population size than to historical
landscape configuration [33]. For Globularia bisnagarica,
historical landscape structure and its influence on gene flow
are thought responsible for the genetic similarity of currently
fragmented populations [20]. Likewise, genetic structure
of remnant populations of the endangered shrub Grevillea
caleyi continued to reflect fine-scale genetic structure present
before fragmentation [99]. These two studies attribute the
continued influence of historical landscapes to a lag in the
influence of contemporary mutation and drift in shaping
population structure. This lag is brought about through long
generation time, overlapping generations, and dormant seed
banks.

4.3. Conclusions/Conservation Implications. Genetic varia-
tion is an increasingly important criterion in reserve design
[100]. In our case, conservation strategies for most of these
species are not well informed by our genetic data. Neither
population size nor landscape factors are generally useful
to identify the populations most critical for conservation
of genetic variation. However, the best candidates for this
inference may be long-lived, resprouting species such as
L. ohlingerae and N. brittoniana, for which relatively stable
population sizes provide more predictive power. In this study
these species showed some relationship of genetic variation
to the current and past landscape.

If direct identification of critical sites for conservation
of genetic variation is not possible, alternative approaches
for identifying sites are necessary. One alternative approach
for prioritizing Lake Wales Ridge scrub habitat for con-
servation is based on the cumulative gain for multiple
species and on the irreplaceability of sites for the rarest
species [59, 70]. Acquisition of the top eight unprotected
sites recommended by these authors for conservation would
result in the additional protection of five populations of N.
brittoniana, four of L. ohlingerae, three of H. cumulicola, two
of W. carteri, and one of D. frutescens. Only E. cuneifolium
does not occur in any of these sites [59]. Although the
populations so identified [60] are worthy of protection,
our allozyme data do not specifically support the selection
of these particular sites if increasing genetic variation of
protected populations is a conservation goal. None have
unique alleles and, in all cases, alleles per polymorphic locus
and expected heterozygosity are within the 90% confidence
intervals for these values across all populations. Prioritizing
sites to maximize the number of species captured does not
seem to also maximize capture of genetic variation in this
analysis.
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Our results are consistent with much of the literature
in suggesting that generalizations about patterns in genetic
(allozyme) variability cannot always be predicted from
landscape variables. In our case, we assumed that preset-
tlement distributions included occupation of all sites with
suitable soils. More complex, realistic landscape variables
(e.g., detailed information on fire histories, not available
for this landscape) might contribute to better prediction
of genetic variation. Likewise, alternative types of genetic
data (microsatellite or quantitative traits) might show
stronger patterns in relation to the landscape. Nonetheless,
as others have found, we have shown that ecological and
landscape data are not necessarily consistent predictors of
genetic variation. Genetic variation is also likely to be
affected by climate change, for example, in the ways that
climate change and habitat fragmentation may interact to
affect phenology and demography [101]. As landscapes
and the genetics of populations are still in considerable
flux, new approaches to investigate of their linkages will
be needed to improve understanding and predictabil-
ity.
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