
Butler University
Digital Commons @ Butler University

Scholarship and Professional Work - LAS College of Liberal Arts & Sciences

2006

Fast Bounds on the Distribution of Smooth
Numbers
Scott T. Parsell

Jonathan P. Sorenson
Butler University, jsorenso@butler.edu

Follow this and additional works at: http://digitalcommons.butler.edu/facsch_papers

Part of the Theory and Algorithms Commons

This Conference Proceeding is brought to you for free and open access by the College of Liberal Arts & Sciences at Digital Commons @ Butler
University. It has been accepted for inclusion in Scholarship and Professional Work - LAS by an authorized administrator of Digital Commons @ Butler
University. For more information, please contact fgaede@butler.edu.

Recommended Citation
S. Parsell and J. Sorenson, Fast Bounds on the Distribution of Smooth Numbers, Proceedings of the 7th International Symposium on
Algorithmic Number Theory (ANTS-VII), Florian Hess, Sebastian Pauli, and Michael Pohst eds., Berlin, Germany, pages 168-181,
2006. LNCS 4076, ISBN 3-540-36075-1.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digital Commons @ Butler University

https://core.ac.uk/display/62434793?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://digitalcommons.butler.edu?utm_source=digitalcommons.butler.edu%2Ffacsch_papers%2F94&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.butler.edu/facsch_papers?utm_source=digitalcommons.butler.edu%2Ffacsch_papers%2F94&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.butler.edu/las?utm_source=digitalcommons.butler.edu%2Ffacsch_papers%2F94&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.butler.edu/facsch_papers?utm_source=digitalcommons.butler.edu%2Ffacsch_papers%2F94&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=digitalcommons.butler.edu%2Ffacsch_papers%2F94&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:fgaede@butler.edu

Fast Bounds on the Distribution of Smooth
Numbers?

Scott T. Parsell1 and Jonathan P. Sorenson2

1 Mathematics and Actuarial Science
Butler University, Indianapolis, IN 46208 USA

sparsell@butler.edu, http://blue.butler.edu/~sparsell
2 Computer Science and Software Engineering
Butler University, Indianapolis, IN 46208 USA

sorenson@butler.edu, http://www.butler.edu/~sorenson

Abstract. Let P (n) denote the largest prime divisor of n, and let Ψ(x, y)
be the number of integers n ≤ x with P (n) ≤ y. In this paper we present
improvements to Bernstein’s algorithm, which finds rigorous upper and
lower bounds for Ψ(x, y). Bernstein’s original algorithm runs in time
roughly linear in y. Our first, easy improvement runs in time roughly
y2/3. Then, assuming the Riemann Hypothesis, we show how to drasti-
cally improve this. In particular, if log y is a fractional power of log x,
which is true in applications to factoring and cryptography, then our
new algorithm has a running time that is polynomial in log y, and gives
bounds as tight as, and often tighter than, Bernstein’s algorithm.

1 Introduction

For a positive integer n, let P (n) denote the largest prime divisor of n. If P (n) ≤
y, then n is said to be y-smooth. Smooth numbers are utilized by many integer
factoring and discrete logarithm algorithms, and hence they are of interest in
cryptography [19, 22]. Define Ψ(x, y) to be the number of integers n ≤ x that are
y-smooth. In this paper, we present improvements to an algorithm of Bernstein[4,
5], based on discrete generalized power series, which gives rigorous upper and
lower bounds for Ψ(x, y).

1.1 Previous Work

To compute the exact value of Ψ(x, y), one could simply factor all the integers
up to x using a sieve. The Buchstab identity

Ψ(x, y) = Ψ(x, 2) +
∑

2<p≤y

Ψ(x/p, p)

? This work was supported by a grant from the Holcomb Research Institute. We wish
to thank the referee, whose comments helped improve this paper.

leads to a simple recursive algorithm. Bernstein presents several algorithms in
his thesis [3]. See [17] for several more. All of these algorithms are far too slow
for use in applications related to factoring and cryptography.

There are a number of asymptotic estimates for Ψ(x, y) in the literature [8,
10, 11, 13–15, 18, 20, 21], many of which lead to algorithms.

Dickman’s function, ρ(u), is defined as the unique continuous solution to

ρ(u) = 1 (for 0 ≤ u ≤ 1),
ρ(u− 1) + uρ′(u) = 0 (for u > 1).

It is well-known that the estimate Ψ(x, y) ≈ xρ(log x/ log y) holds; for example
Hildebrand [13] proved that for ε > 0, we have

Ψ(x, y) = xρ(u)
(

1 + Oε

(
log(u + 1)

log y

))
where y ≥ 2 and u := u(x, y) = log x/ log y satisfies 1 ≤ u ≤ exp[(log y)3/5−ε].
This range can be extended if we assume the Riemann Hypothesis. Highly ac-
curate estimates for ρ(u) can be computed quickly using numerical integration;
see for example [27].

Hildebrand and Tenenbaum [14] gave a more complicated estimate for Ψ(x, y)
using the saddle-point method. Define

ζ(s, y) :=
∏
p≤y

(1− p−s)−1,

φ(s, y) := log ζ(s, y),

φk(s, y) :=
dk

dsk
φ(s, y) (k ≥ 1).

Let a be the unique solution to φ1(a, y) + log x = 0. Then

Ψ(x, y) =
xaζ(a, y)

a
√

2πφ2(a, y)

(
1 + O

(
1
u

+
(log y)

y

))
uniformly for 2 ≤ y ≤ x. This theorem has led to a string of algorithms that, in
practice, appear to give significantly better estimates to Ψ(x, y) than those based
on Dickman’s function [17, 24, 25]. Recently, Suzuki [26] showed how to estimate
Ψ(x, y) quite nicely in only O(

√
log x log y) operations using this approach.

Bernstein’s algorithm [4, 6] provides a very nice compromise between com-
puting an exact value of Ψ(x, y) (which is very slow) and computing an estimate
(which is fast, but not as reliably accurate): compute rigorous upper and lower
bounds for Ψ(x, y). Bernstein’s algorithm introduces an accuracy parameter α,
and his algorithm creates upper and lower bounds for Ψ(x, y) that are off by at
most a factor of 1 + O(α−1 log x), implying a choice of, say, α � log x log log y.
As we will show in the next section, Bernstein’s algorithm has a running time of

O

(
y

log log y
+

y log x

(log y)2
+ α log x log α

)
arithmetic operations, which is roughly linear in y. It also generates, for free,
rigorous bounds on Ψ(x′, y) for certain values of x′ < x.

1.2 New Results

We present two improvements to Bernstein’s algorithm.
Our first improvement is a simple one that Bernstein mentioned but did not

analyze. In essence, the idea is to use an algorithm to compute π(t), the number
of primes up to t, for many values of t with 2 ≤ t ≤ y, rather than use a prime
number sieve that finds all primes up to y. The result, Algorithm 3.1, has the
same accuracy as the original, with a running time of

O

(
α

y2/3

log y
+ α log x log α

)
operations.

Our second improvement is to choose a parameter z, with 1451 ≤ z < y
and z � α4(log α)2, and then use the π(t) algorithm for t ≤ z, but use the
fast-to-compute estimate

|π(t)− li(t)| <
√

t log t

8π
(t ≥ 1451)

for t > z, where li(t) is the logarithmic integral. The above inequality follows
from work of Schoenfeld [23] under the assumption of the Riemann Hypothesis
(see also [9, Exercise 1.36]). This improvement, Algorithm 4.1, leads to a running
time of

O

(
α

z2/3

log z
+ α log x log αy

)
operations, with a relative error of at most O(α−1 log x). In particular, if we
take α � log x(log log y)2, say, resulting in z � (log x)4(log log x)2(log log y)8, we
obtain the running time of

O((log x)11/3(log log x)1/3(log log y)22/3)

operations. In applications related to factoring and discrete logarithms, we have
log x ≈ (log y)3, so that our algorithm runs in time polynomial in log y. With
such a small running time, we can choose to make α larger, resulting in more
accurate upper and lower bounds for Ψ(x, y), in less time.

1.3 A Comparison

Below we compare the relative error and running times (with big-Oh understood)
for several different algorithms.

For log x = (log y)2 so that u = log y we have:

Relative Error Algorithm Running Time

log log y/log y xρ(u) (log y)2

(log y)−1 Suzuki [26] (log y)3/2

(log y)−2 Bernstein [4, 6] y
(log y)−2 Algorithm 4.1 (log y)44/3+o(1)

(log y)−3 Bernstein [4, 6] y
(log y)−3 Algorithm 4.1 (log y)55/3+o(1)

y−1 Bernstein [4, 6] y(log y)3

y−1 Algorithm 4.1 y(log y)3

For log x = (log y)3 so that u = (log y)2 we have:

Relative Error Algorithm Running Time

log log y/log y xρ(u) (log y)4

(log y)−1 Suzuki [26] (log y)2

(log y)−2 Bernstein [4, 6] y
(log y)−2 Algorithm 4.1 (log y)55/3+o(1)

(log y)−3 Bernstein [4, 6] y
(log y)−3 Algorithm 4.1 (log y)22+o(1)

y−1 Bernstein [4, 6] y(log y)4

y−1 Algorithm 4.1 y(log y)4

1.4 Organization

The rest of this paper is organized as follows. In §2 we review Bernstein’s algo-
rithm and provide a running time analysis. In §3 we present and analyze our first
improved algorithm. In §4 we present the second improved algorithm, along with
a running time analysis. In §5 we perform an accuracy analysis of the algorithm
from §4. Finally in §6 we present some timing results.

2 Bernstein’s Algorithm

In this section, we review Bernstein’s algorithm [4, 6] that gives rigorous upper
and lower bounds for Ψ(x, y). We also give a running time analysis.

Consider a discrete generalized power series

F (X) =
∑

r

arX
r,

where r ranges over the real numbers. The ar may lie in any fixed ring or field,
although we will limit our interest to the reals. We require that, for any real h,

the set {r ≤ h : ar 6= 0} is finite. We write

distrhF :=
∑
r≤h

ar,

the sum of the coefficients of F on powers of X below h.
We make the reasonable restriction that x be a power of 2. Define lg x :=

log2 x, and let h := lg x so that 2h = x. Then for |X| < 1 we have

Ψ(2h, y) = distrh

∑
P (n)≤y

X lg n

= distrh

∏
p≤y

(
1 + X lg p + X2 lg p + · · ·

)
= distrh

∏
p≤y

(
1−X lg p

)−1

= distrh exp
∑
p≤y

log
(
1−X lg p

)−1

= distrh exp

∑
p≤y

∑
k≥1

1
k

Xk lg p

 .

Here we used the identity log(1− t)−1 =
∑

k≥1 tk/k for |t| < 1.
To reduce the number of terms in this power series, we approximate each

prime p using a fractional power of 2. Define p ≤ p and p ≥ p as such.
Replacing p with p in the series above, we denote the resulting series by

B+(x, y), which overestimates Ψ :

Ψ(2h, y) ≤ B+(x, y) := distrh exp

∑
p≤y

∑
k≥1

1
k

Xk lg p

 .

Replacing p with p, we denote the resulting series by B−(x, y) which underesti-
mates Ψ :

Ψ(2h, y) ≥ B−(x, y) := distrh exp

∑
p≤y

∑
k≥1

1
k

Xk lg p

 .

We now present the algorithm for computing a lower bound for Ψ(x, y). Com-
puting the upper bound is similar.

Algorithm 2.1. Recall that x = 2h. WLOG we are computing B−(x, y), the
lower bound.

1. Choose an accuracy parameter α, an integer, that satisfies 2 log x < α lg 3 <

(log x)e
√

log y.

2. Find the primes up to y, and for each p, compute p such that

α lg p = dα lg pe (1)

(and similarly α lg p = bα lg pc for the upper bound).
For example, if α = 10, then 2 = 2, 3 := 216/10 ≈ 3.03, 5 := 224/10 ≈ 5.28,
and 7 := 229/10 ≈ 7.46.

3. Compute G(X) :=
∑
p≤y

bh/ lg pc∑
k=1

1
k

Xk lg p.

4. Compute exp G(X) using an FFT-based algorithm.
5. Compute distrh expG(X) by summing the coefficients.

Note that one can compute distrh′ expG(X) for any h′ ≤ h along the way, giving
a lower bound for Ψ(2h′

, y) as well, essentially for free.

Theorem 2.2. When y is sufficiently large, Algorithm 2.1 computes upper and
lower bounds, B+(x, y) and B−(x, y), for Ψ(x, y) satisfying

B−(x, y)
Ψ(x, y)

≥ 1− log x

α lg 3
and

B+(x, y)
Ψ(x, y)

≤ 1 +
2 log x

α lg 3

using at most

O

(
y

log log y
+

y log x

(log y)2
+ α log x log α

)
arithmetic operations.

Proof. If we set

ε1 = max
p≤y

(
lg p

lg p
− 1
)

and ε2 = max
p≤y

(
1−

lg p

lg p

)
and take ε ≥ max{ε1, ε2}, then one has

Ψ(x1/(1+ε), y) = distrh

∏
p≤y

(1−X(1+ε) lg p)−1 ≤ B−(x, y)

and
Ψ(x1/(1−ε), y) = distrh

∏
p≤y

(1−X(1−ε) lg p)−1 ≥ B+(x, y).

Hildebrand [16] shows that Ψ(cx, y) ≤ cΨ(x, y) when y is sufficiently large and
c ≥ 1 + exp(−

√
log y). Taking c = xε/(1±ε), we find that

B−(x, y)
Ψ(x, y)

≥ x−ε/(1+ε) ≥ 1−ε log x and
B+(x, y)
Ψ(x, y)

≤ xε/(1−ε) ≤ 1+2ε log x,

provided that x is sufficiently large and

exp(−
√

log y) < ε log x < 1/2.

In view of (1), we can take ε = 1/(α lg 3).
As for the running time, Step 2 can be done with a prime sieve [2], taking

O(y/ log log y) operations. In Step 3, G(X) will have O(αh) nonzero terms, and
so takes O(hy/(log y)2) time to construct. The FFT-based exponentiation algo-
rithm in Step 4 takes only O(αh log(αh)) operations [7]. Finally, Step 5 takes
only O(αh) time. Adding this up gives the stated runtime bound. ut

In practice, likely one of the first two terms will dominate the running time.

3 The First Improvement

Define ni := π(2i/α)− π(2(i−1)/α), the number of primes p such that α lg p = i,
or equivalently α lg p = i− 1.

We improve Bernstein’s algorithm by first computing the ni values, and then
use them to compute G(X).

Algorithm 3.1. WLOG we are computing B−(x, y), the lower bound.

1. Choose an accuracy parameter α, an integer, that satisfies 2 log x < α lg 3 <

(log x)e
√

log y.
2. Compute the ni values for α ≤ i ≤ α lg y.

3. Compute G(X) :=
bα lg yc∑

i=α

ni

bhα/ic∑
k=1

1
k

Xki/α.

4. Compute exp G(X) using an FFT-based algorithm.
5. Compute distrh expG(X) by summing the coefficients.

Similarly, for the upper bound we have

G(X) :=
bα lg yc−1∑

i=α−1

ni+1

bhα/ic∑
k=1

1
k

Xki/α.

Bernstein mentions this improvement in his paper [6], but gives no analysis, and
his code (downloadable from cr.yp.to) does not use it.

Theorem 3.2. When y is sufficiently large, Algorithm 3.1 computes upper and
lower bounds, B+(x, y) and B−(x, y), for Ψ(x, y) satisfying

B−(x, y)
Ψ(x, y)

≥ 1− log x

α lg 3
and

B+(x, y)
Ψ(x, y)

≤ 1 +
2 log x

α lg 3

using at most

O

(
α

y2/3

log y
+ α log x log α

)
arithmetic operations.

Again, we expect the first term to dominate the running time.

Proof. The accuracy analysis of Algorithm 3.1 is identical to that of Algorithm
2.1, so we only need to perform a runtime analysis. We can use the algorithm
of Deléglise and Rivat[12] to compute π(t) in time O(t2/3/(log t)2). This means
that it takes

O

(
α log y · y2/3

(log y)2

)
operations to compute all the ni values (Step 2). The time to construct G(X)
or G(X) (Step 3) is then proportional to

bα lg yc∑
i=α

α log x

i
= O(α log x log α).

The remaining steps have the same complexity as Algorithm 2.1. ut

4 The Second Improvement

Next we show how to make Bernstein’s algorithm faster and tighter, especially
when y is large. The idea is to choose a parameter z < y, and only compute the
ni values for i ≤ α lg z. For larger i, we estimate ni using the prime number the-
orem and the Riemann Hypothesis. This introduces more error, but the greatly
improved running time allows us to choose a larger α to more than compensate.

Assuming the Riemann Hypothesis, we have

|π(t)− li(t)| <
√

t log t

8π
(2)

when t ≥ 1451 (see [23, 9]), so we require that z > 1451. We note that a very
good estimate for li(t) can be computed in O(log t) time (see equations 5.1.3 and
5.1.10, or even 5.1.56, in [1]).

Define n±i , our upper and lower bound estimates for ni, as follows:

– For i ≤ α lg z, n−i := n+
i := ni.

– For i > α lg z, n−i := max

0,

(
li(2i/α)−

√
2i/α log(2i/α)

8π

)
−
∑
j<i

n−j

,

and n+
i := max

0,

(
li(2i/α) +

√
2i/α log(2i/α)

8π

)
−
∑
j<i

n+
j

.

We define G−(X) by replacing ni with n−i in the definition of G(X):

G−(X) :=
bα lg yc∑

i=α

n−i

bhα/ic∑
k=1

1
k

Xki/α,

and define
A−(2h, y) := distrh expG−(X).

We define G+(X) and A+(x, y) in a similar way for the upper bound.
Note that, for A−(x, y) to be a rigorous lower bound on Ψ(x, y), it is not

necessary for n−i ≤ ni, but merely that, for every i,∑
j≤i

n−j ≤
∑
j≤i

nj = π(2i/α).

Similarly, for A+(x, y) to be a rigorous upper bound it suffices that, for every i,∑
j≤i

n+
j ≥

∑
j≤i

nj = π(2i/α).

We achieve this assuming the Riemann Hypothesis. This leads us to the following
algorithm.

Algorithm 4.1. WLOG we are computing A−(x, y).

1. Choose an accuracy parameter α, an integer, that satisfies 2 log x < α lg 3 <

(log x)e
√

log y, and choose a parameter z < y with z � α4(log α)2.
2. Compute the n−i values as defined above.

3. Compute G−(X) :=
bα lg yc∑

i=α

n−i

bhα/ic∑
k=1

1
k

Xki/α.

4. Compute exp G−(X) using the FFT.
5. Compute distrh expG−(X) by summing the coefficients.

In the next section we prove the following:

Theorem 4.2 (RH). When y is sufficiently large, Algorithm 4.1 computes up-
per and lower bounds, A+(x, y) and A−(x, y), for Ψ(x, y) satisfying

A−(x, y)
Ψ(x, y)

≥ 1− α log x log z

6
√

z
− log x

α lg 3
+

(log x)2 log z

6
√

z lg 3

and
A+(x, y)
Ψ(x, y)

≤ 1 +
α log x log z

3
√

z
+

2 log x

α lg 3
+

2(log x)2 log z

3
√

z lg 3
.

Because α � log x, asymptotically we can ignore the last term in each case. The
other two terms balance when α is asymptotic to z1/4/

√
log z. This justifies our

choosing z proportional to α4(log α)2 in Step 1 of the algorithm, and this implies
that

Ψ(x, y)
A±(x, y)

= 1 + O

(
log x

α

)
.

To achieve a tighter bound with A±(x, y) than is obtained with B±(x, y) in
Algorithm 3.1, we will simply choose α larger. For example, if in Algorithm
3.1 we used α � log x log log y, then in our improved algorithm we might use
α � log x(log log y)2. As we will see in §6, we can tolerate a larger α and still get
a faster running time.

Theorem 4.3. Algorithm 4.1 computes A+(x, y) and A−(x, y) in

O

(
α

z2/3

log z
+ α log x log αy

)
operations.

Proof. We have the following:

– It takes O(αz2/3/ log z) time to compute the n−i for i ≤ α lg z in Step 2.
– It takes O(α log x log y) time to compute the n−i for i > α lg z in Step 2.
– The remaining steps take at most O(α log x log α) steps, the same as in Al-

gorithm 3.1.

Adding this up completes the proof. ut

If we choose α � log x(log log y)2, say, making z � (log x)4(log log x)2(log log y)8,
then the running time is

O((log x)11/3(log log x)1/3(log log y)22/3).

In applications to factoring, we have, roughly, log x ≈ (log y)3, so in this case
our running time is (log y)11+o(1), which, asymptotically, is significantly better
than y2/3+o(1).

5 An Accuracy Analysis

In this section, we present the proof of Theorem 4.2.
For the purposes of accuracy analysis, we will redefine n−i and n+

i for i >
α lg z as

n−i := li(2i/α)−
√

2i/α log(2i/α)
8π

−

(
li(2(i−1)/α) +

√
2(i−1)/α log(2(i−1)/α)

8π

)

and

n+
i := li(2i/α) +

√
2i/α log(2i/α)

8π
−

(
li(2(i−1)/α)−

√
2(i−1)/α log(2(i−1)/α)

8π

)
.

On recalling (2), we may rewrite this as

n−i = Li −∆i ≤ ni ≤ Li + ∆i = n+
i , (3)

where
Li := li(2i/α)− li(2(i−1)/α)

and

∆i :=
2i/(2α) log 2

8πα

(
i +

i− 1
21/(2α)

)
≤ i2i/(2α) log 2

4πα
. (4)

These n±i values lead to weaker bounds on Ψ(x, y) than those used in Algorithm
4.1, but they are much easier to work with, and the results we obtain still apply
to Algorithm 4.1.

It follows easily from (3) that

n−i ≥ ni(1− δi) and n+
i ≤ ni(1 + δi), (5)

where δi := 2∆i/ni. Moreover, it follows from (3) and (4) after some computation
that

π(w)−π(w/c) ≥ li(w)−li(w/c)−
√

w log w

4π
≥
(

1− 1
c

)
li(w)− w log c

c(log w)2
−
√

w log w.

Taking c = 21/α and noting that

1− 1
c

=
∞∑

k=1

(−1)k+1(log 2)k

k!αk
≥ 0.9 log 2

α

for α ≥ 4, we find that

π(w)− π(2−1/αw) ≥ 0.9w log 2
α log w

− w

α(log w)2
≥ (log 2)2w

α log w
,

provided that w is sufficiently large and α ≤ w1/4. Thus on taking w = 2i/α, we
obtain

ni ≥
2i/α log 2

i

for i > α lg z, provided that α ≤ z1/4 and z is sufficiently large. Thus by (4) we
have

δi ≤
i2

4πα2i/(2α)
≤ α(lg z)2

4π
√

z
≤ α(log z)2

6
√

z
:= δ (6)

for i > α lg z, since the expression i2/2i/(2α) is a decreasing function of i for
i > 4α/(log 2). Write

gi(X) =
∞∑

k=1

Xki/α

k
,

and let t = h/ lg z = log x/ log z. Since the smallest power of X in gi(X) is at
least X lg z when i > α lg z, we have

distrh expG−(X) = distrh

exp

∑
p≤z

∞∑
k=1

Xk lg p

k

 exp

 bα lg yc∑
i=bα lg zc+1

n−i gi(X)


= distrh

exp

bα lg zc∑
i=α

nigi(X)

 t∑
j=0

1
j!

 α lg y∑
i=bα lg zc+1

n−i gi(X)

j


≥ (1− δ)tdistrh expG(X),

on recalling (5). It therefore follows from (6) that

A−(x, y)
B−(x, y)

=
distrh expG−(X)
distrh expG(X)

≥ (1− δ)t ≥ 1− tδ ≥ 1− α log x log z

6
√

z
.

Similarly, since (1 + δ)t ≤ 1 + 2tδ whenever 2tδ ≤ 1, one has

A+(x, y)
B+(x, y)

≤ (1 + δ)t ≤ 1 +
α log x log z

3
√

z
,

provided that

α ≤ 3
√

z

log z log x
.

On combining these bounds with the conclusion of Theorem (2.2), we find that

A−(x, y)
Ψ(x, y)

≥ 1− α log x log z

6
√

z
− log x

α lg 3
+

(log x)2 log z

6
√

z lg 3

and
A+(x, y)
Ψ(x, y)

≤ 1 +
α log x log z

3
√

z
+

2 log x

α lg 3
+

2(log x)2 log z

3
√

z lg 3
.

Thus we start to obtain reasonably accurate upper and lower bounds as soon as

2 log x < min
(

6
√

z

α log z
, α lg 3

)
,

and one can optimize the error terms by taking α � z1/4(log z)−1/2, as suggested
in Algorithm 4.1. This completes the proof of Theorem 4.2.

6 Timing Results

We estimated Ψ(2255, 228) using Algorithm 3.1 with α = 32 and using Algorithm
4.1 with α = 64. We used z = 23216.

We obtained the following:

B−(x, y) ≈ 39235936× 1060

A−(x, y) ≈ 39259233× 1060

A+(x, y) ≈ 43345488× 1060

B+(x, y) ≈ 51166381× 1060

Algorithm 3.1 took 12.6 seconds, and Algorithm 4.1 took 2.1 seconds.
Note that we used a prime sieve in place of a π(t) algorithm to compute the

ni values for Algorithm 3.1 and to compute the ni values with i ≤ α lg z for
Algorithm 4.1.

This experiment was done on a Pentium IV 1.3 GHz running Fedora Core
v.4; we used the Gnu C++ compiler and Bernstein’s code (psibound-0.50 from
cr.yp.to) with modifications. (The code is available from the second author via
e-mail.)

Notes.

– If the FFT exponentiation algorithm is the runtime bottleneck (Step 4), then
Algorithm 3.1 will perform better in practice; Algorithm 4.1 only does better
when the bottleneck is finding the primes up to y (Step 2).

– Unless y is quite large, finding the primes up to y (or z) and using them to
compute the ni values is more efficient in practice than using an algorithm
for π(t).

– As with all timing experiments, the results depend on the platform, the
compiler, and the programmer.

References

1. M. Abramowitz and I. A. Stegun. Handbook of Mathematical Functions. Dover,
1970.

2. A. O. L. Atkin and D. J. Bernstein. Prime sieves using binary quadratic forms.
Mathematics of Computation, 73:1023–1030, 2004.

3. Daniel J. Bernstein. Enumerating and counting smooth integers. Chapter 2, PhD
Thesis, University of California at Berkeley, May 1995.

4. Daniel J. Bernstein. Bounding smooth integers. In J. P. Buhler, editor, Third
International Algorithmic Number Theory Symposium, pages 128–130, Portland,
Oregon, June 1998. Springer. LNCS 1423.

5. Daniel J. Bernstein. Arbitrarily tight bounds on the distribution of smooth in-
tegers. In Bennett, Berndt, Boston, Diamond, Hildebrand, and Philipp, editors,
Proceedings of the Millennial Conference on Number Theory, volume 1, pages 49–
66. A. K. Peters, 2002.

6. Daniel J. Bernstein. Proving primality in essentially quartic time. To appear in
Mathematics of Computation; http://cr.yp.to/papers.html#quartic, 2006.

7. R. P. Brent. Multiple precision zero-finding methods and the complexity of el-
ementary function evaluation. In J. F. Traub, editor, Analytic Computational
Complexity, pages 151–176. Academic Press, 1976.

8. E. R. Canfield, P. Erdős, and C. Pomerance. On a problem of Oppenheim con-
cerning “Factorisatio Numerorum”. Journal of Number Theory, 17:1–28, 1983.

9. R. Crandall and C. Pomerance. Prime Numbers, a Computational Perspective.
Springer, 2001.

10. N. G. de Bruijn. On the number of positive integers ≤ x and free of prime factors
> y. Indag. Math., 13:50–60, 1951.

11. N. G. de Bruijn. On the number of positive integers ≤ x and free of prime factors
> y, II. Indag. Math., 28:239–247, 1966.

12. M. Deléglise and J. Rivat. Computing π(x): the Meissel, Lehmer, Lagarias, Miller,
Odlyzko method. Math. Comp., 65(213):235–245, 1996.

13. A. Hildebrand. On the number of positive integers ≤ x and free of prime factors
> y. Journal of Number Theory, 22:289–307, 1986.

14. A. Hildebrand and G. Tenenbaum. On integers free of large prime factors. Trans.
AMS, 296(1):265–290, 1986.

15. A. Hildebrand and G. Tenenbaum. Integers without large prime factors. Journal
de Théorie des Nombres de Bordeaux, 5:411–484, 1993.

16. Adolf Hildebrand. On the local behavior of Ψ(x, y). Trans. Amer. Math. Soc.,
297(2):729–751, 1986.

17. Simon Hunter and Jonathan P. Sorenson. Approximating the number of integers
free of large prime factors. Mathematics of Computation, 66(220):1729–1741, 1997.

18. D. E. Knuth and L. Trabb Pardo. Analysis of a simple factorization algorithm.
Theoretical Computer Science, 3:321–348, 1976.

19. A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone. Handbook of Applied
Cryptography. CRC Press, Boca Raton, 1997.

20. Pieter Moree. Psixyology and Diophantine Equations. PhD thesis, Rijksuniversiteit
Leiden, 1993.

21. Karl K. Norton. Numbers with Small Prime Factors, and the Least kth Power Non-
Residue, volume 106 of Memoirs of the American Mathematical Society. American
Mathematical Society, Providence, Rhode Island, 1971.

22. C. Pomerance, editor. Cryptology and Computational Number Theory, volume 42 of
Proceedings of Symposia in Applied Mathematics. American Mathematical Society,
Providence, Rhode Island, 1990.

23. L. Schoenfeld. Sharper bounds for the Chebyshev functions θ(x) and ψ(x). II.
Mathematics of Computation, 30(134):337–360, 1976.

24. Jonathan P. Sorenson. A fast algorithm for approximately counting smooth num-
bers. In W. Bosma, editor, Proceedings of the Fourth International Algorithmic
Number Theory Symposium (ANTS IV), pages 539–549, Leiden, The Netherlands,
2000. LNCS 1838.

25. K. Suzuki. An estimate for the number of integers without large prime factors.
Mathematics of Computation, 73:1013–1022, 2004. MR 2031422 (2005a:11142).

26. K. Suzuki. Approximating the number of integers without large prime factors.
Mathematics of Computation, 75:1015–1024, 2006.

27. J. van de Lune and E. Wattel. On the numerical solution of a differential-difference
equation arising in analytic number theory. Mathematics of Computation, 23:417–
421, 1969.

	Butler University
	Digital Commons @ Butler University
	2006

	Fast Bounds on the Distribution of Smooth Numbers
	Scott T. Parsell
	Jonathan P. Sorenson
	Recommended Citation

	tmp.1267041718.pdf.C_ICC

