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CASTANEA 66(1-2): 98--114. MARCH/JUNE 2001 

Comparative Genetics of Seven Plants Endemic to 
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'Archbold Biological Station, PO Box 2057, Lake Placid, Florida 33862; 
"Friesner Herbarium, Butler University, Indianapolis, Indiana 46208; 

3Department of Botany, Box 90338, Duke University, Durham, North Carolina 27708; 
<The Nature Conservancy, Department of Botany, University of Florida, Gainesville, Florida 32611 

ABSTRACT 

Genetic variation is often low in narrowly endemic species, and may be further depleted by habitat 
loss and fragmentation. Few studies have tested predictions about the distribution of genetic variation 
among co-occurring endemic plants species. We describe genetic variation and its relationship to life history 
traits for seven narrowly endemic, federally endangered Florida scrub species: Dicerandra christmanii, D. 
frutescens, Eryngium cuneifolium, Hypericum cumulicola, Liatris ohlingerae, Nolina brittoniana, Warea car
teri. These species have varying life histories, degrees of habitat specialization, and geographic distribu
tions. Measures of genetic (allozyme) diversity (mean number of allelesllocus, percentage ofloci polymorphic 
and expected heterozygosity) varied among species. However, genetic variation was generally lower than 
published means for plants and also generally lower for means for comparable groups (endemics, short
lived herbs, species with mixed mating systems, species with gravity dispersed seeds). The chief exception 
was L. ohlingerae, which had relatively high genetic variation. All three measures of genetic variation 
produced the same ranking among species: L. ohlingerae > D. christmanii > N. brittoniana > E. cuneifolium 
> D. frutescens > W. carteri > H. cumulicola. For six of these species, we compared genetic variation with 
rankings of eight life history factors. Genetic variation was highest in long-lived, demographically stable, 
outcrossing species with long pollinator dispersal distances. Attributes such as median population size, 
habitat specificity, geographic range, and estimated primary seed dispersal distances were not related to 
rankings for genetic variation. The studied species varied widely in genetic differentiation among popula
tions (0.02 < F ST < 0.72). The most differentiated species, H. cumulicola, is pollinated by specialized bees 
that may move short distances, therefore limiting gene flow among isolated patches. These comparisons 
emphasize that co-occurring narrowly endemic species can have a diversity of genetic patterns and that 
many factors can influence the amount and distribution of genetic variation. Further loss of genetic vari
ation due to habitat loss and fragmentation will impact the genetic variation of these species differently. 
A single conservation strategy for this suite of species is therefore unlikely to achieve genetic conservation 
goals. 

INTRODUCTION 

Plant populations are subject to the disruptive effects of systematic influences such as 
altered disturbance regimes, exotic species encroachment, or successional changes, and to sto
chastic demographic and environmental factors (Menges 1997). Any or all of these factors may 
contribute to diminished population sizes. In addition, rare species often naturally exist as 
small, isolated populations that are susceptible to random genetic forces implicated in the loss 
of genetic variation over time in small populations (Huenneke 1991, Oostermeijer et al. 1995). 
The presence of genetic diversity allows plants to adapt to changing conditions or new selection 
pressures (Barrett and Kohn 1991, Huenneke 1991, Frankel et al. 1995). However, it is unclear 
what measures of genetic diversity or allele abundance may be most important to prioritize for 
conservation (Marshall and Brown 1975, Falk 1991). High priority populations may be chosen 
on the basis of unique alleles (Petit et al. 1998), alleles at self-incompatibility loci (Young et al. 
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1999), localized common alleles (Brown 1978), overall genetic differences among populations 
(Kress et al. 1994, Young and Brown 1996), and/or maximizing overall genetic variation (Sun 
1996, Ceska et al. 1997). 

The collection and analysis of genetic data permit the evaluation of potential and historic 
gene flow. Gene flow is crucial in controlling population differentiation and genetic variation 
within individual populations (Wright 1977, Bradshaw 1994). As habitat patches supporting 
populations become increasingly isolated by habitat fragmentation, gene flow is predicted to 
decrease. Past levels of gene flow can be inferred from genetic statistics such as F ST (Wright 
1951), the proportion of the total variation found among, as opposed to within, populations. F ST 

is a measure of population differentiation (Wright 1965) that is often correlated with life history 
strategies. 

Population genetic diversity, spatial patterns of genetic variation, and gene flow affect 
both individual fitness and the scale at which conservation of populations will be effective 
(Byers 1998). Although narrow endemics tend to have relatively low genetic variation (Hamrick 
et al. 1991, Gitzendanner and Soltis 2000), they can display a diversity of patterns (e.g., Karron 
1991). Few studies have compared patterns of genetic variation in several co-occurring endemic 
plant species (but see Prober et al. 1990, Lewis and Crawford 1995, Godt et al. 1996, McDonald 
and Hamrick 1996), and most of these studies are of a single pair of species. 

Genetic surveys are often considered as integral elements in modern conservation biology, 
particularly in planning for effective long-term conservation of species (Schemske et al. 1994). 
Maintenance of gene flow may influence the location of reserves in a larger system. On the 
other hand, reserves that are isolated beyond the reach of normal gene flow need to support 
populations large enough to prevent genetic erosion via drift (Barrett and Kohn 1991). 

Genetic surveys of Florida scrub plants have begun recently. A dominant species, sand 
pine [Pinus clausa (Chapm. ex Englem.) Vasey ex Sarg.] had low genetic variation and popu
lation differentiation (Parker and Hamrick 1996). In contrast, Lewis and Crawford (1995) found 
unexpectedly high variation in narrowly distributed scrub Polygonella species. The very nar
rowly endemic shrub Ziziphus celata had little genetic variation (Godt et al. 1997). A previous 
study that considered two of the species of this paper (Dicerandra frutescens, Eryngium cunei
folium) surveyed only 1-2 populations per endemic species (McDonald and Hamrick 1996), 
which does not permit much detail on trends within species. This paper is the first to consider 
more than two Florida scrub species or large numbers of populations per species. 

In this paper, we compare the distribution of genetic variation in seven federally endan
gered plant species of Florida scrub (Dicerandra christmanii Huck and Judd, D. frutescens Shin
ners, Eryngium cuneifolium Small, Hypericum cumulicola (Small) W.P. Adams, Liatris ohlin
gerae (S.F. Blake) B.L. Rob., Nolina brittoniana Nash, and Warea carteri Small). The species 
are all narrowly distributed in central Florida, grow in Florida scrub, and presumably have 
been exposed to similar selection pressures, including xeric soil conditions and infrequent, high
intensity fires (Menges 1999). However, the species have different distributions within their 
ranges, varied life histories, and different degrees of specialization for habitats and soil types. 
Allozyme analyses based on extensive field sampling are used to characterize genetic variation 
in all seven species. 

We also evaluate eight factors that may be responsible for genetic differences among 
species: species range, habitat specificity, longevity, demographic stability, population size, 
breeding system, pollinator movements, and primary seed dispersal. Genetic variation tends to 
be relatively high in longer-lived perennials, widespread species, outcrossing species, and well
dispersed plants (Hamrick et al. 1991, Gitzendanner and Soltis 2000). We also predicted that 
greater gene flow via pollen movement or seed dispersal could maintain species' genetic vari
ation (Barrett and Kohn 1991), that demographically variable species might have lost variation 
through bottlenecks and drift (Barrett and Kohn 1991), that larger populations might have 
retained genetic variation (Young et al. 1996), and that habitat-restricted plants might have 
lower genetic variation (Hamrick and Godt 1989, Gray 1996). 
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METHODS 

Sites, Tissue Collections, and Allozyme Analyses 

The seven study species are all largely found on, and four are endemic to, Florida's Lake 
Wales Ridge (LWR, Figure 1). The LWR is an ancient dune system that supports one of the 
nation's most imperiled endemic-rich ecosystems (Dobson et al. 1997), including more than 20 
species of narrowly endemic vascular plants, 2 endemic vertebrates, and dozens of endemic 
invertebrates (Christman and Judd 1990, Deyrup and Franz 1994). Most of the endemic species 
are found in Florida scrub, a naturally-patchy ecosystem dominated by shrubs and character
ized by infrequent, intense fires (Menges 1999). The naturally patchy distribution and antiquity 
of Florida scrub has led to extremely strong geographic patterns in genetic diversity in the 
Florida scrub lizard (Clark et al. 1999). Less than 15% of the historical area of Florida scrub 
habitat remains (Peroni and Abrahamson 1985), with remnants scattered as islands within a 
matrix of agriculture and development. The endemic species have always been patchily dis
tributed and are further threatened by subsequent habitat loss and fragmentation. 

We sampled a total of 165 populations from 57 localities across four central Florida coun
ties (Highlands, Lake, Orange, and Polk; Figure 2). These populations spanned three ridges 
(Lake Wales, Winter Haven, and Orlando, Figure 1). Sites were identified using distributional 
data from the Florida Natural Areas Inventory (FNAI, Tallahassee, Florida) and our own field 
surveys, which include several newly discovered populations. Criteria for selecting sampling 
sites included sampling across entire species' ranges and collecting leaves from populations 
with at least 10 individuals. Only a few samples (4 of 30 for Liatris ohlingerae; 5 of 48 for 
Nolina brittoniana) had fewer than 15 individuals. We selected sites located at least 1.6 km 
apart, gaining permission from landowners. We sampled most intensively from publicly and 
privately owned conservation sites or from those sites proposed for conservation acquisition. 

We collected tissue for allozyme analyses (flower buds from Hypericum cumulicola and 
leaves from the other six species) from each of the 165 populations. For populations smaller 
than 30 plants, we collected from each individual. For larger populations, we collected from 30 
individuals selected in a stratified random or haphazard fashion from throughout the spatial 
extent of the population. Leaves were placed in plastic bags and stored on ice in the field and 
in the refrigerator prior to shipping. Leaves were shipped overnight with wet paper towels to 
Butler University and again stored cold until allozyme analyses were run. The methods of 
Dolan (1994, 1995) were followed for allozyme extraction, gel scoring for putative loci and al
leles, and calculation of standard genetic statistics (Swofford and Selander 1989). Pairwise 
genetic similarity between populations was calculated using Nei's unbiased genetic identity 
(Nei 1978). We re-sampled material from the earliest sampled populations to check for consis
tency of results over time. 

Genetic individuals are readily distinguished for all species in this study, with the excep
tion of N. brittoniana, a clonal plant that produces clusters of rosettes. We considered plants 
of this species separated by at least one meter as separate individuals. This rule is consistent 
with the grouping of different genders (plants are subdioecious), and allozyme analyses of neigh
boring plants (data not shown). 

Life History Factors 

To evaluate hypotheses for species differences in the distribution of genetic variation, we 
incorporated information from a number of related studies. Population sizes in all collection 
sites were estimated by direct counts (generally for all populations smaller than 200 plants) or 
by extrapolation from counts in belt transects (2-4 m wide) to totals for habitat patches. Patches 
were mapped in the field or mapped using digitized, geo-referenced aerial photographs, with 
ARCINFO 3.2 software (ESRI 1996). The boundaries of populations were defined by >50 m 
gaps between plants or between suitable habitat patches. We used geographic information in 
digital form from FNAI, along with our own observations, to construct GIS coverages in AR
CINFO and ARCVIEW of species' distributions (known locations) and ranges (suitable and 
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Figure 1. Upland ridges of central Florida. Names and boundaries follows White 1970 and Brooks 
1981, as interpreted by Eric Menges, Carl Weekley, and Roberta Pickert for GIS coverages. 
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Table 1. Sampling effort and population-level genetic statistics for seven Lake Wales Ridge 
species, listed from high to low B.. and summary statistics (below line) from Bamrick and Godt 
(1989). [Number of species in parentheses, number of populations is a mean value; II. reported 
as total genetic diversity (B •• = 1 - Ip,', where Pi is the frequency of the ith allele in each 
population); and GST is reported instead of F ST; these are comparable statistics (Swofford and 
Selander 1989)] 

Species or Group NP NI L AIL PLP II. FST GI 

Liatris ohlingerae 30 22.0 12 1.46 31.4 0.121 0.120 0.987 
Dicerandra christmanii 1 30.0 11 1.40 18.2 0.088 NA NA 
Nolina brittoniana 48 25.4 15 1.26 16.0 0.069 0.411 0.949 
Eryngium cuneifolium 16 30.0 21 1.19 16.0 0.054 0.445 0.954 
Dicerandra frutescens 13 24.5 18 1.18 7.7 0.031 0.030 0.999 
Warea carteri 23 25.4 25 1.10 6.8 0.025 0.304 0.989 
Hypericum cumulicola 34 28.2 18 1.08 6.2 0.023 0.724 0.937 

All Species (473) 13 NA 16.5 1.53 34.2 0.113 0.224 NA 
Endemic Species (81) 6 NA 17.8 1.39 26.3 0.063 0.248 NA 
Mixed Animal Mating (64) 9 NA 14.4 1.43 29.2 0.090 0.216 NA 
Gravity-Dispersed (161) 10 NA 16.9 1.45 29.8 0.101 0.277 NA 
Short Lived Perennial Herbs (119) 9 NA 7.1 1.40 28.0 0.096 0.233 NA 

NP: Number of populations; NI: Mean number of individuals sampled per population; L: Number of loci; AIL: Mean 
alleles per locus; PLP: Mean percent loci polymorphic; H.: Expected heterozygosity; F ST: Proportion oftotal variation found 
among populations; GI: Nei's Genetic Identity; NA: Data not available. 

potential habitat). Comparisons of known species distributions with soil survey data (Carter et 
al. 1989, Ford et al. 1990) allowed us to define the habitat and soil preferences of each species. 

Life span information was obtained from a series of long-term (up to 11 years) demo
graphic studies of each species. Perennial plants were studied using permanently marked or 
mapped plants in quadrats or macroplots at Archbold Biological Station, Highlands County, 
Florida and other sites (Menges 1992, Menges and Kimmich 1996, Menges and Gordon 1996, 
Quintana-Ascencio and Morales-Hernandez 1997, Thomas et al. 1998, Menges et al. 1999). We 
annually counted plants of the annual Warea carteri in defined areas at many sites (Menges 
and Gordon 1996). In addition, we studied temporal demographic stability in population size 
in permanent plots. Responses to fire were examined in many of these studies as well as ob
tained from a more general survey (Menges and Kohfeldt 1995, Menges and Hawkes 1998). We 
characterized the breeding systems and pollinator movements for each species based on indi
vidual detailed studies of each species (Menges et al. 1998, Evans et al. 2000). Primary seed 
dispersal inferences were made from laboratory experiments in still air (Menges et al. 1998). 

Rankings of species for various genetic measures were made, and compared to rankings 
based on non-genetic data. We used six species sampled from multiple populations in the rank
ing analysis, since we were able to sample only one population of Dicerandra christmanii. The 
small number of species precluded the use of rank statistics. 

RESULTS 

A Comparison of Species: Overall Patterns of Genetic Variation 

Results of the allozyme analysis varied widely among species (Table 1). Between 11 and 
25 loci were clearly and consistently resolved. Among species, alleles per locus (AIL) ranged 

Figure 2. Ranges of seven endemic species of Florida scrub plants, showing the Lake Wales Ridge, 
known occurrences (all circles) and populations sampled (closed circles) for genetic analysis; a) Dicerandra 
spp., Eryngium cuneifolium, Hypericum cumulicola; b) Liatris ohlingerae, Nolina brittoniana, Warea carteri. 
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Figure 3. Expected heterozygosity for each of seven Florida scrub endemic plants, in comparison 
to published means for comparable groups from Hamrick and Godt (1989). 

from 1.08-1.46, the percentage of loci polymorphic (PLP) spanned 6-31%, and expected het
erozygosity (Ii.,) varied from 0.023-0.121 (Table 1, Figure 3). Compared to a previously pub
lished survey (Hamrick and Godt 1989), 20 of 21 of these population-level genetic statistics for 
these Florida scrub species (7 species, 3 comparable statistics for each) were lower than means 
for all plant species (Table 1). The exception was Liatris ohlingerae, which had a greater value 
for H" (0.121) than the mean for all species (0.113). Florida scrub genetic variation was also 
generally lower than means for endemic species (15/21 statistics; 3 of the 6 exceptions were L. 
ohlingerae [AIL, PLP, H,,]; also Dicerandra christmanii [AIL and He], and Nolina brittoniana 
[H.,]; Table 1). Comparisons to species with mixed mating systems, to species with gravity 
dispersed seeds, and to short-lived herbs (Hamrick and Godt 1989) showed lower values for 
comparable species of Florida scrub (Table 1). L. ohlingerae, with relatively high values, is self
incompatible, with wind dispersal and a long life span. 

Among the seven species, rankings based on AIL, PLP, and He were identical (Table 1). 
In order from greatest value to least, the species ranks were, Liatris ohlingerae > Dicerandra 
christmanii > Nolina brittoniana > Eryngium cuneifolium > D. frutescens > Warea carteri > 
Hypericum cumulicola (Figure 3). 

The distribution of genetic variation among populations varied widely among species. 
Values for F ST showed that 3-72% of species' genetic variation were found among populations 
(Table 1). Hypericum cumulicola had notably higher differentiation among populations (FST = 
0.72) than any of the other species (0.03 < F ST < 0.45). Two of the six species (L. ohlingerae, 
D. (rutescens) had F ST values below the published means for all species, endemics, species with 
mixed-mating systems, gravity-dispersed species, or short-lived herbs. Nei's genetic identities 
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Table 2. Population size, range information, habitats, and soils occupied by each Florida scrub 
endemic species in the study 

Medi-
an 

Pop Counties·· Ridges; 
Sp· Size (no. of pops) (no. of pops) Habitats:j::j: Soils··· 

La 170 H (21), P (9) LWR (30), WHR (1) RS,SF XW,MG 
De 799 H (central) LWR YSS (OP) XY 
Nb 35 H (30), P (11), L (4), 0 (3) LWR (43), WHR (2), OR (3) YSS, SH, SF, RS XW,XY,MG 
Ee 4280 H (southern) LWR RS (OP) XW 
Dr 350 H (11), (so.), P (2) LWR YSS (OP) XY 
We 37 H (15), P (8) LWR YSS, SH, SF XY,MG 
He 539 H (31), P (3) LWR (30), PU (1) RS (OP) XW 

* Species code, see Table 1 for complete names. 
** H = Highlands; P = Polk; L = Lake; 0 = Orange. 
:j: LWR = Lake Wales Ridge; WHR = Winter Haven Ridge; OR = Orlando Ridge; PU = Polk Upland. 
:j::j: RS = rosemary scrub; YSS = yellow sand scrub; SF = scrubby flatwoods; SH = sandhill; (OP) = open microsites 

only. 
*** XW = xeric white; XY = xeric yellow; MG = mesic gray. 

(Nei 1978) were high for all species (Table 1). Values ranged from 0.94 for H. cumulicola to 
0.99 for D. frutescens. 

Distributions, Population Sizes, and Habitat Specificity 

All seven species are endemic to central Florida (mainly along the LWR; Figure 2, Table 
2) and are endangered mainly by habitat loss (USFWS 1998). Dicerandra christmanii has the 
narrowest range, confined to five small populations within a few kilometers of one another on 
the central L WR. Eryngium cuneifolium is restricted to the southern end of the L WR. Dicer
andra frutescens is found mainly on the southern LWR with disjunct and morphologically dis
tinct populations on the northern LWR in Polk County (N. Bissett, pers. comm.). Hypericum 
cumulicola and L. ohlingerae occupy the southern ¥.J of the LWR. Nolina brittoniana's distri
bution extends north and east onto the Orlando Ridge, west onto the Winter Haven Ridge, and 
was historically reported from a disjunct site in Hernando County (Florida Natural Areas In
ventory 1989). Warea carteri is found along the full length of the LWR. Historically, W. carteri 
was also known from the Atlantic Coastal (Brevard County) and Miami Rock Ridges (Broward 
and Dade Counties, Florida Natural Areas Inventory 1989), although neither of these areas 
currently supports this species. 

Populations occur discontinuously across the species' ranges since suitable habitat is nat
urally patchily distributed and now increasingly fragmented by development. In addition, not 
all apparently suitable habitat patches are occupied, adding to the discontinuity in population 
distributions (e.g., Hypericum cumulicola, Quintana-Ascencio et al. 1998). Where plants are 
found, however, all species can occur in locally dense concentrations. Population sizes vary 
within and across species, being generally in the dozens of individuals for N. brittoniana and 
W. carteri, several hundred for L. ohlingerae, D. frutescens, and H. cumulicola, and often in the 
thousands for E. cuneifolium (Table 2). These population sizes may be partly a consequence of 
fire suppression or other recent historical factors and may not be typical of historical abundance 
patterns that genetic surveys reflect (Prober et al. 1998). 

All species are restricted to excessively well-drained soils of xeric uplands and are more 
or less specialists for scrub or scrub and sandhill vegetation types (Table 2, see Abrahamson 
et a1. 1984 and Menges 1999 for habitat descriptions). Eryngium cuneifolium and H. cumulicola 
are restricted to xeric white sands of rosemary scrub (Menges and Kimmich 1996, Quintana
Ascencio and Morales-Hernandez 1997). Dicerandra christmanii and D. frutescens are found 
only in openings in yellow-sand scrub (Abrahamson's southern ridge sandhill; Menges 1992, 
Menges et a1. 1999). Liatris ohlingerae, N. brittoniana and W. carteri are less specialized: 
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Table 3. Life history traits of seven endemic species of the Lake Wales and adjacent ridges 

Est. Max. Propagule 
Lifespan Dis· Postfire Pollinators! 

Sp* (years) persal** (m) Response Breeding System Movements 

La >10 0.66 Resprouter Outcrossed ButterfiiesILong 
De 5-10 1.32 Obligate seeder Mixed Bee FlylLong 
Nb >10 (6.53)** Resprouter Outcrossed GeneralistsILong 
Ee 5-10 1.32 (1.36) Primarily Seedert Mixed Generalists/variable 
Df 5-10 1.30(tt) Obligate seeder Mixed Bee FlylLong 
We 1 1.89 Obligate seeder Mixed, High Self GeneralistsN ariable 
He 5-10 0.62 (0.95) Obligate seeder Mixed Specialists/Short 

* Species code, see table 1 for complete names. 
** Estimated horizontal distance of primary propagule dispersal in meters, using data from laboratory trials in still air 

(Menges et al. 1998). Seeds are the main dispersal propagule for most species. Fruit disperse in Nolina brittoniana. For 
Eryngium cuneifolium, Hypericum cumulicola, and Dicerandra spp., both seed dispersal and fruit dispersal (distance in 
parentheses) are possible. Wind dispersal for Liatris ohlingerae may take propagules further. 

t Very weak resprouter. 
tt Fruits also disperse, but not as far as seeds (Finer and Menges, in prep.) 

L. ohlingerae is found in scrubby flatwoods and rosemary scrub, while N. brittoniana is in both 
of these habitats plus xeric hammocks and sandhills. Warea carteri occurs in sandhills, scrubby 
flatwoods, and yellow-sand scrub. 

Life History Characteristics 
All species, except the annual W. carteri, are perennial herbs with moderate (on the order 

of 5-10 years) to long life spans (L. ohlingerae, N. brittoniana; Table 3). Nolina brittoniana and 
L. ohlingerae are resprouters with relatively stable demography and low annual turnover (Tho
mas et al. 1998, Menges unpubl.; Herndon, pers. comm.). The other five species rarely survive 
aboveground disturbances such as fire (Menges and Kohfeldt 1995) and, therefore, have lower 
demographic stability. Of these five, the four perennials (E. cuneifolium, H. cumulicola, D. 
frutescens, and D. christmanii) exhibit high turnover and are sensitive to post-disturbance com
munity development (Menges 1992, Menges and Kimmich 1996, Quintana-Ascencio and Mo
rales-Hernandez 1997, Menges et al. 1999). The annual W. carteri demonstrates the most pro
nounced population fluctuations, which in natural sites are closely tied to the occurrence offire 
(Menges and Gordon 1996). 

Breeding systems and pollinator movements vary among these seven species (Table 3). 
Dicerandra christmanii, D. frutescens, H. cumulicola, E. cuneifolium and W. carteri have at least 
some degree of mixed mating systems, with selfing relatively common in W. carteri (Evans et 
al. 2000) and inbreeding depression evident in D. frutescens (Menges et al. 1998). On the other 
hand, N. brittoniana is subdioecious and L. ohlingerae is an obligate outcrosser (Menges et al. 
1998). Pollinator movements are probably very limited in H. cumulicola, which is visited by 
solitary trap-lining bees, but may include longer distances in L. ohlingerae, which is butterfly 
pollinated (Menges et al. 1998). The other species are pollinated either by suites of specialists 
that include wide-ranging insects, or by locally-abundant, strong-flying specialists, and proba
bly have intermediate pollen movements. 

None of the study species are specialized for animal-mediated seed dispersal. Estimated 
primary seed dispersal in still air was under 1.5 m in five of the six species, but was somewhat 
longer in N. brittoniana (Table 3). Secondary dispersal by wind and water may be important 
in such species as L. ohlingerae (field observations) and D. frutescens (Finer and Menges, in 
prep.), but is unlikely to move seeds much beyond a few meters from the parent plant. 

Genetic Diversity Rankings Among Species 
A comparison of genetic variation with life history factors indicates a concordance of 4 of 

8 life history traits with genetic variation. In general, genetic variation was greatest in longer
lived, demographically stable, outcrossing species with greater pollinator movements. For the 
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Table 4. Comparisons of ranking of genetic variation (expected heterozygosity; He; Table 2) 
and rankings of eight factors that could influence genetic variation for six scrub plants sampled 
from multiple populations. Highest values (predicted to be correlated with higher genetic vari
ation) are indicated by "1" in the rankings. See notes for information on each ranking 

Species 
Code Demo- Popula-

(Table Breeding graphic Pollina- Seed tion 
1) He Life Span System Stability tion Dispersal Size 

La 1 1 1 1 1 4 4 
Nb 2 1 1 1 1 1 6 
Ee 3 2 2 2 2 3 1 
Dr 4 2 2 2 1 3 3 
We 5 3 3 3 2 2 5 
He 6 2 2 2 3 4 2 

NOTES 
Life span: 1 = long-lived perennial; 2 = short-lived perennial; 3 = annual (Table 3). 
Breeding System: 1 = outcrossing; 2 = mixed; 3 = mixed, primarily inbreeding (Table 3). 
Demographic Stability: 1 = resprouter; 2 = perennial seeder; 3 = annual seeder (Table 3). 

Habitat 
Special-

Range ization 

2 2 
1 1 
6 4 
4 4 
3 2 
5 3 

Pollination: 1 = generalist, long-distance; 2 = generalist, mixed distances; 3 = specialist, short-distance (Table 3). 
Seed Dispersal: 1: >5 m; 2: 1.5-2 m; 3: 1-1.5 m; 4: 0-1 m (Table 3). 
Population Size: Median population size rank (Table 2). 

Range: Ranking for geographic range (1 = widest; 6 = narrowest). 
Habitat Specialization: 1 = found in 3 types of vegetation, 3 groups of soils; 2 = found in 2 types of vegetation, 2 groups 

of soils; 3 = found primarily in one type of vegetation, one group of soil; 4 = restricted to one type of vegetation, one group 
of soiL Vegetation types for this classification are yellow-sand scrub, rosemary scrub, scrubby flatwoods, and sandhilL Soil 
groups for this classification are listed in Table 2. 

six species with genetic data from multiple populations, the rankings of expected heterozygosity 
were consistent with life span, demographic stability, outcrossing, and pollinator movements 
(Table 4). In each case, the concordance of rankings was nearly perfect. Rankings for four other 
factors (seed dispersal, median population size, geographic range, and habitat specificity) were 
inconsistent with the rankings for genetic variation (Table 4). 

For the four factors with nearly concordant rankings with expected heterozygosity, each 
had one inconsistency. Three of the four life-history inconsistencies included W. carteri, which 
was predicted to have lower genetic variation than H. cumulicola on the basis of its shorter 
life-span, less-stable demography, and tendency for inbreeding. These two species were cor
rectly ranked on the basis of pollinator movements (being shorter in H. cumulicola). D. frutes
cens was predicted to have higher genetic variation than E. cuneifolium because it may have 
proportionately more longer-distance pollinator movements, although exact pollinator move
ment distances are poorly known. In actuality, D. frutescens had lower expected heterozygosity 
than E. cuneifolium (Table 4). 

DISCUSSION 

Comparative Genetics of Scrub Plants 

Genetic variation is often correlated with a particular set oflife-history traits (e.g., Love
less and Hamrick 1984, Hamrick et al. 1991, Gitzendanner and Soltis 2000). One would expect 
low genetic variation in our seven study species due to their narrow ranges, relatively short 
lifespans, limited seed dispersal, and (for five of seven species) self-compatible breeding sys
tems. Of these species, only Nolina brittoniana has more than two of the traits associated with 
high genetic diversity. 

Accordingly, we found low genetic diversity. Among our seven study species, six of seven 
have lower expected heterozygosity than most plant species and all had lower expected hetero
zygosity than the mean than published means for species with similar ecological traits (Ham
rick and Godt 1989). Other genetic statistics were also generally lower than found in compa
rable plant groups. 
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Liatris ohlingerae was one of three species in our study with higher He than the published 
mean for narrow endemics, and with relatively high values for two other genetic statistics, 
although still below the all-species means. Its outcrossing, self-incompatible breeding system 
would predict high genetic diversity (Hamrick et al. 1991). Liatris ohlingerae is pollinated by 
highly mobile butterflies, which could create high gene flow, mixing all but the most isolated 
populations. Accordingly, L. ohlingerae was one of two study species with a lower FST value 
than the comparable literature mean. Similarly, the endemic Liatris hellii maintained fairly 
high levels of genetic diversity, although its populations were somewhat differentiated (Godt 
and Hamrick 1996). 

Because N. brittoniana has a number of life history traits (long-lived, outcrossing, dioe
cious, relatively widespread, relatively well dispersed) often associated with high genetic vari
ation, we expected this species to be highly variable. However, small local population sizes 
combined with elonal growth may act to limit genetic variation. Nolina brittoniana has the 
third highest level of genetic diversity of all the study species (Table 1). We detected no unique 
alleles in N. brittoniana, but we did find some suggestion of population differentiation based 
on local alleles and clines in allele frequencies (Dolan et aI., in prep.). 

Dicerandra christmanii has a surprisingly high level of genetic diversity (He = 0.088). 
Factors that would have predicted low variation include its extremely limited distribution 
(Huck et al. 1989), microhabitat specificity (Menges et al. 1999), and ability to set seed with 
self pollen (Menges et al. 1998). Small populations may be isolated in small patches of suitable 
microhabitats. Selfing and inbreeding among these few plants would be likely, which would 
tend to decrease heterozygosity. Although capable of selfing, D. christmanii is predominantly 
an outcrosser (Huck 1987, Menges et al. 1998). Genetic variation may therefore reflect the 
large population sizes and predominant outcrossing in large, contiguous habitat fragments be
fore widespread habitat fragmentation (Prober et al. 1998). 

The other study species have various life history traits but very low genetic variation (He 
< 0.06). For both D. frutescens and Eryngium cuneifolium, we sampled the majority of known 
populations, but found low levels of genetic variation. Variation in E. cuneifolium differed be
tween our study (16 populations, 21 loci) and a prior survey of 2 populations with 31 loci 
(McDonald and Hamrick 1996; see discussion in Dolan et al. 2000). Our study of 13 D. frutescens 
populations (18 loci) detected consistently lower levels of genetic variation than found by 
McDonald and Hamrick (1996) in 2 populations, 17 loci. 

Both D. frutescens and E. cuneifolium had unique alleles (Yahr et al., in prep.). The in
termediate level of F ST in E. cuneifolium (0.445) is accompanied by its high number of locally 
rare alleles (found in fewer than five populations at a frequency less than or equal to 0.1; Yahr 
et aI., in prep). Gene flow in E. cuneifolium may occur infrequently enough to keep these often 
large, but frequently isolated populations, relatively differentiated. 

Dicerandra frutescens on the southern L WR, with almost no population differentiation 
(FsT = 0.031), was historically distributed more or less contiguously along a high yellow-sand 
ridge that has only been fragmented within the last 40-60 years. This historical distribution 
presumably would have permitted a substantial level of gene flow among populations. In ad
dition, the bee-fly pollinator of D. frutescens, Exprosopa fasciata (Diptera; Bombyliidae), is a 
long distance flier and may have once been responsible for long distance pollen movements 
(Deyrup and Menges 1997). One D. frutescens population with a rare allele, found in the disjunct 
northern part of its range, may be part of a separate subspecies (N. Bissett, pers. comm.). 

Whereas all the other species are perennial herbs with lifespans of at least 5-10 years, 
Warea carteri is an annual. Although its populations can persist for years within a seed bank, 
aboveground populations tend to be somewhat transient, peaking after fire or some kinds of 
mechanical disturbance and often subsequently disappearing aboveground (Menges and Gordon 
1996). Dramatic annual and fire-related population size fluctuations may help explain low pop
ulation differentiation (low FsT) and low genetic diversity. Many populations likely remain un
sampled since they are located only as a seed bank belowground. Warea carteri has two alleles 
with north-south elinal patterns (Evans et al. 2000). 

Hypericum cumulicola had the lowest He of any species in this study, but with relatively 
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high levels of population differentiation within (Quintana-Ascencio et aI. 1998) and among pop
ulations (F ST = 0.724, also Dolan et aI. 2000). These values indicate that there could be addi
tional undetected alleles within both sampled and unsampled sites. Of the 34 populations sam
pled, we found rare or unique alleles in over half (Yahr et al., in prep.). This differentiation 
may result from very limited pollinator movement and hence gene flow among populations. 
Sytsma and Schaal (1985) hypothesized that the genetic structure of Lisianthus skinneri, a 
plant with a similar combination of self compatibility, short pollinator movements and high 
population differentiation, may be a result of founder populations and the strong influence of 
drift. Similarly, breeding system and pollination mode explained allozyme variation among 
three herbs species in an agricultural landscape in Norway (Berge et aI. 1998). 

Several factors were associated with differences in genetic variation among the six species 
sampled from multiple populations. Genetic diversity was highest for longer-lived perennials, 
species with stable demography, outcrossing species, and species with greater pollinator move
ments. Rankings of the six species for these four traits were almost perfectly ordered with 
rankings for He and other genetic statistics (Table 4). The combination of these four traits fits 
both Liatris ohlingerae and Nolina brittoniana. In particular, these two species can resprout 
following fire, so their population sizes are relatively stable through fire cycles. The four short
er-lived perennial plants and the annual W. carteri have strongly fluctuating population sizes 
through fire cycles, and may suffer bottlenecks due either to individual fires or fire suppression. 

Population size, habitat specificity, geographic range, and primary seed dispersal were 
not related to the amount of genetic variation of populations or species. Although genetic vari
ation is often positively associated with population size (e.g., Dolan 1994, Raijmann et aI. 1994, 
Fischer and Matthies 1998, but see Shapcott 1994), the surveyed population sizes may be poor 
statistics for two reasons. First, because populations naturally fluctuate, our samples were not 
in stable demographic or genetic equilibrium. Habitat loss is also relatively recent (mainly in 
the 1900s, and accelerating since 1950). As a result, the distribution of alleles in the populations 
we sampled may be in flux, a hypothesis supported by the many loci we found that were not 
in Hardy-Weinberg equilibrium (Menges et aI. 1998, Dolan et aI. 2000). Similarly, in a survey 
of the relationship between within-species genetic variance and population size in 10 plant 
species, Ellstrand and Elam (1993) suggested that the three species that did not have a positive 
association were not in a stable genetic equilibrium. Finally, our definition of population bound
aries was arbitrary, and we were unable to quantify plant densities in nearby patches, which 
may contribute to larger effective population sizes. 

Current geographic range was poorly related to the overall levels of genetic variation 
among species in this study, consistent with studies of Polygonella species (Lewis and Crawford 
1995). Factors other than geographic range often determine relative levels of genetic variation 
among species (Karron 1991). We also found no association of habitat specificity with narrow 
genetic variation, in contrast with expectations based on positive genetidenvironmental cor
relations (Gray 1996) or strong selection imposed by unusual conditions (Aitken and Libby 
1994). 

Although long-distance seed dispersal may preserve overall genetic variation by keeping 
small populations connected to larger populations, six of our seven species have very limited 
seed dispersal (less than 2 m). The lack of variation in primary seed dispersal distances may 
account for its lack of association with genetic variation. 

Gene flow probably varies among our study species, judging by variation in rare alleles 
(Yahr et aI., in prep) and in FsT, which can both be used to estimate gene flow (Slatkin 1985, 
Slatkin and Barton 1989). However, in cases with low gene flow and unsampled nearby pop
ulations, gene flow may be underestimated by an analysis of allele frequency since nearby 
unsampled populations could harbor the presumed unique alleles. Our sampling was designed 
to exclude all populations within 1.6 km of those that we sampled so we may have missed 
evidence of a stepping-stone model of gene flow between neighboring populations. Additionally, 
such models assume genetic equilibrium, a condition our sampled populations may not meet. 
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Implications for Conservation 

While these seven species have generally low levels of genetic variation, our analyses 
suggest that there are important differences among some populations that could be related to 
adaptive traits allowing persistence under future, varying environments. As populations be
come further isolated by habitat fragmentation, the smallest populations may lose genetic vari
ation and the species may lose rare or unique alleles [although effects of habitat fragmentation 
on genetic losses, differentiation, and gene flow may be unpredictable (Young et aI. 1996). While 
some small populations should be protected to keep these rare alleles (Yahr et aI., in prep.), 
species conservation may be best served by protecting larger areas that support groups of pop
ulations that can respond to spatial and temporal variation, including variation in the fire 
regime, without genetic impoverishment. 

Our estimates of gene flow, inferred from distributions of genetic variation among pop
ulations and observations of pollinator movements, also may affect conservation decisions. Pop
ulations of H. cumulicola are apparently somewhat isolated, and preserved areas may need to 
be large enough to support genetically viable populations of this species. At the other extreme, 
L. ohlingerae apparently retains gene flow among sparsely-distributed patches of plants, mainly 
through long-distance pollinator movements. 

These comparisons demonstrate that co-occurring narrowly endemic species can have a 
diversity of genetic patterns (see also Prober et al. 1990). Many factors (in the case of these 
Florida scrub species: life span, demographic stability, breeding systems, and pollinator move
ments) can potentially influence the amount and distribution of genetic variation. Because 
these species are phylogenetically unrelated, ranging two orders of magnitude in number of 
species per genus and with genera ranging in distribution from global to local (Willis 1973), 
their historical and biogeographic origins vary widely. These historical differences would con
tribute to observed differences in genetic patterns (Gitzendanner and Soltis 2000), despite ap
parently similar selective pressures (fire, naturally fragmented habitat, limited distribution, 
xeric soils). 

It is unlikely that informed conservation decisions requiring detailed knowledge of genetic 
and demographic patterns can be made without direct study of the individual species of concern, 
especially for inbreeding species (Schoen and Brown 1991). Further loss of genetic variation 
due to habitat loss and fragmentation will impact the genetic variation of these species differ
ently depending on their levels of genetic variation, spatial patterns in genetic variation, de
mographic traits, and levels of gene flow. Therefore, single conservation strategies are unlikely 
to achieve genetic conservation goals for suites of species. 
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