Constructions and Enumeration Methods for Cubic Graphs and Trees

Erica R. Gilliland
Butler University

Follow this and additional works at: http://digitalcommons.butler.edu/ugtheses
Part of the Discrete Mathematics and Combinatorics Commons

Recommended Citation

Gilliland, Erica R., "Constructions and Enumeration Methods for Cubic Graphs and Trees" (2013). Undergraduate Honors Thesis Collection. 360.
http://digitalcommons.butler.edu/ugtheses/360

BUTLER UNIVERSITY HONORS PROGRAM
 Honors Thesis Certification

Please type all information in this section:

Applicant	Erica R. Gilliland
(Name as it is to appear on diploma)	
Thesis title	Constructions and Enumeration Methods for Cubic Graphs
	and Trees

\qquad
Intended date of commencement May 11, 2013

Read, approved, and signed by:

For Honors Program use:
Level of Honors conferred: University Magna (um Lade
Departmental Mathematics with Highest Honors
Acturial Science with High Honors University Honors Program

Constructions and Enumeration Methods for Cubic Graphs and Trees

Erica R. Gilliland

A Thesis Presented to the
Department of Mathematics
College of Liberal Arts and Sciences and Honors Program
of Butler University

In Partial Fulfillment of
the Requirements for Graduation Houors

Submitted: April 23, 2013

Constructions and Enumeration Methods for Cubic Graphs and Trees

Erica R. Gilliland
Under the supervision of Dr. Prem Sharma
Submitted: April 23, 2013

Contents

4
1 Introduction 5
1.1 Basics of Graph Theory 9
1.2 Some Examples of Graphs12
2 Cubic Graphs 14
2.1 LCF Notation
16
16
2.2 Construction of Cubic Graphs 20
2.3 Cubic Cages
20)
20)
2.3.1 Bounds on the Order of Cubic Cages
2.3.1 Bounds on the Order of Cubic Cages 22
2.3.2 Known Cubic Cages24
3 Isomers of Alkanes 26
3.1 Rooted Trees 28
3.2 Centroid(s) of a Tree
31
31
3.2.1 Centers versus Centroids
32
32
3.2.2 Methods for Finding a Centroid. 35
3.3 Ennmerating Unlabeled Treos
35
35
3.3.1 Historical Backgromad
35
35
3.3.2 Counting Rooted Trees of Order n
3.3.2 Counting Rooted Trees of Order n
36
36
3.3.3 Forming a Theo from a Centroid
3.3.3 Forming a Theo from a Centroid 37
3.3.4 Algoritlim for Counting39
4 Conclusion
A Appendix 40
A. 1 Planar Graphs 40
A. 2 Group Theory 41
A.2.1 Group Actions 42
A.2.2 Symmetries of a Regular n-gon 12
A. 3 The Necklace Problem 43

1 Introduction

The goal of this thesis is to study two related problems that, in the broadest terms, lie in a branch of mathematics called graph theory. The first problem examines some new techniques for constructing a Hamiltonian graph of least possible order and having a preassigned girth, and the second concerns the enmmeration of a certain type of graphs called trees.

Graph theory is a highly developed subject with scores of textbooks and thousands of rescarch articles devoted to it. The origins of graph theory predate Euclid's Elements, written c. 300 B.C. It was around 400 B.C. that Plato and his disciples proved that only five perfect polyhedra can exist in the 3 -climensional space we live in. Euclid's Elements Book XIII, devoted to the construction of these polyhedra, enmerates them this: the tetrahedron (four triangular faces), the cube, the octahedron (eight triangular faces), the dodecahedron (12 pentagonal faces), aud the icosahedron (20 triangular faces) [2]. According to the famed British philosopher and mathematician Bertrand Russell, "Elements is certainly one of the greatest books ever written." It is only fitting that an account of these so-called Platonic solids be a part of this hallowed book.

The five perfect polyhedra are much more than simply geometric specimens of perfection in nature. They contain the seminal idea behind what we today call the regular graphs. In fact, the tetrahedron, the cube, and the dodecahedron, considered in terms of their vertices and edges (ignoring the faces), are all culbic graphs, and the remaining two solids are regular graphs but not cubic. Fnexplicably, the idea of graph theory had to wait nearly another two millenia after Plato's cliscovery for a systematic development of this subject; even then, it was by a shear happenstance that the idea sprang up. There were seven bridges across the river that flowed through the town of Königsberg. The Sunday strollers in the town always wondered if it was possible to cross all the seven bridges without crossing any bridge more than once. This problem ultimately got conveyed to the great mathematician Euler, who analyzed the problem by sketching a schematic diagram of the placements of the bridgos relative to the banks of the river and to each other and proved conclusively that the stroller's conjecture was indeed mathematically impossible. Euler's approach to solving the problem marked the rite of passage for graph theory to become a serions topic of mathematical study.

1.1 Basics of Graph Theory

Definitions

A graph G is an ordered pair of disjoint sets (V, E) such that E is a collection of 2-subsets of V : V is the set of vertices and E the set of edges of G. The order of G is simply the number of vertices, $|V|$. A graph of finite order is called a finite graph. In this study, all graphs are assumed (0) be finite. The weight of G, denoted by $u(G)$ or simply by u, is the number of edges, $|E|$.

The colge $\{x, y\}$ is said to join the vertices x aud y and is denoted by $x y$. The edge $x y$ is the same as y, x. The vertices x and y are the endvertices of $a y$. If $x y \in E$, theu x and y are adjacent or neighboring vertices of G aud are said to be incident with the edge $x y$. Two adjacent edges have exactly one common endrertex. The complement of $G=(V, E)$, denoted \bar{G}, is the graph on the vertex set V such that for auy distinct vertices x and y in $V, x y$ is an edge in $\bar{G} \Longleftrightarrow x y \notin E$.

There are structures similar to graphs called pseudographs. For example, a directed graph is one in which the edges are taken as a set of ordered pairs (x, y) of vertices. In such a pseudograph, exactly one of the ordered paits (r. y) or (y, x) is chosen as an edge. If an ordered pair (x, x) is allowed as an colge it is called a loop. Sometimes weghts are assigned to edges to get what we call weighted graphs.

Even though we have dofined a graph as a pair (V, E), we natally do not think of a graph in those terms. Instcad. we draw a diagram in which vertices are represented by dots (in bold) and edges by line segments (not necessarily straight). For more discussion on different drawings of graphs. see the Appendix. A diagran of a graph is only intended to conver the incidence relation between vertices and edges in the graph and has no other geonetrical significance. The same graph can usmally be drawn in many different wass that may appen quite different from cach other. Consider the following example.

Example 1:

The following two diagrams both represent the graph $G=(V, E)$, where $V=\{a, b, c, d\}$ and $E=\{a b, b c:, c d, d a\}$.

Naturally the question arises: Fow can one tell by looking at two diagrans whether they represent the same graph or not? To answer this question, we introduce the notion of an isomorphism of graphs. Two graphs $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ are said to be isomorphic if there is a hijection $f: V_{1} \rightarrow V_{2}$ such that $\forall x \forall y\left[x y \in E_{1} \longleftrightarrow f(x) f(y) \in E_{2}\right]$. Such a bijection is called an isomorphism from G_{1} onto G_{2}. If no isomorphism exists from G_{1} onto G_{2}, then the G_{1} and G_{2} are nonisomorphic. An isomorphism from a graplı G onto itself is called an automorphism of G. The set of automorphisms of a graph G, denoted by $\mathcal{A}(G)$. Forms a group under composition (see Appendix for more information on gronps).

Example 2:

The following two diagrams show a graph and its complement side-by-side.

Though the two diagrans appear guite different, the two graphs are in fact, isomorphice.

Definitions

The degree of a vertex $x \in V$, demoted deg(x), is dofined as the mumber of vertices that ane joined to x. A pendant vertex is of degree one. A vertex of degree zero is called an isolated vertex. A graph $(x$ is said to be k-regular if each vertex of G has degree h. B-regular graphs ate called cubic graphs.

Theorem 1.1 (Handthaking Lemmat). In a graph $\left(i=(V, E)\right.$. $\sum_{r \in V} d(g(x)=2|E|$.

Proof. Each edge contributes a come of two towards the sum of degrees. Thus $\sum_{x \in 1}$ deg $(x)=2|E|$.

Corollary 1.2. In a finite graph, the mumber of vertices of odd degree is aluays even.

If $G=(V, E)$ and $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ are graphs such that $V^{\prime} \subset V$, and $E^{\prime} \subset E$, then G^{\prime} is said to be a subgraph of G. If $G=(V, E)$ is a graph and $r \in V$, the subgraph obtained by deleting r (and all edges that contain x) is denoted by G / x. Similarly. if $A \subset V$, then $(G / A$ is the subgraph obtained from G by deleting all the vertices in A (along any edge incident with at least one vertex in A).

Two vertices x and y of a graph G are called similar and we write $x \sim y$ if there exists $f \in \mathcal{A}(G)$ such that $f(x)=y$. Obvionsly, for x and y to be similar, it is necessary that the degree of a be same as that of y. In particular, an isolated vertex can only be similat to an isolated vertex and a pendant vertex only to a pendant vertex. Similarity of vertices is an equivalence relation on V. and so it partitions V into equivalence classes called the similarity classes. The mumber of similarity chasses of pendant rertices of G is denoted by scp (G).
Theorem 1.3. If tuo graphs are isomorphic. then the graphs resulting from romoning their pendant verties are also isomorphice.

Proof. Suppose $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ are isomorphic graphs. Let $P_{1} \subset V_{1}$ and $P_{2} \subset V_{2}$ be the sets of all pendant vertices in G_{1} and G_{2} and $\operatorname{let} f: V_{1} \rightarrow V_{2}$ be an isomorphism of G_{1} and G_{2}. Since misomorphism maps a pendant vertex to only a pendant vertex. f is also an isomorphism from P_{1} to P_{2} as well as from V_{1} / P_{1} to V_{2} / P_{2}. Therefore, the graphe restalting from removing the pendant vertices of G_{1} onto G_{2} are isomorphice.

Definitions

A walk in a graph (B is defined as an attemating secpucnce of vertices and edges. sumeh as

$$
W: x_{0}, x_{0}, x_{1}, x_{1}, x_{1} x_{2}, x_{2}, x_{2} x_{3}, x_{3}, \ldots, r_{k-1}, x_{k-1} x_{k}, x_{k}
$$

Such a walk is briefly written as W: $x_{0} x_{1} x_{2} r_{3} \ldots x_{k-1} \cdot r_{k}$ and is often referenced as an x_{0} - x_{k} walk. The length of W is the momber of eclges in W, or k A walk of longth 0 is called a trivial walk. If $x_{0} \neq x_{k}$, the walk is said to be open. If $x_{0}=x_{k}$, the walk is said to be closed. If no edge is repeated, the walk is called a trail. If no vortex is rejeated. the walk is ealled a path. A closed tail is called a circuit and a closed path is called a cycle. P_{n} denotes a path of length n and C_{n} denotes a cyelo of length n. The shortest cyele possible is C_{3}. A graph is said to be commected if there exists
a path between any two vertices. A graph is said to be disconnected if it is not comected. By a component of a graph G, we mean a comected subgraph of G which is not properly contained in any comected sulograph of G.

Definition 1 A comected graph that contains no cycles is called a tree. By a subtree S of a tree T, we mean a subgraph S of T that is also a tree.

Theorem 1.4. Any tree $T=(V, E)$ with $|V| \geq 2$, has at lenst two pendant vertices.

Proof. Since $|V| \geq 2, \exists x, y \in V$ such that $x \neq y$. Since T is connected, there is a path p between x and y. Let p_{0} be a longest path contaning the path p (such a path will exist because T is finite). Then each of the endpoints of p_{0} mist have degree 1 .

Theorem 1.5. If x is a pendant verter in a tree T, then the T / x is a subtree of T.
Theorem 1.6. $[6]$ For any tree $T=(V, E),|V|=|E|+1$.

Proof. We prove this theorem by inducting on the number of vertices in T. If $|V|=1$, then clearly $|E|=0$ and thas the equation $|V|=|E|+1$ holds in this case. Now assume that there exists a positive integer n such that the theorem holds for all trees having n vertices. Let T be a tree on $n+1$ vertiees. Then T has at least two pendant vertices. Let x be a pendant vertex in T. Then T / x is a tree on n vertiess, and b the induction hypothesis the theorem holds for T / r. Since T has exactly one more vertex and one more edge than T / x, the theorem holds for T as well. Hence for any tree $T,\left|V^{r}\right|=|E|+1$.

Definitions

If a trail contains all the odges in a graph, it is called an Euler trail or an Euler circuit, depending on if it is open or closed. If a path comtans all the vertices in a graph, it is called a Hamilton path or a Hamiltonian cycle, deponding on if it is opon or closed. A graph that contains a Hamilton cycle will be refercheed as a Hamilton graph in this paper. The girth of a graph G is the length of the shortest cycle in G and is denoted by g. A k -g graph is a k-regular graph whose girth is g. If a graph contans mo cyele, then we say that the girth of $(9$ is infinite. For given k and g a $k-!$ graph on the least mumber of vertiees possible is called a k-g cage. Another notation that is used to indicate a k - $-g$ graph is (k, g).

The distance betwecn vertices x and $!/$ in a graph. denoted $d(x, y)$, is the lougth of the shortest path between x and y. If there is no path between x and y, then $d(x, y)=x$. The eccentricity
$\epsilon(x)$ of a vertex $x \in V$ is $\max \{d(x, y): y \in V\}$. The diancter $\operatorname{diam}(G)$ of G is $\max \{\epsilon(x): x \in V\}$. The radius of $G, \operatorname{rad}(G)$, is $\min \{\epsilon(x): x \in V\}$. Any $x \in V$ for which $\epsilon(x)=\operatorname{rad}(G)$ is called a center of G. A graph G can have several centers. For example, a path of even order has two centers and a cycle has all its vertices as centers.

1.2 Some Examples of Graphs

Example 3 (The utility graph):
Suppose each of three houses a, b, c is to be hooked up with cach of three utilities e, s, and w (e for electricity, s for sewage, and w for water). In the figure below, cach of the two diagrams encodes the adjacency relationship between the houses and utilities completely; however, the left diagram shows too many edge-crossings becanse of a poor placement of the honses relative to the utilities. The right diagram contains only one edge--crossing. It can be proved that any placement of the six vertices of the utility graph in the plane will always lave at least one edge-crossiug. The following two diagrams are isomorphic as graphs, but not geometrically or topologically isomorphic.

Figure 1: The utility graph

What is an isomorphism?

In set theory, two sets X and Y are said to be isomomphe (equivalemt) if there is a bijection from X onto Y. The rationals \mathbb{Q} and the integers \mathbb{Z} are isomorphic as sets. Howerer, they are not isomorphice as additive groupss nor are they as linearly ordered sets. Similarly: the integers \mathbb{Z} and the positive integers \mathbb{Z}^{+}are isomomphic as sets but not as ordered sets (c.g., \mathbb{Z}^{+}is well-orlered whemas
\mathbb{Z} is not). In classical geometry, we consider two objects are isomorphic (identical, congruent) if it is possible to move one of them by a rigid transformation (translation. rotation, reflection) to ocempy exactly the same place as the other. In topology, two objects are said to be isomorphic (homeomorphic, topologically equivalent) if there is a contimous bijection from one onto the other with its inverse atso continuous. For example, the boundary of a square is homeomorphic to any simple enclosed curve (e.g. a circle or an ellipse). In graph theory, two graphs are isomorphic if there is an adjacency-preserving bijection between the vertiecs. Thus, whether two objects are isomorphic or not does not depend on the objects alone. but also on the categories in which choose to we place them.

Example 4:

Call two subsets S and T of the set $X=\{a, b, c\}$ neighbors if $|S \Delta T|=1$, where $S \Delta T=|S \cup T|-\mid S \cap$ $T \mid$. This defines an aljacency relation on the eight subsets of X which is encoded in the following diagrann.

The preceding graph contains the Itamiltonian cycle $\{n\} \rightarrow\{a\} \rightarrow\{a, b\} \rightarrow\{b\} \rightarrow\{b, r\} \rightarrow$ $\{a, b, c\} \rightarrow\{a, c\} \rightarrow\{c\} \rightarrow\{0\}$.

Definition

A function f from a set X to a set Y is called a coloring of X and the elements of Y are called the colors.

Example 5 (The necklace problem):

Suppose we want to string a neeklace with cight beads, each of which ean be any one of three given colors, say red, hue and white (or simply r, b, w). Nathematically, we will think of such a necklace as a regular octagon, with its vertices considered as beads. Naturally the question arises: How many such different necklaces are possible? The answer to this question depencls on what we mean by "different" necklaces.

The preceding diagrams illustrate three possible colorings of the necklace. Necklace 2 is obtained by rotating Necklace 1, and Necklace 3 by turning over Necklace 2. Are we to consider Necklaces 1 \& 2 the same? Should we consider all three necklaces the same? We now answer these questions systematically:

Let X represent the set of vertices and Y the set of colors. If the vertices of the octagon are labeded. then there are 3° different necklaces. because there are that many functions from X to Y. Now suppose we consider two colorings, f and g, to be the same if there exits a rotation of of the octagon such that $f=g \circ$ a. This relationship between f and g is an equivalence on the set of 3^{*} colorings. and it can be shown that there are exactly 83.4 equivalence classes. Thns, module the rotation group of the oetagon, there are 834 different neeklaces. Lastly, if we pernit both rotations and reflections to define the ergivalence relation on the set of 28 colorings. we can show that there are ouly 498 different neeklaces. To leam more about how we calenlated these numbers, see the Appendix.

In this thesis, we study two special categories of graphes called cubice grephes and trees. Both of these categories have been extensively studied. As in my branch of mathematics, there are an mutold mumber of open problems relating to them. The great mathematician Arthur (ayley (1821-1895) forged a singularly powerful method applying group theory (another prominent area of kuowledge in mathematies) to buide cubie graphe of as high a girth as ome may desire. It is to be noted that Cayleys method begins by first constructing a cubic tree and then obtains a cubic graph from the tree. In addition, we will also explore the concept of weight distribution at the vertices of a tree and
the existence of a special vertex (sometimes two) in a tree called the centroid(s). Together, these concepts will help nis to construct an algorithm for comnting a specific type of trees that represents the 2 -d graphes of alkane molecules.

2 Cubic Graphs

Recall that a cubic: cage of girth g is a cubic graph of girth g with the least possible number of vertices. Cubic graphs have been studied extensively by many fanous mathematicians. Molecular biologist and Nobel laneate Joshan Lederberg fomed important applications of cubic graphs to describe molecular structures.

By the Ifandshaking Lemma, the mumber of vertices in a cubic graph must necessarily be even. A cubic graph on $2 n(n \geq 2)$ vertices can easily be constructed by starting witla a regular $2 n$-gon and then joining each vertex to the one directly opposite to it. However. such a graph will always have girth $g \leq 4$. The following is an ontstanding open problem in cubic graphs:

For cach given positive integer g, determine the order of a culsic cage of girth g.

So far this problem has been setted for $3 \leq!\leq 12$. For higher values of g. only bounds are known. We now give cxamples of some cubic cages and Hamiltonian cubic graphs. Figure 2 is a cubic cage of girth theer; the complete bipartite graph $K_{3,3}$, which was shown in Figure 1, is a cubic cage of girth four. The Peterson graph (Figure 8) is a cubic cage of girth fire. Figure 5 is a cubic cage of girth six on 14 vertiecs.

Figure 2: (3,3) cage

Figure 3: A $(3,4)$ grapla on eight vertices a cube

Figure 4: Λ (3.6) Hamiltonian graph on 16 vertices

Figure 3 is a cubie graph on eight vertices of girth four. Since $K_{3,3}$ is a cubic cage of girth four but has only six vertices, the cube is not a cage.

2.1 LCF Notation

In 1995. American Nobel Prize wimuer Joshma Lederberg first developed a simplified notation for constructing cubic Hamiltonian graphs by starting with a Hamiltonian cycle [8]. The idea was later refined by Harold Coxeter in 1981 and Robert Frucht in 1976, thus deriving the name LCF notation. To use this notation, one starts with a Hiniltonian cycle and then adds more edges to it according to a suitable scheme. Let us explain the LCF notation $[3,-3]^{4}$.

Step 1: Start with a Hamiltonian cycle on cight vertices (the LCF notation has two numbers within the brackets and superseript four, $2,54=8$). Label the vertiecs one through eight.

Step 2: The first entry in the LCF notation is three, so join sertex one to four ($1+3$).

Step 3: Next join vertex two to seven $(2-3=7(\bmod 8))$.

Final Steps:

The superseript four in the LCF notation indicates that this pattern of adding three then subtracting three is repeated four times. If you reach a vertex that is already of degree three, skip that step in the pattern (don't create a loop). Once all of the vertices are of degree three. we have finisherd constructing the cubse graph described by the given LCF notation.

Below are two additional examples of graphs and their LCF notation.
Figure 5: Λ (3.6) cage with LCF wotation $[-5,5]^{7}$

Figure 6: A (3,6) graph on 16 vertices with LCF notation $[-5,6,-5,6,-5,5,6,-6,6,-6,-5,5,-6,5,-6,5]$

2.2 Construction of Cubic Graphs

While constructing a enbie graph is not difficult, discovering cubic cages is a fiendishly difficult problem. The following four constructions are examples of different ways to construct cubic graphs of varying gitths. Though not all of these constructions produce cages, but they out line technigues taht yeld graphs of higher girths.

Construction 1: For $n \geq 2$, take $2 n$ equally spaced vertices on a circh and label them one throngh 2n. For each $i, 1 \leq i \leq 2 n$, join the vertex i with $i-1, i+1$, and $i+n$. This gives a cubie graph of girth at most foum. In this and all other similar constructions that follow, the arithmetic on the numbered vertices is mod n.

Figure 7: Construction 1 with $2 n=0$

Construction 2: Take two concentric circles. Choose $n(n \geq 5)$ equally spaced vertices on the outer circle and label them one through n. Take the corresponding n vertices on the immer cirche and label each with the same manber assigned to its corresponding one on the outer cirche. Join each vertex i on the outer circle to vertices $i+1$ and $i-1$ on that cirele. Next, dhoose a positive integer k relatively prime to $n, 1<k<n$. On the imer cirele, join vertex $;$ to both vertiecs $i+k$ and $i-k$.

Finally, join cach vertex i on the onter circle to the corresponding vertex i on the imer circle. This construction coded as $[n / 1, n / k]$ yields a cublic graph.

Figure 8: Petersou graph [5/1,5/2]

In Figure 9, each vertex i in the onter circle is joined to $i+2($ mod 7$)$ and each vertex $;$ in the inner circle is joined to $i+3(\bmod 7)$.

Figure 9: $[7 / 2.7 / 3]$

Construction 3: This construction is coded as $[n / 0, n / 1, n / b, n / d]$. The code indicates that we take n vertices on cath of fou concentric circles. While the meaning of $n / a, n / b, n / c$ is clear, $n / 0$
means that no two vertices on the ontermost circle are to be joined to cach other. Each vertex on the outermost circle is joined to each of its three corresponding vertices on the three imen circles. No edge is drawn from a vertex on one imer circle to another on the other inner circle.

In Figure 10, the top line of vertices has no two vertices joined to each other.
Figure 10: $[7 / 0,7 / 1,7 / 2,7 / 3]$

Construction 4: This construction of cubic graphs is given in Dr. Norman Biggs' paper Constructions of Cubic Graphs with Large Girth and utilizes permutation groups (see the Appendix for more information on group theory) [1]. Suppose X is a set and S is a set of permutations of X that is closed under inversions and does not contain the identity: The set S generates a subgroup $\langle S\rangle$ of the symmetric group $\operatorname{Sym}(X)$ of X contains all the permutations of X. A Cayley graph $C a y(S)$ is defined to be the graph whose vertices $x, y \in\langle S\rangle$, with x and y being joined by an edge if $y . r^{-1} \in S$. If $S=\left\{a_{1}, a_{2}, \ldots a_{k}\right\}$, the vertex x is adjacent to $a_{1} r, a_{2} x \ldots, a_{k} x$. Since S is closed muler inversions, $y \cdot x$ is also inchuded in $C a y /(S)$; thus $x y$ is not a dirceted edge.

Any cycle of length r in Cay (S) can be constructed from:

$$
x, \omega_{1} x, \omega_{2} \omega_{1} x, \ldots \omega_{r} \cdots \omega_{2} \omega_{1}, r
$$

where ead $\omega_{i} \in S . \omega_{1} \cdots \omega_{2} \omega_{1}$ is the identity pernutation: $\omega_{i} \neq \omega_{i+1}{ }^{-1}(1 \leq i \leq r-1)$ and $\omega_{1}, \neq \omega_{1}^{-1}$. If this condition holds, we say that $w_{r} \cdots w_{2} u_{1}$ is an identity word. To find the girth
of a Cayley graph, you must find the shortest identity word.

Using this construction, there are two kinds of generating sets S that construct cubic Cayley graphs.

- Type $1: S=\{a, \beta, \gamma\}$, where all three generators are involutions (elements of order two).
- Type 2: $S=\left\{\alpha, \delta, \delta^{-1}\right\}$, where α is an involntion and δ is not.

Example 6:

The sets $X=\{1,2,3\}$ and $S=\{(12),(13),(23)\}$ produce a Cayley graph of Type 1 . In this example, $\langle S\rangle=\{e,(12),(13),(23),(123),(321)\}=S y m(X)$ are the six vertices of this graph. The full graph is shown below:

Here, a shortest iclentity word is $(13)(23)(13)(12)$. Therefore the girth of the graph is four.

Example 7:

The sets $X=\{1,2,3\}$ and $S=\{(12),(123),(321)\}$ give a Cayley graph of Typo 2. In this example, $\langle S\rangle=\{(\cdot,(12),(123),(132),(13),(23)\}=S!m(X)$ as woll.

Here, a shortest inlentity word is $(123)^{3}$. Therefore the girth of the graph is three.

Uuder this construction, we begin to see a clearer comection between cubic graphs and trees. When we begin to construct cubie graphs in this manner, their formation first looks like trees. Eventually, the construction tells mow to connect vertices in such a way that wo achieve a given girth and eventually complete the cubic graph. In our examples. our starting vertex is e, which we say is at level zero. Next, we join 0 with each element in S, and these vertices are said to be at level one. Sofir, we have a tree of height oue with three pendant vertices. From there, our edge relationships tell us how to continue to add vertices or join existing ones. If our graph is currently still a tree at height k, then the girth $g \leq 2 k+1$. To achieve $g>2 k+1$, we necessarily need some vertices at the level $k+1$.

Figure 11: Diagram of Example 6 showing Figure 12: Diagram of Example 7 showing
begiuning tree structure

begiming tree structure

2.3 Cubic Cages

2.3.1 Bounds on the Order of Cubic Cages

Let x be a vortex in a cubic graph G with odd gith f. We know that x mast have three meighbors, and each of those vertices must have two additional unique neighbors for $9 \geq 5$. This pattern would continue matil we reached a level where we would then join two existing vertices to create the desired odd girth.

Figure 13: Beginnings of cubic graph with Figure Aft: Adding levels of unique neighbors $y=5$

This pattern of adding mique neighbors generates a formula for the smallest number of vertices possible for a cubic graph of odd girth. The final row wonk have $\frac{4-3}{2}$ unique neighbors.
Formula 1 (Lower bound for cubic cages with odd girth).

$$
\begin{aligned}
1+3+3 \cdot 2+3 \cdot 2^{2}+\cdots+3 \cdot 2^{9-3} & =1+3\left(1+2+2^{2}+\cdots+2^{2-\frac{3}{2}}\right) \\
& =3 \cdot 2^{9-1}-2
\end{aligned}
$$

Similarly, by starting with two vertices, a formula can be derived for the lower bound of cubic cages with even girth.

Figure 15: Beginnings of cubic graph with $g=$ Figure 16: Adding levels of unique neighbors 6

Formula 2 (Lower bound for cubic cages with even girth).

$$
2+2^{2}+2^{3}+\cdots+2^{\frac{y}{2}}=2^{9+2}-2
$$

Since one can almost never achieve a coble cage at these lower bounds and the number of vertices must always be even, we can assume the following formulas to calculate the lower bound prof (y) of a
cubic cage with girth g.
Formula 3 (Lower bound for culdic cages).

$$
v_{0}(g)= \begin{cases}3 \cdot 2^{g-\frac{1}{2}} & \text { if } g \text { is odd } \\ 2^{g} & \text { if } g \text { is even }\end{cases}
$$

Using the sane construction, the upper bound $\lambda(g)$ could similarly be established so that $\lambda(g)=$ $3 \cdot 2^{y}-2$, but an improved bound has also been proved [1].

Formula 4 (Upper bound for cubic cages).

$$
\lambda(g)=2^{g}
$$

2.3.2 Known Cubic Cages

The problem of constructing a cubic cage of a given gith of has intrigned mathematicians for years. While cages of girths three throngh cight are relatively simple to construct, many papers have been published on the construction of cubic cages with larger girth. Below is a table listing the known cubie cages and the best bounds for the given girths for which cages are not known. Becanse cages with increasingly large girths require a large number of vertices, not all of the following table's values have been proved to be the best cages possible, but rather are the current-best.

Table 1 is from the online table populated by Gordon Royle and the 2011 Dynamia: Cage Survey published by Geoffer Exoo and Rober Jajcay. The function $\mathrm{m}_{3}(g)$ is the upper bound for the cubie cage of girth g. The number indicates the number of graphs known to meet the given upper bound. Numbers with a "+" next to them are not known to be exact. Some current-best cages of girth larger than 22 have bern omitted.

Table 1: Cubic cages of small girth [3]

Cage	$v_{0}(g)$	Best-Known	$v_{3}(g)$	Number	Reference
(3,3)	6 *	* 4	4	1	K_{1}
$(3,4)$	4	6	6	1	$\hbar_{3.3}^{*}$
(3,5)	12 *	* 10	10	1.	Peterson
$(3,6)$	8	14	14	1	Heawood
$(3,7)$	24	24	22	1	MeGee graph
$(3,8)$	16	30	30	1	Tutte's 8-cage
$(3,9)$	48	58	46	18	Brinkmam/Mekay/Sanger
(3.10)	32	70	62	3	O'Kecfe/Wong
$(3,11)$	96	112	94 [112]	1	Me大゙ay/Myrvold-Bababan
(3,12)	6.4	126	126	1	Gencralized hexagon
(3, 13)	192	272	190 [202]	$1+$	Mekay/Myrvold-Hoare
(3.14)	128	38.1	254 [258]	$1+$	Mckay-Exoo
$(3,15)$	38.4	620	382	$1+$	Biggs
(3,16)	256	960	510	$1+$	Exon
$(3,17)$	768	2176	766	$1+$	Exoo
$(3,18)$	512	26.40	1022	$1+$	Exoo
$(3,19)$	15336	4324	1534	$1+$	11(47)
$(3,20)$	102.4	(60)48	20.16	$1+$	Exoo
$(3,21)$	3072	16028	3070	$1+$	Exoo
(3.22)	20.48	1620\%	4094	$1+$	Whitclicad S(73)

3 Isomers of Alkanes

The study of chemistry deals with molecules and their structures. Molecules are the basic clement of chemical componds. They are formed by atoms which are held together ly chemical bonds. White molecules are 3 -d chemical structures, some can be easily represented by 2 -d mathematical graphis. All molecules are mudirected and comected graphs. While not all molecules are trees, we will limit our study to those that are.

Let M_{1} and M_{2} represent the graphs of two molecules with exactly the same atoms. If M_{1} and M_{2} are non-isomorphie, then M_{1} and M_{2} are called isomers. The molecules that we are particularly interested in are called alkanes. Alkanes are molecules consisting of only carbon and hydrogen atoms and that have only single bouds and no cycles. Therefore. cach alkane can be represented by a tree. Any vertex corresponding to a carbou atom mist have degree four and any vertex corresponding to a hydrogen atom must have degree one.

To graph these molecules, each atom is represented by a vertex and cach bond is represented by an edge. Therefore, all carbon vertices must be of degree four and all hydrogen vertices must be of degree one.

Figure 17: $C_{1} I_{1}$ (methane) is the mest basic alkane.

Becanse all hydrogen atoms in the graphs of alkanes are pendant vertices, Theorem 1.3 allows us to study just the underlying structure of the carbon atoms. For example, Figure 18 illustrates the graphis of $C_{2} I_{6}$ and $C_{3} H_{\mathrm{s}}$ molecules, comparing the true structure of the molecules to the maderying structure of the carbon atoms.

Figure 18: $C_{2} H_{6}$ \& $C_{3} H_{8}$

Since removing the hydrogen atoms, or pendant wertices, simplifes the appeanance of the graph, from now on we will illustrate alkane graphs using only the underlying structure of the carbou atoms. If you want to construct the true graph of a molecule given the underlying carbon struchure, join a hydrogen atom (or pendant vertex) to cach carbon atom in the underlying graph until each carbou atom is of degree four.

Suppose an alkane has e carbon atoms. How many hychogen atoms (h) must also be present?
Let $G=(V, E)$ be the graph of the alkane such that $|V|=0,|E|=0, x_{k} \in V$, and G is a tree. Define e as the number of carbon atoms and h as the mumber of hydrogen atoms in the molecule. According to Theorem 1.1. $\sum_{k=1}^{n} x_{k}=2 c$. Since the degree of cach carbon atom is four and the degree of each hydrogen atom is $1 . \sum_{k=1}^{n} m_{k}=4 c+h$. But this value is also equal to $2 e$. By Theorem $1.6, n=e+1$. Since the atoms of a molecule are the vertices in it s graph, $v=c+h$. Therefore $c+h=e+1$ or $e=c+h-1$. Combining the two theorems gives the following formula.

Formula 5.

$$
\begin{aligned}
& 4 c+h=2(c+h-1) \\
& 4 c+h=2 c+2 h-2 \\
& 2 c+2=h
\end{aligned}
$$

Figure 19 sketches the different isomers of alkanes with four to six carbons. The isomers of alkans with two and three carbons were illustrated in Figure 18.

Figure 19: Isomers of alkanes with four to six carbons

Bectuse the graphs of the maderlying carbon structure of alkanes with no cyeles are trees, it is relatively simple to comit how many isomers there are for such alkanes with a small number of cabons. All you must do is draw all possible nomisomorphic trees on b vertices. As u increases, it becomes increasingly difficult to draw all the nonisomorphic trees on evertices. An important romection between the study of graph theory and chemistry is knowing how may isomers exists with no cycles for a certain alkane. In this paper, $\tau(1)$ denotes the mumber of nonisomorphic trees on $1 /$ vertices with a maximm degree of four.

3.1 Rooted Trees

A rooted tree is a particula cmbedeling of a tree that emphasizes how the vertices stem off from a single vertex, called the root. The degree of the vertex used as the root is called the root degree Any vertex in a tree can be chosen as a root for a particular embedding of a rooted tree. Onee a vertex is chosen, the tree is drawn by hanging the brauches of that tree from the root. The number of mique hangings that can be drawn for a given tree depends upon the number of similarity classes of the vertices.

Example 8 (Rooted tree hung from three different vertices):
Tho following graph has three similarity classes of vertices and therefore an be hung as a rooted tree in three different wass.

Figure 20 shows the micpue rootod trees prodnced by hanging the varions isomers of alkanes with (wo to six earbon atoms.

Figure 20: Rooted tree embeddings of Figure 19

Because the graphis of alkanes only contain vertices of degrees less than or equal to fome we will focus our study of rooted trees on these graphs.

3.2 Centroid(s) of a Tree

For any two distinct vertices x_{i} and x_{j} in a tree T, there is a mique $x_{i}-x_{j}$ path in T. This property, (haracterizing trees among graphs, will be useful as we introduce some new concepts, memingful only for trees and not for graphs in gencral. Two such concepts are the notions of branches at a given vertex and the existence of a centroid (or centroiels) in a tree. Our goal in this section is to formulate these concepts precisely and to develop a coherent theory relating to them. In order to
bypass the trivial case, we will only consider the trees that have at least two vertices, and from henceforth the term "tree" will only be used in that sense.
a

.
-

Let A be a lixed vertex in a tree T. The maximal subtree of T having A as an endvertex is called a branch of T at A. The mumber of branches of A must, olvionsly, equal the degree of A in T. The weight sequence of A is the listing in decreasing order of the weights of the branches of A and is
 neighthor B of A : the directed edgo $\overrightarrow{A B}$ is called the stem of this branch. A branch at A whose weight is not less than the weight of any other branch at A is called a principal branch at A, its weight the principal weight at A, and its stem a principal stem at A. Of course, there could be several principal branches at A (all of which must necessarily have the same weight). A vertex x_{0} of T with the least principal weight is called a centroid of T.

Suppose A and B are two neighboring vertices in a tree T. Let a be the total number of edges in all the branches at A, exeept the branch with the stem $\overrightarrow{A B}$. Similarily, let b denote the total number of elges in all the brauches at B exeept the one with stem $\overrightarrow{B A}$. For convenience, the banch at A with stem $\overrightarrow{A B}$ is denoted by $(A B \rightarrow)$.

Example 9 (A troe with a mique centroid):
In the following tree diagram, the vertex with principle weight five is the mique centroid.

Example 10 (A troe with a bicontroid):
In the following clagram, the tree has two bicentroids, both with principal weight four.

3.2.1 Centers versus Centroids

In the following table, we give examples of trees with all the possible combinations of centers or centroids. The total mmber of vertices that are conters or centroids varies from one to four.

Table 2: Comparison of centers vs. centroids

Number of Centers	Number of Centroids	Total Number of Vertices	Example
1	1	1	\cdots
1	1	2	$\ldots!$
1	2	2	$\cdots 0$.
1	2	3	$\ldots 0 \cdot 0$
2	1	2	$\cdots-$
2	1	3	\ldots
2	2	2	-\%
2	2	3	$\ldots-6$.
2	2	4	$\ldots \ldots$

3.2.2 Methods for Finding a Centroid

Method 1

Start with a pendant vertex and travel along a principal branch. Continue moving from vertex to vertex along principal branches mutil you reach a vertex to with a principal weight $\left\lceil\frac{w_{2}}{2}\right\rceil$ or less. If the principal weight at c^{\prime} o is $\left\lfloor\frac{w}{2}\right\rfloor$ or less, then v_{0} is the migue centroid of T. If the principal weight at n_{0} is $\left\lceil\frac{1 t}{2}\right\rceil>\frac{w}{2}$, then r_{0} is one of the bicentroids of T, the other centroid being the neighlor of $c^{\circ} 0$ on the principal branch of c_{0}.

Using this method, you can draw a comected graph that shows how you woukd move along the mique path between my pendant vertex and a centroid.

Example 11 (Bicentroids):

Example 12 (Unidue centroid with single principal branch):

Example 13 (Unique centroid with multiple principal branches):

Method 2

In lage trees, finding a centroid by Method 1 can take a long time. Nethod 2 utilizes the same irlea of moving along the principal branches, except you start at an interior vertex. A good interior vertex to choose is a center. If you camot easily locate a center, start at an appoximate center and move along the principal branches to tind the centroid.

Example 14 (Approximate center):
In the below graph, it appears that one of the longest pathis is $x_{20}-x_{24}$, so x_{8} is a good approximate center to choose. The weight sequence of x_{8} is (12.11). Moving in the direction of the principal branch takes us to x_{7}, which hats weight sequence (12,11). Therefore, x_{7} and x_{8} are the bicentroids of the graph.

3.3 Enumerating Unlabeled Trees

3.3.1 Historical Backgromnd

In 1874, the British mathematician Arthur Cayley published On the Mathematical Theory of Isomers, the first paper that made a serions comection between graph theory and chemicals. Cayley"s goal was to determine a formular for comenting the number of isomers of alkanes. He published a table of his calculations for only isomers up to $\mathrm{C}_{1: 3} \mathrm{H}_{28}$, but his last two calculations were errored. Cayley approached the problem by constructing unlabeded trees from the center vertex or vertices. Constructing trees in this manner is a more combersome aproach, but focusing instead on the centroid(s) of a graph reduces the task becanse the tree gets devided into a mumber of branches more rapidly.

3.3.2 Counting Rooted Trees of Order n

Later the aggorithm presented will make nse of rooted trees of root degroe less than or equal to three. Why restrict to smaller degrees? The reasoning is because an edge will be added to the root, making it of degroe less than or equal to four. Let r_{n} be tho number of rooted (unlabeded) trees on n vertices where the root degree is less than or equal to three. Let $r_{n}(m)$ be the corresponding number when the root has degree m.

'Theorem 3.4.

(a) $r_{n}=r_{n}(1)+r_{n}(2)+r_{n}(3)$
(b) $r_{n}(1)=r_{n-1}$

Formula 6.

$$
r_{n}(2)= \begin{cases}r_{1} r_{2 k-2}+r_{2} r_{2 k-3}+\cdots+r_{i-1} r_{k} & \text { if } n=2 k \\ r_{1} r_{2 k-1}+r_{2} r_{2 k-2}+\cdots+r_{k-1} r_{k+1}+\left[\binom{r_{k}}{2}+r_{k}\right] & \text { if } n=2 k_{i}+1\end{cases}
$$

This equation for $r_{n}(2)$ is define plece-wise in a way that conveniently does not donble connt when we add branches. This structure makes the equation for $r_{n}(3)$ even more complicated. the the following formula, a, b, and are distinet positive integers. The following sums comm the nmmer of partitions of $n-1$ into threr smmmands.

Formula 7.

i. $S(a, b, c)=\sum r_{a} \cdot r_{b} \cdot r_{c}$ with the smon taken over all partitions $a+b+c=n-1$
ii. $S(a, a, b)=\sum\binom{r_{a}+1}{2} r_{b}$, with the sum over $2 a+b=n-1$
iii. $S(a, a, a)=\sum\binom{r_{a}+2}{3}$ with the stum over $3 a=n-1$

Taking Theorem 3.4 together with Fomulas 6 and 7 , we can now calculate $r_{n}(3)=S(a, b, c)+$ $S(a, a, b)+S(a, a, a)$.

Table 3: First few values of r,

n	$r_{n}(1)$	$r_{n}(2)$	$r_{n}(3)$	r_{n}
2	1	0	0	1
3	1	1	0	2
4	2	1	1	4
5	4	3	1	8
6	8	6	3	17

3.3.3 Forming a Tree from a Centroid

Example 15 (Simple weight sequenere of a migue centroid):
Suppose (2,1,1) is the weight sequence of the migue controid of an manown tree. From this weight sequence, we can deduce that the weight of the tree is four and the centroid has three branches. First, join two pendant vertices to the controid. Last, attadi a rooted tree with weight one (by attach. we mean add an edge between the centrod and the root of the free you are attaching). This produces a tree of weight four such that the centroid has degree sequence ($2,1,1$).

Example 16 (More complex weight sequence of a unicpe centroid):
Suppose ($4,3,1,1$) is the weight sequence of the mique controid of an unknown tree. From this weight sequence, we can deduce that the weight of the free is nime and that the controid has four banches. First, join two pendant vertices to the centroid. Next we attach a rooted tree of weght three. There
are three possible rooted trees that we can attach:

Next we attach a rooted tree of weight two. There are two possible trees to attach:

This method produces six umisomorphic trees of weight nine such that the mique centroid hats weight serfuence (4,3,1,1).

3.3.4 Algorithm for Counting

We now revisit the original question: how many mataheded nonisomorphie trees exist on n vertices? The following algorithm can be nsed to make these caleulations and is our original work.

Let $\left|\tau\left(n, w\left(x_{i}\right)\right)\right|$ be the number of nonisomorphic trees on n vertiecs, where the weight sequence of the centroid is $w(x)$.

Step One: Determine the Persible Centroid Weight Sequences

The possible centroid weight sequences are equivalent to partitions of $n-1$ into four summands, such that the largest summand is of size less than or equal to $\left\lceil\frac{n-1}{2}\right\rceil$.

Step Two: Count the Number with Unique Centroids
Let x_{i} be a migue centroid determined in the previons step.

Formula 8.

The total number of nonisomorphic trees on n vertices that have a mique centroid is equal to $\left|\tau_{u}(T)\right|=\sum_{i}\left|\tau\left(n, u\left(x_{i}\right)\right)\right|$, where each x_{i} is a distinct midue centroid.
Step Three: Connt the Number of Bicentroids
If $n-1$ is odd, then some graphs of T have bicentroids. The total number of nonisomomphic trees on 11 vertices that have a bicentroid is:

Formula 9.

$$
\left|\tau_{1}(n)\right|=\binom{r_{(n / 2)}+1}{2}
$$

Step Four: Calculate the Total Number

Formula 10.

$$
|\tau(n)|=\left|\tau_{u}(n)\right|+\left|\tau_{1}(n)\right|
$$

Example 17 (Comnting the number of nomisomorphic trees on (ight vertices):
Let T_{\varnothing} be a tree on cight vertices.

Step Onc:
List the midue controid weight sequences: $r_{1}=(3.3 .1), r_{2}=(3.2,2), r_{3}=(3,2,1,1), x_{1}=$ (2.2.2.1)

A Appendix

Thronghout this paper, several references are made to content included in this Appenclix. We felt that the inclusion of an Appendix was necessary to give additional definitions and further explanations that are not integral to the theme of the paper, but still useful in some aspect.

A. 1 Planar Graphs

Definition 2 A graph is said to be planar if you can draw an embedding of the graph in a plane without edges crossing.

In the introduction, we pointed out that a given graph can usually be drawn in several ways that appear geometrically (puite different from cad other. A graph embedding is a particular drawing of a graph. Example 1 shows two embeddings of a graph. The edges of a graph are said to cross if they intersect somewhere that there is not a vertex. In the second embedding in Example 1, the edges wer and $y z$ cross. Observe that $K_{3,3}$ camot be drawn in a plane withont some of its edges crossing. In other words, $h_{3,3}$ is not a planar graph.

Example 18 (Another plamar graph):
Of the following two diagrams of the complete graph K_{4}. the first one is not planar, whereas the second one is planar.

A complete graph is a graph where cach pair of vertices is joined by an edge. A bipartite graph is a graph that hats a vertex set mado up of two disjoint vertex classess such that no two vertices in the same class are joined by an edge. A bipartite graph G with vertex classes V_{1} and V_{2} is called a complete bipartite graph if $x y \in E(G) \forall . r \in V_{1}$ and $\forall y \in V_{2}$. $K_{m, n}$ flenotes a complete bipartitr graph with vertex classes of order m and n.

Figure 21: Complete graph h_{5}
Figure 22: Complete bipartite graph $\mathrm{Ki}_{3.3}$

Theorom A.1. A graph G is planar iff K_{5}, and $K_{3,3}$ are not subgraphs of $G[10]$.

A. 2 Group Theory

In a number of constructions in graph theory, we apply another branch of mathematics called group theory. We outline a method where permutation groups are applice to construct cubic graphs of large girth.

A permutation p of a set X is a bijection of X onto X. The set of all permutations of a set X is denoted by $S(X)$. A permutation that is its own inverse is called an involution. As the bijections of a set onto itself are obvionsly invertible and the identity function is a permutation, so $S(X)$ is a group. The notation ($x_{0}, x_{1}, \ldots, x_{k}$), represents a permutation f of $X=\left\{r_{0}, x_{1}, \ldots, r_{k}\right\}$, where $f\left(x_{i}\right)=x_{i+1} \forall i<k$ and $f\left(x_{k}\right)=x_{1}$. Such a permutation is called a cycle (not to be confused with the carlies definition of cycles in graphs). Any permutation of a finite set can be written as a prochuet (composition) of unique disjoint cecle. For $X=\{1,2,3,4,5,6\}, 1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 6 \rightarrow 1$ is a permutation, as is also $(1,2)(3,4,5,6)$. The permutation (0$)(1) \cdots(k)$, where each element of a finite set is sent to itself. is colled the identity.

A binary operation on a sot X is a function $*: X \times X \rightarrow Y$, where Y^{\prime} is a sel, If $*: X \times X \rightarrow X$, we call * a closed binary operation. For $x, y \in X, *(x, y)$ is written as $x *!$. This notation in called infix notation.

Definition 3 A group is a monempty set G with a binary operation * on G such that

1. for all $x, y \in G, a *!y \in G$ (closure property)
2. For all $x \cdot y, z \in(, x, x *(y * z)=(x * y) * z$ (associativity)
3. there exists $e \in G$ for $x \in G$ such that $x * e=e * x=x$ (identity clement)
4. for all $x \in G$ there exists an $x^{\prime} \in G$ such that $x * x^{\prime}=r^{\prime} * x=e$ (inverse)

A.2.1 Group Actions

A group G is said to act on a set X if there is a function $G \times X \rightarrow X$, denoted by $(g, x) \rightarrow g, x$, satisfying

1. $1 * x=x$ for all $x \in X$
2. $g h(x)=g(h x)$ for all $g, h \in G$ and all $x \in X$.

The map $(g, x) \rightarrow g x$ is callerl the action and X is the G-set of the action. If $|X|=n$, then n is callecl the degree of X (or the degree of the action). A G-set is faithful if $g, h \in G$ and $g(x)=h(x)$ for all x implies that $g=h$. If X is a G-set, the orbit of an clement $x \in X$ under G is the subset G.x of X defined by

$$
G x=\{g x: g \in G\}
$$

Example 19:

Any subgroup $I I$ of the symmetric group $S(X)$ acts faithfully on X in the nat ural way: $(f, x) \rightarrow f(x)$. In particular, the autonorphism group $A u t(\Gamma)$ of a graph $\Gamma=(V, E)$ acts on V.

A graph $\Gamma=(V, E)$ is vertex-transitive if for any $x, y \in V$, there exits an antomorphism τ of Γ satisfying $\tau(x)=y$. Equivalently, Γ is vertex-transitive if there is only one orbit in V. A graph Γ is symmetric if for all vertices $w, x, \mu, z \in V$, such that w^{\prime} and x are adjacent and y and z are adjacemt. there is an autonorphism τ of Γ for which $\tau(w)=y$ and $\tau(\cdot r)=z$. A graph Γ is distancetransitive if for all vertices $w, x, y, z \in V$ satisfying $d(w, x)=d(y, z)$, there is an antomorphism τ of Γ satisfying $\tau(w)=y$ and $\tau(x)=z$.

A.2.2 Symmetries of a Regular n-gon

By rotating and reflecting a regular n-gon, one can create a group of symmetries. Consider a triangle shaped dise whose corners are mumbered that fits perfectly into a mold. The original position of the dise is pictured below in the upper-left spot. From this positiom, the dise can be rotated and/or
reflected (flipped). This gives sin possible way's to place the dise into the mold:

The first thre positions (including the identity) are all achieved by rotations only. Using any such rotation three times brings the dise back to the identity. This gromp of permmations is called the cyclie group of order three. A cyclic group is a group of permmetations that can be gencrated by a single element, which we called a rotation. The order of a cyche group is equal to the mumber of elements in the set X. All six positions can be obtained by either rotating or reflecting the dise. Using a reflection twiee brings the dise bate to the iclentity. The whole gronp of pemmentions is called the dihedral group of order six. A dihedral group is a group of permmtations that can be generated by two clements, which we called rotation and reflection. The order of a dihedral group is equal to twice the momber of elements in X.

A. 3 The Necklace Problem

In the introduction. we lirst disenssed the idea of stringing a neeklace with eight beads, each of which can be red. white or blue. For the three necklaces below, we are now able to determine if two neeklaces are the same depending upon what group structure we are allowing.

Suppose we allow only a cyelie st ructure (rotating the mecklace on the table). Then Necklace 1 and 2
are the same becanse you can achieve one coloring from the other by rotating it. On the other hand. Neeklace 3 is different becanse you camot just rotate the neeklace to achieve the same coloring. However, if we allow a dihedral structure (handling the neeklaces as pleased), all three necklaces are the same. It's obvious that Necklace 1 and 2 are the same through rotations, but Necklace 3 must be reflected and rotated in order to see that it's also the same.

In this problem, two necklaces are considered the same if you can transform one into another through a function composition of permutations and colorings. Using Polya's Theorem [9], we are able to determine polynomials for counting the number of mique necklaces for the two cases where we allow a cyclic or dihedral group structure. For a group G we can detemine the cycle index, which is a polynomial structured in such a way that we can identify the different types of cyeles that appeat in the permutations in G. Using Polya's theorem, we are able to replace each x, tem in the cycle index with three, since we are using three colors, to obtain the total mumber of unique necklaces possible under the given permutation group.

Permutation Group	Cycle Index	Unique Necklaces
Fixed	x_{1}^{8}	3^{8}
Cyelic	$\frac{1}{8}\left[x_{1}^{8}+x_{2}^{4}+2 x_{1}^{2}+4 r_{8}\right]$	834
Dihedral	$\frac{1}{16}\left[x_{1}^{8}+5 x_{2}^{4}+4 r_{1}^{2} x_{2}^{3}+2 x_{4}^{2}+4 x_{8}\right]$	498

References

[1] Biggs, Norman. Constructions for cubic graphs with large girth. Electron. J. Combin. 5 (1998), Article 1, 25 pp . (electronic). MR1661181 (99j:05097).

[2] Euclicl

[3] Exoo. Geoff, cited 2013: Cubic Cages. [Available online at http://mits.maths.nwa.cdu.au/gordon/remote/cages/l.
[4] Exoo. Geoff and Robert Iaycay: Dynamic Cage Survey. Elec. Jour. Combin. [Available ouline at http://www.combinatorics.org/ojs/index.php/eljc/article/view/DS16].
[5] Foster, Ronald M. The Foster census. R. M. Foster's census of connected symmetric trivalent graphs. With a foreword by H. S. M. Coxcter. With a biographical preface by Seymour Schuster. With an introduction by I. Z. Bonwer, W. W. Chernoff, B. Monson and Z. Star. Edited and with a note by Bouwer. Charles Babbage Research Ceutre, Winnipeg, MIB, 1988. viii+240 pp. ISBN: (0-919611-19-2 MRR0935537 (89c:05067).
[6] Hatstield, Nora; Ringel, Gerhard. Pearls in graph theory. A comprehensive iutrochuction. Academic Press, Inc., Bostom, NA, 1990. x+246 pi. ISBN: (0-12-328552-6 MR1069559 (91f:0500. $)$.
[7] Ferstein, I. N. Topies in algehar. Sccond edition. Xerox Colloge Publishing, Lexington, Mass.Toronto. Ont., 1975. xi +388 pI). MRO0356988 (50 \#94.56).
[8] Lederberg, Joshua, 1995: A System for Computer Construction, Enmeration and Notation of Organic Aolecules as Tree Structures and Cyclic Graphs. Int. Repl. To the National Aeronantice and Space Administration, Grant NsG: $81-60.80 \mathrm{pp}$.
[9] Lin. C. L. Introduction to combinatorial mathematics. McGraw-Hill Book Co., New YorkToronto, Ont -Londom $1968 \times+393$ pl). NRO2318.10 (38 \#315-4).
[10] Weisstein, Eric W.. cited 2013: Kuratowski Reduction Theorem. Wolfram MathWorld. [Available online at htip::/ /mathworld.wolframem/KuratowsikeductionTheorm.html].

