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1 Introduction

The goal of this thesis is to study two related problems that, in the broadest terms, lic in a branch of
mathematics called graph theory. The first problem examines some new techniques for constructing

¢ structing
a Hamiltonian graph of least possible order and having a preassigned girth, and the second concerns

the emnueration of a certain type of graphs called trees.
Graph theory is a highly developed subject with scores of textbooks and thousands of rescarchy

articles devoted to it. The origins of graph theory predate Euclid's Elernents, written ¢. 300 B.C. It

was around 400 B.C. that Plato and his disciples proved that only five perfeet polyhedra can exist

in the 3-dimensional space we live in. Euclid’s Elements Book XIII, devoted to the construction

of these polyhedra, enumerates them tlms: the tetrahedron (four triangular faces), the eube, the

octahedron (eight triangular faces), the dodecahedron (12 pentagonal faces), and the icosaliedron

(20 triangular faces) [2]. According to the famed British philosopher and mathematician Bertrand

Russell, “Elements is certainly one of the greatest hooks ever written.” Tt is only fitting that an

account of these so-called Platouic solids be a part of this hallowed book.

The five perfect polyhedra are much more than simply geometrie specimens of perfection in nature.

They contain the seminal idea behind what we today call the regular graphs. In fact, the tetrahedron,

the cube, and the dodecahedromn, considered in terms of their vertices and edges (ignoring the faces),

are all cubic graphs, and the remaining two solids are regular graphs but not cubic. Inexplicably,

the idea of graph theory had to wait nearly another two millenia after Plato’s discovery for a

systematic development of this subject; even then, it was by a shear happenstance that the idea

sprang up. There were seven hridges across the river that flowed through the town of Konigsherg.

The Sunday strollers in the town always wondered if it was possible to cross all the seven bridges

without crossing auy bridge more than once. This problem ultimately got conveyed to the great

mathematician Euler, who analyzed the problem by sketehing a schenatic diagram of the placements

of the bridges  relative to the banks of the river and to each other and proved conclusively that the

stroller’s conjecture was indeed mathematically impossible. Euler’s approach to solving the problem

marked the rite of passage for graph theory to beeome a serious topic of mathematical study.



1.1 Basics of Graph Theory

Definitions

A graph G is an ovdered pair of disjoint sets (V. L) such that £ is a collection of 2-subsets of V:
V is the set of vertices and F the set of edges of . The order of ¢ is simply the nnmber of
vertices, |V]. A graph of finite order is called a finite g caph. In this study, all graphs are assumed

to be finite. The weight of G, denoted by w(G) or simply by w, is the number of edges, {IZ].

The edge {, y} is said to join the vertices - and y and is denoted by @y, The edge zy is the same
as yr. The vertices x and y are the endvertices of wy. If xy € K, then 2 and y are adjacent or
neighboring vertices of G and are said to be incident with the edge xy. Two adjacent edges
have exactly one common endvertex. The complement of G = (V, ), denoted G s the graph on

the vertex set 1V osuch that for any distinet vertices @ and y in V, ay is an edge in ¢ &= ay ¢ L.

There are structures similar to graphs ealled pseudographs. For example, a directed graph is one in
which the edges are taken as a set of ordered pairs (2, y) of vertices. Insuch a pseudograph. exactly
one of the ordered pairvs (1. y) or (y..r) is chosen as an edge. If an ordered pair (o) is allowed as
an cdge. it is called a loop. Sometimes welghts are assigned to edges to get what we call weighted

graphs.

Even thougl we have defined a graph as a pair (V) IZ), we usually do not think of a graph in those
terms. Instead. we draw a diagram in which vertices are represented by dots (in bold) and edges
by line segments (not necessarily straight). For more discussion on different drawings of graphs,
see the Appendix. A diagrans of a graph is only intended to convey the incidence relation hetween
vertices and edges in the graph and has no other geometrical significance. The same graph can
usually he drawn in many different ways that may appear quite different from cach other. Consider
the following example.

Example 1:

The following two diagrams both represent the graph ¢ = (VU E) where Vo= {a, b, e d} and

I = {ab, be, ed, da}.

1



Naturally the question arises: How can one tell by looking at two diagrams whether they represent
the same graph or not? To answer this question, we introduce the notion of an isomorphism of
graphs. Two graphs Gy = (Vi ) and Gz = (Va, E) are said to be isomorphic if there is a
bijection f : V] — V5 such that VaVylry € £ <= F()fly) € Es]. Such a bijection is called an
isomorphismn from G, onto Go. 1f no isomorplism exists [rom Gy onto Ga, then the Gy and Ga
are nonisomorphic. An isomorphism from a graph G onto itsell is called an antomorphism of
G. The set of automorphisims of a graph G, denoted by A(G). forms a group under composition
(sce Appendix for more information on Qroups).

Example 2:

The following two diagrams show a graph and its complement side-by-side.

"

«
b « b \ «
\_‘ N
& d ¢« o

Though the two diagrams appear quite different, the two graphs are. in fact, isomorphic,

Definitions

The degree ol a vertex @ € V, denoted deg{x). is defined as the munber of vertices that are joined
to . A pendant vertex is of degree one. A vertex of degree zero is called an isolated vertex. A
graph G is said to be k-regular if each vertex of GG has degree b, 3-regular graphs ave called cubic

graphs.

el



Proof. Each edge contributes a count of two towards the sum of degrees. Thus E deg(z) = 2|E/|.
rel’
0

Corollary 1.2. In a finite graph. the number of vertices of odd degree is always cven.

(V.E) and G" = (V' E') arc graphs such that V' C V., and £7 C E| then G7 is said to be a

If ¢ ==
subgraph of G. If G = (V, E) is a graph and « € V', the subgraph obtained by deleting & (and all

edges that contain ) is denoted by G/x. Similarly. if A CV, then G/A is the subgraph obtained

from & by deleting all the vertices in A (along any edge mcident with at least one vertex i A).

Two vertices @ and y of a graph G are called similar and we write .~y if there exists f € A(G)
such that f() = y. Obviously. for 2 and y to he similar, it is necessary that the degree of a0 be
same as that of y. In particular, an isolated vertex can only be similar to an isolated vertex and a
pendant vertex only to a pendant vertex. Similarity of vertices is an equivalence relation on 1. and

so it partitions 1V into equivalence classes called the similarity classes. The munber of similarity
S

classes of pendant vertices of G is denoted by sep(G).

Theorem 1.3. If two graphs are isomorphic. then the graphs resulling from remouving their pendant

vertices are also isomorphic.

Proof. Suppose Gy = (17.E}) and Ga = (Vo, I2) are isomorphic graphs. Let Py € Vy and [ <V

be the sets of all pendant vertices in (7 and Gy and let [0 Vi — 1, be an isomorphism of &y and
Gy, Since an isomorphism maps a pendant vertex to only a pendant vertex, f is also an isomorphisim

ot I to 1% as well as from Vi /P to Va/Pa. Thercfore, the graphs resulting from removing the

pendant vertices of G onto G are isomorphic. ]
Definitions
A walk iu a graph ¢ is defined as an alternating sequence of vertices and edges. sucly as
W T AQT L, Ll o, Ty Iy e e il 1y ] gl
Such a walk is briefly written as Wergraary oo pa e and is often referenced as an -y walk,

The length of 1V is the number of edges in 1V, or ko A walk of length O is called a trivial walk.
If wy # oy, the walk is said to be open. If @y = 4y, the walk is said to be closed. If no edge is
repeated. the walk is called a trail. 1f no vertex is repeated. the walk is called a path. A closed trail
is called a circuit and a closed path is called a eycele. P, denotes a path of length n and ', denotes

acyele of length n. The shortest eyvele possible is €. A graph is said to be connected if there exists

~1



a path between any two vertices. A graph is said to be discounected if it is not connected. By a
component of a graph G, we mean a connected subgraph of G which is not properly contained in
any connected subgraph of G.

Definition 1 A connected graph that contains no cycles is called a tree. By a subtree S of a tree
T, we mean a subgraph S of T that is also a trec.

Theorem 1.4. Any tree T = (V, E) with [V] > 2, has at least two pendant vertices.

Proof. Since |V{ > 2, dr,y € V such that @ # y. Since T is conuected, there is a path p between @
and y. Let py be a longest path containing the path p (such a path will exist because T is finite).

Then cach of the endpoints of pg must have degree 1.
o

Theorem 1.5. If x is a pendant vertex in a tree T, then the T/x is a subtrec of T

Theorem 1.6. [6] For any tree T = (V. E), [V} = |} -+ 1.

Proof. We prove this theorem by inducting on the nunber of vertices in T If |V

= |, then clearly

o
I
Y

41 holds in this case. Now assume that there exists a

E| = 0 and thus the equation V] =
positive integer n such that the theorem holds for all trees having novertices. Let T be a tree on
n 4+ 1 vertices. Then T has at least two pendant vertices. Let & be a pendant vertex in 7. Then
T/ is a tree on n vertices, and by the induction hypothesis the theorem holds for 7'/, Since T has
exactly one more vertex and one more edge than T/, the theorem holds for 7" as well. Hence for

any tree T, |V == K|+ L O

Definitions

If a trail contains all the edges in a graply, it is called an Euler trail or an Euler circuit, depending
on if it is open or closed. Tf a path contains all the vertices ina graph, it is called & Hamilton path
or 2 Hamiltonian cycle. depending on if il is open or closed. A graph that contains a Hamilton
evele will be referenced as a Hamilton graph in this paper. The girth ol a graph (7 is the length
of the shortest eyele in G and is denoted by g A k-g graph is a A-regular graph whose girth is g
If a graph contains no eycle, then we say that the girth of ¢ is nfinite. Tor given & and ¢, a h-y
eraph on the least number of vertices possible is called a k-g cage. Another notation that is used

to indicate a k-g graph is (k. g).

The distance hetween vertices . and i in a graph. denoted d(r, y), is the length of the shortest

path between o and y. 1 there is no path between o and g, then dir,y) = x. The eccentricity



e(x) of a vertex w € V is max{d(x,y) 1 y € V}. The diameter diam(G) of G is max{e(x) 1w € V}.
The radius of G, rad(G), is min{e(x) : v € V}. Any 2 € V for which e(2) = rad(Q) is called a
center of G. A graph G can have several centers. For example, a path of even order has two centers

and a cycle has all its vertices as centers.

1.2 Some Examples of Graphs

Example 3 (The utility graph):

Suppose cach of three houses a, b, ¢ is to be hooked up with cach of three utilities ¢, s, and w (¢
for electricity, s for sewage, and w for water). In the figure helow, cach of the two dingrams encodes
the adjacency relationship between the houses and utilities completely; however, the left diagram
shows too many cdge-crossings because of a poor placement, of the houses relative to the utilities.
The right diagram contains only one cdge-crossing. It can be proved that any placement of the six
vertices of the utility graph in the plane will always have at least one edge-crossiung. The following

two diagrams are isomorphic as graphs, but not geometrically or topologically isomorphic.

Figure 1: The wtility graph

What is an isomorphism?

In set theory. two sets X and ¥ are said to be isomorplie (equivalent) if there is a bijection from

Y onto Y. The rationals @ and the integers Z are isomorphic as sets. However, they are not

isomorphic as additive groups nor are they as lincarly ordered sets. Similarly, the integers 7, and the

yositive intecers 7+ are isomorphic as sets but not as ordered sets (c.g., Z7 is well-ordered whereas
o I \ o



7 is not). In classical geometry. we consider two objects are isomorphic (identical, congruent) if
it is possible to move one of them by a rigid transformation (translation. rotation, reflection) to
oceupy exactly the same place as the other. In topology, two objects are said to be isomorphic
(homeomorphic, topologically equivalent) if there is a continuous bijection from one onto the other
with its inverse also continuous. For example, the boundary of a sguare is homeomorphic to any
simple enclosed curve (e.g. a circle or an cllipse). In graph theory, two graphs are isomorphic if there
is an adjacency-preserving bijection between the vertices. Thus, whether two objects are isomorphic
or not. does not depend on the objects alone. but also on the categories i whicl choose to we place
them.

Example 4:

SAT

= 1, where SAT = |SUT

Call two subsets S and T of the set X = {a, b. ¢} neighbors if —18n

_ This defines an adjacency relation on the eight subsets of X which is encoded in the following

T

diagram.

{a.b.c}

{e}

The preceding graph contains the Tawiltonian evele {0} — {a} — {a,b} — {b} — {b.c} —
{(I.(),(r} — {(1,, ('} — {(:} — {(A}
Definition

A function f from a set X to aset Y is called a coloring of X and the clements of ¥ are called the
colors.

Example 5 {The necklace problem):

10



Suppose we want to string a necklace with eight beads, each of which can be any oue of three given
colors, say red, blue and white (or simply r, b, w). Mathenatically, we will think of such a necklace
as a regular octagon. with its vertices considered as beads. Naturally the question arises: How many
such different neeklaces are possible? The answer to this question depends on what we mean by

“ditferent™ necklaces.

Necklace 1 Necklace 2 Necklace 3
b w r r r .
w 7 I b b w
w : b ; : b
\_q
7 b w w w u

The preceding diagrams illustrate three possible colorings of the necklace. Necklace 2 is obtained
by rotating Necklace 1, and Necklace 3 by turning over Necklace 2. Are we to consider Necklaces
1 & 2 the same? Should we consider all three necklaces the same? We now answer these questions

systematically.

Let X represent the set of vertices and Y the set of colors. If the vertices of the octagon are labeled,
then there are 3% different necklaces. because there are that many functions from X to Y. Now
suppose we consider two colorings, f and g, to he the same if there exits a rotation a of the octagon

such that f = goa. This relationship between f and ¢ is an cquivalence on the set of 3%

colorings.
and it can be shown that there are exactly 834 equivalence classes. Thus, modulo the rotation group
of the octagon. there are 834 ditferent necklaces. Lastly, il we permit both rotations and reflections

to define the equivalence relation on the set ol 28 colorings. we can show that there are only 193

different necklaces. To learn more about how we calenlated these numbers, see the Appendix.

I this thesis. we study two special categories of graphs called cubic graphs and trees. Both of these
categories have heen extensively studied. As in any branch of mathematies, there are an untold
number of open problems relating to them. The great mathematician Arthur Cayley (1821-1895)
forged a singularly powerful method applying group theory (another prominent area of kuowledge
in mathematies) (o build cubic graphs of as high a girth as one may desire. It is to he noted that
Cavley's method begins by first construeting a cubie tree and then obtains a enbie graph from the

tree. Tn addition. we will also explore the coneept of weight distribution at the vertices of a tree and



the existence of a speeial vertex (sometimes two) in a tree called the centroid(s). Together, these
concepts will help us to construct an algorithm for connting a specific type of trees that represents

the 2-d graphs of alkane molecules.

2 Cubic Graphs

Recall that a cubic cage of girth g is a cubic graph of girth g with the least possible number of
vertices. Cubice graphs have been studied extensively by many [runous mathematicians. Molecular
hiologist and Nobel laurcate Joshua Lederberg found important applications of cubic graphs to

deseribe moleenlar structures.

By the Handshaking Lemma, the number of vertices in & cubic graph must necessarily be even. A
cubic graph on 2n (n > 2) vertices can ecasily be constructed by starting with a regular 2n-gon and

then joining cach vertex to the one direetly opposite to it. However, such a graph will always have

girth ¢ < 1. The lollowing is an outstanding open problent in cubic graphs:
For cacli given positive integer g, determine the order of a cubic cage of girth g.

< 12. For higher values of g. only bounds are known.

So far this problem has been settled for 3 < g
We now give examples of some cubic cages and Hamiltonian cubic graphs. Figure 2 is a cubic cage
of girth three: the complete bipartite graph K35, which was shown in Figure L is a cubic cage of

eirth four. The Peterson graph (Figure 8) is a cubic cage of girth five. Figure b is a enubic cage of

girth six on 1 vertices.



Figure 2: (3,3) cage

Figure 3: A (3.4) graph on eight vertices: a cube

Figure 4: A (3.6) Tlamiltonian graph on 16 vertices

13



Figure 3 is a cubic graph on eight vertices of girth four. Since K33 is a cubic cage of girth four but

has only six vertices. the enbe is not a cage.

2.1 LCF Notation

/R

In 1965. American Nobel Prize winner Joshua Lederberg first developed a simplified notation for
constructing cubic Hamiltonian graphs by starting with a Hamiltonian eycle [8]. The idea was later
refined by Harold Coxeter in 1981 and Robert Frucht in 1976, thus deriving the name LCEF notation,
To use this notation, one starts with a Himiltonian cycle and then adds more edges to it according

to a suitable scheme. Let us explain the LCF notation [3, -3] L

Step 1: Start with a Hamiltonian cycle on eight vertices (the LCEF notation has two nmumbers within

the brackets and superseript four, 204 = 8). Label the vertices one through eight.

G 3

Step 2: The first entry in the LOF notation is three, so join vertex one to four (1 + 3).

2™

t



Step 3: Next join vertex two to seven (2 — 3 = T(mod 8)).

-1
[

Final Steps:

The superseript four in the LCF notation indicates that this pattern of adding three then subtracting
three is repeated four times. Il you reach a vertex that is already of degree three, skip that step
in the pattern (don’t create a loop). Once all of the vertices are of degree three. we have finished

constructing the cubic graph described by the given LCT notation.

-~
34

6 / 3

il -4

Below are two additional examples of graphs and their LCIT notation.

Figure 5: A (3.6) cage with LCF notation [—5, 5)

15



Figure 6: A (3.6) graph on 16 vertices with LCF notation [-5,6,-5,6,-5.5.6,-6,6,-6,-5,5,-6,5.-6.5]

16 1
1H /‘—— 9
11 A 7 3

~

1 1\/ 6
10 S~ 7
9 8

2.2 Construction of Cubic Graphs

While constructing a cubic graph is not difficult, discovering cubic cages is a fiendishly difficult
problem. The following four constructions are examples of different ways to construet cubic graphs
Though not all of these constructions produce cages, hut they outline technigues

of varying girths.

talt vield graphs of higher girths.

Construction 1: For n > 2, take 21 cqually spaced vertices on a circle and label them one through
2n. For cacli i. 1 < i < 2n. join the vertex i with ¢ — 1. i+ 1, and 7 -+n. This gives a cubie graph
In this and all other similar coustructions that follow. the arithmetic on the

of girth at most four,

numbered vertices is mod n.

Figure 7: Construction | with 2n =6

\

Construction 2: Take two concentric circles. Choose n (n 2 5) cqually spaced vertices on the
outer cirele and label them one through n. Take the corresponding n vertices on the inner cirele and
label cach with the same munber assigned to its corresponding one on the outer civcle. Join cach
vertex i on the outer cirele {o vertices i+ 1 and i — 1 on that circele. Next. choose a positive integer

I relatively prime to n. 1 < & < n. On the inner circle, join vertex 7 to both vertices -+ kand i - k.
s

16



Finally, join cach vertex ¢ on the outer cirele to the corresponding vertex i on the iner circle. This

construction coded as [n/1,n/k] vields a cubic graph.

Figure 8: Petersou graph [5/1,5/2]

[

In Figure 9, each vertex i in the ouler circle is joined to 7+ 2(mod 7) and each vertex 7 in the inner

circle is joined to i -+ 3(mod 7).

Figure 9: [7/2.7/3]

Construction 3: This construction is coded as [n/0.n/1n/byn/cl. The code indicates that we

take 1 verlices on cach of four concentrie circles. While the meaning of n/a.n/b.n/e is elear, n/0



means that no two vertices on the outermost circle are to be joined to cach other. Each vertex on
the outermost cirele is joined to each of its three corresponding vertices on the three inner cireles.

No edge is drawn [rom a vertex on one inner cirele to another on the other iuner cirele.

In Figure 10, the top line of vertices has no two vertices joined to cach other.

Figure 10: [7/0,7/1,7/2,7/3]

Construction 4: This construction of cubic graphs is given in Dr. Norman Biges™ paper Con-
structions of Cubic Graphs with Large Girth and utilizes permutation groups (sce the Appendix for
more information on group theory) {1l Suppose X is a sct and § is a sct of permutations of X
that is closed nnder inversions and does not contain the identity. The set S generates a subgroup
() of the symmetric group Sym(X) of X contains all the permutations of X. A Cayley graph
Cay(S) is defined to be the graph whose vertices @,y € (S), with a and y being joined by an edge if
yr~t e 8 IS = {aj.ay, ... o}, the vertex @ s adjacent to apr s, ... o, Sinee S s closed

mnder inversions, yar is also included in Cay(S); thus ry is not a directed edge.

Any cycle of length rin Clay(S) can be constructed from:

WL WL W Wy W
where cach w; € 8. w,. - cwawy is the identity pernmtation: w; # wip1 "ML < i< 1) and
w, A w7l I this condition holds, we say that w,. -+ oy is an identity word. ‘To find the girth
7 4 o



of a Cayley graph., you must find the shortest identity word.
Using this construction, there are two kinds of generating sets S that construct cubic Cayley graphs.
e Type 11 § = {a, 3,7}, where all three generators are involutions (clements of order two).

o Type 2: 8= {a, 8,07}, where v is an involution and 4 is not.

Example 6:
(SY == {c, (12), (13),(23), (123), (321)} = Sym(X) are the six vertices of this graph. The full graph

is shown below:

(12) (23)

Iere, a shortest identity word is (13)(23)(13)(12). Therefore the girth of the graph is four.
Example 7:
The sets X = {1,2,3} and S5 = {(12),(123), (321)} give a Cayley graph of Type 2. In this example,

(SY = {e (12),(123), (132), (13). (23)} = Sym(X) as well.

(123) (132)

(23) (13)

Here, a shortest identity word is (123)*. Therefore the girth of the graph is three.

19



Under this construetion, we begin to sce a clearer connection between cubic graphs and trees. When
we begin to construct cubic graphs in this mauner, their formation first looks like trees. Eventually,
the construction tells us how to connect vertices in such a way that we achieve a given girth and
eventually complete the cubie graph. In our examples. our starting vertex is e, which we say is at
level zero. Next. we join ¢ with each element in S, and these vertices are said to be at level one.
So far, we have a tree of height oue with three pendant vertices. From there, our edge relationships
tell us how to continue to add vertices or join existing ones. If our graph is currently still a tree at
height %, then the givth g < 2k + 1. To achieve g > ok + 1, we necessarily need some vertices at the

level b+ 1.

Figure 11: Diagram of Example 6 showing TFigure 12: Diagram of Example 7 showing

beginning tree structure beginning tree structure

€
I3

(123) (132)

2.3 Cubic Cages

2.3.1 Bounds on the Order of Cubic Cages

Lot o be a vertex in a cubie graph G with odd girth g. We know that . must have three neighbors,
and each of those vertices must, have two additional unique neighbors for g 2 5. This pattern would
continue until we reached a level where we wonld then join two existing vertices to create the desired

odd girth.
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Figure 13: Beginnings of cubic graph with Figure 11 Adding levels of unigque neighbors

g=>5

This pattern of adding unique neighbors generates a formula for the smallest muuber of vertices

. . . . . . 3 . .
possible for a cubic graph of odd girth. The final row would have 5= unique neighbors.

Formula 1 (Lower bound for cubic cages with odd girth).

1 +3+3-243-22 4 43-2"2 = 143142427+ 42"

Similarly, by starting with two vertices. a lormula can be derived for the lower bound of cubic cages

with even girth.

Fignre 15: Beginnings of cubic graph with g = Figure 16: Adding levels of unique neighbors

o AR

NNAN - ANNA

0

Since one ean almost never achieve a cubie cage at these lower hounds and the number of vertices

must always be even, we can assume the following formulas to caleulate the lower bound voly) of a



cubic cage with girth g.
Formula 3 (Lower bound for cubie cages).

-1 . .
3.2"% if g is odd

roly) = ”
22 if g is even

Using the same construction, the upper bound A(g) could similarly be established so that A(g) =

3-2¢ — 2 but an improved bound has also been proved [1].

=

Formula 4 (Upper bound for cubic cages).

Ag) = 2

2.3.2 Known Cubic Cages

<

The problem of constructing a cubic cage of a given girth ¢ has intrigued mathematicians for years.
While cages of girths three throngh cight are relatively simple to construet, many papers have been
published on the construction of cubic cages with larger girth. Below is a table listing the known
cubic cages and the best bounds for the given girths for which cages are not known. Because cages
with increasingly large girths require a large number of vertices, not all ol the following table’s values
have been proved to be the best cages possible, but rather are the ewrrent-hest.

Table ! is from the online table populated by Gordon Royle and the 2011 Dynamic Cage Survey
published by Geoffrey Exoo and Rober Jajeay. The function v3(g) is the upper bound for the cubie
cage of girth g. The number indicates the number of graphs known to meet the given upper bound.

Numbers with a “+7 next to them are not known fo be exact. Some current-best cages ol girth

larger than 22 have been omitted.
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Table 1: Cubic cages of small girth [3]

Cage wo(g) Best-Known vs(g) Number Reference
33) 6 * d 1 1 K,

(3,4) 4 6 G 1 K3

(3.5) 12 % 10 10 1 Peterson

(3,6) 8 14 14 1 Heawood

(3,7) 24 24 22 | McGee graph

(3,8) 16 30 30 1 Tutte’s 8-cage

(3,9) 18 58 16 18 Brinkmann/McKay /Saager
(3.10) 32 70 62 3 O’'Keele/Wong

(3,11) 96 112 0 [112] 1 MeKay/Myrvold-Balaban
(3.12) 64 126 126 1 Generalized hexagon
(3,13) 192 272 100 [202] 1+ MeKay /Myrvold-Toare
(3.014) 128 3841 254 [258] 1+ MeKay-Exoo

(3,15) 384 620 382 1+ Biggs

(3.16) 256 960 510 1+ Exoo

(3.17) 768 2176 766 [+ Exou

(3.18) 512 26-10 1022 I+4- Exoo

(3,19) 1536 4324 1534 1+ 1(47)

(3,20) 1021 6018 2016 1+ Exoo

(3,21) 3072 16028 3070 1+ IZxo0

(3.22) 2018 16206 409-1 1 Whitchead S(73)




3 Isomers of Alkanes

The study of chemistry deals with molecules and their structures. Moleendes are the basic element of
chemical compounds. They are formed by atoms which are held together by chemical bonds. While
molecules are 3-d chemical structures, some can be casily represented by 2-d mathematical graphs.
Al molecules are undirected and connected graphs. While not all molecules are trees, we will limit

our study to those that are.

Let Afy and Afs represent the graphs of two molecules with exactly the same atoms. T A and Afy
are non-isomorphic, then Af; and Ay are called isomers. The molecules that we are particularly
interested in ave called alkanes. Alkanes are molecules consisting of only carbon and hydrogen atoms
and that have ouly single bonds and no cyeles. Therefore, cach alkane can be represented by a tree.
Any vertex corresponding to a carbou atom must have degree four and any vertex corresponding to

a hydrogen atom must have degree one.

To graph these molecules, each atom is represented by a vertex and cach bond is represented by
an cdge. Therefore, all carbon vertices must be of degree four and all hydrogen vertices must be of

degree one.

Figure 17: CyHy (methane) is the most basic alkane.

Becanse all hydrogen atoms in the graphs of alkanes are pewdant vertices, Theorem 1.3 allows us

to study just the underlying structure of the carbon atoms. For example, Figure 18 illustrates the
graphs of Cu Il and Cy Il moleenles, comparing the true structure of the molecules to the underlyving

structure of the carbon atoms.



Figure 18: CoHg & Cylly

Since removing the hydrogen atoms. or pendant vertices, simplities the appearance of the graph, from
now on we will illustrate alkane graphs using only the underlying structure of the carbon atoms. If
you want to construct the true graph of a molecule given the underlying carbon structure, join a
hydrogen atom (or pendant vertex) to each carbon atom in the underlying graph until each carboun

atom is of degree four.
Suppose an alkane has ¢ carbon atowms. How many hydrogen atoms () must also be present?

Let G = (V, E) be the graph of the alkane such that |V| = v, |[E| = ¢, 2 € V, and (is a tree. Define
¢ as the number of carbon atoms and I as the number of hydrogen atoms in the molecule. According
.
to Theorem 1.1, E xp = 2. Since the degree of cach carbon atom is four and the degree of cach
k=1

"
hydrogen atom is 1, g ny = 4e -+ h. But this value is also equal to 2e. By Theorem 1.6, ¢ = ¢ - 1.
1. . ]ll::l . . g [anl ¥

Since the atoms of a molecule are the vertices in it’s graph, v = ¢ L. Therelore ¢+ h=rc-+1or
¢ = ¢+ h — 1. Combining the two theorems gives the following formula.

Formula 5.

de N =20c+h—1)
de 4 ho= 20420 =2

2042 =h

Figure 19 sketehes the different isomers of alkanes with four to six carbous. The isomers of alkanes

with two and three carbons were illnstrated in Figure 18,



Figure 19: Isomers of alkanes with four to six carbons

. 1
1]
]
|

Beeanse the graphs of the nnderlying carbou structure of alkanes with no cycles are trees, it is
relatively simple to count how many isomers there are for such alkanes with a small number of
carbons.  All you must do is draw all possible nonisomorphic trees on v vertices. As v increases,
it hecomes inereasingly difficult to draw all the nonisomorphie trees on v vertices. An important
wen the study of graph theory and chemistry is knowing how many isomers exists

connection betwe
with 1o cycles for a certain alkane. In this paper, 7(n) denotes the munber of nonisomorphic trees

on 1 vertices with a maximum degree of four.

3.1 Rooted Trecs

.
A rooted tree is a particular cmbedding of a tree that emphasizes how the vertices stem off fron a
single vertex. called the root. The degree of the vertex used as the root is called the root degree.
Any vertex in a tree can he chosen as a root for a particular embedding of a rooted tree. Once a
vertex is chosen, the tree is drawn by hanging the brauches of that tree from the root. The mumber

of unique hangings that can be drawn for a given tree depends upon the muuber of similarvity classes

of the vertices.

26



Example 8 (Rooted tree hung from three different vertices):
The following graph has three similarity classes of vertices aud therefore can be hung as a rooted

tree in three different ways.

{3

" [ An

Figure 20 shows the unique rooted trees produced by hanging the various isomers of alkanes with

two to six carbon atoms.

o



Figure 20: Rooted tree embeddings of Figure 19
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Because the graphs of alkanes only contain vertices of degrees less than or equal to four, we will

.

focus our study of rooted trees on these graphs.

3.2  Centroid(s) of a Tree

For any two distinet vertices x; and 2 in a tree 7', there is a unique ;= path in T'. This property,
characterizing trees among graphs, will be useful as we introduce some new concepts. meaningnl
only for trees and not for graphs in general. Two such concepts are the notions ol branches at a

eiven vertex and the existence of a centroid {or centroids) in a tree. Our goal in this section is to

formulate these concepts precisely and to develop a coherent theory relating to them. Inorder (o



bypass the trivial case, we will only counsider the trees that have at least two vertices, and from

henceforth the term “tree”™ will only be used in that sense.

B
b

«

Lot A be a fixed vertex in a tree T. The maximal subtree of T having A as an endvertex is called a
branch of 7 at A. The number of branches of A must. obviously, equal the degree of A in 7% The

weight sequence of A is the listing in decreasing order of the weights of the branches ol A and is

usually denoted (. wy, ... wy), where b = deg(A). Any given branch of T at A contains a unique
i ' i AL i 5t " this branch. A branch at A whose
neighbor B of A: the directed edge AR is called the stem of this branch. A Dbranch at . ¢
weight is not less than the weight of any other branch at A is called a principal branch at A, its
weight the principal weight at A, and its stem a principal stem at /. Of course, there conld be
several principal branches at A (all of which must necessarily have the same weight). A vertex g

of T with the least principal weight is called a centroid of T

Suppose A and I are two neighboring vertices it a tree 7% Let a be the total number of edges in all
—
the branches at A, except the branch with the stem A3 Similarily. let b denote the total number

h,—“") D 3 ) » .
of edges in all the brauches at 23 except the one with stem Bl For couvenience, the bhranch at A

with stem AB is denoted by (A3 —).
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Example 9 (A tree with a unique centroid):

I the following tree diagram, the vertex with principle weight five is the nnique centroid.

(1)

(11) (8.1,1,1) (11)

(1) (5,4,1,1) (11)

(11} (10.1) (7.2,1.1) (11)
(11)

Example 10 (A tree with a bicentroid):

I the following diagram. the tree has two bicentroids, hoth with principal weight four.

(7)
(7) (4,3) (M)
(7) (4,2,1) (G.1) (7)
-

3.2.1 Centers versus Centroids

In the following table, we give examples of trees with all the possible combinations of centers or

centroids. The total number of vertices that are centers or centroids varies from one to four.
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Table 2: Comparisou of centers vs. centroids

Number of Centers | Nwunber of Centroids | Total Number of Vertices Example <’
I 1 1 0
1 1 2
O——*—"I
I 2 2 -
o—o——~o—-——£—0-
~e
1 2 3
2 1 2
[ .
e
2 i 3
I IS
2 P 9 0-0
« IS T
2 2 3 T
¢ e P
*—eo—o—o—o—O—
e
2 2 4 ]

3.2.2  Methods for Finding a Centroid

Method 1

Start with a pendant vertex and travel along a principal branch. Continue moving from vertex to
vertex along principal branches until you reach a vertex vy with a principal weight [4£] or less. If
the principal weight at vy is [ %] or less, then rg is the unique centroid of T, If the principal weight

at vy is [%] > %, then vy is one of the bicentroids of T, the other centroid being the neighbor of vy
on the principal branch of vy.
Using this method. you can draw a connected graph that shows how yvou would move along the

unicue path between any pendant vertex and a centroid.
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Example 11 (Bicentroids):

(9) (%)
(9) (7,1, 1) (6.3) (5,4) (5,4) (6,1,1,1)
M
Example 12 (Unique centroid with single prineipal branch):
(10) (10)
e e
(5,4.1) (7.2.1) (9.1) (10)
*—
(10) (9. 1) (6.2.1.1) (10)
~
(10)

("



Example 13 (Unique centroid with multiple principal branches):

(9) (9)
e
(9) (8. 1) (7.2) (6,3) (4.4.1) (6,3) (7.1, 1) (9)

Method 2

I large trees, finding a centroid by Method 1 can take a long time. Method 2 utilizes the same
idea of moving along the principal branches, except you start at an interior vertex. A good interior
vertex to choose is a center. If you cannot easily locate a center, start at an approximate center and
move along the prineipal branches to find the centroid.

Example 14 (Approximate center):

In the below grapl. it appears that one of the longest paths is wog — 2y, s0 2y 15 a good approximate
center to choose. The weight sequence of s is (12. 11}. Moving in the direction of the principal

12, 11). Therefore, a7 and ay are the hicentroids

—

branch takes us to .r7, which has weight sequence

of the graph.

Iy
) £ 1.4
-— &
a5 g X7 X8 g 10 LY
Py Py .
— © L4
rie a3
I iy RST 1T 1R 10
»> 2 d 2 ]
20 2




3.3  Enumerating Unlabeled Trees

3.3.1 Historical Background

I 1874. the British mathematician Arthur Cayley published On the Mathematical Theory of Iso-
mers, the first paper that made a serious couneetion between graph theory and chemicals. Cayley's
goal was to determine a formula for connting the number of isomers of alkanes. He published a
table of his caleulations for only isomers up to Cygllzg. but his last two calculations were errored.
Cayley approached the problem by coustructing unlabeled trees from the center vertex or vertices.
Constructing trees in this manner is a more cumbersome approach, but focusing instead on the

centroid(s) of a graph reduces the task beeause the tree gets devided into a number of branches

more rapidly.

3.3.2 Counting Rooted Trees of Order n

I Xy

Later the algorithm presented will make nse of rooted trees of root degree less than or equal to
three. Why restrict to smaller degrees? The reasoning is because an edge will be added to the root,
making it of degree less thau or equal to four. Let r, be the nunmber of rooted (unlabeled) trees

on n vertices where the root degree is less than or equal to three. Let rp{m) be the corresponding

number when the root hias degree .

Theorem 3.4.
(”’) 'y =TIy (1) -+ "7:(2) -+ "n(."})

(b) (1) =1,
Formula 6.
Purape o ot roropog e Bl if o= 2k
il =2k 1

PUERge g b Pl A P Pt [('f) + 7‘}«}

This equation for r,(2) is defined piece-wise in a way that conveniently does not double connt when
we add branches.  This structure makes the equation for 7, (3) even more complicated. In the

following formula. a. b, and ¢ are distinet positive integers. The following sums count the number

of partitions of 7 — 1 into three suummands.



Formula 7.

i. S{a.b.e) =3 r, - ry-r. with the sun taken over all partitions a -+ b 4 ¢ = n — 1

i S{a,a,b) =" ("“j'l)r(, with the sum over 2a+ b = n — 1

) . B
ii. S{a,a,a) (" F%) with the sum over 3a = n — 1

Taking Theorem 3.4 together with Formulas 6 and 7, we can now caleulate r,(3) = S(a,b, ¢) +
Sla,a,b) + S(a,a,a).

Table 3: First few values of r,,

noorm (1) e (2) o (3)

2 1 0 (0 1
3 1 1 0 2
! 2 1 1 4
) 4 3 I 8
0 8 6 3 17

3.3.3 Forming a Tree from a Centroid

Example 15 (Simple weight scquence of a unique centroid):

Suppose (2.1.1) is the weight sequence of the unique centroid of an unknown tree. From this weight
sequence, we can deduce that the weight of the tree is four and the centroid has three hranches.
First. join two pendant vertices to the centroid.  Last. attach a rooted tree with weight one (by

attach. we mean add an edge between the centroid and the root of the tree yow are attaching). This

produces a tree of weight four such that the centroid hias degree sequence (2,1,1).

(-2
’
3

Example 16 (More complex weight sequence of a unique centroid)s
Suppose (:4.3,1,1) is the weight sequence of the unique centrotd of an unknown tree. Irom this weiglt
sequence, we can deduce that the weight of the tree is nine and that the centroid has four branches.

First, join two pendant vertices to the centroid. Next we attach a rooted tree of weight three, There
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are three possible rooted trees that we can attach:

e <

Next we attach a rooted tree of weight two. There are two possible trees to attach:

L
Y Y Yo

trees of weight nine such that the unique centroid has

This method produces six nonisomorphic

weight sequence (:13,1,1).

3.3.4 Algorithm for Counting

B - . . . ) C e e TSN
We now revisit the original question: how many unlabeled nonisomorphic trees exist on n vertiees!
The following algorithm can be used to make these caleulations and is our original work.

Let [7(n, ()] be the number of nonisomorphic trees on nvertices, where the weight sequence of
the centroid is w(x).

Step One: Determine the Possible Centroid Weight Sequences



tht sequences are equivalent to partitions of n — 1 into four summands,

n:l“‘

The possible centroid weig

sueh that the largest summand is of size less than or equal to |

Step Two: Count the Number with Unique Centroids

Let 2; be a unique centroid determined in the previous step.

Formula 8.
Proy % Parg * Ty * Ty if none of the terms in the weight sequence ave equal

("“’}_,'H) £ g % Piy if only wy and wy are equal

Py * (""’?2'“) * Py if only wy and wy ave equal

[T(now(e))| = § Fuy * Fas * ("“‘-?2'*"1) if only wy and wy are equal
("“'.}5"”2) * Py il only 1wy is different
Piy ("“"7’;'*'2) if only w; is different
("“’ll'*“‘) if all the terms are equal

The total nnber of nonisomorphic trees ou n vertices that have a unique centroid is equal to

| (T)] = Z [7(n, ()] where cach @y is a distinet unique centroid.
i

Step Three: Count the Number of Bicentroids

If n — 1 is odd, then some graphs of 7" have bicentroids. The total munber of nonisomorphic trees

on n vertices that have a bicentroid is:

Formula 9.
ey 1
[ ()| = (’(1/_‘)) + >

Step Four: Calculate the Total Nuuber

Formula 10.
’T(”” = !Tu(”)l + lTh(”)l

Example 17 (Counting the number of nonisoniorphic trees on cight vertices)s

Let Ty be a tree on eight vertices.

Step One:
List the unigue centroid weight sequences: .y = (B3 1), am = (3.2,2), ag = (3.2.1.0), g =

(2.2.2.1)
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A Appendix

Throughout this paper, soveral references are made to content included in this Appendix. We
folt that the inclusion of an Appendix was necessary to give additional definitions aud further

explanations that are not integral to the theme ol the paper, but still useful in some aspect.

A.1 Planar Graphs

Definition 2 A graph is said to be planar if vou can draw an embedding of the graph in a plane
graj p =) grajg 1

without edges crossing.

In the introduction, we pointed out that a given graph can usually be drawn in several ways that
appear geometrically quite different from cach other. A graph embedding is a particular drawing
of a graph. Example 1 shows two cmbeddings of a graph. The edges of a graph are said to cross
il they interseet somewhere that there is not a vertex. In the second embedding in IExample 1, the
edges w and yz cross. Observe that Ny cannot be drawn in a plane without some of its edges

crossing. In other words, Iz is not a planar graph.
Example 18 (Another planar graph):
Of the following two diagrans of the complete graph Iy, the first one is not planar, whereas the

sccond one is planar.

AN

A complete graph is a graph where cach pair of vertices is joined hy an edge. A bipartite graph
is a graph that has a vertex set made up of two disjoint vertex classes such that no two vertices in
the same class are joined by an edge. A bipartite graph with vertex classes Vi and Vi is called a

complete bipartite graph if ry € E(G) Vo€ Vi and Vy € Vo, Ny denotes a complete bipartite

graph with vertex classes of order moand n.



‘omplete graph Ky Figure 22: Complete bipartite graph Ky

A

Figure 21:

Theorem A.1l. A graph G is planar iff K5 and Iy 5 are not subgraphs of G [10].

A.2 Group Theory

In a munber of constructions in graph theory, we apply another branch of mathematics called group

theory. We outline a method where permutation groups are applied to construct cubie graphs of

large girth.

A permutation p of a sct X is a bijection of X outo X. The set of all permutations of a set X is
denoted by S(X). A permutation that is its own inverse is called an involution. As the bijections
of a set onto itself are obviously invertible and the identity function is a permutation, so S(X) is
a group. The notation [RETTE  T: ), represents a permutation [ of X = {ro,x1,. ., 01}, where

[(2i) = ri Vi < band f(ag) = 21 Such a permutation is called a cyele (not to be confused with

the carlier definition of eyeles in graphs). Any permutation of a finite set can be written as a produet

(composition) of unique disjoint eycle. For X {1,2,3,4,5,6},1 =23 —d =05 -0 11is

a permutation, as is also (1,2)(3,4.5. ). The permutation (O)(1) - -+ (k). where cach clement of a

finite set is sent to itself. is ealled the identity.

A binary operation on a set X is a function * : N x XN = Y. where Visaset, If+: X x X — X
we call * a closed binary operation. For r.y € X, w{r, y) is written as @ gy This notation is

called infix notation.

Definition 3 A group is a nonempty set G with a binary operation * on G such that

1 for all 2.y € G, 2w y € G (closure property)

2 forall vy 2 € G, awx (yx z) = (s y) # = (assoctativity)



3. there exists ¢ € G for 2 € G such that z x ¢ = ex 2 = x (identity clement)

4. for all 2 € ¢ there exists an 27 € G such that z 2" = o' % 2 = ¢ (inverse)

A.2.1 Group Actions

A group G is said to act on a set X if there is a [unction G x X — X, denoted by (g,2) — g,
satisfying

I.1xr=xaforall v € X

2. gh(x) = g(hx) for all g, € G and all x € X.

The map (g,2) — g is called the action and X is the G-set of the action. If |.X| = n, then n is
called the degree of X (or the degree of the action). A G-sct is faithful if g, i € G and g(x) = ()

for all » implics that g = . 1[I X is a G-set, the orbit of an clement r € X under G is the subset

Gl of X defined by
Gr={gr:g¢e G}

Example 19:
Any subgroup I7 of the symunetric group S(X) acts faithfully on A in the natural way: (fox) — f(r).

In particular, the automorphism group Aut(I') of a graph [' = (V, I7) acts on V.

A graph I' = (V. 1) is vertex-transitive if for any .y € V, there exits an automorphism 7 of |

salisfying 7(x) = y. bqnivalently, I is vertes-transitive if there is only one orbit in V. A graph
" is symmetric if for all vertices w, a2 € V. sucl that u and @ are adjacent and y and 2 are
= z. A graph I' is distance-

adjacent, there is an automorphisin 7 of ' for which 7(w) = y and 7(r)

transitive il for all vertices w, .y, 2 € V satisfving d(w.a) = d(y, 2), there is an automorphisim 7

H
L4

of I satisfying 7(w) = y and 7(x) =

A.2.2 Symmetries of a Regular n-gon

=

By rotating and reflecting a regular n-gou. one can create a group of symumetries. Consider a triangle
shaped dise whose corners are munbered that fits perfeetly into a mold. The original position of

the dise is pictured below in the upper-=left spot. Irom this position, the dise can he rotated and/or



reflected (flipped). This gives six possible ways to place the dise into the mold:

The lirst three positions (including the identity) are all achieved by rotations only. Using any such
rotation three times brings the dise back to the identity. This group of permutations is called the
cyclic group of order three. A cyelic group is a group of permutations that can be generated by
a single elewent, which we called a rotation. The order of a cyclic group is equal to the number
of clements in the set X Allsix positions can be obtained by either rotating or reflecting the dise.
Using a reflection twice brings the dise back to the identity. The whole group of permutations is
called the dihiedral group of order six. A dihedral group is a group of permutations that ean be

oenerated by two clements, which we alled rotation and reflection. The order of a dihedral group

is equal to twice the uumber of elements in X

A.3 The Necklace Problem

I the introdnction. we first discussed the idea of stringing a necklace with cight beads, cach of

which can be red. white. or blue. For the three necklaces below, we are now able to determine if two

necklaces are the same depending npon what group structure we arce allowing.

Necklace ] Necklace 2 Necklace 3
b w r I ! t
- /——— 7y
w I w f [ ( w
w r I3 " r / b
\———‘ _ \ «
[ 4 i w " w

Suppose we allow only a evelie structure (rotating the necklace on the table). Then Necklace | and 2
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are the same because you can achieve one coloring from the other by rotating it. On the other hand,
Necklace 3 is different hecause you cannot just rotate the necklace to achieve the same coloring.
However, if we allow a dibedral structure (handling the necklaces as pleased), all three necklaces are
the same. It's obvious that Necklace 1 and 2 are the same through rotations, but Necklace 3 must

he reflected and rotated in order to sce that it’s also the same.

In this problem, two necklaces are considered the same if you can transform one into another through
a function composition of permutations and ecolorings. Using Polya’s Theorem [9], we are able to
determine polynomials for counting the number of unique necklaces for the two cases where we allow
a cyclic or dihedral group structure. For a group G we can determine the cycle index, which js a
polynomial structured in such a way that we can identify the ditferent types of eycles that appear
in the permutations in . Using Polya’s theorem, we are able to replace cach z; term in the cyele
index with three, sinee we are using three colors, to obtain the total number of unique necklaces

possible under the given permutation group.

Permutation Group Cycle Index Unique Necklaces
Fixed ap® 3%

Cyelic L a4+ 2007 ] 834

Dihedral Eln® -+ Sagt A e Zan® 20 4 dag] 498
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