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1 Introduction

The goal of this thesis is to study two related problems that, in the broadest terms, lie in it branch of

mathematics called g7'O,ph theory. The first problem examines some new techniques for constructing

a Hamiltonian graph of least possible order and having a preassigned girth, and the second concerns

the cnuuicrution of a cort.aiu type of graphs called trees.

Graph theory is a highly developed suhject with scores of textbooks aIHI thousands of research

articles devoted to it. The origins of graph theory predate Euclid's Elements, written c. 300 B.C. It

was around 4(J(J B.C. that Plato and his disciples proved that only five perfect polyhedra call exist

in the :J-dimcnsional space we live in. Euclid's Elements Book XIII, devoted to the construction

of these polyhedra, onumcrutes thelll thus: the tetrahedron (four triangular faces), the cube, the

octahedron (eight triangular faces), the clodecaltedron (12 pentagonal faces), ami the icosahedron

(20 triangular faces) [2]. According to the famed British philosopher aIHI llIathematician Bertrand

Russell, "Elements is certaiuls) one of the greatest books ever w'rittcn. ,. It is only fitting that an

account of these so-called Platonic solids he a part of this hallowed book.

The five perfect polyhedra arc much more than simply geometric specimens of porfcctiou ill nature.

They contaiu the seminal idea behind what we today call the regular graphs. In fact, the tetrahedron,

the cube, and the dodecahedron, considered in terms of their vertices and edges (ignoring the faces),

are all cubic graphs, and the remaining two solids are regular graphs but not cubic. Inexplicably,

the idcn of graph theory had to wait nearly another two millenia after Plato's discovery for a

systematic development of this subjcct; even then, it was by a shear happenstance that the idea

sprang np. There were seven bridges across the river that flowed through the town of Konigsberg.

The Sunday strollers in the town always wondered if it was possible to cross all the seven bridges

without crossing any bridge more than once. This problem nltimat.cly got conveyed to the great

mathematician Euler, who analyzed the problcJll by sketching H schematic diagram of the plnccnlPnts

of tho bridges relative to the banks of the river and to each other and proved conclusively that the

stroller's conjecture was indeed IIwthematically impossible. Euler's approach to solvillg t.ho problelll

marked the rite of passage for graph theory to become a serious topic of mathcnmt.ical study,



1.1 Basics of Graph Theory

Definitions

A graph G is an ordered pair of disjoint sets (V. B) such that E is 11 collection of 2-snhsPls of V:

\T is t ho sot of vertices and E the set of edges of G. The order of G is simply the number of

vert.ices, IVI. A graph or Iiuito order is called a finite graph. III this study. all graphs arc assumed

to 1)(' finite. Tho weight of G, denoted by wiG) or simply hy 11', is tho number of edges, lEI·

The edge {:1', u} is said to join t he vertices .r and lJ and is denoted by :/".1). The edge :r!J is t.ho sallie

as .I).r. Tho vertices .1' and u arc the enclvert ices of :l"y. If .ry E E. UH'U :1' and 1I arc adjacent or

neighboring vertices of Gaud me said to lic incident with t.ho edge .1'.11. Two adjacent edges

have exactly ou« COllllllOIl cud vortex. The cOinplenlCnt of G == (V, E), denoted G, is t.ho graph Oil

t.ho vortex set V snell that for auv dist.inct vcrt iccs «: and.l) in V, :I'!l is an cdge ill G .~ :I"U rt E.

There arc st ruct.urcs similar to graphs called psoudogrnphs. For example, a dircclPd graph is O\\(' ill

which the edges arc taken as a set of order('d pairs (:r,y) or vorl.iccs. III such it pscudograph. ('xactly

OIH' of t ho ordorod pairs (.1' . .1/) or tu .. 1") is chosell as au edg('. If all ordorod pair (.1" .. 1') is allowcd as

all edge. it i:; called a loop. Some! imcs weights are assigned to l'dges to gd wh» t we call weighted

graphs.

E\"(,11 t hough \VI' have ddil1cd a graph as a pair (\T, E), we: usually do not t.hink of H graph ill t.ho-«:

t cruis. Ins: o.id. w« draw i1 dingralll ill which vorticos arc J"('Jll'l'S('lltod iJ~' dots (ill hold) and edgcs

by liIll' Sl'glll<'lltS (llot 1l<'("<'ssHril.ystraight). For ilion' di:-;(,llssioll OIl ditt"erellt drawillgs or graphs.

:-;ccthe ApPclldix. A diHgralll or a graph is only illtelldcd to (,OllV(~ythe illCidclIc(' rdation IWt.W(,Cll

vertic('s alld edg<'s ill tire grnplr Hlld has no ot 11<'1'gl'Ollll't ric,,1 siglliticnllc('. Tire salllP graph ("Hll

llslln\ly be drawll ill IlInllY differellt WHySthnt llWYnppl':1l" q1Jitl' difkn'llt frolll ('nclt Ot\l<'L Considl'r

til<' follO\\'illg cxalllpl('.

Example 1:

The following two dingr<lllls hoth rcprCS('llt th(' grnph C; ,= (V. E). \\'h('J"(~V c' {(I,h,e.d} nlld

E = {(I/l, /)(:, cd, d(l }.
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Nat urally the question arises: How can one tell by looking at two diugraiu» whether they represent

the same graph or not? To answer this quost.iou, we introduce tho notion of an isomorphism of

graphs. Two grnphs C, = (\11,£\) and C2 = (V2,E2) arc said to be isomorphic if there is a

bijection J : '-"1 _, V2 such that Y.rYy[.r.llE El <icc=}- I(·r)J(y) E £2]' Such a bijection is called all

iSOlIlorphism from Gj onto G2. If no isomorpliisiu exists Irom G, outo G2, t hcn the GI and G2

me nonisornorphic. An isomorphism Iroui a graph G outo itself is called an automor-phism of

G. The set of antolllorphisins of a graph G, denoted by A(C). forms a group under composition

(sce Appendix for more inforrnat iou Oil groups).

Example 2:

The following two diagn\lIlS show a graph and its couiplcuu-u: side-by-side.

"
If

"
i,

" cI

Thouah the two diagrallls appear quite diffl'rcllt. til!' two graphs nrc. in fact. isomorphic.

Definitions

Tho degree of a vort ox .r E V, dcnot od I/r-y(.r). is ddilH'd ;IS tit" number of vort.icos t liat nrc' joined

t () .r. J\ pendant vertex is of degr<'c' ono. A vort ox of degree z(']'o is called (\\1 isolated vertex. A

gmph G is said to be k-rogular if (';lcil vertex of G lias dC'!!;n'l~k, :I-reg\l\ar gmphs me' (';lIIl'<1cubic

graphs.

Theorem 1.1 (1l<mdshaking Lcnuua ). In 11 ymph (; c_-= (,', E). L r/cy(.r)== 2\q .
.re\ '

(i



Proo]. Each edge r-ont.rihutos it count of t.wo towards the S11Illof degrees. Thus 2.::= dCg(;l;) = 21EI·
.l'EI·

o

Corollary 1.2. III u. [iriit.« qtapl), tlu. 1/1I,IIi/WI' of ucrt.iccs of odd dc,r/f'r'c is always cucn,

HG ,,= (V.E) awl C;' = (F',E') arc graphs such that V' C V, and P' C E, t licn G' is said to hc it

subgr aph of G. If G = (V, E) is n gmph ami .t: E V, the s11hgraph obtained by ddct.iug ,J' (aud all

edges that coutain ,r) is deuoled hv Gj:r. Similarly, if /1 C V, then G/ll is the subgraph obtained

from G by dclct iug all the vertices in II (aloug any edge incident wi th at least OUl' vertex ill II).

Two vertices ;/' and .IJ of a graph G arc called similar and we write .J' ~ ,l/ if there exists f E A( G)

s11ch that fer) =,1}. Obviously, for J' and ,I} to be siruilar. it is necessary t.hn t. the d('gre(~ of ;/' be

same as that of y. III p.ut.iculnr. HlI isolated vert ox can only be similar to an isolated vertex aIHI a

poudnnt vertex only to n pendant vcrtcx. Siuiilaritv of vertices is an equivalence relation 011 V. and

so it pmt.itions V int.o eC{uiv,d('u('(' classes called the similarity classes. Tho number of siinilaritv

classes of pr-ndaut vertires of c: is dCllol<'cl by 8('1)( G).

Theorem 1.:{. I] two qrap],» arc isomorphic. then the ,IIT'Ophs res ull iiu] f/'()7J/, rcnio uinq their petulnn!

rcrticc» 00/'(' also iSOI/l.OI7)hir'.

he the sds of all pClldallt vert ic('s ill G I and G'2 and let f : VI -+ V2 lx: all isomorphism of C; I and

C;2. Sillc(' HII isomorphism maps ,I pcndallt vortex t.o ollly it j)('ll(lallt \'('rtl'x. f is also an iSOlllorphisllI

pClIdallt vcrtic('s of c: I outo (,'2 ,)],(' isolllorphic, o

Definitions

i\ walk ill <I grHph c: i:-idefilled as HII alt <'rllat illg s<'q1!ellc(' of vertic!'s alld edges. sl1ch HS

The length of IV is the lI11ll1hc]' of edges ill IV, or k. A. \\'alk of ICllgth () is ('ailed a trivial walle

If :l'o c/o '/'b tIl(' \\,Hlk is sHid to 1)(' opell. If Yo = ,1'1;, tIl(' \\';dk is SHirl to he dosed, If' 1I0 edge is

!'()jH'Htcd. the \\'alk is call('d a trail. !fllo vcr!<'x is repeated. th(' \\'alk is called ,\ path. 1\ closed tmil

is ('Hlled a cirelli t and II c1os('d pHt.h is called Hcycle. Pn elCllotes a pi!tl! of 1t'1Igth /I HIl(I en d(~l]()tes

iI cycle of ll'lIgt h n. 'rhe shorLl'st cyeIP possible is C:l, 1\ grilph is SHirlto ]w cOllnected if there ('xist"

7



a path between any two vert.ices. A graph is sai(l to he disconnected if it is not connect ed. Bya

comp onent of a gmph G, we mean a connected snbgrupli of G which is not properly contained in

any connected subgraph of G.

Definition 1 A connec-ted graph t hat contains no cycles is called 11 tree. By a subtree is' of a tree

T, we mean a subgraph S of T t hat is also a t.rco,

'I'hcorern lA. An..IJ tree T = (V, E) with IVI ::::2, luis atLeas! two pcndrllltl'cl'liccs.

Proof. Siur:c IVI 2': 2, :3.r,.IJE V such that :1' f y. Since T is connected, there is a path p hot ween :r

and y. Let Po he a longest path containing the path l' (such a path will exist because T is finite).

Theil each of the endpoint s of Jio must have degree' 1. o

Theorern 1.5. lj .r is a pendant ocrtc» in (/, tree T, then the T/J' is a subtree ofT.

Theorem 1.6. !(j] POI' IlIly tree T = (V. E). WI == lEI + 1.

Proof. \Ve provc this thCOI'CllI by inducting 011 the number of vert ices ill T. If IFI = L, l.hou clearly

lEI = () and thus the equation IVI = lEI + 1 holds in this case. Now assume that there exists a

posi t ivo integ('r II such t hat the t.hr-orom holds [or all t rc('s linviug II vert ices. Let T he a t 1'('(' Oil

II + 1 vort icc's. TIH'1l T has at k-ast two pClld,lllt vort it-os. Lot .1' Iw a pcuclaut vortex ill T. Thou

I'll' is a tree Oil /J vert.ices. and l rv the illduction hypothesis the t hoorciu holds for 1'/.1'. Since T has

exactly OIl(' more vert ('X and ()J[(' 1I10n' edge than T/:I', the t hcorcm holds for T as well. l Ionc« for

any t ret' '1', IFI =, lEI + 1. o

Definitions

If a (rail cout ni us all (11<'('dges ill 11graph, it is called all Euler trail 01' all Euler circuit, d<'llClIdillg

011 if it is opor: or dosed. If a path cout n ius all the \'('rtices ill a graph, it ic; called a Hamilton path

or it Harniltonian cycle. d('pending Oll if i( is OpCl! or doscd. A graph that contaills a llHl1lilton

cycle will he rdc)'('IH'('d as a Hamilton graph ill this paper. The girth of a graph c: is tl1(' kngth

of ( he short t'st cycle in C and is dcuo(ed hy y. A k-g graph is a k-rq\1Ilar ~~raph whos(' girt h is .rl·

If a graph ('ontaills lIO cyck tll('11 W(' say that t 11<'girt h of C; is illfillit(,. For gin'lI k alld .1/, a k-y

gmph 011 the Il'ast 111111tlH'rof verticcs possible is called a /;-.1/ cage. i\lIot.lH~r lIotHt iOIl t h,lt is 1Ised

(0 illdicate a /.:-.tI graph is (k,!f).

TIH' distance h('(\\'('('11 vertices .1' illld .1/ ill a graph. dCllotl'd d(.r, .1/), is the 1('lIgt h of (1](' sllOrtl'st

path 1)('(\\'('('11 .1' awl .1/. If then' is 110 p,lth 1)('(\\'('('ll .1' a1ld l/, then d(.I',.I/) = .XJ. 'I'll(' eccentricity



d.!:) of a vcrtcx .r E V is ma:t{d(:r,,Ij) :,1! E V}. The diameter di!lTl/(G) of Gis lIIa:r{f(:r) ::r E V}.

The radius of G, /'od(G), is nlin{!(:r) : :1: E V}. Any :» E V [or which ((.r) = /'ad(C) is called a

center of G. A graph G call have several centers. For example, it path of evou order has two centers

and a cycle has all it s vertices as contcrs.

1.2 Some Examples of Graphs

Example 3 (The utility graph):

Suppose each of three houses II, /J, (. is to be hooked lip with each of three utilit.ics c, 8, and II' («

for ekctricity, ,<; for s(~wage, and u: for water). In the figure l)('low, each of t lu- two diagrallls encodes

the adjacency relationship bdw('('n the houses awl ut.ilitics completely: however, the' loft cliaurain

shows too many edge-crossings because of a poor placciucnt of tile houses relative to the utilities.

The right diagralll contains only one edg;<>-crossillg. It can be proved that any placement of t ho six

vertices of t hL' ut ility graph in the plane will alwavs have at least one edgc-crossiug. The followillg

two dingrams ar« isomorphic as graphs, but 1I0t geometrically or topologically isomorphic.

Figure 1: The utility graph

(I Ii

,. /I'

-----
What is an lso morph isru?

III set theory. t.wo sct.s X awl )' nrc s,lid 10 he isomorphic «'t!nivalclll) if 11\('1'(' is it bijo«t iOI\ [1'0111

X 011to Y. TIl(' rut ionnls «(~ nud the int<~gers L0 art: isoiuorphic as sets. l lowovor, thov art: not

isomorphic as addit ivo gr01lps 1101';\1'(' t hey as linearly ordered sds. Similarly, t 11<' int eg<'rs L0a11d til('

positive illt('g('l'S Z+ are isolllorphic as sets hut. llot as onkrl'd sds (c.g., z-t- is \\'('ll-onkred wlIcn'as



£: is not). III classical geometry, we consider two objects are isomorphic (identical, cougrucnt) if

it is possible to move one of them by a rigid trunsformation (translation. rotation, rr-Ilcction] to

OCCIlPY exactly tho same place as the other. In topology. two objects are said to he isomorphic

(homoomorphic. topologically equivalent) if there is a continuous bijection from OIW onto the other

with its inverse also continuous. For example, the boundary of ,I square is homeomorphic to any

simple enclosed curve (c.g. a circle or an ellipse). In graph theory, two graphs an) isomorphic if there

is nil adjacency-preserving bijcct.ion bot.ween the vert ices. Thus. whct.hor two objects nrc isomorphic

or not docs not dcp cud on the objects aIOlH', hilt also 011 the cat.cgorics in which choose (0 w« pl.u:c

(hem.

Example 4:

Call two suhscts Sand T of the set X = {II, /J, c] neighbors if 18.6.TI= 1, where 8.6.1' = IS'uTI-ls'n
TI. This defines an ndjaccucy relation on the eight subsets of X which is enCl)(lccl ill the following

diagralll.

{(/. I). c}

{a} {e}

{0}

The pn~('(~ding graph cont ains t.lic IImnillolli:l1l cycle {0} -, {(/} --4 {1I,h} -, {h} -, {/i.e} -,

{1I.h,c} -, {II, I'} -, {c} -, {0}.

Defluition

A Iuuct iou I froiu a scI X (0 it sct Y is callr-d u coloring of X and t ho Ch'lll('ll\s of Y :11'(' calkd (Itt'

colors.

Example 5 (The 11('c)';I:1(,(, pro hkuu}:

III



Suppose we want to string a necklace with eight heads, each of which can be any one of three given

colors, say red, blue and white (or simply r, b,w). Mathcinar.ically, we will think of such a necklace

ns a regular octagon. with its vertices considered as heads. Natllrally the question arises: IIow inauv

such diflcrout necklaces arc possible? TIH' answer to this question depends on what wo menu by

"(Iifrercnt" necklaces,

Necklace 1 Necklace 2 Necklace :1

II'
r /'

/'
,,(~

"'~

II' 1
~

/'

II'

r lI' II' II' [I'

The preceding dingrallls illustrutc three possible colorings of the necklace. Necklace 2 is obtained

by rotating Necklace 1, and Necklace :1 by turning O\U· Necklace 2, Arc we to consider Necklaces

1 S,: 2 t.h« same? Should we consider all three necklaces t.ho s.uuo? \Ve now a nswor ( hese que-st ions

syst CllIil tically.

Let X reprosr-ut t.lie sot of vert ices and Y the set of colors. If the vert.ices of the octagoll are labeled.

t.hcu thorc nrc 3K dilforcut nocklnccs. hocausc there nrc that many functions from X to Y. Now

;';lIPPOS{, we. consider two colorings, I awl il- to l)(~ tho sntuc if there oxit s a rot.at.ion {\ of t.h« octagoll

such that f = yo (\. This rclat iouship bcL\\'CCll .f and y is au oquivnloncc Oil the set of :1" colorings.

and it ('(lII be shown that there aw cXHct.ly s:q cqllivnleu('c classes. TIl1ls, lllodlllo t IH' rot atioll grollp

of tIl<' octagol!. tll<'l'e are S:l-l difl'<']'('nt n('cldac('s. Lastly, if \\'(' jH'l'lllit hoth rotations and rcflc('tiolls

to ddilll' (he cqllivalt'll(,(' rdat.ioll Oll tll<' set of' 2S colorillgs, \\'l' (';111 show that tl}('rt, it\'(' ollly -IDS

di!['l'}'('lIt IH'cldncl's. To I('arll IIIO}'l' about how we ('al('ltla1<'d th('s(' 11III 11h<'l'S, S(~Cthe Appelldix.

III tllis tlH'sis. \V(' st.lldy two sl)('cial ('ittl~gories of graphs ('aIled cII/Jic !ll'IIjJ/ts illId trees. Both of' thes('

catcgories have h('Cll l'xkllSivdy stlldied, As ill ;my branch of Illilthl~lllilt ics, t IH'rc are illl lint old

lllllUiH'r of opel! prohlellls relating to t.lH'lIl. TIl(' great. Illilt\H'lnaliciall Artllllr C'ayk,\' (IS21-18Wi)

forged a singularly I)()\\'('rful nil'! hod applying group theory (,mot lwr prolllillellt an'a of kllowkdg('

ill lllathelnatics) to bllild cuhic graphs of as high iI girth as 011(' Inay dcsin', It. is to hl' llotl'd thilt

C'H~'ll'y'S lllethod bl'gins by firs! ('ollstructillg a ('llhi(' tn'c' awl thl'll ohtnillS a cubic graph frolll the

tr('(' , III addition. we will also ('xplore the (,OII('Cpt of weigll! distrihllLioll ,tt the \'('rtin's of n tre(' alld

II



the exist once of (1 special vortex (sOllletillll'S two) in a tree called the ccntroid(s). Together, these

cOllcepts will help us to const ruct nil algoritlllll for counting a specific tYlH' of tre('s that rcprcscnt s

the 2-d graphs of alkane molecules.

2 Cubic Graphs

Bccall t.hat a cubic cage of girth y is a cubic graph of girt.h y with the kast. possible number of

vertices. Cubic graphs have been studied extensively by runny Iamous mat.hcmat.ic-inns. Molecular

biologist nucl Nobel laureate .Ioshua Lcdorbcrg found import.ant npplicut.ions of cubic graphs to

describe molecular ~trllctllres.

By the Handshaking' Lcnuua, the nnmhcr of vertices ill it cubic graph must ucccssarily lx: oven, A

cubic graph Oil 211 (II 2: 2) vortices call easily be constructed by st.arting wit h a regular 211-g011and

t.hcn joining each vertex t.o the OIlC directly opposite to it. However, such it gnlph will always have

girth.ll :::::4. The following is all ourst.auding opell prol ilom ill cubic graphs:

For each given positive integer q, deterllline t hc order of a cubic cage of girth .11.

So far this prol ilcm bitS i>C(~ll set t led for :3 :::::.II ::::: 12. For higher values of .rI. oulv bounds arc kIlOWII.

\\'e 110\\· givc oxauiplcs of SOIllC cubi« cng(~s aud IIallliltollinn cubic graphs. Figure :2 is a cubic cage

of girt.h thror: the coiuplctc bipartite graph KI.:I. which was shown ill Figure 1. is it cubic cage of

girt It rom. Th« Pot orsou grnph (Fignrc 8) is <l cubic cage of girt h lin'. Figme G is a ("11hie engc of

girth six Oll 11 vert ices.

12



Figure 2: (3,;{) cage

Figure ;{: A (:l,4) graph Oll eight vert.ices a cube

Figure 4: A (;3.(i) Iimlliltollian graph on ](i w]'ti('('s

1:1



Figure :3 is a cuhi« graph OIl eight vertices of girth four. Since J(:l,:! is a cubic cage of girth four hut

has only six vertices. the cube is not a cage.

2.1 LCF Notation

In 1U(jG. American Nobel Prize winner JOSIIll1l Leclerbcrg first developed a simplified not.at ion for

conxtruct.iug cuhi« ll.uuiltonian graphs by st.art.ing with a Hamiltonian cycle [H]. The idea was later

refined by Harold Coxor.or ill IDSI ami Roliort Fruclit ill ID7(j, thus deriving tlie J];1Jll(' LCF notation.

To lIS(~ this notat.ion, OIW starts with a Hituilrouiau c.ydc aud then adds more- edges to it according

to a suit able srhom«. Let us explain the LeF notation [:l, -3J!.

Step 1: St art with a Ilamiltonian cycle on eight vertices (t he LeF notation has two numbers within

t he brackets ami supcrscrip! four, 2,1'4 = 8). Lalio] the vert ices one t hrough eight..

7

(j

Step 2: The lirst «ntrv ill the LCF notation is three, so joiu vert ox on« to rom (I + :1).

,~

7 ~

(j :!-,--:)

II



Step 3: Next join vertex two to seven (2 -:~ = 7(/IlOd 8)).

K

7 2

(; :1

;)

Final Steps:

Tho snperscript four in the LCF uotatiou indicates that this pattern of adding three then subtracting

throe is rqlcatcd four times, If y01\ reach a vertex that is already of degree three, skip that step

in t.ho pattern (don't create a loop). Once all of the vertices arc of <I('gn'(' three. w« have finished

coust.ructing the cubic: graph described by the given LCF not ation.

7

Below arc two additional examples of graphs and their LeF not.at.inu.

Figm(' G: A (:Ui) cage with LCF not at ion [-G, GF

II
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Figure G: A (:Ui) graph 011 Hi vertices with LCF notation [-5,G,-5,G,-5,5,f),-G,G,-G,-5,5,-Ci,5,-Ci,G]

1(;

1:2

2.2 Construction of Cubic Graphs

Whil« cOllstrllctillg 11 cubic graph is not d illlcult , discovering cuhi« cages is a Ilcudishlv dillicult

probk-m. The following four constructions arc examples of different ways to construct cubic graphs

of "aryillg girt lis. Though not all of t 11('se c-oust rue: ions produce cages, hut 111<'.)'out liu« tCc\llli([lH's

taht yield graphs of higher girths.

Construction 1: For II ::::2, take 211 equally spaced vert iccs Oil a circl« and lahd t hom 011(' t.hrough

211. For each i: I ::; i ::;211. join the vertex i with i - l , i -+ 1, and i + II. This gives a cubic gruph

of girth al most four. III this and all ot.hc-r similnr r-oustructious that follow, the arit.hmct.ic Oil t.hc

numbered vert ices is wolf II.

Figure 7: Construction I wit h 211 ,=' G

Cous tr uct.ion 2: Take' two couccut ric circles. Choose II (II ? 5) equally spaced Vl'ltic('s on t ho

outer circle and label them on« Ihrough II. Take I he ('OlTl'spol\(lillg /I vert icC's OIl the iuucr cin'I(' .uu l

label each with the sumo nmnbcr assigncd to its COIT('sponding OIlC Oil the outer circl«. .Ioin l'ilCIt

vert.ex i Oll t ho outer circle to "('rticl's i + j alld i --] OIl that circle. Nr-xt , choo-«: a posit iv« illteger

I; relatively prune to 11, I < l: < '/I. On t he inner circle, join vert ('X ito hot h vrrt icC's i+ k alld i- k.

J(j



Filially, join cach vertex i on the outer circle to the corresponding vertex i 011 the inner circle. This

construction coded as [n/L 11 /k] yields a cubic graph.

Figure 8: Peterson graph [5/1,5/2J

III Figure D, each vertex i ill t lic outer circle is joined to i+ 2(lllOd 7) awl each vertox i ill the inlier

circle isjoiucd to i+3(lllOd 7).

Figure D: [7/2.7/:1J

(i

I

Construction :3: This «onst ruction is c'odc'd as [1I/0.1I/l./I/Ii, 11/('1. TIll' ('()de indicates t hnt \\'('

take /I vort ico« OIl each of Iour cOIH'Cntric circles. \\'hile the IllCallill[.!;of 11/(1.11//),11/(' is ('h'ar, 11/0

17



means that no two vertices Oil the outermost circle arc to be joined (0 each other. Eacli vortex 011

the outermost cirr-lo is joined to each of its three corresponding vertices 011 the three inlier circles.

No edge is drawn Iroin a vertex ou one inner circle to another ou the ot her inner circle.

Iu Figure l O, t.ho top line of vertices has no two vert.ices joined to each other.

Figure 10: [710, 7/1,7/2,7/:1]

Coustruction 4: This coustruct.iou of cubic gmphs is given III Dr. Norman Biggs' paper Con-

structions oj (luliu: Graphs unili LII./:rJ(; Girth aud utilizes pornuttut iou groups (sec the Appendix for

more iuformnt.iou on group theory) Pl. Suppose X is a se( and S is a set of pcnuut.at.ions of X

t hat is dosed under inversions and docs not r-ont a iu tho identity. Th« set ,S' gClH'rntcs a subgroup

(8) of the syuuuo! ric group S,IIIII (X) of X cout.aills all t hc pcrmut ations of X. A Cayley graph

C'uy( S') is defined (0 be t he graph whoso vert iccs .1'. ,II E (5'). wit h .r uurl .I) heiug joiucd hv nu edge if

.1)./,.-1 E S'. If S =, {nl.(\2, .... (\/;}, the vcrtcx .» is ndj:lccll( (0 (\I'/"(\~·/"···'(\"..r· Since S is clos('d

under inve-rsions, .1/.1' is also inr.huk-d ill (:(1.1/(8): t hu-: .1'.1/ is not. a llirccll,d edge.

Any cycle of Iellglh r ill ('11.1/(8) CHII be constructed from:

.r, (.J..;'l:l'. u...''2w'J J', .... 0...-',. ... u..-''2Lv'l·r.

where ('a ch Wi E S'. w,"'U,'2WI IS t.ho i(klltity poruuu.u iou: Wi 'l ""·ill····
1 (1 :::: is'' --1) :Illd

""',. cJ ",,'1 -.. 1. If this c01lditioll holds, \\·c S:IY that 11','" 11'211'1 is all ideutity word. To filld (IJ(' girt II

lS



of a Cayley graph. you must find the shortest identity word.

Using this const.rnct ion, there arc two kinds of gcncrntiug sets S t.hat construct cubic Cayley graphs .

• Type 1: S = {(\.lj'~I}, where all three generators are involutions (clements oforder two) .

• Type 2: S' = {n, (l, ()-'.I}, where (\ is all involution awl () is not.

Example 6:

Tbo sets X = {1, 2,:1} and S' = {(12), (1:1), (2:1)} produce a Cayley graph of Typu 1. In this example,

(S') ,= [«, (12), (1:3), (2:n, (12:1), (:121)} = SUIlI(X) are the six vortices of this graph. The full graph

is shown below:

( 12)

l lr-ro. a shortest ident ity worr] is (1:1)(2:1)(1:1)(12). Therefore the girth of the graph is Iour.

Exrun plo 7:

Tlw sds X = {I. 2,::l} and S = {(12), (12:3), (:121)} gi\"(~a Ca~'lcy graph of Typ(' 2. III this cx.unplo,

(5') = {c. (12). (123). (1:12). (1:1). (2:l)} ,= S.l/III(X) as \\"('11.

( 12:l) (1:1:.n

(1:1)

I loro. a short (~st icleut ity word is (12:\):1. Then-foro t.ho girtlt of t ho graplt is t luoo.

I!)



Uudor this construction, we begin to sec a clearer connection between cubic graphs and trees. \YIH'1l

we begin to construct cubic graphs in this nuuiucr. their formation first looks like' trees. Eventually,

the COllstrllctioll tells us how to connect vertices ill such a way that we achieve a given girth and

r-vcnt.ually coiuplct.c the cuhic graph. In our examples. our start.inp; vertex is c , which we say is at

level zero. Ncxt . we join (' with each clement in S, aIHI t.hcsc vertices arc said to 1)(' at. level ouo.

So far, we have' a tree of height our: with three pondaut vertices. From there, our edge relationships

tell us how to continuo to add vertices or join existing ones. If our graph is currently still a tree at

height. k, tlH'1l the girth _q ~ 2k + 1. To nchiovr: y > 2k + 1, we necessarily need souro vertices at the

level t: + 1.

Figure 11: Diagram of Example (i showing Figure 12: Dingr.un of Example 7 showing

hegiuning t.rcc struct nrc bcgiuniug r rco structure
"c:

(1:2)

( 1:1)

( 12:1) ( I:l2)

2.3 Cubic Cages

2.8.1 Bounds on the Order of Cubic Cages

Le-t .r be a vort.cx in a cubic graph G wit.l: odd girth y. \V(' know thut .r must have t hrcc lH'ighhors,

and eneh of those vortices I1msL have two additional unique neighbors for .if 2: 5. This patt(~ru would

continue until we: roachod a level whore wc wouk] t hell join two C'xist iiu; n'rt icc's t0 (T('Ht(~ the d('sin'd

odd girl h.



Figure 1~1: I3eginuings of cubic graph with Figure U: Addillg levels of unique neighbors

~
/1 1\ /1

/ ', I
", , ", ,, , ", ,

1\1\/\
This patt.cru of adding unique neighbors gencrates a formula for the suiallost number of vcrt.icos

possible for a cubic graph of odd girth. The filial row would have (/;:l 1I11iqlWneighbors.

Formula 1 (Lower bouud for cubic cag<'s with odd girth).

Sirnil.ulv. hy stnrtillg with t.wo vert ices. n formula call 1)(' derived for t.hc lower bound of cubic cng('s

with even girth.

Figllrc lfi: Begiullings of cubic: graph with y = Figure 1(i: Adding levels of unique nciglibors

G

Formula 2 (Lower bound for cubic cages wi t.l, (,V(,II girt h).

Since 011(' can almost IICVC]" arhicvc a r-uhir eag<' at t.lic-«: lower hounds and t ho 11111111)(']" of V('l"t i("('s

must always 1)(' evou. wo call aSSIIIlH' ('11(' following formula» t o ("nlc\\la(' the 10\\'(']" bound l'Il(Y) of n

:n



cubic cage with girth y.

Forrnula 3 (Lower bound for cubic cages).

/.()(g)
if g is odd

if g is even

Using the same' const.ructiou, the upper bound /\(g) could similarly he estahlisllCd so t.hat A(g)

:3 . 2'1 - 2, hut an improved bound has also boon proved [1J.

Formula 4 (Upper hound for cubic cages).

2.3.2 Known Cubic Cages

Tl«: problem of const.ructiug a cubic cage of a giv(,1l girth .Il has intrigued ltlatlJ<'lllat iciaus for .reill'S.

Whilo cages of girths three through eight are relatively simple to coustruct, many papers hnv« he('n

published 011 t.hc coust ruct.ion of cuhic cages with larger girth. Below is a table list.iug the known

cubic cages and tJIC best bounds for the givcn girths for which cages arc not known. lkcallsl' Cilges

with increasingly large girtlls require a large number of vertices. not all of t.h« following tahle's vnluos

have lxx-n proved to he the hest cages possihle. hut rather are t lu: currcut-bost.

Tilblc J is Iroui the ouliuo tahh) populated by Gordoll Hoylc' and tlw 2011 Dinuuuic Cayc 8/£1'/1(:.1/

publishc«! by Gcoff'rey Exoo aud Hohcl' Jajcay. The fUllction/':l(Y) is the upper hound for the cubir-

CilgC of girth r;. The number indicates t he number of graphs known to meet tlu: given upper bound.

NU1JJ1)()rs wit h it "+" next to thom arc not known t () hr: exact. SmIlc current-best cages of girtiJ

larger t luu: 22 have h(,(,11 OluiUed.
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Table .I: Cubic cages of small girth [:3)

Cage 'I1o(y) Best-Known V3(g) Number Reference

(:1,:3) G * ,1 ,I [(I

(;l," ) ,I (j (j !\':L:l

(:J,5 ) 12 * 10 10 J Peterson

(;),G) s 14 ] ,I Henwood

(;),7) 21 2,1 22 I\fcGec graph

(:1,8) lG ;W ;W 1 Tutt c's 8-(:ag<'

(;),D) ,18 1i8 -JG 18 I3ril1klll1l1111/1\IcKay /Saagcr

(:UO) :12 70 ()2 :3 O'1\cdc/\\'ol1g

(;),11) !)(; 112 D-l [112] I\Jd\ay /1\ lvrvok 1-Bala han

(:U2) (i ..j 12G 12(; Gelleralized hoxagou

(:U:1) 1D2 272 l!JO [202] 1+ I\IcKay /I\Iyrvold- T Ioaro

(:U4) 128 ;l8·1 251 [258] 1+ I\IcKay-Exoo

(;),15 ) ;)8,1 (;20 :182 1+ Bigg,.;

(:UG) 25(; !)GO [i1O 1+ Exoo

(:3,17) 7G8 217(j 7GG 1·+ Exoo

(:3,18) 512 2G-1O 1022 1+ Exoo

(;),1D) 15:1G -1:12,1 15:1,1 1+ H(7)

(:l,20) 1021 GO-IS 201C; 1+ Exoo

(:),21) :3072 IG()28 :lO70 1+ Ex()o

(:),22) 2018 1G2()(; 40!)·1 1+ Wltitclwacl S(7;1)



3 Isomers of Alkanes

The study of chemistry deals with molecules and their st.ruct.urcs. l\[o!ec\llcs arc the basic clement of

chemical compounds. They are formed by atoms which arc held together hy chcnrical bonds. While

inolcx-ulcs arc :l-d rluunicnl structures, sonic CHII he easily represented hy 2-d iual.hcruutical graphs.

All molecules are uudiroct.cd and conucctcd graphs. \Vhile not all molecules arc t rcos, we will limit

our study to those that arc.

Let lHI and 111"2 represent the graphs of two molecules wit h exactly the s.uno atoms. If jill awl J\h

arc non-isouiorphic, then !III awl J11"2 arc called isomers. The molecules that we arc part.iculurly

int.orcsl.cd in arc called alkanes. Alkanes arc molecules consisting of only carbon and hydrogen atoms

and that have only single howls and 110 cycles. Therefore. each alkuuc can he represented by a (1"<'(\

Any vertex COlTl'sponding to a carbon atom must have degree four and any vertex corresponding to

it hydrogen at 0111 must have degree OIlC.

To graph these molecules. cndl at.om is roprcseutcd hv a vert ox and each bond is rt-prr-sont eel hy

all edge. Therefore, all carbon vert ices must he of degrec four and all hydrogen vertices must ho of

degree one.

Figure 17: C] III (mothnnc] is t he' inoxt basic alkane .

.-~-
13(,C<llIs('all hydrogen at oms in the gmphs of alkanes are peuclnu! vertices, Th('on'lll 1.:1 allows liS

to study just. the underlying st rur.t.urc of tho carbon at ours. For oxamplc. Figure 1.') illustrates t.h«

graphs of C"2 IIr; and C:l Il c. ruolc-culos, comparing the tl"lW s(.rll('( \lrc of t llf' Illole("llll's to (he \tllderl~'illg

strtll't.Ur<' of the l~arhol! atollls.
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~-tl-
Since removing the hydrogen atoms. or pcndunt vert ices. simplifies the appearance ofthe graph, from

IlO\\" OIl we will illustrate alkane graphs using only the underlying structure of the carbon at oms. If

yon want to construct the t nil' graph of a moloculc given the uurlcrlyiug cmbou structure, join a

hydrogell nt oiu (or pcndnn: vertex) to each em bon at om in the uuderlyillg graph uut il each carbon

atom is of degrC'P Iour.

Suppose: all alkane has c carbon at oms. How um nv hydrogen n t.oius (h) III1IS( also be prcsont?

Let G = (V, E) be (he gmph of the alkane surh 1hat IVI = I', IL'l = c, ;I',. (= V, aile! G is a t roc. Define

c as the number of cnrbou at OlUS and 11 as the number of hydrogcn atoms in (he molecule. According
,-

to Theorem l.1. L J'k = 2('. Siucc t.hc degree of each carbou ntoiu is four and the degree of each

!,-=1

hydrogen at oin is 1. L Ilk == ·le + li. But this vnluc is also equal (0 2e. By'T'IH'on'lll 1.(;, I' =c c: + 1.
k,el

Siur«: the at om-, of a mok-cuk- are the vcrtico-: in its graph, I' = t: -+- h. Therefore c: -/- h = ('+ I or

(' = r: + h - I. COlllhining the two theon'llls givcs llie following forlllllla.

Forllmla 5.

cJ C + h == 2 (c + h - I)

2(' +- 2 = h

Figllre Ul skdchcs (lie difkr(,llt iSOllll'I'S of Hlkmll's with fO\lr to six cnrbolls. TIll' isollwrs of "lk:llH'S

wit li two aud threc carbolls \\'('1'(' ill\ls( rated ill Fig\ll'l' 18.



Figure ID: Isomers of alkanes with four to six carbons

~----.-----~----- .

._I_ ______L
• I
I I

Bccnu:«: tlw graphs of tile Illlderlyillg car bon struct.ur« of nlkancs with IJO cycles nr« trees, it i,;

rolat ivclv simple to ('Ollllt how mauv iSOIlICrs therc an' for sllch alkillles with a slllilll number of

carbous. All vou I1IIlSt do is draw all possible nonisomorphic t.rocs 011 /! vert ice». As {J increases,

it l)('col1l(,s illc'J"casillgly diflicI!lt to draw all the nouisoruorphic trees Oil t: verticc». All iuiport.n nt

r-ouncct ion hotwccu the st udv of graph t lu-orv alld chclIIis[ ry is knowing how mauy isomor» (,xist s

with 110 cycles for a ('C'rtaill alkane. III this papcr, T(/I) dClIo[('s Ihe 1I11111bcrof nouisouiorphic trcl's

Oil II vcrtices wit.h a maxiuuun degrC'e of Iour.

:3.1 Rooted Trees

A rooted tree is ,\ part k-ulur clltI)('ddilJg of;\ t reI' 1 Ital cIllplIasiz('s how the vort iccs stelll off Irorn a

sillgle vertex, «alkxl t.ho root. The degrel' of tlI(' vert ox uscxl as [h(' root is called the root degree.

AllY vort c-x ill a tr('(' call Iw ('IIOSCll as a root for ;\ parLiclilar (,llll)('ddillg of;\ rooted tn'('. OI1C(';\

vertex is chosen, the Irec is .lrnwn by hanging Lhc I>r<llldl('s of tlIat t rcc frolll tlw ]"(Jol. The' llllllll)('r

of ulliquC' hallgillgs that Cilll 1)(' drawll Jill' a gin'l1 tn'(' depellds UjlOJl [lie JIIIllilwr of silllililrity classes

of tlIe verI iccs.
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Example 8 (Rootccl treo hung Iroin throe different vertices):

tree ill three diff('!'('llt ways.

The following graph has three sirniiarity classcs of vertices aud t1J('reic)re cau he lumg itS a rooted

(/~~

(.

t.

(/

\

t wo to six carbon at oms.

Figure 20 shows till' unique root cd t roes prod IIted by hanging t 11('various isomers of alkanes wit h

-r:_i



Figure 20: Hooted tree ombcdclings of Fignre l!)

I
! /~
i (" A ~
1("()~/,1~0~~

10),,;:AI((
~~r1~!J~/~
lA0r~~

Bl'CaIlS(' till' gn\phs of alkanes onlv routain \'('rt ices of degrees jess thau or equal to four, we will

focus our st.udy of root cd trees 011 t hest' graphs.

:3.2 Centroid(s) of a Tree

For anv two distinct vcrt icos .r, ancl :I"j ill it t ]"('(, T, t.horo is a unique .1";- :l"j pat hill T. This property,

characterizillg tre('s amour; graphs. will 1)(' useful as \1'(' iul.ror luce souu: Il(,W COII(·C'ptS.nu-aniugful

oulv for trees alld not for graphs ill gCllcrnl. Two such ("Ol1c('pts arc t l«: not ions or hrallclll's i\1 a

giV(,1Ivert.ex .uid the cxist.cucc or il cr-ntroicl (or (,(,lllroi<is) ill a t rcc, 0\11' goal ill t his soct ion is to

Iormulnt c tlic-«: COllccpts pn'cis('ly ancl 10 develop i\ ('ol!('rellt t h.-orv rclntillg to thciu. III order 10



b,Vpass the t.ri vial case. we will only consider the trees tha t have at least two vertices, and from

Iu-ucofort.h t Iw term "tree' will on I\' be used in that sense.

13
IiII

C'

•

LC't it 1)(' a fixed vortex in it tree T. The maximal subt.ro« of T having it ;IS an cndvertcx is called a

branch of T at A. The number of hranches of A 111l1st.obviously. e<[lwl the degn>(! of A in T. The

weight sequence of A is the listing ill decreasillg order of the w{>ights of the hrnuchos of A ill1d is

IIsllilll.\' dcnoted (11'1.11'2 •...• lI'd, where k = rlcy(A). Ail." gi"cn brnucli of T at A cout ains a unique

neigh Lor n of ;1: t.li« dire('t(~d erig(' ;tJj is called the stern of this hranch. A br.uich at A whose

weight is not I('ss t.han t he \V(~ight. of any ot her branch at A is called a principal branch at A. its

'Vl~ight tho principal weight at 11, aud its stem a principal stem at A. Of course. t hcr« could 1)('

s('vcrnl prillcipal branches at .it (all of which must Il(>('(>ssarily have the samr: weight). J\ ve-rtex :ro

of T wi th tll<' Imst princip» I \\'{>ighL is called a centroid of 1'.

SIIPPOS(> it and n are two neighboriug vert ices ill il t rco T. Lot II 1)(' the t otul uumhcr of edgcs ill all

the lmlll('h('s at ;t. ('x('('pt the brnucl. with t.l«: st cn: All. Suull.uily, 1<'1 /J rlcuot o t h« tot a! 1l11l11iJer

or edges in all tli« hrnuchc-s at [J except the Olle wit h Sl<'11113A. For ('oll\'('llicJl(,(', thc ImllJdl at II

with stClll Ajj is (kllo«'d hy (AD --').
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Example D (A t roc- with il unique centroid):

III t ho following t j'('(' dingr.uu, the vertex with principle weight five is the unique centroid.

(II)

(II)

(H.I,I,I) (II)

(II) (5,4,1,1) (II)

(II) (10.1 ) (7,2,1.1) (II)

Example 10 (A t.roo with a hiccntrokl):

(II)

Til t Ill' following dia,L';J"allJ.tIll' tre(' has two hicout.roids. hot h with principal weight four.

(7)

(7)

r ".'l

(7) (4,2,1) iG.l)

(7)

(7)

3.2.1. Centers versus Cent.roids

III the following Ii\ ilk, we give cx.uuplcs of trces wit h nil till' possibk: combinations of ('('nters or

«outroid». Tho total JIIIIllI)('r of vertices that arc c(,lIters or centroids varies from ouo to four.

:)1



Table 2: Comparison of centers VS, centroids

Numbor of Ccnt.ers Number of Centroids Total Number of Vertices Example

1
('

1 1 -0----

('~---
I 1 2

(' L.1 2 2 • 0 •
c!<---0- ''0

1 2 ~l

2 1 2 -----r-
c: ('t·0 0 0

0".

2 I :3

(' (.

2 2 2 0-.

(' (' T

2 2 :l
'_'--'-r

c: r o-t<0 . . 0 0

2 2 cl

3.2.2 Met ho ds for Finding a Centroid

Mot ho d 1

Start wit h 11 pendant vertex awl travel along a principal brnnrh. Continue moving from vertex to

vert r-x ,dollg priurip.il branr-hcs lI11til von reach a vert eX/'ll wit.h a principal wcight r'Il or kss, If

t.hc pri nt.ipn l w('ight at /'Il is l'if J or less. t hCII /'0 is the unique celltroid of T, If the priucipa] wcight

at /'Il is r'I 'I > 'I. t lien I'() is 011(' ;)1' the biC(,lItroids of T, t he other cent roid being t he IwighlJOr of/'ll

Oil the pri ncipu l brnncl: of /'(),

Using this mot.hod. you ran draw a connoct cd graph that shows how ,"011 would 1110\'(' along the

unique pat h het \\'('('11 auv pcud.uit vertex awl a ce-nt wid,



Exarnple 11 (Biccut.roids ):

(D)

(!J) (5,4)(7,1, I) (n,:1)--~~-~--+-~--7--'_----~~--~-+---

Example 12 (Unique centroid with single principal branch):

(IO) (IO)

(10) (iJ, I) (n, 2, 1, 1) (10)

/'-."

([0)

;1:1

(H)

(5,4)

(D)

(D, I) (10)

(!l)



Example 13 (Unique centroid with multiple principal branches}:

(!J) (0)

(!J) (x, I)

7-
/

(7,2) ((1,:1) (4,4,1) (0)7---~~---r-+-~--~--~~--

l\!lethod 2

III large tn'l's, iindiug <I cout roid by Mothod 1 can take a long time'. Method 2 utilizes till' same

idea of movinp, ,dollg t ho principal brunches. except you start at all interior vertex. A good interior

vert.ox to chooso is it «cuter. If you cannot easily locate a center, start at all approximate center and

JlIOV(' a loru; thc- principal brunches to lind the centroid.

Exaruple 14 (ApproxilIlilte center):

III t.ho bolow graph, it. appcilrs that one of the longest paths is .1'2IJ - ;1'21, so .1';; is a good approxiuiatc

center to choose. 'file \Vcight sequence of ;1',.; is (12,11). Moving in the direction of the principal

branch takes 11S to .1'7, which has \\'(~ight sequence (12,11). Therefore, ;1'7 and ;l'x nrc the hiccnt.roirls

of tl«: graph.

·1'1

·1"5 :rG X7 X8 .r!) .rIO

.-----G~---.6-----._----.
·1'11

.1' 1-1~._----._----..rlG ·1'17 ·1'1 !)

.1' 12

:['21.---r-.
1 ·1'2-1



:-3.3 Enumerating Unlabeled Trees

:L3.1 Historical Background

III 1874. the British nmthcnuu.iciau Arthur Cayley puhlishcd On the Mnihcmat ical Tlicoru oj lso-

"WI'S, t he first paper thnt made a serious COllllC'ctioll between graph theory and chemicals. Cayley's

goal was (0 dct.ormiuc a formula for count.iui; t.hc number of isomers of alkanes. Ile published a

t ablc of his calculations for only isomers 11p to CI:1lI:Ul• hut. his last two calculations were crrorccl.

Caylc.y approached UJ(' problr-m by construct.ing unlabeled trees from the cell tel' vortex or vertices.

Constr11cting trees in this manner is /1 more (,1II11h('rS0l1le approach, hut focusing inst (';HI 011 the

('cntroid(s) of a graph reduces the task because the tree gets dovidcrl into 11 number of iJrallchcs

1l10j'(' rapidly.

3.:~.2 Counting Rooted Trees of Order 11

Later the algorit Inn pn·scntcd will mal«: 11S(,of rooted t.rcos of root degrpc kss t 111111 or cquul to

tlircc. \\'hy restrict to smaller d('grccs'! The ]'casonillg is because all edge will 1)(' added to the root,

making it of dcgn'e less than or ('(jlliIl to foul'. Let r., he the number of root cd (uulabolod] tre(~s

0111/ vcrt icos where the root degree is less t han or equal to three. Lot /,,,(111) he t.he corrospoucliug

number when t he root has degrcC' /1/.

T'heorern aA.

[a.} r., = 1',,(1) + /',,(2) + /,,,(:1)

(b) 1',,(1) = 1'" I

For-mula 6.

{

"1/""'-" ·1· /··"··'k-·l + .. ,+ ""·1 1'(/',,(2)= -. - --' .,

I'1/'2k..··I+ '·2/',},k-·,'2 +····1 /'I.-I/'kll + [Cs) + I'd

if II ce= 2!.-

This Cqll,lt.iOll for /'" (2) is ddillCci pipce-wise ill iI Wil,\' t.ha! ('onvClli(>lltly do('s llot douhle ('Olillt Wh('ll

\\.C' add ImlllcilC's. This st.ructllre llJakes t.he Cqlliltioll for /',,(:1) ('Vt'll Ilion' cOlllplit';tt(·d. III the

followillg fOJ'lllula. II. 1>, alld {' are dist.illct po~iti\'(' illt.cg(·rs. The followillg SUlllS ('Ollll!' t.he Illll11lH'r

of part.it iOllS of 11 .- 1 illt () t hn'p Sllllllll;\llds.



Formula 7.

I. S (([, /J, c) 0:'" I: r., . I"/J • r.. wi t h the sum taken over all parf.i tious (/ + b -I- c = II - 1

ii. Siu:ri, Ii) =0 I: (,\11)/"/) with the SIlIII over 211 -I- Ii = 11 - I

Ill. Si«, a, 0) = I:(,";;t.:!) with the sum over :30.=/1 - 1

Taking Theorem :1."1together with Formulas G and 7, we call now calculate r.. (:1) si« h, c)+

Si«; a , b) -I- 5'(1/, a, (f).

Table :t First few values of 1""

2

:1

·1 2

[) ·1

(j 8

() ()

() 2

(i 17

3.3.~1 Forming it Tree from a Centroid

Exmnple 15 (Simple weight se(jllCIH'(' of a unique centroid):

Suppose (2, I,]) is t 11(' weight SC<]IlCIl(,(, of tile nuique cClltmid of an unknowu trc(', Froiu this weight

soquonc-«, wr: call elCdllC(, that (he weight of (he tree is four anrl the rcutroid Iws three branches.

First. join (wo prndaut vert ices to (he c(,lltroid. Last. at tach a root eel trcx: wit h \n'ight OIW (hy

(lttad!. we IIICall add ,III <'dgc 1)('(.\\"('('11 the ("('ll(mit! awl t h« root of tlIe tr('(' ~'Oll arc attaching). This

prodlJ('C'S a trr«: of \\"('ighl 1'0111' sllch that tlH' «out mid hns degree se<jllC'Il("(' (2, I, I).

J._____o----~----·

Exarnple Hi (1\lor(' complex \\'('igh(. SCQ1LCII("('of a unique cC'lltroid):

Suppose (d .:{,1,.1) is (he \\'cigh( seq1H'Il("(' of the uuiquo ('<'n( roid of all uuknown 1r('c~. FroJll this Wl'ighl

se<jll('llC'C', wC' (',111 dcdllCC that the wcigh( of thc' Ire(' is nille' <lIlel Ihal tIl<' c(,lJtroid 11il.~f(Jllr imlllcIH's.

First, joill h\"o p(,lldallt vcrtices 1 (} t he' c('lltroid. J\('x( \\'<~at t;tch <l roo(c'd t rec' or weight (hrc'c. TI!<'re

;w



arc throe possible rooted trees that we can attach:

Next \1'(' at tach a rooted tree of weight two. There arc two possible trees to attach:

L.-.
/ .y

•

• ·-~T-~~-.

weight sequence (.J,:l.I,l).

This Illcthod produces SIX nonisomorpliic trees of wcight III1H' such that tl«: unique CClltmid lliis

~L8.4 Algorit.hm for Cou nting

\V(, 11011' rovisit t lic origiua! question: how mauv unlabeled llollisolllOrphic (r('('s exist 01] II vertic('s?

'1'1](' Iollowiiu; ,llgorit.hll] ('<Ill 1)(' IIs('d to runl«: t hes(' cnlculat.ions a]](1 is 0111' origillal work.

Let !r(II,II'(.ri))! he the 111I1lll)(~r of nonisoinorphic 1.1'('(''; 0]] /I \'crUn's, II"I]('re th(' weight scqllC'IlC(' of

the C(,llt wid is w(;r).

Step One: Dot crmino t he Possible Centroid \ Veight S('qIlC]]("('S

:!7



The possible centroid weight SCqIICW'CS arc oquivaleut to part.itions of /I - J into four sunuuanrls,

such that t he largest snnunand is of size less than or oqunl t.o r "2 Il·

Step Two: Count the Number with Unique Centroids

Le: .r; be a unique centroid determincd in the previous step.

For-mula 8.

if IJOIlC of the t crin-: in the weight sequence arc equal

(
"W[ +1) *_. __r

:2 IU'3 ~ Ir_!
if only WI and 11'2 arc equal

(,..,," +-1)
I"H'1 * '2 * 1"/['.1

if only 1/'2 and 1I':l arc equal

. . (1''''3 -t-1)
'11'1 * 111''2 * 2

if only W:l aile! 11'_1 arc equal

("W1 +2) .
:1 * r 11'·1

if only 11'1 is different

("w., -+-2)
/''''1 * :l if only II' J is differellt

if all the t cnlls arc equal

Th« total number of 1l0lliSOlllorphic trees Oil II vertices that have a unique centroid IS equal to

jT,,(T)[ = L [T(II, u{r;))[. whore: each .i'; is it distinct unique ccnt roid.

Step Three: Count the Number of Bicclltroids

If /I _ 1 is odd, t hell some graphs of Than' biccutroids. Tho tot nl Ill11Il1H'r of nonisoruorphic trees

011 /I vert ices that have a hiccntroid is:

Formula 9.

[ ( )[ _ .. (1'(/1/'2) + 1)
Til - /I -.... :2

Step Fo ur: Calculate the Total NlIlllher

Forrnu la 10.

Exum plo 17 (COlllltillg the 1l111ll1J('rof nonisomorphir t.rees OIl eight vcrtircs}:

Lot 7~ he iI t.ro« 011 eight vert.ices.

Step 011(,:

List t.ho unique ccntroid wcight S('qIlCIl(,CS: .1' 1 (:;, 2. 2), .r:l (:l, 2. I. I) .. 1'1

(2.2,2. J)



A Appendix

Throughout this paper, several refercnces arc made to coutcut included in this Appendix. \Vc

felt that till' inclusion of an Appendix was llccessary to give additional definitions and further

('xplanations that are not integral to the t.homc of till' paper, hut still useful in SOllW aspect ..

A.1 Planar Grclphs

Definition 2 A graph is said to be planar if you can draw an embedding of the graph in a plant'

wi thou t edges crossing.

In the introduction, we pointed out rhat a given graph can usually be drawn in sovorul ways that

appear geollletrically quite different Iroiu each other. A graph embedding is 11 particular drawing

of a graph. ExalIlple 1 shows two cmbeddings of a graph. The edges of a graph arc said to cross

if they intersect sOlllewhere that there is not a vertex. In the second elllbedding in Example 1, the

edges Ii'.r and y::; cross. Observe that K:;,:; Ci\llllot be drawu in a plane without somr: of its edges

crossing. II! other words, !\":l.:; is not a plaunr graph.

Example 18 (Another planar graph):

Of the following two diagraJlls of the complete graph !(1. t he first one is not planar, whereas the

sccoud one is plnunr.

A complete graph is it gn\ph whore each pair of vC'rti('cs is joined hv 1111 ('cige. 1\ bipartite graph

is a grapb that has 11 vert ex sd made IIp of (.\\'0 disjoin! vert.ex classes such that I)() t \1'0 vert.ices ill

t hc s.unc clilss arc joined l iv an edgc'. A bipartite grapl, C; with vertex classes Vt alld 1'2 is (,1I1Ic'd 11

conrple tc bipartit.e graph if .ry E E(G) V.r E V, and vu E \'2. ]\"1./1 dCllotes a coinpk-te hipurt it!'

graph wit h vert ex classes of order 1II aile! II.



Figure 21: Coinplct (' graph Kr. Figure 22: Complete hipart.i!« graph ]\':u

Theorom A.I. A graph G ;S jI/II1I.IIT' iff 1{;. and 1\':1.:1arc no! 8uligraplis oJG [10].

A.2 Group Theory

In it number of' constr1lctions ill graph theory, we apply another lnauch of' uiathcinat.ics called group

theory. \Vc out line a runt.hod where perrnut.ntiou groups arc applied 10 construct cubic graphs of

largl' girth.

A pennlltation J! of a scI, ){ is a bijl'ctioll of X onto .Y. The sci. of all pcrmutar.ious of a sci X is

denoted hv S'(X). A porrnutntion Ihnt is its own inverse is calkd all involution. As the bijcct.ious

of a set out.o it self arc ohvio1lsly invertible and the irlont itv f'nnct.ion is a pcnnnt.at.ion, so S'(X) is

n group. The nola t.iou (.1"0,.1'1, ... "rk), represcnts a poruiutution f of X = {:l'o,:I'I, ... ,.l'k}, where

/(,1';) = .l'i+IVi < k .md f(:r..) = :1'1. Such a pCl'llllltatioll is called a cyclc (not to h(' cOllfllsl'l1 with

I Ill' earlier ddinitioll of cycles ill graphs). Any PCl'llllltntion of a Iiuit« set can he wri: tell as it product

(colllposition) of unique disjoint cycle. For X = {l,2,:I,.1,;;,G}, 1 __, 2 .-, :l-, -I ->!i --, (i -,lis

a porrnu t.at.iou, as is also (1,2)(:1,'1.;;, U). The pornuu ntiou (O)(f)·'· (k), where each element of a

finite set is SPlIt I()itself', is culled the ident.ity.

1\ binary operation Oil ;\ sd X is n fuuct.ion * : X x X _.., Y. whor« )' is a scl., If" : X x X ..·, .\,

Wl' cilll" a closed binary operation. For .I',J) E X, *(.1',y) is writtell as ;1'*.11. This notalioll is

cnllt'd infix notation.

Definitioll :~ A group is a llOllClupty scI G wit h il hillary operat ion * Oil c: such Ihal

1. for nIl ;1'. if (:: G, :1''',1) E () (c1oslIre property)

2. ]()r nIl .r.lJ.': E (:, ,r" (J) * z)= (.1' *,1/). (ilssoc:iath'it,\')

dl



3. there exists c E (J for :r: E G such that :1: * c = e *:r =:1' (identity clcmcut)

4. [or all :r E G there exist s all :1"' E G such t.har :1" * :1" = .r' * :r = c (inverse)

A.2.1 Gronp Actions

A group G is said to act on a set X if t.hcrc is a function () X X ........X, denoted by Cq, :r) _, g.t,

satisfying

1. 1 * :1' = :r for all :r E X

2. gl1(:r) = g(l1.r) [or all .II, t, E G auc] all :1: E X.

The map (.'1, :r) ----+ .r;.r is called the action and X is tho G-set of the action. If IXI = u, thon n is

called the degree of X (or the degree of the act ion). A G-sct icifaithful if .11,11 E G and g(.t:) = h(.I')

for all .1' implies that g = 11. If X is a G-ciet, tho orbit of an clement. i: E X under G is the subset

G.!' of X defined by

G.r = {g.!' : g E G}.

Example If):

Anv subgroup II of' t.li« svunnot rir group SIX) acts faithfully 011 X ill the nat mal way: U, .1')--' [ir],

III pnrticul.u. the <liltOlllorphislll group AIII(I') of <l grnph I' = (V E) acts Oil V.

A graph r = (V E) is vertex-transitive if for all_\' :r,.I/ E V, then' ('xit.s all nut omorphism T of I'

sat.isfyillg T(:r) = 1/. Eqllivaleutly, r is \'('rtex-transitiw if thoro is only one orbit ill V. A graph

T is symrnutr-Ic if for all vertices IU, .1', /I, z E V, such f.hnt II' and .1' arc adjacent awl .1/ anr! ..:: arc

;Idjaccllt, thoro is all <tiltouiorphixu: T of I' for which T(W) c= lJ nud T(.r) = c. A graph r is distance-

tnlllsitive if for all \'('rt ices 11', .r,.I/,.: E V satisfyillg rI( II', .1') = d(y,::), ther(, is :til il.nt.olllorphislIl T

of r satisfyilJg T(W) =.1/ alld T(.I:) =..co Z.

A.2.2 SYlllmetries of a Regular lI-gOll

By rotatillg alld rdlecting a rt'gtliar lI-gOll. Oll(' call (Teate a grollp of sYlllllwtrics. COllsid('r a triallgl('

slJaped disc \\'hos(' ('orllers an' lllllllher('d that fits pcrf('ctiy illto a llJOld. The origillnl posit ion ()f

the disc is pict.lIrt'd Iwlo\\' ill the' npper-left spot. Fr()]11tltis positioll, tlIe disc Cilll he rotat('d ;lIld/or



reflected (flipped). Thi-: giv('~ six possible wav» to place tho disc into the mold:

The first three position~ (including the identity) arc all achieved by rotations only. Using nny such

rot n t.ion three times brings the disc back to the identity. This group of pcnnut ations is called tIH'

cyclic group of order three. A cyclic group is a group of permutations t hat can be g()]wratcd by

a single oloiucnt., which we called a rot at ion. Tho order of a cyclic group is equal to the number

of clements ill the set X. All six positions call he obtained by (~ithl'r rotutint; or rclloct int; th« disc.

Using a reflection twice brings t ho disc hack to tho identity. Tho whole group of pcrmutnt ious is

('alled t ho dihedral group of orde-r six. A dihedral group is a group of permutations that (';111 Ill'

gClll'n1 ted by two clements, which wo called rot at.iou and r<'lil'ct ion. The order of a d ihodrnl group

is equal to twice the uumhcr of «lcmcuts ill X.

A.3 The Necklace Problem

III th« illtrodllction. wr: first discussod the idea of strillging a ucck lncc with eight beads, (';lch of

which can be red. white. or blue, For the t hrec nocklaccs below. w« arc !lOW ablc to d('(erlllillC if two

lll'cklaccs are the sauic dqll'lIdillg upon whnt group sl ru«t nrc w« an' nllowillg.

l\cckLlcC' I

h II'

Ncrklacc 2

/I' /I'

SIIJlPOSl' wr: a llow oul v a cyclic xt.ruct urc (rot atiiu; th« ll('ddncC' 011 tbl' l;li)I('). Then ]\;ccklacl' I illld 2

/I' /I'



are the sarno because you call achieve one coloring; from the other by rotating it. On the other hand,

Necklace :{ is different because you cannot just rot ate the necklace to achieve the s.unc coloring.

However, if we allow a dihedral structure (handling the necklaces as pleased), all three necklaces arc

the same. It's obvious tha t Necklace 1 and 2 arc the same through rotations, hut Nccklac« ;{must

he reflected aud rotated ill order to seC' that it's also the same,

In this problem, two necklaces arc considered the same if yon can transform one into another through

a fuuct iou coiuposit.iou of pormutntions and colorings. Using Polyu's Theorem [!JJ, we arc able to

determine polynomials for counting the number of unique uccklaccs for the two cases where we allow

a cyclic or dihedral gronp structure. For a group G we can determine the cycl« index. which is a

polynomial st ruct.urcd ill such a way that \V(~ can identify the dittcrcnt t.ypt'S of cycles that aplH'ar

in t.hc porurut.at ions in G. Using Polyas theorem, we are ahl« to replace each .l"i term in t.hc cycle

index with three, since we arc IIsing three colors. to obt.ain the total number of unique uccklaccs

possible under the givcn pcrmut.atiou group.

Permutation Group Cycle Index Unique Necklaces

Fixed :r]K

Cyclic ~[.rlK +:1"21 +2./".12 +cl.l",d

4!lS

·(·1
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