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Abstract 41 

Disturbances such as fire have the potential to remove genetic variation, but seed banks 42 

may counter this loss by restoring alleles through a reservoir effect.  We used allozyme 43 

analysis to characterize genetic change in two populations of the perennial Hypericum 44 

cumulicola, an endemic of the fire-prone Florida scrub. We assessed genetic variation 45 

before and one, two, and three years after fire that killed nearly all aboveground plants.  46 

Populations increased in size following fire, with most seedlings likely recruited from a 47 

persistent seed bank.  Four of five loci were variable.  Most alleles were present in low 48 

frequencies, but our large sample sizes allowed detection of significant trends.  Expected 49 

heterozygosity increased, and allele presence and allele frequencies showed marked shifts 50 

following fire.  The post-fire seedling cohort contained new alleles to the study and one 51 

new allele to the species. Population differentiation between the two study sites did not 52 

change.  Our study is the first to directly documents genetic changes following fire, a 53 

dominant ecological disturbance worldwide, and is also one of the few to consider shifts 54 

in a naturally recruiting post-disturbance seedling cohort.  We demonstrate the potential 55 

of seed banks to restore genetic variation lost between disturbances. Our study 56 

demonstrates that rapid genetic change can occur with disturbance and that fire can have 57 

positive effects on the genetics of rare species.  58 

 59 

 60 

 61 
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Introduction 64 

Rapid shifts in the genetic structure of populations are increasingly recognized as 65 

important responses of wild plants and animals to environmental changes such as global 66 

warming (Bradshaw and Holzapfel 2001), alterations in soil chemistry (Snaydon and 67 

Davies 1982), or invasion of exotic species (Groman and Pellmyr 2000). Ecological 68 

disturbances, by causing mass mortality and allowing prodigious recruitment, should also 69 

be capable of causing rapid genetic changes. However, this process remains virtually 70 

unstudied. 71 

 72 

Fire is probably the predominant ecological disturbance worldwide, controlling much 73 

variation in vegetation, carbon, and nutrient dynamics (Bond and Keeley 2005). 74 

However, no studies have investigated the effects of fire as a driver of genetic change. 75 

For plant species that are generally killed by fire and recover via a persistent seed bank, 76 

there is great potential for such change.  Seed banks can be genetically distinct from 77 

aboveground plants, and can serve as genetic reservoirs, harboring and replenishing 78 

variation that has been lost aboveground (Del Castillo 1994).  They have the potential to 79 

affect the evolutionary potential of plant populations (McCue and Holtsford 1998; Mahy 80 

et al. 1999) by dispersing genes through time (Tonsor et al. 1993).  If built up over many 81 

years, seed banks can store genetic memory of variation lost in aboveground plants 82 

(Templeton and Levin 1979; Cabin 1996) due to inbreeding and drift. Yet, field studies of 83 

seed bank genetics (Baskin and Baskin 1978; Tonsor 1993; Peroni and Armstrong 2001; 84 

Mandák et al. 2006) and the genetics of naturally occurring seedling cohorts (Epperson 85 

and Alvarez-Buylla 1997) are rare. 86 
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 87 

Florida scrub is a fire-prone, disturbance mediated habitat (Menges 2007).  Fire reduces 88 

aboveground biomass and releases herbaceous species from competition (Quintana-89 

Ascencio and Morales-Hernández 1997). Many of these herbaceous plants are killed by 90 

fire, but populations are rapidly restored by recruitment from seeds in a persistent seed 91 

bank (Menges and Kohfeldt 1995). Post-fire seeders are particularly well-represented 92 

among rare plants of Florida scrub, which is itself a hotspot for endemism (Christman 93 

and Judd 1990; Estill and Cruzan 2001). 94 

 95 

Although the effects of fire on the demography of several Florida scrub endemics have 96 

been documented (e.g., Quintana-Ascencio et al. 2003; Menges and Quintana-Ascencio 97 

2004; Menges et al. 2006), no previous study has examined the effects of fire on genetic 98 

change in a Florida scrub plant. We used allozyme markers to study genetic changes 99 

following fire in the federally-endangered Hypericum cumulicola (Small) P. Adams 100 

(Clusiaceae) at two sites on the Lake Wales Ridge in central Florida.  Complete censuses 101 

were conducted pre-fire at both sites.  Fires the following year killed almost all 102 

aboveground plants. We then sampled all seedlings emerging each of the next three 103 

years.  These seedlings were assumed to have derived from the seed bank based on the 104 

extremely limited seed dispersal documented for this species (Quintana-Ascencio et al. 105 

1998). Congruent spatial patterns within populations pre-fire vs. post-fire (Quintana-106 

Ascencio et al. in preparation) also suggest limited dispersal. Thus, we were able to track 107 

genetic changes occurring post-fire by comparing genetic variation in pre-burn 108 

aboveground populations with that in cohorts of emerging post-fire seedlings.   109 
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 110 

Seed banks are notoriously difficult to study, but can be very important life stages when 111 

considering metapopulation dynamics and genetic structure.  This is especially true in 112 

rare plants with few populations, where the seed bank may represent a significant 113 

proportion of the gene pool.  Prior genetic studies of seed banks relied on meticulously 114 

recovering seeds from soil cores and germinating them in greenhouses under artificial 115 

conditions (e.g., McGraw 1993; Cabin 1996; McCue and Holtsford 1998; Mandák et al. 116 

2006).  Our study system overcomes several shortcomings of this approach: 1) seed 117 

banks can be large and aggregated, making it hard to know where to collect samples at a 118 

site (Cabin 1998); 2) recovery of seeds from seed cores often results in few available 119 

seeds to grow into seedlings, so previous studies looked at few seed genotypes and 120 

therefore lacked statistical power to detect low frequency alleles (e.g., Mahy et al. 1999).  121 

Our in situ system and large sample sizes make our study one of the most comprehensive 122 

studies of genetic change in a wild plant species yet conducted. 123 
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Materials and Methods 124 

Study species 125 

Hypericum cumulicola, the Highlands scrub hypericum, is a short-lived perennial herb. It 126 

is a federally listed endangered plant endemic to the Lake Wales Ridge in central Florida 127 

(Christman and Judd 1990).   It grows in xeric, open areas of well-drained white sand in 128 

Florida scrub dominated by Florida rosemary (Ceratiola ericoides) and scrub oaks 129 

(Quercus spp.) (Menges 1999).  Populations tend to occur in discrete patches that are 130 

separated by large patches of unsuitable habitat (Quintana-Ascencio and Menges 1996).  131 

Plants are self-compatible and have high rates of inbreeding (Dolan et al. 1999) 132 

Pollinators of H. cumulicola are bees that forage locally in a trap-line fashion and are 133 

unlikely to travel between patches of occupied habitat (Boyle and Menges 2001).  Seeds 134 

and fruits disperse on average less than a meter (Menges et al. 1998). Consequently, most 135 

seedlings are found in the vicinity of fruiting plants (Quintana-Ascencio et al. 1998, 136 

Quintana-Ascencio et al. in preparation). Interpopulation gene flow, via either pollen or 137 

seeds, is therefore quite unlikely.  As a consequence, FST, the proportion of genetic 138 

variation found among populations, at patch level, is extremely large (0.72; Dolan et al.. 139 

1999; this study included 34 populations including the two populations included in this 140 

study).  No populations were in Hardy-Weinberg equilibrium. 141 

 142 

Florida rosemary scrub probably burns infrequently, about every 15-30 (Menges 2007) or 143 

20-80 years (Menges and Hawkes 1998).  Fire kills aboveground H. cumulicola plants 144 

(Menges and Kohfeldt 1995) as well as the dominant Florida rosemary (Johnson 1982).  145 

Reestablishment of both species occurs primarily from a persistent seed bank (Quintana-146 
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Ascencio et al. 1998), with Hypericum cumulicola establishment enhanced during wet 147 

winters (Quintana-Ascencio et al. 2007).  Survival and growth are greatest in recently 148 

burned patches (Quintana-Ascencio 1997), where there is less competition due to the 149 

temporary removal of aboveground shrub biomass and ground lichens (Quintana-150 

Ascencio and Morales-Hernández (1997). 151 

 152 

Study sites 153 

We studied genetic shifts in H. cumulicola with fire at two sites: Archbold Biological 154 

Station (ABS) and Lake Placid Scrub (LPS).  At each site, H. cumulicola occurs 155 

primarily in rosemary scrub, and periodic fires have been part of the recent history of 156 

each site. The patch at Archbold extends for ca. 400 m from north to south and is 80 m at 157 

its widest.   The patch at Lake Placid Scrub extends for ca. 90 m from northwest to 158 

southeast and is 35 m at its widest. Sites are 6 km apart and suitable habitat is 159 

discontinuous between the sites due to wetlands and human-caused habitat fragmentation. 160 

For both sites, complete pre-fire censuses for H. cumulicola were conducted in 161 

preparation for planned prescribed fires.  162 

 163 

At ABS, an accidental fire ignited by a passing train burned over the study site in 164 

February, 2001. This was a high intensity fire burning during an extreme drought 165 

(Weekley et al. 2007). Unlike most landscape fires over the years, this fire burned 166 

completely through seasonal ponds (that were bone dry) In addition, it produced 167 

unusually little variation in fire intensity in xeric uplands such as rosemary scrub (ABS 168 

fire data and Menges, personal observations).  In particular, this fire burned >99% of the 169 
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area in the patch, killing most standing H. cumulicola. Fewer than 1 % (8 of 842) of all 170 

plants survived through 2002; only three of them survived to 2003. The surviving plants 171 

were unburned and located in a single gap at the south end of the patch. Because of the 172 

large scale and homogeneity of this fire, along with the poor dispersal of H. cumulicola 173 

fruits, we believe the vast majority of post-fire seedlings derived from on-site seeds in the 174 

persistent seed bank. 175 

 176 

At LPS, the prescribed fire occurred as planned in July, 2001, just after the 2001 drought 177 

(Weekley et al. 2007).  Because of higher humidity, this prescribed fire resulted in a 178 

patchy burn. Nevertheless, most standing H. cumulicola plants in this patch were also 179 

killed. Fourteen plants (7.5 % of 186 total plants in the patch) in 6 gaps that did not burn 180 

on the eastern part of the Lake Placid patch survived through 2002; 4 of them survived 181 

through 2004.  182 

 183 

Recruitment of new seedlings began during the winter of 2001-2002. We located, marked 184 

and mapped with a laser (Impulse, Laser Technology Inc., Englewood, Colorado, USA, 1 185 

cm accuracy) every new recruit between July and September of 2002, 2003 and 2004 186 

within all gaps at Archbold and Lake Placid scrub patches (a total of over 1700 seedlings) 187 

Sites were visited 2-3 times every other week during peak germination time to increase 188 

chances of finding seedlings.  189 

 190 

Allozyme analysis 191 
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Small samples of leaf and stem or flower buds were collected from each plant larger than 192 

2 cm at both study sites (ABS and LPS) during the summer of 2000 (pre-fire) and 2002 193 

(post-fire)  Additionally, during 2003 and 2004, samples from newly established 194 

seedlings were collected.  Almost all plants were large enough to be sampled (Table 1).  195 

 196 

Material was sent to Butler University via overnight mail, where standard procedures for 197 

starch gel electrophoresis for allozymes were conducted with recipes following Dolan et 198 

al. (1999).  Gels were stained for the five variable loci identified in our previous, 199 

extensive, species-wide survey of H. cumulicola (Dolan et al. 1999): isocitrate 200 

dehydrogenase (IDH), malate dehydrogenase 1 (MDH1), malate dehydrogenase 3 201 

(MDH3), menadione reductase (MNR), and 6-phosphoglucomutase (6PGD)   We used 202 

the GDA software of Lewis and Zaykin (1999) for genetic analysis.  Because sample 203 

sizes were large (at least 699 at ABS and 172 at LPS for each year) and nearly complete 204 

we applied no cut-off criterion for considering a locus polymorphic, including all alleles 205 

detected in our analyses.  The few plants that survived the fire at either site were included 206 

in pre-fire genetic analyses but not the post-fire analyses. 207 

 208 

Statistical Analyses 209 

Expected heterozygosity was calculated for each study site pre-fire (2000) and post-fire 210 

(2002, 2003, 2004). We used contingency chi-square tests (recommended by Ryman and 211 

Jorde 2001 over other tests) generated by Systat software (Academic Distributing, Inc., 212 

Dewey, AZ, USA) to compare allele frequencies between pre-fire plants and 2002 post-213 

fire plants derived from the seed bank. Alpha levels are adjusted via Bonferroni 214 
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correction to reduce the likelihood of type I errors. Genetic structure between the two 215 

sites was analyzed using θ p, a measure of the extent to which populations are 216 

differentiated (Weir 1996). 217 

 218 

 219 

     220 

      221 
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Results 222 

We found several changes in allele presence during our study. A total of 12 alleles were 223 

detected for the 5 loci assayed (Table 1).    MDH1, surveyed because it was variable at 224 

some sites in our previous work (Dolan et al. 1999) was not variable in either site in any 225 

year. The population at ABS had greater allelic richness, with alleles for IDH and 6PGD 226 

that were not present during any sample years at LPS.  The very low frequency IDH-b 227 

allele was lost from ABS following the fire. Three alleles were detected in our study sites 228 

only after the fire: MDH3-c and 6PGD-a at ABS and MNR-c at LPS.  6PGD-a is a 229 

globally new allele; not being found in our previous species-wide survey (Dolan et al 230 

1999).    231 

 232 

Quantitative shifts in allele frequencies following fire were often marked, were present in 233 

seedlings recruited the first year post-fire, and persisted throughout our study.  At ABS, 234 

three of the four variable loci had significant allele frequency shifts in 2002, the first year 235 

seedlings were present following the burn (Table 1).  MDH3-a increased almost five-fold 236 

while 6PGD-b decreased by about one-third.  6PGD-d, present at 0.4% frequency pre-237 

fire, was not detected in the first survey year post-fire, but was found the next two years.  238 

At LPS, one of the two variable loci had significant allele frequency differences 239 

following the burn compared to pre-fire. There was a 42% reduction in frequency of 240 

MDH3-b in the first sample year post-burn.  All significant allele frequency shifts were 241 

robust enough that they continued to be significant (p < 0.05) even when alpha levels are 242 

adjusted via Bonferroni correction to reduce the likelihood of type I errors. 243 

 244 
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Population size at ABS increased 75% after the fire, increasing for at least three years, 245 

through 2004 (Fig. 1). Similarly, population size at LPS increased 95% after the fire, 246 

peaking two years post-fire in 2003 (Fig. 1). Both sites experienced increases in expected 247 

heterozygosity (that mostly paralleled population size increases) by the end of the study 248 

period (50% at ASB, 62.5% at LPS), following slight drops in the first post-fire census 249 

year, 2002 (Fig. 1).  250 

 251 

Populations at ABS and LPS were significantly differentiated genetically in all sample 252 

years (95% confidence intervals of θ p did not overlap zero; Fig. 2).    The magnitude of 253 

the differentiation was similar in all sample years(95% confidence intervals overlap). 254 

 255 
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Discussion 256 

The seed bank of Hypericum cumulicola has the potential to serve as a genetic reservoir, 257 

storing and accumulating genes of the fittest plants over many years and under a range of 258 

environmental conditions.  The formation of a persistent seed bank allows H. cumulicola 259 

to reverse population declines that occur between fires in Florida scrub (Quintana-260 

Ascencio et al. 2003, 2007).  The moderate (15-30 years) fire return frequency proposed 261 

for rosemary scrub (Menges 2007) allows sufficient time for a fecund species such as H. 262 

cumulicola to build up a very large seed bank. Although the longevity of its seed bank is 263 

not known (it is at least two years; Quintana-Ascencio et al. 1998), other species found in 264 

rosemary scrub may have seeds that can persist for at least 7 years (Menges and 265 

Quintana-Ascencio 2004).  266 

 267 

Recruitment in H.  cumulicola is highest just after fire, although some germination occurs 268 

every year (Quintana-Ascencio et al. 2003). Although the initial flush of plants must have 269 

come from the persistent seed bank, some seedlings may have subsequently been 270 

produced from early-flowering post-fire plants. Therefore, we do not  know how many of 271 

seedlings we analyzed arose from the seed bank. Therefore, continued seedling 272 

recruitment may dilute the seed bank reservoir effect.  Nonetheless, even these additional 273 

seedlings may harbor alleles that owe their post-fire existence to prior storage in the soil 274 

seed bank. 275 

 276 

Qualitative and quantitative differences in alleles between aboveground plants and their 277 

associated seed banks have been found in several other studies.  Cases of both alleles 278 
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present aboveground and missing belowground and vice-versa have been reported (Cabin 279 

et al. 1998; McCue and Holtsford 1998; Tonsor 1993; Mahy et al. 1999; Mandák et al. 280 

2006).  Alleles involved were rare and usually found in very low frequency, as were the 281 

one lost aboveground and three gained in our study (mean frequency = 0.4%).  Alleles 282 

with frequencies this low would likely have been missed in studies with smaller sample 283 

sizes. 284 

 285 

Long-term seed banks play an important role in H. cumulicola demography, being critical 286 

to reduce risks of decline or extinction during unfavorable years in fire-suppressed 287 

habitats (Quintana-Ascencio et al. 2003) For H. cumulicola, environmental conditions 288 

decline between fires as growing shrubs become more competitive neighbors (Quintana-289 

Ascencio and Morales-Hernandez 1997; Quintana-Ascencio et al. 1998).  Seedling 290 

recruitment declines greatly with time since fire (Quintana-Ascencio et al. in 291 

preparation,). Emigration from unfavorable patches is unlikely because dispersal 292 

distances are small and suitable patches usually too far away.   293 

 294 

Matrix models of H. cumulicola indicate that seeds constitute 90-99 % of population 295 

stable stage distributions in most habitats (particularly long unburned habitats; Picó et al. 296 

2003), and that seed transitions have large influences on population growth (Quintana-297 

Ascencio et al. 2003).  Since seeds are the dominant stage both in terms of numbers and 298 

in terms of their impact on population growth, small evolutionary changes in seed 299 

survival and seed dormancy can have profound consequences for H. cumulicola 300 

persistence. 301 
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 302 

Our study demonstrates that rapid and significant genetic change can occur with 303 

disturbance.  Fire, the principal disturbance responsible for shaping community structure 304 

in rosemary scrub vegetation, can also significantly influence genetic patterns in 305 

individual species. Fire both kills all (aboveground) H. cumulicola plants and  triggers a 306 

flush of germination from a persistent seed bank. In so doing, it also triggers rapid 307 

genetic change and allows genetic material stored in the soil seed bank to once again be 308 

expressed in growing plants. 309 
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Table 1.  Allele frequencies for the four polymorphic loci, for entire aboveground 

populations by site and year.  Pre-fire = 2000.  The fires occurred in 2001, but no plants 

emerged that year.  N = number of plants sampled.  % = percent of total population.  

Contingency analysis Chi-square (Χ
2
) values are given for loci that differed significantly 

in allele frequencies between pre-fire and 2002.  Allele frequencies in subsequent years 

were not significantly different from those present in 2002.  Χ
2 

results are not included for 

IDH at ASB and MNR at LPS due to the presence of sparse cells. 

 

  ABS      LPS     

             

  Pre-

fire 

2002 Χ
2 

2003 2004  Pre-

fire 

2002 Χ
2
 2003 2004 

N  816 699  1430 1454  172 182  337 309 

%  100 86.6  88.9 99.7  100 95.7  92.3 99.7 

Locus Allele            

IDH a 0.995 1.000  1.000 1.000  1.000 1.000  1.000 1.000 

 b 0.005 -  - -  - -  - - 

             

MDH3 a 0.016 0.076 66.6*** 0.084 0.084  0.018 0.092 97.3*** 0.071 0.074 

 b 0.984 0.924  0.910 0.910  0.836 0.483  0.564 0.570 

 c - -  0.006 0.006  0.146 0.424  0.365 0.356 

             

MNR b 0.807 0.862 15.9*** 0.815 0.816  1.000 0.995  0.977 0.977 
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 c 0.193 0.138  0.185 0.184  - 0.005  0.023 0.023 

             

6PGD a - -  0.001 0.001  - -  - - 

 b 0.169 0.055 107.0*** 0.076 0.098  - -  - - 

 c 0.823 0.945  0.908 0.886  1.000 1.000  1.000 1.000 

 d 0.009 -  0.015 0.015  - -  - - 

 

*** = p < 0.001 

 

 

 



                                                                                                                                 

 

ABS

0

200

400

600

800

1000

1200

1400

1600

N
o
. 
o
f 
p
la
n
ts

0.00

0.02

0.04

0.06

0.08

0.10

1999 2000 2001 2002 2003 2004 2005

E
x
p
e
c
te
d
 h
e
te
ro
z
y
g
o
s
it
y

 
  

 

LPS

0

50

100

150

200

250

300

350

400

N
o
. 
o
f 
p
la
n
ts

0.00

0.02

0.04

0.06

0.08

0.10

1999 2000 2001 2002 2003 2004 2005

E
x
p
e
c
te
d
 h
e
te
ro
z
y
g
o
s
it
y

 

 

 

Figure 1 Population size (closed circles and solid lines) and expected heterozygosity 

(open circles and dashed lines) for study populations ABS and  LPS pre-fire (2000), the 

year of the fire (2001) and the three sample years post-fire.  Expected heterozygosity was 

not calculated in the fire year. 
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Figure 2 Degree of population differentiation (θ p), with 95% confidence intervals 

indicated, between study populations ABS and LPS, pre-fire (2000) and the three sample 

years post-fire.  θ p values greater than zero indicate significant differentiation.   
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