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Abstract

This paper focuses on why the regular least–squares fitting technique is unstable when used to fit
exponential functions to signal waveforms, since such functions are highly correlated. It talks about
alternative approaches, such as the search method, which has a slow convergence rate of 1/N1/M , for M
parameters, where N is the number of computations performed. We have used the Monte Carlo method,
utilizing both search and random walk, to devise a stable least–squares fitting algorithm that converges
rapidly at a rate 1/N1/2, regardless of the number of parameters used in fitting the waveforms. The
Monte Carlo approach has been tested for computed data—with and without noise, and by fitting actual
experimental signal waveforms associated with optogalvanic transitions recorded with a hollow cathode
discharge tube containing a mixture of neon (Ne) and carbon monoxide (CO) gases, and has yielded
excellent results, making the developed algorithm both stable and fast for today’s personal computers.

Keywords: Monte Carlo technique; Least–squares fit; Exponential functions; Signal waveforms;
Optogalvanic transitions

1 Introduction

Least–squares fitting is a common technique for fitting experimental data to theoretical expres-
sions ([1]). In the optogalvanic (OG) effect, we need to fit the time–dependent voltage signals
to the theoretical model that contains several exponential functions, and then be able to extract
various rate parameters that govern the OG transitions. We can simultaneously fit two expo-
nential functions to an experimental signal by using the normal nonlinear least–squares fitting
algorithm ([5]). If an experimental signal has three exponential functions, we can only fit two
exponential functions at a time. Since exponential functions are highly correlated, the fitting
process frequently blows up.
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Therefore, we need to find a more stable least–squares fitting algorithm. One such method is
the search method. In this method, one simply programs a computer to try out different values
for the parameters in their corresponding ranges. If M parameters are used in fitting the theory to
experimental data, and one wishes to perform N tries, then each parameter gets tried with N1/M

different values. This results in an accuracy proportional to 1/N1/M = N−1/M , which corresponds
to a rather slow rate of convergence.

An alternative approach is to use the Monte Carlo method. Generally speaking, this method
converges at a rate 1/N1/2, regardless of the number of parameters used. Therefore, if more than
two parameters are used in the fitting process, the Monte Carlo method will converge faster than
the search method.

2 Random Walk Method

Our implementation of the Monte Carlo technique uses the random walk method. The corre-
sponding algorithm can be summarized as follows

1) We choose a set of initial values for the parameters. These values are chosen based on an
educated guess and previous research ([1]).

2) χ2
0 is calculated using the following formula:

χ2
0 =

imax∑
i=1

[f(ti, P )− e(ti)]
2, (1)

where f(t, P ) is the theoretical prediction at time t, P represents the set of parameters used
in the theory, and e(t) is the experimentally measured signal at time t.

3) Each parameter is added or subtracted a random amount, based on a random number (see
below for the random number generator used here), and subsequently χ2

1 is determined. If
χ2

1 is less than χ2
0, the new parameters are adopted as the best-guessed values. Otherwise,

the parameters are left unchanged. This process is repeated several times, until χ2 is small
enough, or a visual comparison of f(t, P ) and e(t) vs. time appears to be satisfactory.

Our random number generator is based on the portable random number generators used in
“Numerical Recipes” ([5]). The period of the random number sequence is about 3.5×1019, which is
effectively taken to be infinity for our purpose. The initial seeds for the random number generators
are generated using the built-in random number generator in Microsoft Visual Basic.NET 2003,
which in turn is seeded by the current computer time.

3 Testing the Fitting Algorithm

In our OG experiments, the predicted time-dependent signal is given by:

s(t) =

jmax∑
j=1

aj

1− bjτ
[exp(−bjt)− exp(−t/τ)], (2)
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where τ , aj and bj are parameters determined by fitting the expression to experimental data
([1, 2, 3, 4]).

3.1 Testing the fitting: Calculated data without noise

In order to understand how well the fitting algorithm works, we first calculate a set of data using
the following parameters:

jmax = 3, τ = 0.5, a1 = 2, b1 = 0.2, a2 = −2, b2 = 0.1, a3 = 0.5, b3 = 0.05. (3)

The values for s(t) between t = 0 and t = 150µs are computed at 600 equal intervals (total 601
points). This set of data is treated as “experimental data” e(t) mentioned above, and is fitted to
Eq. (2), in order to extract the parameters τ, aj and bj. By plotting this set of data, we make the
following initial “guesses” (intentionally, we start out by making fairly bad “guesses” to test how
well the fitting algorithm works).

τ = 0.1, a1 = 0.5, b1 = 0.3, a2 = −0.4, b2 = 0.05, a3 = 0.1, b3 = 0.02. (4)

After running the fitting program for about 20 minutes (on a portable computer with a CPU
speed of 1.73 GHz, it takes about one second for trying 1000 sets of parameters), the χ2 and
fitted parameters obtained were as follows:

χ2 = 3.20× 10−7, τ = 0.511, a1 = 2.07, b1 = 0.202,
a2 = −1.90, b2 = 0.107, a3 = 0.334, b3 = 0.0443.

(5)

We also varied the initial “guesses”. The final best-fit parameters do not vary significantly.

Fig. 1 shows a plot of the simulated “experimental” data e(t) calculated using parameters given
by Eq. (3), and the fitted results calculated using parameters given by Eq. (5). As can be seen
from this figure, the two signals virtually overlap.

On comparing Eq. (5) with the true values given in Eq. (3), we see that most parameters have
converged to within a few percent of their true values, while the third pair (a3, b3) is off a little
more. We believe that one reason for this minor discrepancy is that (a3, b3) are small, so that the
small differences between their true values and the fitted values amount to a larger percentage
difference. The correlations between the parameters also contribute to the fact that the fitted
values do not equal the true values.

3.2 Correlations between the parameters

As mentioned previously, the correlations between the fitting parameters cause the failure in the
normal nonlinear least–squares fitting algorithm. Fig. 2 shows such a correlation between a1 and
a2. It is a plot of changes ∆a1 and ∆a2 in successive iterations that result in a reduced χ2. As
can be seen, an increase in one parameter is accompanied by a corresponding decrease in the
other parameter. This kind of correlation often causes the normal nonlinear least–squares fitting
algorithm to fail.
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Simulated Data and Fitted Results
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Fig. 1: Simulated experimental data and fitted results. As can be seen
from the graph, the two sets of data are virtually identical.

Correlations Between The Exponential Coefficients a1 & a2

-0.004

-0.003

-0.002

-0.001

0

0.001

0.002

0.003

0.004

-0.005 -0.004 -0.003 -0.002 -0.001 0 0.001 0.002 0.003 0.004 0.005

a1

a
2

Fig. 2: A plot of variations in a1 vs. a2 in successive iterations that
reduced the value of χ2.

3.3 Speed of convergence

Monte Carlo methods generally converge at a rate of N−1/2. In order to show the convergence
of our fitting algorithm, we plot χ vs. N−1/2 in Fig. 3. As is evident, for large N(N > 100), χ
is indeed generally proportional to N−1/2. In Fig. 4, we plot the parameter b1 vs. N−1/2, which
also converges at the rate of N−1/2 for large N(N > 400).

3.4 Testing the fitting: Calculated data with noise

Real experimental data always contain noise. To test how well our algorithm works in the presence
of noise, we add random noise to the above “experimental” data. We use the same initial “guesses”
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 vs. 1/sqrt(N)
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Fig. 3: A plot of χ vs. N−1/2.

b1 vs. 1/Sqrt(N)
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Fig. 4: A plot of b1 vs. N−1/2.

given in Eq. (4). After running our fitting program for about 20 minutes, the parameters converged
to the following values:

χ2 = 2.0× 10−5, τ = 0.444, a1 = 2.07, b1 = 0.194,
a2 = −1.95, b2 = 0.105, a3 = 0.352, b3 = 0.0446.

(6)

A comparison with the no noise case showed that the resulting parameters are essentially the
same. The fact that the value of χ2 is large is due to the presence of noise in the experimental
data. Fig. 5 shows the “signal” with the added noise and the fitted results. Thus, we are able to
conclude that even when the experimental data contain noise, our fitting algorithm works equally
well.

4 Fitting Actual Experimental Data

Fig. 6 shows the fitted results for an actual experimental optogalvanic data set. We were able to
fit this data set with three terms in Eq. (2). As can be seen easily, the fit is excellent. Fig. 7
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Fitting Noisy Data
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Fig. 5: A plot showing the fit of noisy data.

Fitting Actual Data
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Fig. 6: A graph illustrating the fitting of the actual data for I = 10mA in the
optogalvanic experiment.

shows the fitting results for a different experimental data set. The data could not be fitted with
only three terms in Eq. (2). Once we used four terms, we obtained a good fit. We also note that
the fitting process is very stable. The parameters never blew up. In contrast, when we used the
normal nonlinear least–squares fitting routine in our previous work ([1]), we could only fit two
terms in Eq. (2) at a given time. When required to fit three terms in our previous work on OG
waveforms ([1]), we could do so only by fitting two terms at a time, and there was no way for
us to possibly fit four terms. Our new Monte Carlo-based fitting algorithm allows us to fit four
terms simultaneously without causing any instability.

5 Discussion and Conclusions

We have devised and implemented a Monte Carlo method to perform least–squares fitting of
signal waveforms. In comparison with the normal nonlinear least–squares fitting algorithm, it is
much more stable, in spite of the fitting parameters being highly correlated. The fitting algorithm
is fast enough for today’s desktop PCs.
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Fitting with Four Terms
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Fig. 7: A graph showing comparison between fits of the experimental optogal-
vanic data using three and four exponential terms, respectively. The fit was
better with four terms, for current I = 6mA in the experiment.

We would like to highly recommend this fitting algorithm to engineers and scientists who need
to fit experimental data using highly correlated bases functions (such as the exponential functions
used in fitting the optogalvanic waveforms in our research).
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