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We study the electron transport in open quantum-dot systems described by the interacting resonant-level models
with Coulomb interactions. We consider the situation in which the quantum dot is connected to the left and right
leads asymmetrically. We exactly construct many-electron scattering eigenstates for the two-lead system, where
two-body bound states appear as a consequence of one-body resonances and the Coulomb interactions. By using
an extension of the Landauer formula, we calculate the average electric current for the system under bias voltages
in the first order of the interaction parameters. Through a renormalization-group technique, we arrive at the
universal electric current, where we observe the suppression of the electric current for large bias voltages, i.e.,
negative differential conductance. We find that the suppressed electric current is restored by the asymmetry of
the system parameters.

DOI: 10.1103/PhysRevB.91.045140 PACS number(s): 03.65.Nk, 05.30.−d, 73.63.Kv, 05.60.Gg

I. INTRODUCTION

In the last two decades, much progress has been made in
the experimental studies of the electron transport in nanoscale
devices [1–4]. In the systems smaller than the coherent length,
quantum effects are observed in the electron transport [5,6].
In order to analyze it beyond the linear-response regime
theoretically, we need to treat nonequilibrium steady states
realized in open quantum systems. The Landauer formula [7,8]
enables the calculation of the electric current flowing across
nanoscale samples in noninteracting cases, which indicates
that the nonequilibrium steady states are scattering states in
the open quantum systems. Indeed, the transport properties
such as the electrical conductance and the electric-current
noise are determined by the scattering matrix [9–11]. To
investigate interacting cases, the Keldysh formalism of the
nonequilibrium Green’s function has been developed [12–16].
It has provided a standard tool for the study of the Kondo effect
measured as a conductance peak in semiconductor quantum
dots (QDs) [17,18]. On the other hand, we have proposed an
extension of the Landauer formula to interacting cases [19,20],
and have shown that the scattering states are essential in the
interacting cases as well.

The interacting resonant-level model (IRLM) is one of
the standard testbeds for such studies of the open QD
systems with interactions. The original IRLM, which consists
of a single impurity coupled to a conduction band, was
introduced for studying the Kondo problem in equilibrium
systems [21]. Recently, the IRLM with two external leads
has been employed as a minimal model of open QD systems
with Coulomb interactions; it plays an important role in ver-
ifying the theoretical approaches such as the nonequilibrium
Bethe-ansatz approach [22], the perturbation theory with the
numerical renormalization group [23], a new method called

*nishino@kanagawa-u.ac.jp

impurity conditions [24], and the time-dependent density-
matrix renormalization-group method [25].

A remarkable feature of the two-lead IRLM is the ap-
pearance of negative differential conductance, that is, the
suppression of the electric current due to the Coulomb in-
teraction for large bias voltages. Clearly, this is a phenomenon
out of the linear-response regime. To see the feature and to
compare the results obtained by different approaches, the
universal electric current characterized by a single scaling
parameter TK is useful [24,26,27]. Indeed, it is found that, for
large bias voltages V , the universal electric current shows a
power-law decay 〈I 〉 ∝ (V/TK)−U/π with the parameter U of
the Coulomb interaction [24,25].

In the previous papers [19,20], we proposed an exten-
sion of the Landauer formula with many-electron scattering
eigenstates. We considered the two-lead IRLM with linearized
dispersion relations and gave exact many-electron scattering
eigenstates in explicit forms. This is in contrast to the previous
studies [28–30] of the scattering problems for other QD sys-
tems, which include integrals or matrix inversions. The explicit
N -electron scattering eigenstates enabled us to calculate the
quantum-mechanical expectation value of the electric current,
which we called the N -electron current. By taking the electron-
reservoir limit N → ∞ of the N -electron current, we obtained
the average electric current for the system under finite bias
voltages. It is clear that the way of realizing the nonequilibrium
steady states in our extension of the Landauer formula is
different from the Keldysh formalism [12–16]. By employing
a renormalization-group technique with the Callan-Symanzik
equation [24,27], we arrived at the universal electric current in
the first order of the interaction parameter U . We found that
the negative differential conductance of the universal electric
current is characterized by the same scaling parameter TK as
that obtained by other approaches [24,27,31]. We remark that
the apparent inconsistency in Ref. [19] pointed out in Ref. [32]
is removed in the level of the universal electric current [33].

In the present paper, we study the two-lead IRLM in which
the QD is connected to the two external leads asymmetrically.
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The effect of the asymmetry of the QD systems is observed
in experiments. For example, in semiconductor QDs [3,4],
the asymmetry of the lead-dot couplings causes breaking of
the unitary limit of the Kondo effect, which is theoretically
understood in the linear-response regime [17,18]. In the
present study, we investigate the effect of the asymmetry
on electron transport out of the linear-response regime. One
of the theoretical difficulties of the asymmetric cases is
that the even-odd transformation, which maps the two-lead
IRLM to two single-lead systems [19,20,22], does not work.
The application of the Bethe-ansatz approach [22] has been
restricted to the cases in which the even-odd transformation
works. The construction of exact many-electron scattering
eigenstates for such pure two-lead systems is established for
the first time in this paper.

Through the extension of the Landauer formula and a
renormalization-group technique, we obtain the universal
electric current for the asymmetric cases in the first order of
the Coulomb-interaction parameters U1 and U2. The universal
electric current is characterized by the two renormalized
parameters T1 and T2. The sum TK = T1 + T2 provides a
scaling parameter for the bias voltage V , which is similar
to the symmetric cases. Our universal electric current has the
same functional form as that obtained by the renormalization-
group approach [31,32], although there is a difference in our
calculation of the renormalized parameters T1 and T2. As we
will point at the end of Sec. IV, this leads to a critical difference
in the predicted behavior of the universal electric current. The
suppressed electric current due to the Coulomb interaction
is restored by the asymmetry of the system parameters. To
clarify the relation between the asymmetry of the system
parameters and the restoration of the suppressed electric
current, we introduce the asymmetry parameter δ = (U1 −
U2)(T1 − T2)/(2TK) taking the value in the range 0 � δ < Ū

with the average interaction Ū = (U1 + U2)/2. In fact, in
the first order of U1 and U2, the power-law decay of the
universal electric current is given by 〈I 〉 ∝ (V/TK)−(Ū−δ)/π ,
which indicates that the restoration of the suppressed electric
current occurs with both asymmetric Coulomb interactions and
asymmetric lead-dot couplings. The restoration was reported
to happen even for symmetric lead-dot couplings in Refs. [31]
and [32], but we presume that this was due to higher orders
of the interaction U� in the renormalized parameters T1

and T2.
The exact many-electron scattering eigenstates tell us much

about the transport properties of interacting electrons in the
open QD systems. We notice that the scattering processes in
which the set of wave numbers of incident plane waves is
not conserved are essential in interacting cases. The explicit
form of the scattering eigenstates indicates that, due to the
Coulomb interactions, the incident plane-wave states are
partially scattered to many-body bound states that decay
exponentially as the electrons separate from each other. Indeed,
the two-body bound states appear in the two-lead IRLM;
each term of the N -electron scattering states is characterized
by the configuration of the two-body bound states. We can
understand the origin of the negative differential conductance
in the two-lead IRLM in terms of the formation of two-body
bound states. Such many-body bound states are also found in
other open QD systems [34,35].

The present paper is organized as follows. In Sec. II A, we
introduce the two-lead IRLM with asymmetric interactions.
In Sec. II B, the extension of the Landauer formula [19,20]
is described in a general setting. In Sec. III, we present the
construction of the exact one- and two-electron scattering
eigenstates whose incident states are free-electronic plane
waves in the leads. We also give the N -electron scattering
eigenstates in the first order of the Coulomb-interaction
parameters. In Sec. IV, through the extension of the Landauer
formula, we calculate the average electric current for the
system under finite bias voltages. We obtain the universal
electric current by dealing with the divergences in the average
electric current with the Callan-Symanzik equation. As a
result, we observe the negative differential conductance and
the restoration of the suppressed electric current. Section V is
devoted to concluding remarks.

II. MODELS AND FORMULATION

A. Interacting resonant-level models

We consider the open QD system described by the IRLM
of spinless electrons. It consists of a QD with a single energy
level and two external leads of noninteracting electrons. The
arrangement of the QD and the two leads is illustrated in Fig. 1.
We assume the situation in which the QD is connected to the
two leads asymmetrically.

The Hamiltonian is given by

H =
∑
�=1,2

∫ L
2

− L
2

dx c
†
�(x)

1

i

d

dx
c�(x)

+
∑
�=1,2

(t�c
†
�(0)d + t∗� d†c�(0)) + εdd

†d

+
∑
�=1,2

U�c
†
�(0)c�(0)d†d. (1)

Here, c
†
�(x) and c�(x) are the creation and the annihilation

operators of an electron in the lead �, while d† and d are those
on the QD. The first term corresponds to the kinetic energy
of electrons in the leads, where L stands for the length of the
two leads to be eventually taken to infinity. The second term
expresses the tunneling between the leads and the QD, where
the parameter t�(∈ C) is the transfer integral. We assume a
single energy level εd(∈ R) on the QD, which corresponds
to the third term. The fourth term describes the Coulomb

0

x
> 0

t t1 2

d

x < 0

U U1 2

x Lead 1 Lead 2

FIG. 1. The two-lead interacting resonant-level model. Electrons
flow only upward due to the linearized dispersion relations of the
leads.
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interaction between the two electrons at the origin x = 0 of the
lead � and on the QD. The parameter U�(>0) is the strength
of the Coulomb repulsion.

We focus on the electrons with positive velocities in the
vicinity of the Fermi energy εF of each lead and linearize the
local dispersion relation to be ε(k) = vF(k − kF) + εF under
the assumption that the other parameters |t�|, |εd| and U� are
small compared with the Fermi energy εF [21]. For simplicity,
we have set vF = 1, kF = 0 and εF = 0 in Eq. (1). Then, as is
indicated in Fig. 1, an electron coming from the part x < 0 of
the lead 1 is scattered at the QD to the parts x > 0 of the two
leads.

In constructing the scattering eigenstates, we treat the
system as an open system in the limit L → ∞ of the two
leads. In the sprit of the original Landauer formula [7,8],
we suppose that the infinite two leads can substitute for
electron reservoirs that are in the Fermi degenerate states of
noninteracting electrons. We assume that the electrons emitted
from the electron reservoir into the lead � follow the Fermi
distribution function fμ�,β�

(E) = 1/(1 + eβ�(E−μ�)) with the
chemical potential μ� and the inverse temperature β�. We are
interested in the nonequilibrium steady state realized between
the large two electron reservoirs in the cases μ1 	= μ2 of
different chemical potentials.

We adopt a standard definition of the electric-current
operator as

I = αI1 − (1 − α)I2,

I� = i(t�c
†
�(0)d − t∗� d†c�(0)) (� = 1,2). (2)

For an arbitrary eigenstate |ψ〉 of the Hamiltonian H , the
expectation value 〈ψ |I |ψ〉 does not depend on the parameter
α since the relation 〈ψ |I1|ψ〉 = −〈ψ |I2|ψ〉 holds. In what
follows, we choose the parameter α = |t2|2/t2 with t =√

|t1|2 + |t2|2 for the convenience of calculations.

B. Extension of the Landauer formula

Our purpose is to study the average electric current flowing
across the QD of the two-lead IRLM beyond the linear-
response regime. The extension of the Landauer formula,
which was proposed in Refs. [19] and [20], consists of
the following three steps. (i) Construction of many-electron
scattering eigenstates whose incident states are free-electronic
plane waves in the leads. (ii) Calculation of the quantum-
mechanical expectation value of the electric current with
the many-electron scattering eigenstates. (iii) Calculation
of the statistical-mechanical average of the electric current
by assuming the equilibration of electrons in each electron
reservoir.

The many-electron scattering eigenstates constructed in the
step (i) are characterized by the wave numbers of the incident
plane waves. We note that they are essentially different from
the Bethe-ansatz eigenstates [21,22], whose incident states are
not free electronic but include the effect of interactions. The
Bethe-ansatz result in Ref. [22] did not agree with results of the
previous works [24,25,27], while our results agree with them.
For the wave numbers {k1, . . . ,kN1} of the N1-electron incident
plane wave coming in through the lead 1 and {h1, . . . ,hN2} of
the N2-electron incident plane wave coming in through the

lead 2, we express the N -electron scattering eigenstates by
|k,h〉 = |k1, . . . ,kN1 ,h1, . . . ,hN2〉 with N = N1 + N2. In step
(ii), we calculate the expectation value 〈k,h|I |k,h〉/〈k,h|k,h〉
of the electric-current operator I , which we call the N -
electron current. This calculation is practically carried out
by using the explicit N -electron scattering eigenstates. In the
step (iii), we take the limit N�,L → ∞ of the N -electron
current by assuming that the wave numbers ki and hi of
incident plane waves follow the Fermi distribution of each
electron reservoir. We call the limit an electron-reservoir
limit. Clearly, the reservoir limit corresponds to taking the
statistical-mechanical average of the electric current for all the
incident states that follow the Fermi distributions. In general,
the electrons scattered at the QD are in many-body states
including the effect of interactions. We assume that such
many-body states are completely equilibrated to the Fermi
degenerate state of free electrons in each election reservoir
before being re-emitted towards the QD, which is the main
assumption of the extension of the Landauer formula. We
shall see for the two-lead IRLM that, since the N -dependence
of the N -electron current appears only in the upper bounds
of the sums on wave numbers {ki} and {hi}, we can take the
reservoir limit by replacing the sums with the integrals on
k and h with the Fermi-distribution functions fμ1,β(k) and
fμ2,β(h).

The way of realizing the nonequilibrium steady states
in the extension of the Landauer formula is different from
that in the Keldysh formalism [12–16,27]. In our extension
of the Landauer formula, we first construct the N -electron
scattering eigenstates for finite N without the information
of the equilibrium states in the electron reservoirs. After the
calculation of the N -electron current, we take the reservoir
limit to consider the nonequilibrium steady state. In the
Keldysh formalism, on the other hand, the Green’s functions
or the density operator describing the nonequilibrium steady
states are obtained by adiabatically turning on the perturbative
terms for the initial nonperturbative steady states of infinite
number of electrons.

Our approach is also independent of Hershfield’s bias-
operator approach, which constructs the density operator of
the nonequilibrium steady states directly from one-electron
field operators in the framework of the quantum field theory
[36–38]. We remark that the construction of the density
operator through the bias-operator approach has not been
established analytically in interacting cases [37,38] except for
the Toulouse limit of the Kondo model [39,40].

III. MANY-ELECTRON SCATTERING EIGENSTATES

A. One-electron cases

The linearization of the local dispersion relations of the
leads enables us to construct exact scattering eigenstates.
First, we consider the one-electron cases. The one-electron
scattering eigenstates are given in the form

|E〉 =
( ∫

dx
∑

m=1,2

gm(x)c†m(x) + ed†
)

|0〉, (3)

045140-3
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where |0〉 is the vacuum state satisfying c�(x)|0〉 = d|0〉 = 0.
The eigenfunctions gm(x) and e are determined by the coupled
Schrödinger equations:(

1

i

d

dx
− E

)
gm(x) + tmeδ(x) = 0 (m = 1,2),

(εd − E)e +
∑

m=1,2

t∗mgm(0) = 0. (4)

It is readily found that the eigenfunction gm(x) is discontinuous
at x = 0 and the matching condition at x = 0 is obtained by
integrating the first equation in Eq. (4) around x = 0 as

gm(0+) − gm(0−) + itme = 0. (5)

Since the value gm(0) is not determined by the Schrödinger
equations, we assume gm(0) = (gm(0+) + gm(0−))/2 from
physical intuition.

To employ the Landauer formula, we need the scattering
eigenstates whose incident states are a plane wave in the lead
1 or the lead 2. For the incident plane wave with the wave
number k in the lead �, we consider the solution g

(�)
m,k(x) and

e
(�)
k of the Schrödinger equations (4) satisfying

g
(�)
m,k(x) = 1√

2π
δm�eikx for x < 0, (6)

where δm� is the Kronecker delta. We refer to Eq. (6) as
scattering boundary conditions. The solution with energy
eigenvalue E = k is given by

g
(�)
m,k(x) = 1√

2π

(
δm� − itm

√
2πe

(�)
k θ (x)

)
eikx,

e
(�)
k = 1√

2π

t∗�
k − εd + i


, (7)

where θ (x) is the step function and 
 = (|t1|2 + |t2|2)/2 is
the level width of the QD. By inserting them into Eq. (3), we
obtain the scattering eigenstate |k; �〉 whose incident state is a
plane wave with wave number k in the lead �.

The one-electron scattering eigenstates |k; �〉 are normal-
ized on the δ-function as 〈k; �|k′; �′〉 = δ��′δ(k − k′) in the
limit L → ∞. In the calculation of quantum-mechanical
expectation values of physical quantities with the scattering
eigenstates |k; �〉, we need to restore the length L of the leads
in order to regularize the square norm as 〈k; �|k; �〉 = L/(2π ).

B. Two-electron cases

We next consider the two-electron cases as the simplest
example of the interacting cases. The form of the two-electron
scattering eigenstates is given by

|E〉 =
( ∑

l,m=1,2

∫
x1<x2

dx1dx2 glm(x1,x2)c†l (x1)c†m(x2)

+
∑
l=1,2

∫
dx el(x)c†l (x)d†

)
|0〉. (8)

Here we impose the antisymmetric relation glm(x1,x2) =
−gml(x2,x1). The eigenvalue problem H |E〉 = E|E〉 leads to

the coupled Schrödinger equations:[
1

i

(
∂

∂x1
+ ∂

∂x2

)
− E

]
glm(x1,x2)

+ tmel(x1)δ(x2) − tlδ(x1)em(x2) = 0, (9a)(
1

i

d

dx
+ εd + Ulδ(x) − E

)
el(x) +

∑
m=1,2

t∗mglm(x,0) = 0.

(9b)

In the previous works [19,20] for the symmetric case U1 =
U2, we employed the even-odd transformation that maps the
two-lead IRLM to two single-lead systems. However, since
the transformation does not work for the asymmetric cases
U1 	= U2, we deal with the two-lead IRLM directly.

We present a construction of the exact two-electron scat-
tering eigenstates, which is an extension of the previous
one [19,20,41]. First, we derive three important relations from
the Schrödinger equations (9a) and (9b). The eigenfunction
glm(x1,x2) is discontinuous at x1 = 0 and x2 = 0, while el(x)
is discontinuous at x = 0. The matching conditions at the
discontinuous points are given by

glm(x,0+) − glm(x,0−) + itmel(x) = 0, (10a)

el(0+) − el(0−) + iUlel(0) = 0, (10b)

which are obtained by integrating the Schrödinger equa-
tions (9a) and (9b) around the discontinuous points. Since
the values of the eigenfunctions at the discontinuous points
are not determined by the Schrödinger equations, we assume

glm(x,0) = 1
2 (glm(x,0+) + glm(x,0−)), (11a)

el(0) = 1
2 (el(0+) + el(0−)) (11b)

in a way similar to the one-electron cases. By applying
Eqs. (10a) and (11a) to Eq. (9b) for x 	= 0, we have(

1

i

d

dx
+ εd − i
 − E

)
el(x) = −

∑
m

t∗mglm(x,0−). (12)

Given functions glm(x,0−), (m = 1,2), we obtain the general
solution for el(x) as

el(x) = Cle
i(E−εd+i
)x

− i
∑
m

t∗m

∫ x

x0

dz ei(E−εd+i
)(x−z)glm(z,0−), (13)

where Cl is the integration constant and x0 is chosen as
x0 = −∞ if x < 0 and x0 = 0 otherwise. On the other hand,
by applying Eq. (11b) to Eq. (10b), we have the matching
condition(

1 + i

2
Ul

)
el(0+) =

(
1 − i

2
Ul

)
el(0−). (14)

Equations (10a), (13), and (14) are the relations that we
need.

Next, we demonstrate how to construct the two-electron
scattering eigenstates by the repeated use of the three equa-
tions (10a), (13), and (14). Let us consider the situation in
which one electron with wave number k1 is coming in through
the lead �1 and another with k2 is coming in through the lead
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TABLE I. The coefficients A�m,P of the incident plane-wave states
for (�1,�2) = (1,1),(1,2), and (2,2).

(�1,�2) A11,(12) A11,(21) A12,(12) A12,(21) A22,(12) A22,(21)

(1,1) 1 −1 0 0 0 0
(1,2) 0 0 1 0 0 0
(2,2) 0 0 0 0 1 −1

�2. We construct the eigenfunctions with energy eigenvalue
E = k1 + k2 that satisfy the scattering boundary conditions

glm(x1,x2) = 1

2π

∑
P

Alm,P ei(kP1 x1+kP2 x2) (15)

for x1,x2 < 0. Here, P = (P1,P2) is a permutation of (1,2) and
the coefficients Alm,P are given by Alm,P = sgn(P )δl�P1

δm�P2

with the signature sgn(P ) of the permutation P . The coeffi-
cients Alm,P are explicitly listed on Table I. Beginning from the
incident state g�m(x1,x2) in the region x1 < x2 < 0, we connect
it to the other regions through Eqs. (10a), (13), and (14). By
inserting glm(x,0−) into Eq. (13), we have

el(x) = 1√
2π

∑
P,m

Alm,P e
(m)
kP2

eikP1 x (16)

for x < 0. Here we have set x0 = −∞ and have taken Cl = 0
to avoid the divergence as x → −∞. The function glm(x,0−)
is connected to glm(x,0+) by Eq. (10a) with Eq. (16) as

glm(x,0+) = 1

2π

∑
P,n

Aln,P eikP1 x
(
δmn − itm

√
2πe

(n)
kP2

)
, (17)

which leads to

glm(x1,x2) = 1√
2π

∑
P,n

Aln,P eikP1 x1g
(n)
m,kP2

(x2) (18)

for x1 < 0 < x2. Recall that g
(n)
m,k(x) is the one-electron scat-

tering eigenfunction in Eq. (7). Again, by inserting glm(x,0−)
into Eq. (13), we have

el(x) = C ′
le

i(E−εd+i
)x −
∑

P,m,n

Amn,P g
(n)
l,kP2

(x)e(m)
kP1

(19)

for x > 0. Here we keep the first term with the integration
constant C ′

l since the term is not divergent as x → ∞.
By inserting glm(0 − ,x) and el(x), (x > 0) into Eq. (10a)
with the antisymmetric relation glm(x1,x2) = −gml(x2,x1), we
have

glm(x1,x2) =
∑
P,r,n

Arn,P g
(r)
l,kP1

(x1)g(n)
m,kP2

(x2)

+ itlC
′
mei[(εd−i
)x1+(E−εd+i
)x2] (20)

for 0 < x1 < x2. Finally, by inserting Eqs. (16) and (19) into
Eq. (14), we determine the integration constant C ′

l as

C ′
l = 1√

2π
iul

(
δl�2e

(�1)
k1

− δl�1e
(�2)
k2

)
(21)

with ul = 2Ul/(2 + iUl). Thus the two-electron scat-
tering eigenfunctions satisfying the scattering boundary

conditions (15) are obtained as follows:

g
(�1�2)
lm,k1k2

(x1,x2) = g
(�1)
l,k1

(x1)g(�2)
m,k2

(x2) − g
(�2)
l,k2

(x1)g(�1)
m,k1

(x2)

+ tlumZ
(�1�2)
m,k1k2

(x12)eiEx2θ (x21)θ (x1)

− tmulZ
(�1�2)
l,k1k2

(x21)eiEx1θ (x12)θ (x2),

e
(�1�2)
l,k1k2

(x) = g
(�1)
l,k1

(x)e(�2)
k2

− g
(�2)
l,k2

(x)e(�1)
k1

− iulZ
(�1�2)
l,k1k2

(−x)eiExθ (x), (22)

where xij = xi − xj and

Z
(�1�2)
m,k1k2

(x) = 1√
2π

(
δm�1e

(�2)
k2

− δm�2e
(�1)
k1

)
ei(εd−i
)x. (23)

Here, on the left-hand sides of Eqs. (22) and (23), we write the
wave numbers k1 and k2 and the superscripts �1 and �2 of the
leads explicitly.

Each term of the eigenfunctions in Eqs. (22) is interpreted
as follows. The first two terms correspond to the two-electron
scattering eigenfunctions of the noninteracting cases, which
are given by the Slater determinant of the one-electron
scattering eigenfunctions in Eq. (7). The effects of the
interactions appear in the terms with the function Z

(�1�2)
m,k1k2

(x).
They are interpreted as two-body bound states since they decay
exponentially as the two electrons separate from each other.
For example, the third and the fourth terms in the eigenfunction
g

(�1�2)
lm,k1k2

(x1,x2) in Eq. (22) are rewritten as

tlumZ
(�1�2)
m,k1k2

(x12)eiEx2θ (x21)θ (x1)

− tmulZ
(�1�2)
l,k1k2

(x21)eiEx1θ (x12)θ (x2)

= (
tlumZ

(�1�2)
m,k1k2

(0)θ (x21) − tmulZ
(�1�2)
l,k1k2

(0)θ (x12)
)

× e(i( E
2 −εd)−
)|x1−x2|+iE x1+x2

2 θ (x1)θ (x2). (24)

The binding length of the two-body bound states is given
by 1/
 where 
 is the level width of the QD. It should be
emphasized that the two-body bound states are characteristic
to open systems and do not appear under periodic boundary
conditions. We also find that the two-body bound states
are associated with the electron that is reflected at the
QD. For example, if the incident two electrons come in
through the lead 1 (�1 = �2 = 1), the two-body bound states
appear only in the eigenfunctions g

(11)
11,k1k2

(x1,x2), g(11)
12,k1k2

(x1,x2)

and e
(11)
1,k1k2

(x), since Z
(11)
2,k1k2

(x) = 0 as is depicted in
Fig. 2.

It is instructive to inspect the set of wave numbers
characterizing each term of the eigenfunctions in Eq. (22).
As is found from the terms of the two-body bound states, the
wave-number set {k1,k2} of the incident states is not conserved
and is scattered to the set {εd − i
,E − εd + i
} including the
imaginary part i
. We note that the terms of the two-body
bound states decay with the distance of the two electrons but
are stationary in time since the total energy eigenvalue is real;
the imaginary parts of the complex wave numbers cancel out
each other in the total energy eigenvalue. By the completeness
of the plane-wave functions {ei(k1x1+k2x2)|k1,k2 ∈ R}, the terms
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FIG. 2. The two-electron scattering eigenfunctions for the inci-
dent two electrons coming in through the lead 1. The dotted circles
surrounding the two electrons indicate the two-body bound states,
which appear only when at least one of the electrons is reflected.

are expanded as

e[i( E
2 −εd)−
]|x1−x2|+iE x1+x2

2

=
∫

dk′
1dk′

2
1

E − E′ + i0
c(k′

1,k
′
2; x1,x2)ei(k′

1x1+k′
2x2),

(25)

where E′ = k′
1 + k′

2 and c(k′
1,k

′
2; x1,x2) is the coefficient of

the expansion. Hence we find that the terms of the two-body
bound states describe the various scattering processes to
the sets {k′

1,k
′
2} satisfying energy conservation E = E′. The

coefficient c(k′
1,k

′
2; x1,x2) has the poles on the complex k′

1 and
k′

2 planes, which come from the resonant pole k = εd − i
 of
the one-electron scattering eigenfunctions in Eq. (13). Thus the
two-body bound states appear as a consequence of one-body
resonances [42].

The appearance of such many-body bound states is expected
for general open QD systems with localized interactions.
We have shown that two-body bound states appear in the
Anderson model with spin degrees of freedom [34] and the

double QD systems [35]. In Ref. [30], the N -electron scattering
matrix for another QD system with interactions was explicitly
constructed in a real-time representation, where two-electron
scattering eigenstates are obtained in an integral form. We
speculate that, by evaluating the integral form, two-body bound
states similar to ours should appear.

C. N-electron cases

We can obtain the exact N -electron scattering eigenstates
for arbitrary N . The scattering eigenstates for a few electrons
can be constructed in a way similar to the two-electron cases.
In the three-electron scattering eigenstates, for example, two
electrons out of the three form the two-body bound states after
the scattering at the QD [19]. The explicit form of the scattering
eigenstates for a few electrons leads to a conjectural form of
the N -electron scattering eigenstates. We have shown that they
are indeed the eigenstates.

We present only the results in the first order of U�, which we
need in the next section. The form of the N -electron scattering
eigenstates is given by

|E〉 =
⎛
⎝∑

{mi }

∫
x1<···<xN

dNx gm1···mN
(x1, . . . ,xN )

× c†m1
(x1) · · · c†mN

(xN )

+
∑
{ni }

∫
x1<···<xN−1

dN−1x en1···nN−1 (x1, . . . ,xN−1)

× c†n1
(x1) · · · c†nN−1

(xN−1)d†

⎞
⎠ |0〉. (26)

Here, we impose the antisymmetric relations for the N -
electron eigenfunctions as follows:

gmQ1 ···mQN

(
xQ1 , . . . ,xQN

) = sgn(Q)gm1···mN
(x1, . . . ,xN ),

enR1 ···nRN−1

(
xR1 , . . . ,xRN−1

) = sgn(R)en1···nN−1 (x1, . . . ,xN−1),

(27)

where Q = (Q1, . . . ,QN ) is a permutation of (1,2, . . . ,N) and
R = (R1, . . . ,RN−1) is that of (1,2, . . . ,N − 1). We consider
the situation in which the electron with wave number ki,(i =
1, . . . ,N) comes in through the lead �i to the QD. The N -
electron scattering eigenfunctions are constructed in the first
order of U� as

g
(�1···�N )
m1···mN,k1···kN

(x1, . . . ,xN ) =
∑
P

sgn(P )
N∏

i=1

g
(�Pi

)
mi,kPi

(xi) + 1

2

∑
P,Q

sgn(PQ)
N−2∏
i=1

g
(�Pi

)
mQi

,kPi

(
xQi

)
θ
(
xQN−2 , . . . ,xQ1

)

× tmQN−1
UmQN

Z
(�PN−1 �PN

)
mQN

,kPN−1 kPN

(
xQN−1QN

)
ei(kPN−1 +kPN

)xQN θ
(
xQN QN−1

)
θ (xQN−1 ) + O(U 2), (28)

where P and Q are permutations of (1,2, . . . ,N), and

e
(�1···�N )
n1···nN−1,k1···kN

(x1, . . . ,xN−1) =
∑
P

sgn(P )
N−1∏
i=1

g
(�Pi

)
ni ,kPi

(xi)e
(�PN

)
kPN

+ 1

2

∑
P,Q

sgn(PQ)
N−3∏
i=1

g
(�Pi

)
nQi

,kPi
(xQi

)e
(�PN−2 )
kPN−2

θ (xQN−3 , . . . ,xQ1 )

× tnQN−2
UnQN−1

Z
(�PN−1 �PN

)
nQN−1 ,kPN−1 kPN

(
xQN−2QN−1

)
ei(kPN−1 +kPN

)xQN−1 θ
(
xQN−1QN−2

)
θ
(
xQN−2

)
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− i

2

∑
P,Q

sgn(PQ)
N−2∏
i=1

g
(�Pi

)
nQi

,kPi
(xQi

)θ
(
xQN−2 , . . . ,xQ1

)
UnQN−1

Z
(�PN−1 �PN

)
nQN−1 ,kPN−1 kPN

( − xQN−1

)
× ei(kPN−1 +kPN

)xQN−1 θ
(
xQN−1

) + O(U 2), (29)

where P is a permutation of (1,2, . . . ,N) and Q is that of
(1,2, . . . ,N − 1). Here, we have used the notation

θ (xm, . . . ,x2,x1) = θ (xm,m−1) · · · θ (x32)θ (x21). (30)

The third term in Eq. (29) corresponds to the configuration in
which one of the two electrons that form the two-body bound
states is on the QD. On the other hand, the second term in
Eq. (29) corresponds to the configuration in which both of the
two electrons that form the two-body bound states are in the
leads, which has not appeared in the two-electron scattering
eigenfunction e

(�1�2)
l,k1k2

(x) in Eq. (22) only in g
(�1�2)
l,k1k2

(x1,x2) in
Eqs (22). In what follows, we denote the eigenstate obtained by

inserting the eigenfunctions in Eq. (28) and (29) into Eq. (26)
by |k; �〉 = |k1, . . . ,kN ; �1, . . . ,�N 〉.

IV. ELECTRIC CURRENT UNDER BIAS VOLTAGES

A. N-electron current

By following the three steps of the extension of the
Landauer formula given in Sec. II B, we next calculate the
average electric current for the system under finite bias
voltages [19,20]. First, we calculate the N -electron current,
that is, the quantum-mechanical expectation value of the
electric-current operator I with the N -electron scattering
eigenstates |k; �〉. We assume ki 	= kj if �i = �j and restrict
our calculation to the first order of U�. We need to calculate
the following overlap integral:

〈k; �|I |k; �〉 = 2Im

⎛
⎝∫

x1<···<xN−1

dN−1x
∑
�,{ni }

(−1)�
|t�̄|2
t2

t�g
∗
n1...nN−1�

(x1, . . . ,xN−1,0)en1...nN−1 (x1, . . . ,xN−1)

⎞
⎠ , (31)

where �̄ = 3 − �. By inserting the N -electron eigenfunctions in Eqs. (28) and (29) into Eq. (31), we obtain

〈k; �|I |k; �〉 = |t1t2|2
πt2

( L

2π

)N−1 ∑
i

(−1)�i Im(Gki
) −

(
L

2π

)N−2 ∑
i 	=j

(−1)�i

∑
m

UmIm

(
2t1t2

t2
e

(�̄i )
ki

g
(�j )∗
m,kj

(0+)Z
(�i�j )
�,kikj

(0)

)

− 2|t1t2|2
πt2

(
L

2π

)N−3 ∑
i 	=j 	=l(	=i)

(−1)�i Im(Gki
)
∑
m

UmRe
(
Gkj

g
(�l )∗
m,kl

(0+)e
(�j )∗
kj

Z
(�j �l )
m,kj kl

(0)
) + O(U 2). (32)

Here, L is the system length coming from the regularized square norm 〈k; �|k; �〉 = L/(2π ) of the one-electron scattering
eigenstates. In order to express the results, we have used the notation

Gk = 1

k − εd + i

, (33)

which is the one-electron Green’s function on the QD. We notice that the choice of the parameter α in Eqs. (2) simplifies the
calculation. On the other hand, the square norm of the N -electron eigenstates is calculated as

〈k; �|k; �〉 =
∑
{mi }

∫
x1<···<xN

dNx |gm1···mN
(x1, . . . ,xN )|2 +

∑
{ni }

∫
x1<···<xN−1

dN−1x |en1···nN−1 (x1, . . . ,xN−1)|2

=
(

L

2π

)N

− 2

(
L

2π

)N−2 ∑
i 	=j

∑
m=1,2

UmRe
(
Gki

g
(�j )∗
m,kj

(0+)e(�i )∗
ki

Z
(�i�j )
m,kikj

(0)
) + O(U 2). (34)

It should be noted that the term in the (N − 1)th order in L does not appear above. Combining Eqs. (32) and (34), we obtain the
N -electron current as

〈k; �|I |k; �〉
〈k; �|k; �〉 = |t1t2|2

πt2

2π

L

N∑
i=1

( − 1)�i Im
(
Gki

)− 4π2

L2

∑
i 	=j

(−1)�i

∑
m=1,2

UmIm

(
2t1t2

t2
e

(�̄i )
ki

g
(�j )∗
m,kj

(0+)Z
(�i�j )
m,kikj

(0)

)

+ 2|t1t2|2
πt2

8π3

L3

∑
i 	=j

Im
(
(−1)�i Gki

+ (−1)�j Gkj

) ∑
m=1,2

UmRe
(
Gki

g
(�j )∗
m,kj

(0+)e(�i )∗
ki

Z
(�i�j )
m,kikj

(0)
) + O(U 2). (35)
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B. Average electric current

Next, we take the reservoir limit of the N -electron current
in Eq. (35) to obtain the average electric current. We assume
that the infinite lead substitutes for a large electron reservoir
characterized by the Fermi distribution function fμ,β (k) =
1/(1 + eβ(k−μ)) with a chemical potential μ and an inverse
temperature β. We also assume that electrons are completely
equilibrated in each electron reservoir before being re-emitted
towards the QD, which is the main assumption of the extension
of the Landauer formula.

In the N -electron current in Eq. (35), the N -dependence
appears only in the upper bounds of the sums on the wave

numbers together with the factor 2π/L, which means that we
can take the reservoir limit N�,L → ∞ described in Sec. II B.
It should be noted that the first term in Eq. (35) contains a single
sum on i with the factor 2π/L and the second term contains a
double sum on i and j with (2π/L)2 while the third term is a
double sum on i and j with (2π/L)3 due to the square norm
〈k; �|k; �〉 appearing in the denominator. Therefore the third
term in Eq. (35) vanishes in the reservoir limit N�,L → ∞.

In order to investigate the average electric current, we set
�1 = · · · = �N1 = 1 and �N1+1 = · · · = �N = 2 in Eq. (35) and
relabel |k; �〉 by |k,h〉 with hi = kN1+i , (1 � i � N2). The N -
electron current is rewritten as follows:

〈k,h|I |k,h〉
〈k,h|k,h〉 = J0 + J1 + J2 + O(U 2), (36a)

J0 = −2
1
2

π


2π

L

[
N1∑
i=1

Im
(
Gki

) −
N2∑
i=1

Im
(
Ghi

)]
, (36b)

J1 = −
1
2

π2


4π2

L2

⎡
⎢⎣U1

∑
1�i 	=j�N1

ξ
(11)
kikj

+
∑

1�i�N1
1�j�N2

(
U1ξ

(12)
kihj

+ U2ξ
(21)
hj ki

) + U2

∑
1�i 	=j�N2

ξ
(22)
hihj

⎤
⎥⎦ , (36c)

where we use

ξ
(lm)
kh = Im[Gh((−1)lδlmGk − (−1)mGh

+ 2i((−1)l
mG∗
hGk − (−1)m
lG

∗
kGh))] (37)

and 
l = |tl|2/2. We omit the explicit form of J2 in Eq. (36a)
since it does not contribute to the average electric current
in the reservoir limit N�,L → ∞. Thus the parts of the N -
electron current that contribute to the average electric current
are detemined by the two-electron scattering eigenstates.

In the reservoir limit N�,L → ∞, we replace the sums on
ki in Eq. (36a) by the integral on k with fμ,β(k) as

2π

L

N�∑
i=1

J (ki) →
∫ ∞

−

dk fμ�,β�
(k)J (k), (38)

where we need to introduce the low-energy cutoff − since
the local dispersion relation of the lead is bottomless. At zero
temperature (β� = ∞), the average electric current is given by

〈I 〉 = −2
1
2

π


∫ μ1

μ2

dk Im(Gk)

− 
1
2

π


∑
�=1,2

U�

∫ μ�

−

dk

(∫ μ�

−

dhξ
(��)
kh +

∫ μ�̄

−

dhξ
(��̄)
kh

)

+O(U 2). (39)

We notice that the first term in Eq. (39) reproduces the original
Landauer formula in the noninteracting cases. The double
summations in Eq. (36c) give double integrals in the second
term in Eq. (39), which give a contribution of the Coulomb
interactions. Through the integral formulas∫ μ�

−

dk Gk = 1

2
ln

(
ε2
� + 1

ε2
 + 1

)
+ i (arctan(ε�) − arctan(ε)) , (40a)

∫ μ�

−

dk G2
k = 1




(
1

ε� − i
− 1

ε − i

)
, (40b)

∫ μ�

−

dk G∗
kGk = − 1



(arctan(ε�) − arctan(ε)) , (40c)

with ε� = (εd − μ�)/
 and ε = (εd + )/
, we obtain the
average electric current

〈I 〉 = −2
1
2

π

j−

+ 
1
2

π2
2

∑
�=1,2

U�

[
(
�̄j− − 
�j1) ln

(
ε2
� + 1

ε2
 + 1

)

+ (
(ε� − ε) − 
�(2 arctan(ε�) − j))j2

]

+O(U 2), (41)

where we use the notation

j− = arctan(ε1) − arctan(ε2), j = 2 arctan(ε),

js = ε2−s
1

ε2
1 + 1

− ε2−s
2

ε2
2 + 1

(s = 1,2). (42)

We find that the average electric current 〈I 〉 contains linear and
logarithmic divergences in the limit  → ∞, which is similar
to the symmetric case U1 = U2 [19,20,24].

C. Universal electric current

We employ a renormalization-group technique to deal with
the divergences in the average electric current in Eq. (41). The
divergences are due to the bottomless dispersion relation. By
the renormalization-group analysis, we zoom into the Fermi
energy and thereby discard all details that arise from the
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specifics of the dispersion relation. As a result, we obtain a
universal form of the average electric current.

We devise a Callan-Symanzik equation [24,26] so that the
average electric current may satisfy it. Let us introduce a
parameter D = 


√
ε2
 + 1. We can indeed see that for D �


,|εd|, the average electric current 〈I 〉 in Eq. (41) satisfies(
D

∂

∂D
+

∑
�=1,2

β
�

∂

∂
�

+ βεd

∂

∂εd

)
〈I 〉 = 0, (43)

where the beta functions β
�
and βεd are given in the first

order of U� as

β
�
= −U�

π

� + O(U 2), βεd = − Ū

π
D + O(U 2) (44)

with the average interaction Ū = (U1 + U2)/2. The Callan-
Symanzik equation of the form (43) is an extension of the pre-
vious ones [19,20,24] for the case of the symmetric couplings.

The general solution of the Callan-Symanzik equation
determines a scaling form of the average electric current as

〈I 〉 = J

(
D

U1
π 
1,D

U2
π 
2,εd + Ū

π
D

)
, (45)

where J (·, · ,·) is an arbitrary three-variable function. Hence,
if we change the parameters 
� and εd as functions in D as


�(D) = T�

(
TK

D

) U�
π

, εd(D) = Ed − Ū

π
D (46)

with the constants T1, T2, (TK = T1 + T2) and Ed, the average
electric current 〈I 〉 does not depend on D. The parameters

�(D) and εd(D) are referred to as renormalized parameters
while the original parameters are called “bare” parameters,
which we denote by 
�,0, εd,0 and D0. Here we fix the
renormalized constants T� and Ed by the bare parameters as

T� = 
�,0

(
D0

TK

) U�
π

, Ed = εd + Ū

π
D0 (47)

and express all physical quantities in terms of the renormalized
ones. We shall see below that the sum TK = T1 + T2 plays a
role of a scaling parameter similar to the Kondo temperature.

By inserting the renormalized parameters in Eqs. (46) into
the average electric current 〈I 〉 in Eq. (41) and rearranging
it with respect to the interaction parameter U�, we obtain the
universal electric current

〈I 〉 = −2T1T2

πTK
j̃− + T1T2

π2T 2
K

∑
�

U�

{
(T�̄j̃− − T�j̃1) ln

(
ε̃2
� + 1

)
+ [TKε̃� − T�(2 arctan(ε̃�) − π )]j̃2

} + O(U 2), (48)

where j̃− and j̃s are j− and js with ε̃� = (Ed − μ�)/TK in
place of ε�, respectively. Thus the average electric current
〈I 〉, which was originally described by the bare parameters

�,0, εd,0, D0 and U�, is now characterized by the parameters
T�, Ed, and U�. As a result, the linear and the logarithmic
divergences of the average electric current are absorbed into
the parameters T� and Ed.

Let us consider the current-voltage (I -V ) characteristics
of the universal electric current. We put Ed = 0 and consider

the cases μ1 = −μ2 = V/2 with the bias voltage V . Then we
have

TK

4T1T2
〈I 〉 = 1

π
arctan

(
V

2TK

)

− 1

2π2

[
(Ū − δ) arctan

(
V

2TK

)

− (Ū + δ)
V/(2TK)

V 2/(2TK)2 + 1

]
ln

[(
V

2TK

)2

+ 1

]

+O(U 2), (49)

where δ is the asymmetry parameter defined by

δ = (U1 − U2)(T1 − T2)

2TK
. (50)

We note that the parameters T1 and T2 depend on U1 and U2

through Eq. (47).
We find from Eq. (49) that the bias voltage V is scaled by the

parameter TK. In the case of symmetric interactions U1 = U2,
we have δ = 0. Hence, after taking appropriate scaling factors
for the electric current 〈I 〉 and the bias voltage V , the I -V curve
is independent of the parameters T1 and T2. In the asymmetric
cases with 
1,0 	= 
2,0 and U1 	= U2, on the other hand, the
parameters T1 and T2 play a nontrivial role since, even if we
rescale the electric current, it still depends on T1 and T2 through
the asymmetry parameter δ.

We deal with the parameters T1 and T2 in the first order of
U�. By solving the equation for TK, which is obtained by the
first equation in Eqs. (47), the parameter T� is expanded in the
first order of U� as

T� = 
�,0

[
1 + U�

π
ln

(
D0


0

)]
+ O(U 2). (51)

We remark that, for the consistency with the expansion, the
ratio D0/
0 should be restricted to the region D0/
0  eπ/U� .
Then the asymmetry parameter δ in Eq. (50) is expanded as

δ = (U1 − U2)(
1,0 − 
2,0)

2
0
+ O(U 2). (52)

By a physical intuition, we expect δ � 0 since the case U1 >

U2 should correspond to the case 
1,0 > 
2,0. By expressing
the parameters as 
1/2,0 = 
0(1 ± γ )/2 with 0 � γ < 1 and
U1/2 = Ū (1 ± γ ′) with 0 � γ ′ � 1 in the cases with 
1,0 �

2,0 > 0 and U1 � U2, we have δ = Ūγ γ ′ + O(U 2). Hence
the asymmetry parameter δ takes a value in the range 0 � δ <

Ū + O(U 2). The I -V curve of the universal electric current
for Ū = 0.5 and 0 � δ < 0.5 is depicted in Fig. 3.

We observe the suppression of the electric current for
large bias voltages V � TK, that is, negative differential
conductance. This is because the formation of the two-body
bound states promotes the reflection of electrons at the
QD, as is illustrated in Fig. 2, and the logarithmic term in
Eq. (49) decreases the electric current. In the first order of
U�, the negative differential conductance shows the power-
law behavior 〈I 〉 ∝ (V/TK)−(Ū−δ)/π where the asymmetry
parameter δ appears. This means that the suppressed electric
current is restored by the asymmetry of the system parameters.
In the case 
1,0 = 
2,0, we have δ = 0 in the first order of
U� and the universal electric current in Eq. (49) depends
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FIG. 3. I -V characteristics of the rescaled universal electric
current for Ū = 0.5 with δ = 0,0.1,0.2,0.3,0.4.

only on the average interaction Ū . This is consistent with
the Callan-Symanzik equation: by changing the variables and
setting 
1 = 
2 = 
/2, the Callan-Symanzik equation (43) is
reduced to (

D
∂

∂D
+ β


∂

∂

+ βεd

∂

∂εd

)
〈I 〉 = 0 (53)

with the beta function β
 = −Ū
/π + O(U 2). The general
solution is given in the form 〈I 〉 = J (D

Ū
π 
,εd + ŪD/π )

with an arbitrary two-variable function J (·,·). Then the
negative differential conductance appears for Ū > 0, which
is essentially the same as the previous results in the case of
symmetric interactions U1 = U2 [20,24,25].

Let us compare the present results with the renormalization-
group (RG) results in Refs. [31] and [32]; the RG flow
equations for the level width 
 were obtained in the second
order of U� in Ref. [32]. Although general local dispersion
relations of the leads were adopted in Refs. [31] and [32],
the details of the frequency dependence of the density of
states of the leads did not play any role in their analysis.
Indeed, the linear divergence in our average electric current
〈I 〉 due to the linearized dispersion relations is removed by the
RG technique with the Callan-Symanzik equation as we have
described above. Their definition of the parameters T1 and T2,
which was approximately derived from the RG flow equations
for the level width 
, is equivalent to ours in Eq. (47) in the
first order of U�.

We can confirm that the universal electric current in Eq. (49)
is consistent with that of the RG results [31,32] in the first order
of U�. By using the renormalized band width 
�(D) in Eq. (46),
we have


1(D)
2(D)


(D)
arctan

(
V

2
(D)

)

= T1T2

TK

{
arctan

(
V

2TK

)
− 1

2π

[
(Ū − δ) arctan

(
V

2TK

)

− (Ū+δ)
V/(2TK)

V 2/(2TK)2 + 1

]
ln

(
D2

T 2
K

)}
+ O(U 2). (54)

Then, by putting 
̃� = 
�(|V/2 + iTK|) and 
̃ = 
̃1 + 
̃2,
the universal electric current in Eq. (49) is expressed

by

〈I 〉 = 4
̃1
̃2

π
̃
arctan

(
V

2
̃

)
+ O(U 2), (55)

which is in the same form as the noninteracting cases. The
expression in Eq. (55) agrees with that obtained in the RG
results (see Appendix).

We remark that, although the expression of the universal
electric current in Refs. [31] and [32] agrees with ours in
Eq. (55), their treatment of the renormalized parameters T1 and
T2 included in the universal electric current is different from
ours; they used the higher-order terms of U� in the defining
relations of T1 and T2 in Eq. (47), while we have treated them
in the first order of U� as is given Eq. (51). As a result, even
in the case 
1,0 = 
2,0 of symmetric lead-dot couplings, they
observed the restoration of the suppressed electric current. We
have shown that, for the asymmetry parameter δ treated in
the first order of U�, the restoration due to the asymmetric
interactions does not occur at 
1,0 = 
2,0. In other words, in
this case, there should be no restoration of the suppressed
electric current for small U�, which seems to differ from the
results of Refs. [31] and [32].

V. CONCLUDING REMARKS

We have studied the average electric current for the
open QD systems described by the two-lead IRLM in the
asymmetric settings. By using the extension of the Landauer
formula with the many-electron scattering eigenstates, we
have calculated the average electric current for the systems
under finite bias voltages. The calculation is in the first order
of the interaction parameters, but otherwise we have not
employed any approximations. The calculation itself has been
considerably simplified compared to the previous one [19,20]
treating the symmetric cases with the even-odd transformation.

Through the renormalization-group technique with the
Callan-Symanzik equation, we have obtained the universal
electric current characterized by the scaling parameter TK and
the asymmetry parameter δ. The Coulomb interactions around
the QD give rise to the negative differential conductance
through the formation of the two-body bound states, which
is a new point of view clarified in our analysis. Through the
investigation of the asymmetry parameter δ, we have confirmed
in the first order of U1 and U2 that the suppressed electric
current is restored in the asymmetric cases satisfying both

1,0 	= 
2,0 and U1 	= U2.

The analytic form of the universal electric current has
enabled us to compare it with those of other approaches
correctly. Our universal electric current has the same functional
form as that obtained with the RG approach [31,32]; it also
reproduces previous results [20,23–25,27] in the symmetric
cases. However, for U1 	= U2 and 
1,0 = 
2,0, our results
indicate that there is no restoration of the suppressed electric
current to first order in U1 and U2, while Refs. [31] and [32]
indicate that there is. This restoration may result from higher-
order terms in U1 and U2. To verify its validity analytically, we
need a consistent treatment of these higher-order terms, which
can be done with our extension of the Landauer formula.

The key element for the practical calculations in the
extension of the Landauer formula is the explicit form of
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many-electron scattering eigenstates. The present calculation
in the first order in the interaction parameters can be extended
to higher orders by using the exact N -electron scattering
eigenstates that we have already obtained. We expect that such
calculation should be applied to other physical quantities of
the open QD systems such as the dot occupancy.
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APPENDIX: RESULTS OF THE RG
FLOW EQUATION FOR �

In our settings, the universal electric current obtained in
Refs. [31] and [32] is expressed as

〈I 〉RG = 2
̂1
̂2

π
̂

[
arctan

(
μ1−εd


̂

)
− arctan

(
μ2−εd


̂

)]
,

(A1)

where 
̂� is the solution of the RG flow equations for the
level width of the QD and 
̂ = 
̂1 + 
̂2. It was approximately
determined by the self-consistent equation


̂� � 
�,0

[
D0

|
̂ − i(μ� − εd)|

]g�

(A2)

with g� = U�/π + O(U 2). In the first order of U�, the
approximate solution is given by


̂� � T�

[
TK

|
̂ − i(μ� − εd)|

] U�
π

+ O(U 2)

= T�

[
TK

|TK − i(μ� − εd)|
] U�

π

+ O(U 2)

= 
�(|(μ� − εd) + iTK|) + O(U 2), (A3)

where 
�(D) is the renormalized level width defined in
Eq. (46). By inserting this into Eq. (A1) and setting μ1/2 =
±V/2 and εd = 0, the expression in Eq. (A1) agrees with
Eq. (55).
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