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Morphological Characteristics in Class Aves Associated with Fligb1

In the time since organisms first came onto land, there has been an evolutionary

arms race to fill all the complex niches that exist in terrestrial ecosystems. In order to fill

these niches, many animals have become evolutionary specialists, allowing them to

conquer new places and roles. There may be no animal specialization more awe-

inspiring than that of avian flight. Since their evolutionary divide from a common

ancestor shared with reptiles, the body of a bird has changed in many ways in order to

be able to leave the ground and conquer the sky.

To understand the evolutionary adaptations of birds, one must think about what is

necessary in order to take flight. The main constraint that most animals face with

maintained flight is overcoming the force of gravity. Simply put, most animals are just

too massive to be able to take flight. The equation for the downward force of gravity (Fg)

is:

(eqn.1 ),

where M is the mass of the object and Ag is the acceleration due to gravity, which is a

constant of -9.Sm/s2. Thus, the more massive the object, the greater the force of gravity

acting upon it.

In order to take flight, the upward force, or lift, produced by an animal must be

greater than the downward force of gravity acting upon that animal. In order to create

more lift than the amount of gravity acting upon it, there are two possible evolutionary

strategies an animal can take: reducing mass or increasing the capacity to produce lift.

Birds have made use of both strategies in order to achieve flight. In this paper, I will
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discuss these two strategies, as well as several adaptations that are necessary for

efficient flight in birds.

Mass reduction:
Class Aves is characterized by pneumatization of the skeleton, which results in a

large reduction in overall weight (Hickman et ei., 2015). pneumatization refers to the

"honeycomb-like" construction of the bones themselves. The bones are mostly hollow,

with struts that span the inner diameter of the bone (Fig. 1). This construction causes a

significant decrease in the overall mass of the bird, while not compromising the

structural integrity of the skeletal system (Hickman et al., 2015). The skull of the bird is

not pneumatized, but features a greatly reduced overall mass and is fused into one

piece to increase rigidity. The skull of a pigeon makes up around 0.21 % of its overall

weight, compared to the 1.25% seen in rats (Hickman et el., 2015).

Along with the reduction in mass of the skeletal system, there is a marked

reduction of the mass of the digestive system. Birds make use of their gizzard, a

muscular sac used for grinding their food, to speed the digestion process. The gizzard

allows the bird to break down food without requiring teeth, an adaptation that greatly

red uces th e mass of the sku II (LOuchart and Vi riot, 2011). Alte r being grou nd in the

gizzard, the food quickly makes its way through the digestive system. Easily digestible

foods, such as berries, can be digested in as little as 30 minutes (Hickman, et el. 2015).

The stomach morphology of birds is more variable than any other organ in class Aves,

due to the high variability in diet of different species of birds (Gill, 2006). The excretory

a 51 - I
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system of the bird also features a great reduction in mass. There is no urinary bladder

and urine is passed out of the cloaca as quickly as it is produced (Gill, 2006).

Feathers are a defining characteristic of birds, and they function in two ways: to

decrease overall weight, and to increase lift production. Feathers are extremely

lightweight when compared to similar volumes of other bodily tissues (Hickman et al.,

2015). More importantly, their mechanical design is extremely useful in lift production.

Feathers have a hierarchical design, originating at the quill, which is where the feather

attaches to the tissue of the bird. From the quill extends a shaft, known as the rachis.

The rachis is strong enough to provide structural support, while still maintaining its

lightweight character. Extending from either side of the rachis are barbs, which in turn

have barbules extending from them. These barbules have interlocking hooks on either

side of them, which lock together, forming a sheet of sorts. Because the barbules can

form this sheet, the air is less able to pass through the greatly reduced openings in the

feather, thus increasing the effective lift of the bird's wings (Hickman et al., 2015).

Stabilization for flight

Once the bird is in the air, stabilization becomes a major factor in energy

conservation; if energy is wasted in muscular contraction for in-air stabilization, it cannot

be used for flight. Birds go about this in a variety of ways. Firstly, the non-cervical

vertebrae of the bird are fused together, which are then fused with the pelvis (Hickman

et al., 2015). These fused skeletal elements provide a rigid framework that can stand up

to the stresses produced during avian flight. Also to this end, the rib cage of birds is .
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braced together with a set of uncicate processes, which essentially act as crossbeams

spanning the intercostal spaces (Hickman et al., 2015).

Birds have also evolved muscular adaptations that increase stability during flight.

Like a commercial jet, birds keep the majority of their mass below their center of gravity.

In order to do this, the major muscles concerned with the force production for flight all

originate on the ventral surface of the keeled sternum (Hickman et al., 2015).

Elight Musculature:

Most of the force production powering avian flight is generated by two main

breast muscles. These muscles, the pectoralis major (PM) and supracoracoideus (SC)

(Fig. 2), are responsible for the downstroke (power stroke) and the upstroke (recovery

stroke), respectively. While both of these muscles originate on the keeled sternum that

is characteristic of birds, they attach to their respective levers in different ways. The PM

orginates on the keeled sternum, and inserts on the ventral side of the humerus. In

contrast, while the SC also originates at the keeled sternum, it attaches to a tendon that

loops around the foramen triosseum of the scapulae to attach to the dorsal side of the

humerus (Schmitt, 2004; Hickman et al., 2015). Thus, the SC powers the upstroke by

using a pulley-like mechanism. While muscle shortening takes place on the ventral side

of the bird, the force is directed around the foramen triosseum to the dorsal side of the

humerus, thus pulling the wing upwards. This allows the muscle to act in a similar

fashion to a muscle on the dorsal side of the body, while keeping the center of mass on

the ventral side.
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While the PM is the muscle that is mainly responsible for the downward force in

the power stroke of the wing cycle, and the SC for the upward force in the recovery

stroke, the two often operate simultaneously. poore, et al. (1997) presented a graphic

representation of the force production of the SC and PM during the wing cycle (Fig. 3).

At the beginning of the downstroke, the PM fires, producing a downforce. The PM stops

firing about halfway through the downstroke. The SC begins to fire momentarily before

the upstroke begins, helping to slow the downstroke. Since, the PM is causing the

humerus to move into a position that stretches the SC past its normal resting length,

elastic potential energy is built up (Tobalske and Biewener, 2008). The SC continues to

fire after the downstroke ends, producing the upward force for the recovery stroke. The

slight overlap of the SC firing while the downstroke is still occurring reduces the lag time

between the end of the downstroke and the beginning of the upstroke, making the beat-

cycle of the wings more time-efficient (Poore et al., 1997).

Lindstrom, et al. (2000) demonstrated that 1hethickness of the pectoralis major

was positively correlated with the overall mass of a bird. These researchers determined

that a more massive bird has a predictably thicker PM muscle than less massive birds,

which is in agreement with a previous study (Marsh, 1984). This relationship is likely

due to the increasing need for lift production for flight as birds get larger. The correlation

between PM thickness and body mass is different than what is seen in the SC, which

varies much more in regards to proportion of body mass (Marsh, 1984). This is due to

the different way in which the SC powers its contraction. As noted above, the SC seems

to function not only to power the upstroke, but also to store strain energy, which is the

energy that comes from stretching the muscle past its resting length. Tobalske and
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Biewener (2008) demonstrated that the SC was a very efficient muscle in regards to its

ability to store strain energy and reuse it in returning the wing to its ready position; an

estimated 28-60% of the net work of the SC comes from elastic energy storage. This

efficiency is important to the flight of the bird as it allows for less energy to be used in

returning the wing to its resting position; it also reduces necessary muscle mass.

Because less energy is used in recovery strokes, more energy is available during the

power stroke for the production of lift.

The correlation between the PM muscle mass and body mass is not likely

conserved between all species, however, as differential flight demands may favor larger

or smaller flight muscles. In order to avoid obstacles, a bird may need to quickly change

its plane of flight. Therefore, a bird that lives in more or less complicated environments

would have different muscular demands. For instance, a bird that requires very agile,

quick movements may require larger muscles in order to create enough lift to be able to

dodge any obstacles it may encounter (eg. predators, tree trunk, etc.). Such flight

behavior requires shorter, relatively higher force bursts of muscle contraction. In

contrast, a bird that does less agile movements and more sustained, long flights may

have relatively lower PM muscle mass, as greater amounts of force are not necessarily

required for this particular style of flight.

The muscle fiber profile of the muscle also varies between the PM and the SC.

Marsh (1984) determined that the PM shows a greater proportion of fast twitch fibers to

slow twitch fibers, as compared to the SC (88%/12% and 58%/42%, respectively). The

difference in muscle fiber proportions between the PM and SC is likely due to the

differing responsibilities of the two muscle groups. Fast-twitch fibers tend to be
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associated with rapid, powerful movements, while slow-twitch fibers tend to be

associated with sustained locomotion. The PM is responsible for a powerful downstroke,

during which it maximizes the lift created (Hickman et al., 2015). This lift is created by

creating a pressure differential between the top and bottom of the wing (Vogel, 2013).

Since this differential is maximized when the wing is moving at high velocity, a rapid

downstroke would be most effective at producing lift (Vogel, 2013). This relationship is in

keeping with to the PM having a greater proportion of fast-twitch than slow-twitch fibers.

The SC, on the other hand, has a greater proportion of slow-twitch muscles than fast-

twitch (Marsh, 1984). The primary purpose of the SC is to return the wing back to its

original position so that the wing cycle can start over. The recovery stroke would be

more energetically costly if it was a faster stroke, because more drag would be

produced (Vogel, 2013).

The SC does have a moderate amount of fast-twitch fibers (Marsh, 1984),

however, as this muscle is responsible for the rapid recovery stroke required for takeoff

(Gill, 2006). Because of this mix of fibers, the SC is able to provide the rapid flapping

motion necessary for takeoff (Gill, 2006), then allow the strain energy storage

mechanism to take over once flight is achieved (Tobalkse and Biewener, 2008). As

mentioned previously, a bird that is frequently dodging obstacles would likely require

rapid, forceful muscle contractions in order to change flight planes. This functional

demand would likely lead to a greater amount of fast-twitch muscle fibers. A bird that

has slower, more sustained flight patterns likely has less fast-twitch and more slow-

twitch fibers.
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The relationship between bird muscle mass and energetically efficient flight

creates an interesting impasse; there are two conflicting functional demands associated

with flight. Studies show that larger cross-seclional muscles are able to produce a

greater quantity of force (Sherwood et el. 2013), which is necessary because flighl

requires a large amount of power, At the same time, birds need to minimize their weight

in order to be able to sustain flight. Many of the traits of birds are thought to be

adaptations that minimize weight (Hickman et al., 2015).

These conflicting demands lead to the idea of a dynamic relationship between

power production and weight minimization, Due to evolutionary demands, a bird in one

evolutionary lineage may maximize muscle mass, while a bird in another evolutionary

lineage may have adapted to minimize overall weight. This dynamic relationship 01

different locomotor demands can be illustrated by thinking of an olympic sprinter and a

marathon runner, The ideal sprinter has massive legs muscles, providing huge amounts

of force for a short burst of speed, This is comparable to birds that fly low through

forests, as they are required to make sudden cuts through the air to avoid vegetation or

other obstacles, The marathon runner, on the other end of the spectrum, has very little

muscle mass, producing tess explosive forces while opting towards longer, sustained

locomotion, such as a bird in migratory flight. This analogy is not perfect, however, as

many birds exist towards the middle of the spectrum, These birds may quickly create

large amounts of lift in one season, then require the endurance to migrate during

another season; some birds may encounter both styles in a single day, In these birds,

We would expect to see adaptations for both endurance and forceful lift production, Most
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birds fall into this category, with a blend of long-term endurance flight patterns with

Morphological differences of the wing itself have also been linked to different

interspersed short-term powerful flight (Gill, 2006).

Wing Morphology and Lift Production:

styles of flight. Two factors that have a great impact on these differing styles of flight are

aspect ratio and wing loading. Both of these variables have been linked to differences in

maximum flight speed and lift production (Alerstam et al., 2007; Hickman et al., 2015),

and therefore likely differ between birds that occupy different niches in an ecosystem.

Aspect ratio (AR) is a numerical description that can be used to describe a wing's

shape (Norberg, 1990). There are multiple formulas for the determination of AR, but the

concept is essentially the ratio of length to width of the wing (Hickman et al., 2015). The

formula for AR is as follows:

AR= L/W (eqn. 2),

where L is the length from the shoulder socket of the bird to the tip of its longest wing

feather, and W is the width of the wing from the leading edge of the wing to the tip of the

furthest feather on the trailing edge (Fig. 4). A bird with a long, narrow wing will have a

relatively high aspect ratio; conversely, a bird with a short, wide wing will have a

relatively low aspect ratio. Evidence suggests that aspect ratio can be used as a

predictor for avian flight speed (Gill, 2006; Hickman et al., 2015). Birds with higher

aspect ratios (long, narrow wings) tend to fly faster, whereas birds with lower aspect

ratios (short, wide wings) tend to fly at a lower velocity (Hickman et al., 2015). This

information can be useful in predicting lift production. Fish (1990) demonstrated in flying



Weinstein 10

fish wings that a wing with lower aspect ratio can create greater amounts of lift at slower

flight speeds than wings with higher aspect ratio.

However, the shape of the wing does not solely determine how fast a bird can fly.

One must also consider wing loading as a predictive morphological factor of avian flight

speed. In order for a bird to achieve flight, the amount of lift produced must exceed the

downward pull of gravity due to the weight of the bird. To this end, a heavier bird must

fly faster in order to produce enough lift to counteract the downward force (Norberg,

1985). Because of this, heavier birds tend to fly faster than lighter birds (Vogel, 2013).

generate as much lift as a larger wing produces at slower speeds (Norberg,1985;

Alerstam et al., 2007). Wing loading is also associated with decreased maneuverability.

Pennycuick (1971) demonstrated that there is a positive correlation between wing

loading and the minimum radius of a level banked turn in flight, which was used as a

measure of maneuverability; birds with higher wing loading required a larger radius to

make the turn. A bird that can make an unbanked turn with a smaller radius

The weight of the bird itself, however, is not an accurate predictor of average flight

speed; instead, one must look at wing loading (Alerslam et al., 2007), which is defined

by Vogel (2013) as :

WL= W / S (eqn.3),

where W is the total weight of the bird and S is the surface area of the wings. From this

formula, we can see that a heavier bird with smaller wings will have a higher wing load

than a lighter bird with larger wings. Higher wing loads have been associated with

greater flight speeds, as the smaller wings need to move faster through the air to



demonstrates greater maneuverability than a bird requiring a greater radius for an

unbanked turn.

The combination of these two metrics gives insight into the flight habits of a

specific bird or species. As mentioned before, both metrics positively correlate with the

speed of the bird in flight, but increasing speed is not always the best flight strategy for

a bird. Since faster flight causes objects to approach at greater rates, there is likely an

inverse relationship between flight speed and maneuverability. From that information,

one prediction could be that a bird that lives and flies through mostly wooded areas

would have relatively low numbers for both aspect ratio and wing loading, as the speed

of flight is less important than the ability to avoid obstacles. Thus, a forest bird, such as

a thrush, would have a lower aspect ratio and wing load than a peregrine falcon, which

flies at tremendous speeds.

A final factor that may become a quality predictor ot a bird's specific flight habits

is the ability to produce lift at a variety of angles of attack. The angle of attack of a bird

wing is the angle between the direction of the air current and the plane of the wing. The

hypothesis in this regard would be that forest birds would be able to produce more lift at

a wider range of angles than birds in a niche that emphasizes speed more. This

prediction is because of the increased need for maneuverability in these forest-dwelling

birds. A greater range of viable angles for lift production means the bird can effectively

avoid obstacles throughout a greater range of aerial positions, which translates to

greater maneuverability. Therefore, increased maneuverability is predicted to be

associated with lower aspect ratios, decreased wing loading, and increased lift

production across a wider range of angle of attack.
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Conclusion:

Birds are an interesting field of study for a number of reasons, many of which are

related to conflicting evolutionary demands. Birds are required to produce more lift than

the downward force of gravity acting upon them. To this end birds have evolved in a

number of ways, both in mass reduction and increased lift production. This paper looks

into different variables associated with contrasting styles of flight, and how

morphological differences allow for these different styles to occur, as well as variables

associated with weight minimization.



~
!

Weinstein 13

Fig. 1 Longitudinal section of a pneumatized bone. As seen above, the bone is mostly

hollow. The struts spanning the inner diameter of the bone increase structural rigidity.

Image from Boundless (2014).
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On the downstroke, the pectoralis pulls tight,
pulling the wing bone down.

On the upstroke, the sup raco raco ideus pulls
a tendon that loops around die foramen
rriosseum; tins pulls the wing bone up.

i\f!..i_"'l!e

DI'3.wi~ by N. John Schmitt, from Heme Study Course inBirdBiology,
2nd edition, published by the Cerrefl Lab of Ornithology

Fig. 2 Diagram of Attachment of Flight Muscles. This schematic drawing of the flight

muscles found in most birds, drawn by N. John Schmidt of the Cornell Lab of

Ornithology) shows the basic arrangement of the muscles. Both flight muscles are

attached on the ventral side of the bird which keeps the bird steadier during flight. The

supracoracoideus, responsible for the upstroke, attaches to a tendon which loops

around the foramen triosseum to the dorsal side of the bone, allowing the muscle to pull

the wing up.
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Fig. 3 This figure shows the contraction period of both the SC and PM muscles ,

represented by the electromyograms (EMGs) on the top and bottom lines of the fig ure.

The EMGs show the time during which the muscle is actively contracting.The relative

force produced by each muscle is shown in the middle, represented by the two line

graphs. The shaded region in the middle of the graph represents the period during

which the contraction of the SC helps to slow the downstroke, then begin the Upst rake

In this figure, Pec=PM. (Poore et al., 1997).

(
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low
aspect ratio

Moderate
aspect ratio

High
aspect ratio

Fig. 4 Aspect ratio is a numerical representation of the shape of a wing. It is determined

by dividing the length (horizontal line) of the wing by its width (verlicalline), or chord.

Image altered from Science Learning Hub· The University of Walkato (NZ) (2007-2015).
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Wing Morpholo_gyand Mechanics of Passeriformes Birds

Introduction:
In order to fly, birds (Class Aves) must generate enough lift to offset the

downward force of gravity. The two muscles responsible for the majority of lift production

in the bird are the pectoralis major (PM) and supracoracoideous (SC), which are

responsible for the power stroke and recovery stroke, respectively. The PM is the larger

of the two, as it powers the forceful downstroke of the birds' wings (Tobalkse and

Biewener, 2008). The SC, which originates on the sternum, loops around the foramen

triosseum to the dorsal side of the humerus (schmitt, 2004; Gill, 2006; Hickman et a/.,

2015). This mechanism allows the muscle to efficiently apply force on the dorsal side of

the bird, while maintaining the center of weight below the center of gravity for the bird

(Hickman et el., 2015). Keeping the majority of weight below the center of gravity is

important in maintaining stability during flight, which allows for better energy efficiency.

As less muscular energy is used for in-flight stabilization, more can be used for lift

production. Muscular thickness of the PM, and therefore mass, has been positively

correlated with overall mass of birds (Lindstrom et at, 2000). This relationship is likely

due to the increasing demand for lift production with the increasing mass of a bird. This

correlation does not hold true for the SC, however, which shows much greater variability

in its relative size compared to the bird (Marsh, 1984). This disparity is likely due to the

SC being mainly responsible for the return of the wing to its ready position, with minimal

responsibility in actual lift production (Gill, 2006).

While the basic morphology of flight musculature within Class Aves is fairly

consistent, there is more variation in wing morphology. This differential wing morphology
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is associated with niche differentiation. The two main factors connecting wing

morphology and flight are aspect ratio and wing loading. Aspect ratio (AR) is a

dimensionless numerical descriptor of a wing's shape (Norberg, 1990). There are

multiple formulas used to determine AR, but this study will use the method described in

Hickman et al. (2015), which divides the length of the wing from shoulder to tip by the

width of the wing at its widest point. AR has been positively correlated with average

avian flight speed (Hickman et al. 2015; Gill, 2006), and negatively correlated with lift

production capabilities at lower flight speeds (Fish, 1990). A bird with a long slender

wing tends to fly at a faster average velocity, which is due partially to their inability to

effectively produce lift at lower speeds. Wing loading (WL) is another predictor which

has been positively correlated with avian flight speed (Norberg, 1985; Alerstam et al.

2007). Wing loading is defined as the weight of the bird divided by the surface area of

the wings (Vogel, 2013). Wing loading is not only associated with velocity, but also with

maneuverability. Pennycuick (1971) found a negative correlation between wing loading

and maneuverability, as birds with greater wing loading required a larger radius to

complete a level, banked turn.

The demands of flight may vary dramatically with where and how a bird flies. A

bird in open woodlands does not encounter as many obstacles as a bird that flies in the

thickest part of a forest. A relatively open environment may require less maneuverability

than the complicated forest environment. This study examines the relationship between

the different lift producing adaptations and the maneuverability of birds. This study

investigates three different hypotheses. First, a bird that lives in the thick of a forest

r
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I I

would require greater lift producing capabilities at a greater range of flight angles than
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one that lives in an open woodland. This would be due to differential abilities to change

planes of flight. A bird that has a greater ability to change planes of flight over a wider

range of angles would show more maneuverability in flight. Second, this would suggest

that a forest bird has a relatively larger PM. This is due to the fact that thicker muscles

have been associated with greater force production (Sherwood et a/., 2013), and this

greater force production would allow for greater lift production, potentially leading to

increased maneuverability. The third hypothesis is that these forest-dwelling birds would

have lower aspect ratios and lower wing loading, as both have been associated with

increased lift production lift and increased maneuverability. Specifically in this study, I

will measure the lift production capabilities of isolated wings at different flight angles, the

muscle mass of isolated flight muscles, and morphological differences of isolated wings.

I will examine three species of birds, belonging to one of two niches. One species

examined is the American robin, which is known to spend much of their time in relatively

open woodlands. The other species examined are Swainson's thrushes and wood

thrushes, which spend most of their time in the thick of the forest (personal

communication, Dr. David Etnier, 2015). All three species belong to the same family,

Turdidae, or the true thrushes, which means that there are likely fewer confounding

evolutionary variables. These examinations will determine if there are any significant

differences in the morphology and lift production capabilities of birds that are known to

occupy different niches within an ecosystem.
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Methods:

Collection of Specimens:

Birds for this study died due to window strike, or other natural causes, and were

collected between the years of 2011 and 2014 under a federal salvage permit issued to

Dr. Shelley Etnier (Permit # MB9 8877 A-D). The population of this study consists of

passeriformes native to Indiana, namely American robins (Turdus migratorious) (n=12),

Swainson's thrushes (Catharus ustulatus) (n=9), and wood thrushes (Hylocichla

mustelina) (n=6).

Dissection:

The dissection protocol was adapted from Laboratory Anatomy of the Pigeon, 3rd

Ed., by Chiasson (1972). Overall body mass of the bird was determined with a digital

scale. Feathers were removed from the breast of the bird, then an incision was made to

expose the breast musculature from under the skin. The pectoralis major (PM) was

removed first, as it is located superficially compared to the rest of the breast

musculature, and its mass was measured with a digital scale. The supracoracoideus

(SC) was then isolated to the point where it attaches to the tendon wrapping around the

foramen triosseum. The SC was then removed and weighed.

The shoulder joint was found by manipulation of the wing. Right wings were used

in all cases unless there was some observed damage to that wing. In those situations,

the left wing was used. All remaining musculature and tendon attachments to the joint

were bissected, allowing for complete disarticulation of the joint. A pair of surgical

scissors was then used to remove the wing, which was pinned to a dissection pan. This

~
I
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wing was fixed in a position which spread the feathers, but did not allow for any gaps

between feathers. This is a position that mimics natural flight position of the wings. The

wings dried for a minimum of two days before experimentation.

Wing Morpholog¥_;.

The isolated wings were photocopied after the drying period was completed, then

the image of the wing was cut out. The paper cut out was then weighed. A conversion

factor (138.88cm2/g of paper) was determined by weighing a piece of comparable paper

with a known surface area of 25cm2• The weight of the paper wings was compared to

the weight of the conversion paper to determine the planar surface area of the wings

(ems). The body mass of the bird was then divided by double the planar surface area of

the wing, to find the wing loading. The length of the wing was determined by measuring

from the shoulder joint to the tip of the furthest feather. The width of the wing was

determined by measuring the widest part of the wing at a perpendicular angle to the line

of length. Aspect ratio was determined by dividing length by width.

Lift Production:

A lift production apparatus was modified from a lab by Dr. William H. Bernard

(Norwich University) (Fig.1). Isolated wings were attached to a ring stand, which was

placed on a scale. These wings were then subjected to a headwind produced by a

Lasko 20" box fan (mean velocity=16.3 km/h). Wind velocity was measured using a

Kestrel wind meter. The wind blew across the wing, perpendicular to the leading edge,

creating a lift force perpendicular to the air movement. The scale was able to measure (
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any lift produced by the isolated wing, as a lower apparent weight on the scale. To

account for lift produced by parts other than the wing, the stand was subjected to the

wind without a wing attached. Angle of attack was determined by the angle between an

imaginary line across the bottom of the wing and the table (Fig.2). Lift production was

measured at angles of attack from -300 to 900 relative to the horizon.

Statistical Analysis:

The data were run as a general linear model with species used as a fixed

variable to determine if a significant difference was present between species. If a

difference was present, a Tukey pairwise comparison was used to determine specific

differences between species.

Results:

Muscle MorDholo~

Overall mass of the birds differed between species (F=34.98, P< 0.000), with the

robin having significantly greater overall mass than the two thrush species, which were

similar. The muscular masses of the PM and SC also differed significantly between the

birds (F= 65.17, P< 0.000; F=13.71, P< 0.000). Both of the muscles followed the same

pattern as the overall mass of the bird. The robin had a significantly greater muscular

mass than the thrush species, which were similar.

The ratio of PM mass to overall body mass also differed significantly between the

species (F=5.74, P=0.01 0), with the robin having a significantly higher ratio of PM to

body mass than the thrush species. The ratio of SC mass to overall body mass did not
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show a significant statistical difference between the two groups. The ratio of SC mass to

PM mass also did not differ significantly between the species in this study (F=2.02,

P=0.156).

Wing Morpholo~

The surface area of the wings differed significantly between species (F=3.47,

P=0.048). The robins had a significantly larger surface area than the Swainson's

thrushes, while the wood thrushes were statistically similar to both of the other species

in the study. The wing loading also differed significantly between the species in this

study (F=123.26, P <0.000); the robins had significantly higher wing loading than the

thrushes. The aspect ratio of the wings of the species did not differ significantly between

species (F=2.53, P=0.102).

Lift Production:

The absolute maximum lift produced differed significantly between the species

(F=3.41, P=0.050). The robins produced significantly greater lift than the Swainson's

Thrushes, while the wood thrushes were statistically similar to both of the species. The

ratio of maximum lift production to overall mass of the birds differed between species

(F=34.32, P< 0.000); the thrushes created significantly more lift per gram of body mass

than the robins. The angle that created maximum lift did not differ significantly between

the species in this study (F=1.72, P=0.202).
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Wing Morpholog¥.;.
The surface area of the wings differed significantly between species (F=3.47,

P=0.48). The robins had a significantly larger surface area than the Swainson's

thrushes, while the wood thrushes were statistically similar to both of the other species

in the study. The wing loading also differed significantly between the species in this

study (F=123.26, P <0.000); the robins had significantly higher wing loading than the

thrushes. The aspect ratio of the wings of the species did not differ significantly between

species (F==2.53, p==0.102).

Discussion:
The robins in this study were significantly larger than either of the thrush species

(Table 1). As expected, the mass of both the flight muscles was also larger in the robins

than the thrush species. The ratio of PM mass to overall mass of the bird differed

significantly between the species, as it was larger in the robins than the thrush species.

Thus, the flight muscles of a robin make up a relatively larger portion of the total mass

of the bird. This suggests that robins may be able to generate more relative force than

the thrushes. This evidence may indicate that the wings of robins are much less efficient

than the wings of thrushes at producing lift. As seen in figure 3, robins produce

significantly less lift relative to body mass when subjected to the same wind speed,

which supports the hypothesis.
Interestingly, the ratio of SC mass to PM mass was fairly conserved between the

two groups of birds. There was no significant difference between the two groupS,
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suggesting similar evolutionary pattern between the two groups in this study. This

makes sense, as the American robin and both species of thrush belong to the family

Turdidae, otherwise known as the "true thrushes (Gill, 2006)." The relative constancy of

the SC/PM ratio suggests that evolutionary pressures to increase force production may

operate on the muscles of both the wing upstroke and downstroke.

The results of the wing morphology analysis also support the original hypothesis.

There was a significant difference in the wing loading of the birds, as the robins had

significantly higher wing loading than the two thrush species. As mentioned earlier, there

is a positive correlation between average flight speed and wing loading; heavier birds

have to fly faster to create enough lift to stay aloft. Birds that require faster flight speeds

to stay aloft are likely less maneuverable, as they would have less time to react to

obstacles than slower-flying birds. The aspect ratio of the wings, however, did not differ

significantly between the two groups in this study. This once again makes sense,

because the birds are closely related in an evolutionary sense. This study did not

quantitatively describe any other differences of the wings of these two different groups

which may lead to differential lift production, but this may be an interesting area for

future research. Some factors to study in the future may be things like wing camber,

feather shape, and wing sweep.

The lift production capabilities of these birds support the original hypothesis. The

thrush wings produced significantly greater lift per gram of body mass than the robins'

wings. This higher lift producing capability suggests that there is an increased ability in

the thrushes to change their plane of flight, because the thrushes can produce more

upward force per gram of body mass. This ability to change planes can be used to infer
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maneuverability. Since the thrushes have greater relative lift producing capabilities, they

can change planes faster, and are thus more maneuverable.

The thrush wings also seemed to be able to produce lift over a wider range of

angles of attack. There was no significant difference between the angle at which

maximum lift was produced between the two groupS, but the decline in lift production

after maximum liftwas more shallow in the thrushes than the robins (Figure 3); more

angles produced a relatively high amount of lift from the thrush wings than the robin

wings. This wider range of lift production suggests greater maneuverability in the

thrushes than the robins. Since the thrushes can produce lift over a wider range of

angles, they can change their plane of flight in a greater variety of flight situations,

suggesting greater maneuverability.
Overall, the evidence provided in this study suggest that morphological changes

associated with differing microniches in an ecosystem may be responsible for

increased maneuverability in flight. The birds that live in the thickest part of the forest,

the thrush species, exhibited lower wing loading and were more efficient at producing lift

over a wider range of angles. While the study supports the hypothesis that there may be

some morphological differences in the wings that creates this dilferentiallift production,

the research was unsuccessful in determining exactly how this happens. Future studies

in this field may look into more intricate morphological factors of these wings in hopes of

determining which factors are most important to the lift-producing capabilities of the

wings.

/--....
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Fig. 1 Lift apparatus, modified from a lab written by Dr. William H. Bernard. The air from

the fan flows over the wing, producing a lift force. This lift is measured by the scale.
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Fig. 2 Angle of Attack. this wing is shown at a 45' angle of attack. The angle of attack is

measured as the angle between the horizon and a flat line along the bottom of the wing.
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Fig. 3 Lift production capabilities of studied species varies over angle of attack. The lift

production capabilities of the three species investigated are summarized in this figure.

The mean lift production at each angle is shown. The error bars indicate standard error.

The American robin (top) had a peak at 200, the wood thrushes (middle) had a peak lift

production at 40°, and the Swainson's thrushes (bottom) had a peak lift production at
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American Robin Swainson's Thrush Wood Thrush

%PM 9.279 (1.952) 7.57 (0.927) 7.14 (0.652)

%SC 0.801 (0.166) 0.661 (0.246) 0.845 (0.231)

SC/PM 0.0899 (0.0262) 0.0888 (0.0352) 0.1179 (0.0291)

Body Mass 73.816 (10.398) 32.644 (14.335) 38.600 (8.529)

SA 167.39 (22.22) 106.66 (30.3) 99.068 (9.568)

AR 1.71 (0.0717) 1.849 (0.235) 1.86 (0.145)

WL 0.4363 (0.0577) 0.30011 (0.0424) 0.3889 (0.0721)

Table 1. Table summarizing morphological measures investigated in the study. The

means of the different variables are shown in this table, with the standard deviation in

parentheses. The muscular variables studied were the percentage of body mass

resulting from the pectoralis major (% PM) and the supracoracoideous (% SC), as well

as the ratio of the supracoracoideous mass to the pectoralis major mass (SC/PM). The

morphological variables measured in this studied were the surface area of both wings

(SA), the aspect ratio of the isolated wing (AR), and the wing loading (WL) calculated by

body mass divided by surface area.
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