
Butler University
Digital Commons @ Butler University

Undergraduate Honors Thesis Collection Undergraduate Scholarship

8-15-2011

Quantum Diffusion-Limited Aggregation
David Bradley Johnson
Butler University

Follow this and additional works at: http://digitalcommons.butler.edu/ugtheses

Part of the Quantum Physics Commons

This Thesis is brought to you for free and open access by the Undergraduate Scholarship at Digital Commons @ Butler University. It has been accepted
for inclusion in Undergraduate Honors Thesis Collection by an authorized administrator of Digital Commons @ Butler University. For more
information, please contact fgaede@butler.edu.

Recommended Citation
Johnson, David Bradley, "Quantum Diffusion-Limited Aggregation" (2011). Undergraduate Honors Thesis Collection. Paper 96.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digital Commons @ Butler University

https://core.ac.uk/display/62426407?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://digitalcommons.butler.edu?utm_source=digitalcommons.butler.edu%2Fugtheses%2F96&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.butler.edu/ugtheses?utm_source=digitalcommons.butler.edu%2Fugtheses%2F96&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.butler.edu/ugscholarship?utm_source=digitalcommons.butler.edu%2Fugtheses%2F96&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.butler.edu/ugtheses?utm_source=digitalcommons.butler.edu%2Fugtheses%2F96&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/206?utm_source=digitalcommons.butler.edu%2Fugtheses%2F96&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.butler.edu/ugtheses/96?utm_source=digitalcommons.butler.edu%2Fugtheses%2F96&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:fgaede@butler.edu


Quantum Diffusion-Limited Aggregation

A Thesis

Presented to the Department of Physics and Astronomy

College of Liberal Arts and Sciences

and

The Honors Program

of

Butler University

In Partial Fulfillment

of the Requirements for Graduation Honors

David Bradley Johnson

August 15, 2011



Abstract

Though classical random walks have been studied for many years, research concerning their

quantum analogues, quantum random walks, has only come about recently. Numerous simu-

lations of both types of walks have been run and analyzed, and are generally well-understood.

Research pertaining to one of the more important properties of classical random walks, namely,

their ability to build fractal structures in diffusion-limited aggregation, has been particularly

noteworthy. However, nobody has yet pursued this avenue of research in the realm of quantum

random walks.

The study of random walks and the structures they build has various applications in materials

science. Since all processes are quantum in nature, it is very important to consider the quantum

variant of diffusion-limited aggregation. Quantum diffusion-limited aggregation is an important

step forward in understanding particle aggregation in areas where quantum effects are dominant,

such as low temperature chemistry and the development of techniques for forming thin films.

Recognizing that the Schrödinger equation and a classical random walk are both diffusion

equations, it is possible to connect and compare them. Using similar parameters for both

equations, we ran various simulations aggregating particles. Our results show that the quantum

diffusion process can create fractal structures, much like the classical random walk. Furthermore,

the fractal dimensions of these quantum diffusion-limited aggregates vary between 1.43 and 2,

depending on the size of the initial wave packet.

1



Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.1 Classical Diffusion-Limited Aggregation . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.2 Quantum Diffusion-Limited Aggregation . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.3 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

6 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

A Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2



1 Introduction

Take an agar plate that has nutrients uniformly distributed across its surface but in a low con-

centration and put a single bacterium in the middle of the plate. Because the rate of fission of

bacteria is related to the availability of nutrients, areas within the colony that have a high density

of bacteria will grow slower due to there being fewer resources between the cells. In this way, thin

lines of bacteria will grow and branch faster as seen in Fig. 1. Moreover, the colony can grow into

a snowflake-like structure called a fractal, like in Fig. 2. Fractals exhibit a property called self-

similarity, which means that the parts are like the whole, i.e. it is possible to see the same pattern

at different magnifications. Fractals are found in more than just snowflakes or bacterial colonies.

They can be found in clouds, river networks, fault lines, mountain ranges, crystals, lightning, and

even vegetables.

Figure 1: Bacterial Colony

The process for creating bacterial colony fractals described above is very similar to a process

known as Diffusion-Limited Aggregation, which creates a Diffusion-Limited Aggregate (DLA). In a

DLA, particles undergo some sort of random motion and are allowed to cluster together, forming

a structure. Depending on the details, a fractal structure can be made as in Fig. 2. Computer

simulations of DLA have been studied for many years leading to insights in various natural processes.

For example, if the clustering property of a DLA is weakened by making aggregation less likely, the

resulting structure will have a higher density.

3



Figure 2: Snowflake Fractal

There can be several variations on the random motion that particles undergo in a DLA. However,

it is only recently that there has been research into what happens when the rules of quantum

mechanics govern the motion of a particle. Since all natural processes are truly quantum in origin,

this would be an obvious next step to take in exploring the connection between DLA and nature.

The objective of this study is to see how the structures generated by DLA are altered when the rules

of quantum mechanics are incorporated into a DLA. This research could have application in areas

such as the self-assembly of nanoparticles, thin film forming, and low temperature chemistry where

quantum effects dominate.

2 Background

In 1905, Albert Einstein published four world changing papers. The first was about the photoelectric

effect, which was fundamental in the development of quantum mechanics. The two most famous

papers were about special relativity and matter/energy equivalence (E = mc2). Perhaps the least

well known paper was on Brownian motion, which was first observed as the random movement of

particles suspended in a fluid. Einstein used the kinetic theory of fluids to explain that the fluid

4



consists of molecules that are numerous, invisible to the eye, and randomly moving in all directions,

colliding with each other and the larger particles suspended in the fluid and therefore generating the

random motion that is observed.

One way to model random motion is with something called a random walk (RW). A random walk

is the trajectory resulting from taking successive random steps. The simplest example of a random

walk is where you take a particle on a two dimensional square grid and at each time interval, have

it randomly move up, down, left, or right with equal probabilities. A particle undergoing a random

walk will meander around where it started, slowly spreading out covering a greater area with time.

Random walks can be used to model the path of a foraging animal, stock prices, genetic drift, and,

most notably, Brownian motion.

One important property of random walks is that they can be used in Diffusion-Limited Aggrega-

tion (DLA) to create fractals. To do a DLA simulation, consider the previous random walk example

on a two dimensional grid and choose an arbitrary point on the grid labeling it the seed. Then, start

a random walk sufficiently far from the seed on the grid. By adding a rule that says the randomly

walking particle must stop when it comes next to the seed and become part of the structure, it is

possible to aggregate particles. After sending out many particles one after the other, a fractal will

begin to form in a process is called Diffusion-Limited Aggregation, as shown in Fig. 3.

Fractals built through DLA have been studied extensively. Fractals are so named because they

share characteristics with objects in different dimensions, as if they exist in a fractional dimension

say between the first and second dimension. This characteristic can be measured as the fractal

dimension, which is a quantity that gives an indication of how completely a fractal fills a space at

all scales of magnification. Ideal fractals have infinite detail and so their fractal dimensions can

be calculated exactly and are usually non-integers. However, all fractals generated by DLA have

finite detail and so they will have a trivial integral dimension when examined in the limit of infinite

magnification. Instead, a variation of the fractal dimension must be used when examining a DLA. In

this study, the mass dimension is used to calculate the fractal dimension of all structures generated

via DLA.

5



Figure 3: DLA made via Random Walk

Generally, the fractal dimension takes the form of a power law on some property of the fractal

at different scales, where the exponent is the fractal dimension. When looking at finite structures

such as those made via DLA, the fractal dimension obtained is only valid for a limited range of

scales as shown in Fig. 4. In the figure, the arrowed line traces the limited range of scaling where

the structure has a fractal dimension. The mass dimension assumes there is a power law relation

between the radius from the center of the fractal r and the mass of the fractal within that radius

M(r) as in Eqn. (1) where d is the mass dimension and k is an arbitrary constant.

M(r) = k rd (1)

Recently, there has been work on a new kind of random walk which attempts to incorporate

quantum mechanics, called the quantum random walk. In a Quantum Random Walk (QRW), the

particle is in a superposition of positions instead of a single position like with the classical random

6



Figure 4: Log-Log Plot of the Mass within a Centered Circle vs. Radius

walk. The probabilities amplitudes for each position are then propagated in a wave-like fashion.

Previous work [6] has shown that a quantum random walk is capable of producing fractals when used

in a DLA. This work however only produced qualitative results and lacked a precise measurement of

the fractal dimension of the structure formed by the quantum random walk. In this study, quantum

random motion will be implemented using the Schrödinger equation instead of a quantum random

walk for reasons discussed later.

3 Methodology

This study will compare the structures generated in a DLA where the particles follow classical versus

quantum random motion.

3.1 Classical Diffusion-Limited Aggregation

To simulate the classical random motion of the particle, two different methods have been imple-

mented: a random walk of a particle and a diffusion of probabilities (see reference for source of the

idea to compare random walks to diffusion [1]). The equation of motion for a particle undergoing a

7



classical random walk in two dimensions can be written as Eqn. (2) where φtx,y is the probability to

find the particle at position (x, y) and time t. Likewise, ψt
x,y is used to represent the complex-valued

probability amplitude where ψt ∗
x,yψ

t
x,y gives the probability of to find the particle at position (x, y)

and time t. As a random walk takes a step, the possible destination is evenly split between the four

possible directions for a probability of one fourth in each direction. Likewise, the probability of the

particle ending up in a given location is a quarter of the combined probability from all neighbor

locations; this logic is captured in Eqn. (2).

Φt+1
x,y =

1

4
(Φt

x+1,y + Φt
x−1,y + Φt

x,y+1 + Φt
x,y−1) (2)

The classical random walk equation is not different from the diffusion equation (3) when it

is written in a numerical form (4). By choosing the right parameters, the original equation for a

classical random walk (5) can be recovered from the diffusion equation. This means that the classical

random walk is a diffusion process and that it can be modeled by a probability distribution via a

diffusion equation [1, p. 44-3].

∂Φ

∂t
= D∇2Φ (3)

Φt+∆t
x,y − Φt

x,y

∆t
= D(

Φt
x+∆x,y + Φt

x−∆x,y − 2Φt
x,y

(∆x)2
+

Φt
x,y+∆y + Φt

x,y−∆y − 2Φt
x,y

(∆y)2
) (4)

Φt+1
x,y = Φt

x,y +
1

4
(Φt

x+1,y + Φt
x−1,y + Φt

x,y+1 + Φt
x,y−1 − 4Φt

x,y)

∆x = 1,∆y = 1,∆t = 1, D = 1/4

(5)

However, due to stability issues, it is not practical to numerically solve the diffusion equation

using the parameters of equation (5). Instead, a different diffusion coefficient D is selected, which

allows for stable solutions to be numerically computed. It is assumed that this does not affect the

structures generated by aggregation.

8



3.2 Quantum Diffusion-Limited Aggregation

Schrödinger equation (6) is also a diffusion equation, except with an imaginary diffusion coefficient,

D, and so can be compared to the traditional random walk. An explicit integration method (7) is

used to solve Schrödinger Equation. Whereas this scheme is unstable for real diffusion coefficients,

it was selected because, it becomes a stable method with the imaginary coefficient in Schrödinger

Equation. This is achieved by using a formula that is symmetrical in both space and in time, the

latter of which is not the case with Eqn. (4).

ih̄
∂Ψ

∂t
= − h̄2

2m
(
∂2Ψ

∂x2
+
∂2Ψ

∂y2
) + V (x, y)Ψ (6)

ih̄
Ψt+∆t

x,y −Ψt−∆t
x,y

2∆t
= − h̄2

2m
(
Ψt

x+∆x,y + Ψt
x−∆x,y − 2Ψt

x,y

(∆x)2
+

Ψt
x,y+∆y + Ψt

x,y−∆y − 2Ψt
x,y

(∆y)2
) (7)

Since Schrödinger equation and a classical random walk are both diffusion equations, it is possible

to connect and compare them. Two programs were written: one performing a classical diffusion and

the other using Schrödinger equation. Similar parameters were used for the quantum simulation as

for the classical, when running various simulations where particles were aggregated in a Quantum

Diffusion-Limited Aggregation (QDLA).

Pietronero et al. [5] have obtained a theoretical value for the fractal dimension of structures

created from DLA. They considered models where particles are aggregated with a probability

P (x, y) = φ(x, y)n where φ(x, y) obeys Laplace equation. They conclude that all such models will

form a fractal for 0 ≤ n ≤ 2 with a fractal dimension ranging from 2 to 1.43, respectively. Under

stationary conditions, both the classical diffusion equation and Schrödinger equation are Laplace

equations. For the classical DLA, n will equal 1 while n is 2 for the quantum DLA (permitting

a complex φ(x, y)). Therefore, it is expected that the QDLA will generate fractals much like the

CDLA.

9



3.3 Implementation Details

A square grid was created with a single point in the center designated as the seed. Initially, a size of

256x256 was used for the grid but for later simulations, the grid was expanded to 512x512 to allow

larger fractals to grow. The boundaries were set to be periodic (i.e. a torus) so that computational

time was not wasted because a particle randomly leaves the grid and must be thrown away. Particles

were released one at a time and allowed to run for a time period up to TMAX = 500, 000 before

being discarded. This value was found experimentally by allowing a free particle in an empty grid to

diffuse for a long time. When the sum of the probabilities for the particle grew significantly different

from unity, the accumulated error from the numerical solution to the diffusion equations was deemed

too great. A fraction of this time was selected for TMAX to ensure the validity of the simulation.

Figure 5: The Grid

Each particle was initialized as a 2D Gaussian distribution with the standard deviations of

σx = σy = 10, which were arbitrarily selected. As with Sanbergs work [6], a starting distribution

10



that is too small will cause the particle to interfere with itself, generating waves due to grid effects.

So, a larger particle must be selected to prevent this but it cannot be too large because the grid

has a limited size and the particle must not start out interacting with the aggregated structure. In

addition, it was noted by Kempe [2] that the starting condition of random walks can bias the particle

in a single direction. This, in effect, gives the particle an initial velocity, which will alter the fractal

dimension of the generated structure. These were all issues with the original QRW-based DLA [6]

but are resolved in this study by using a 2D Gaussian distribution with no initial velocity. Every

particle is placed so that it is centered randomly on the circumference of a circle centered on the

seed as shown in Fig. 5. The circumference is as wide as possible while ensuring that the particle is

at least one standard deviation away from the edge.

Figure 6: T = 0: Initial Wave Packet Far from Seed

As mentioned before, the time step must be less than one (∆t < 1) in order to manage the error

in the numerical simulations. This requires special treatment of the propagation and detection of

the particle. A 1D toy model is shown here to demonstrate the concept, which can be thought of as

an exaggerated cross-section of the real simulation. When the total running time for the particle is

zero (T = 0), the probability distribution of the particle should be sufficiently far from all parts of

the DLA as shown in Fig. 6.

As time is incremented by the time step (Tnew = Told + ∆t), the probability amplitudes (QDLA)

or probabilities (CDLA) are erased at the grid locations where part of the structure is located as

shown in Fig. 7 and Fig. 8. This, in effect, treats the seeds as infinite potentials where the probability

of the particle entering them is zero. Consequently, the probabilities and probability amplitudes over

the entire grid must be renormalized each time step.

11



Figure 7: T = k∆t: Updated Wave Overlapping with Seed

Figure 8: T = k∆t: Updated Wave Being Zeroed within Seed

Every nth time step (where the time step was selected as ∆t = 1/n), an attempt is made to

detect the particle next to any of the seeds as in Fig. 9. If it is detected, the particle is localized

to that position and another particle is released. If there is no detection, all locations next to seeds

have the probability amplitudes or probabilities zeroed there (requiring renormalization again) as

can be seen in Fig. 10. This is done because we know that the particle is definitely not at any of

the locations examined.

Detection is handled the same way as in Sanbergs paper [6]. First, a pseudorandom number is

generated between 0% and 100%. The calculated probability of each grid location that is adjacent

to a part of the DLA is added to a running total until this sum exceeds the pseudorandom number

that was just generated. The grid location that causes the sum to exceed the number is where the

particle is aggregated. If the total probability does not ever exceed the number generated, there is

no detection.

The simulations were all run at Butler University on the clustered supercomputer, BigDawg.

BigDawg is comprised of several compute nodes, each containing four AMD 2.0 GHz quad-cores

with 8GB of RAM that are all interconnected through an InfiniBand connection. The simulations

12



Figure 9: T = n∆t = 1: Wave Being Tested for Detection

Figure 10: T = n∆t = 1: Wave Zeroed after Failing Detection

were written in C, using the Message Passing Interface (MPI) in order to leverage the parallel

capabilities of BigDawg. Furthermore, multiple instances of each simulation were run in order to

average the simulations and thus enhance the precision of the results.

Each simulation was restricted to a single compute node so that the 16 cores could share mem-

ory between them. By using shared memory, fewer MPI function calls were needed, thus localizing

communication, which is good because traffic over InfiniBand is relatively slow compared to commu-

nication over a shared bus. The program was parallelized by dividing the rows of the grid between

each of the cores and running the calculations in parallel. Besides needing to synchronize to ensure

they remain in step together, the different cores avoided communication by relying on having con-

current read access to all needed memory. The only exception is when normalizing the wave function

or performing a detection where minimal communication is necessary.

Detection and renormalization require the sum of probabilities over the entire grid be shared

between all cores. This can be done sequentially but it was parallelized in order to speed up the

calculation. Every core performs the sum for its section of the grid before using a special MPI

function that sums and shares the values from all cores. For grid sizes such as 512x512, it was

13



much faster to parallelize this calculation than to have only one core perform it. If a particle is

detected, a second pass over a fraction of the grid must be performed to actually determine which

grid location the particle will be located. These techniques maximized parallelization and minimized

communication, making the program as efficient as possible.

A utility program was written that finds the fractal dimension of a DLA. The program specifically

finds the mass dimension by generating the data shown in Fig. 4. Clearly, it is not possible to just

use all the data points in the graph to find the slope since the entire graph is not a straight line.

Data points related to small radii suffer from grid effects, while larger radii skew the results because

of the limited size of the DLA. The linear region within the curve must be identified so that its slope

can be measured using least squares linear regression. Techniques developed by Kroll et al. [3] were

used to have the program algorithmically determine the linear region instead of relying on human

intuition. Then, the slope of the best fit line of the points within this linear region was used to

calculate the mass dimension.

Unfortunately, it is not a simple matter to calculate the error of the mass dimension using

these techniques. Although a least squares regression allows for calculation of an error for all terms

of the best fit line, there is a much larger error from selecting different points within the linear

region. Therefore, providing the standard error of the slope as the error of the fractal dimension is

misleading. Instead, it is better to perform numerous simulations under the exact same parameters

and then present the statistics over those.

4 Results

Because a comparison needs to be made between a classical and quantum generated DLA, this

study makes the assumption that a classical random walk can be simulated as a diffusion equation

without changing the resulting DLA. However, this assumption must be verified before continuing.

According to Meakin [4], the fractal dimension of a two dimensional DLA generated via random

walk is 1.69 ± 0.02. This number has been confirmed with the generation and analysis of fractals

like the one in Fig. 3.

14



Figure 11: Fractal Generated by DLA using Diffusion Equation

Using identical parameters, 13 simulations of a classical DLA (CDLA) were performed. In a

CDLA, a diffusion equation is used to govern the movement of the particle instead of a random

walk. This was the first patch of runs, where the grid was of the size 256x256 and the particles

started randomly on a circle of radius of 113. These particles were giving an initial Gaussian

distribution with standard deviations σx = σy = 10. The time step ∆t used was 0.05, which means

there is an attempt at detection every n = 20 iterations and a diffusion constant of D = 0.25 was

used. The result of these simulations is a fractal dimension of 1.67±0.04, confirming that the choice

of time step does not alter the generated fractals so long as the detection frequency maintains the

relation n = 1/∆t. As shown in Fig. 11, it is possible to qualitatively confirm the result that fractals

generated by a diffusion equation are no different than those made via random walk.

Using the same parameters as the CDLA, a quantum DLA (QDLA) simulation based on Schrödinger

equation was performed in 13 identical simulations as well. In the case of the QDLA, there were

two possible expectations. The first was that the particles would be capable of diffracting around

the structure and thus will fill in the gaps between the branches of the fractal. This would lead

to a fractal dimension closer to 2. The other possibility is that that diffraction does not occur and

the classical squared probability amplitudes would dominate leading to a fractal dimension of 1.43

as predicted by Pietronero et al. [5]. From Sanbergs work [6], it is reasonable to expect that a

fractal would be generated but the fractal dimension is unpredictable. However, the average fractal

dimension of the QDLA simulations is 1.69 ± 0.03 as can be visually confirmed with Fig. 12. All

15



Figure 12: Fractal Generated by QDLA

Figure 13: Average Fractal Dimensions for Several Types of 2D DLA

16



three types of simulations generated values very close to each other as shown in Fig. 13. This result

was not expected and there is not an obvious explanation for why Schrödinger equation would create

fractals of the same fractal dimension as a classical random walk.

Figure 14: Fractal Generated by QDLA with Initial Wave Packet σ = 16 and d = 1.45

It is very peculiar that this study would come to such a conclusion and so these results were

investigated, while participating in the StatPhys 24 Satellite Meeting in Tokyo in August 2010.

By examining the wave function of the QDLA interacting with the structure, it was observed that

at the boundary the particles probability amplitudes were interacting with the seeds just like how

the classical diffusion equation did. The quantum particle was too spread out to be able to move

between the branches. Therefore, the detections occurred in a similar fashion to the classical version.

However, it was suspected that if there was a change made to the initial size of the Gaussian

distribution used when initializing the particles, the particles would have different energies and thus

be able to diffuse around the branches more easily. So, another set of simulations was started where

all of the parameters were the same but the initial wave packet size changed and the grid size was

17



expanded to 512x512. Fig. 14 and Fig. 15 show that suddenly two very different types of fractals

can result with such a change.

Figure 15: Fractal Generated by QDLA with Initial Wave Packet σ = 1 and d = 1.91

An additional 12 simulations were started on a 512x512 grid. Each simulation had a starting

wave packet with a different size in an attempt to better characterize the relationship between the

energy of the particle and the fractal dimension generated. One simulation was given a special initial

configuration. There is a time invariant solution to Schrödinger equation in a grid with periodic

boundaries, such that the particle starts with equal probability everywhere. This can be thought of

as equivalent to a wave packet with infinite width. This is an important configuration to consider

because the particle satisfies Laplace Equation when there is no seed present, which is a condition

specified by Pietronero et al. [5]. It was expected that this run would approach the fractal dimension

1.43 that was specified.

The fractal dimension of all QDLA runs are shown in Fig. 16. The wave packet sizes are reduced

by the size of the grid so that they can be compared fairly. Unfortunately, the infinite width

simulation only aggregated 768 particles after running for months. From these simulations, it was

learned that the larger the wave packet, the less likely it will detect and the longer it takes to grow

a DLA of significant size. So, the three 512x512 simulations with the largest wave packets should

18



not be trusted as they did not have sufficient time to aggregate particles. Otherwise, the data seems

largely consistent with some sort of curve.

Figure 16: Fractal Dimension of Various Runs of 2D QDLA

5 Conclusion

The data indicates that a QDLA based on Schrödinger equation will indeed create fractals. Further-

more, it seems that depending on the initial width of the wave packet, a fractal dimension between

1.43 and 2 can be created. It is also interesting to note that these ranges have limits that are

predicted by Pietronero et al. [5].

The growth of these diffusion equation based fractals was also investigated. For example, Fig. 17

shows the same fractal as Fig. 11, except it is color coded to show the relative ages of different

regions with the fractal. The regions get progressively younger as the radius increases. Typically,

no detections occur between the branches because the particle is too big and is deflected away by

the tips of the branches.

For future work on this project, it is worth taking the time to better filling in the curve of Fig. 16.

19



Figure 17: Fractal Generated by CDLA Showing the Relative Age of Different Regions

It is suspected that there is some sort of inflection point where the tunneling of high energy particles

is in equilibrium with the deflection that occurs with low energy particles. It would be interesting

to research the meaning of such a point, if it exists. It is important to not only fill in the curve

but to also use an average of runs with identical starting conditions to determine the characteristic

fractal dimension as well as to provide error bars. This problem is well suited to the framework of a

graphics processing unit (GPU) such as NVIDAs Compute Unified Device Architecture so perhaps

that may be best hardware to use for those long simulations in the future.

6 Acknowledgements

I would like to thank the many people who have supported me throughout this project. I owe my

deepest gratitude to my thesis advisor and fellow researcher, Dr. Ordóñez, who inspired the topic

and was there supporting me through the entire process. I would like to thank Bob Holm, the Butler

Institute for Research and Scholarship, and the Butler Summer Institute for funding and supporting

this research when I first began.

I am extraordinarily grateful to Dr. Hatano, Dr. Petrosky, and the University of Tokyo for

facilitating my trip to the International Workshop on Statistical Physics of Quantum Systems,

20



where I learned much about the peculiarities of quantum systems. I am also indebted to the Butler

University Liberal Arts and Sciences College Deans Office, the Holcomb Undergraduate Grants

Committee, and Dr. Han from Butler’s Physics department for funding the trip to this conference.

This thesis would not be possible without the supercomputer, Big Dawg, provided through

funding from Dr. Levinson and the support that came with it from Nate Partenheimer. Furthermore,

special thanks goes to Drs. Sorenson and Hardikar for their help in learning MPI and their support

with using the supercomputer, including the willingness to give me time on the supercomputer.

21



References

[1] H. M. Dixon. Path Integrals in Field Theory and Statistical Mechanics, volume 6 of Introduction

to Natural Philosophy Logic in Physical Science. Butler University, August 2007.

[2] J. Kempe. Quantum random walks - an introductory overview. Contemporary Physics,

44:0303081, 2003.

[3] M H Kroll and K Emancipator. A theoretical evaluation of linearity. Clin Chem, 39(3):405–13,

1993.

[4] Paul Meakin. Diffusion-controlled cluster formation in two, three, and four dimensions. Phys.

Rev. A, 27(1):604–607, Jan 1983.

[5] L. Pietronero, A. Erzan, and C. Evertsz. Theory of fractal growth. Phys. Rev. Lett., 61(7):861–

864, Aug 1988.

[6] Colin F. Sanberg. Implementing quantum random walks in two-dimensions with application to

diffusion-limited aggregation. Undergraduate Honors Thesis Collection, 14, May 2007.

22



A Code

1 /**
2 * QDLA.c
3 *
4 * Quantum Diffusion Limited Aggregation
5 * David Johnson
6 * Butler University
7 * 15 August 2011
8 **/
9

10 //To turn off all MPI commands at once.
11 #define PARALLEL
12 //Turn on in order to debug a program.
13 #define NODEBUG
14
15 //To experiment with the accuracy and speed of other data types.
16 #define dataType long double
17
18 #include <stdlib.h> //exit()
19 #include <stdio.h> // printf ()
20 #include <string.h> // strcat ()
21 #include <math.h> //cos(), sin(), exp()
22 #include <time.h> // seeding random number (it gives very weird error messages without this)
23 #include <fcntl.h> //shm_open , O_CREAT , O_RDWR
24 #include <sys/stat.h> // S_IRUSR and S_IWUSR
25 #include <sys/mman.h> //mmap , munmap , PROT_READ , PROT_WRITE , MAP_SHARED , and MAP_FAILED
26
27 #ifdef PARALLEL
28 #include "mpi.h" // allows parallel processing
29 #endif
30
31 void run(void);
32 void freeArray(char *, void *, int , int);
33 void *createArray(char *, int , int);
34 void functionNew(dataType *, dataType *, dataType *, dataType *, dataType *, dataType *);
35 void functionOld(dataType *, dataType *, dataType *, dataType *);
36 int detect(dataType *, dataType *, char *);
37 void borders(dataType *);
38 void normalize(dataType *, dataType *);
39 void writePsi(char *, dataType *, dataType *);
40 void writeSeed(int , int , double);
41 void init(dataType *, dataType *);
42 void seedBorders(char *);
43 int seedInit(char *);
44 int seedStart(int , int);
45 void centerParticle(long double);
46
47 #define PI 3.1415926535897932384626433832795
48 #define TRUE 1
49 #define FALSE 0
50 #define DIGITS 16
51 #define NODE_SIZE 16
52
53 #define NO_SEED 0
54 #define RANDOM_SEED 1
55 #define DOT_SEED 2
56 #define WALL_SEED 3
57
58 #define height 512
59 #define width 512
60 #define radius 1
61 #define adj (width + 2* radius)
62
63 #define timeStep (( dataType)0.05)
64 #define totalTime (( dataType)500000.0)
65 #define totalSteps ((long)10000000)
66 #define detectFrequency 20
67 #define writeFrequency 0
68
69 #define diffusionRate (( dataType)0.25)
70 #define hbar (( dataType)1.0)
71 #define mass (( dataType)1.0)
72
73 #define particleSize (( dataType)0.0)
74
75 char *directory = "run11"; //sub -directory where files will be saved to.
76 char *extension = "csv"; // extension of each file for file association ease.
77
78 const int numPackets = 1; // number of gaussian wave packets that a particle is initially split up

into.

23



79
80 dataType yCenter = height /2 -0.5; //y position of center of initial condition.
81 dataType xCenter = width /2 -0.5; //x position of center of initial condition.
82
83 const int seedType = DOT_SEED; // determines which type of initial seeding configuration is

used.
84 const int particleCirclesSeed = TRUE; // boolean that determines if the initial particle

position is ignored or is set to circle the seed.
85 const dataType particleMinRadius = height /2 -30.0; //the starting distance between the initial

positions of particles and the seed start.
86 const dataType particleMaxRadius = height /2 -30.0; //the ending distance between the initial

positions of particles and the seed start.
87 const int seedCenterY = height /2; //y coordinate of the center of the seed.
88 const int seedCenterX = width /2; //x coordinate of the center of the seed.
89 const int seedRadius = 0; // radius of the seed.
90 const int particles = 25000; //the number of particles to be sent out.
91
92 double timerStart;
93 int id, np, node , totalNodes , *yMin , *yMax;
94 int x, y; // Only used on process zero for detection.
95
96 #ifdef PARALLEL
97 MPI_Comm comm;
98 #endif
99

100 int main(int argc , char *argv [])
101 {
102 int a, b, dif , timeSeed;
103 char *temp , *temp1;
104 time_t rawTime , seconds1 , seconds2;
105 struct tm *timeInfo;
106 struct stat st;
107 FILE *file;
108
109 time(& seconds1);
110
111 //if program is not parallel , then there is only 1 process and it has id 0 and is on node 0
112 id = 0;
113 np = 1;
114 node = 0;
115
116 //seeds the random numbers
117 time(& rawTime); //the c version of getting a time object (with updated info)
118 timeInfo = localtime (& rawTime); //the c version of getting the info about the time object
119 srand ((* timeInfo).tm_sec); //seeds the random number generator with an int between 0 and

RAND_MAX
120 timeSeed = rand();
121
122 #ifdef PARALLEL
123 long double timer = MPI_Wtime (); //Gets start time of program (according to MPI so might have

more sig figs)
124 MPI_Init (&argc , &argv); // imitialize MPI
125 MPI_Comm_rank(MPI_COMM_WORLD , &id); //Gets process id# from the world comm
126 MPI_Comm_size(MPI_COMM_WORLD , &np); //Gets total number of processes that are executing this

program
127
128
129 //We do this before splitting up the communicator so that the same id’s on different nodes will

have different seeds for rand()
130 MPI_Bcast (&timeSeed , 1, MPI_INT , 0, MPI_COMM_WORLD);
131 srand(timeSeed);
132
133 for (a = 0; a <= id; a++) // ensures that different processes will be using uncorrelated

pseudorandom numbers
134 srand(rand());
135
136 // Splits all the processes into their own node so each node can run independently but still be

executed at the same time
137 node = id/NODE_SIZE;
138 totalNodes = (np - 1) / NODE_SIZE + 1;
139
140 MPI_Comm_split(MPI_COMM_WORLD , node , id, &comm); //an awesome command that does all the comm

construction for me
141 MPI_Comm_rank(comm , &id); //Gets process id# from mpi
142 MPI_Comm_size(comm , &np); //Gets total number of processes that are executing this program
143
144 /**
145 * IMPORTANT NOTE: Do not think any process has its original ID anymore. They
146 * have all just been changed according to the node that they are running on.
147 * They also got a new MPI_Comm ojbect that distinguishes processes on
148 * different nodes. So, do NOT use MPI_COMM_WORLD anymore! Use the globally

24



149 * defined MPI_Comm object called "comm" instead. Or else , a call to
150 * MPI_Barrier(MPI_COMM_WORLD) would cause all processes to wait even though
151 * the ones on different nodes are doing something unrelated. This mistake
152 * could cause the program to crash unexpectedly with no explanatory message
153 * about it so it is important to keep an eye out for it.
154 **/
155 #endif
156
157 #ifdef PARALLEL
158 if (totalNodes > 1)
159 {
160 temp = (char *) calloc (( strlen(directory)+5), sizeof(char));
161 sprintf(temp , "%s%d", directory , node);
162 directory = temp;
163 }
164 #endif
165
166 #ifdef DEBUG
167 if (id == 0)
168 printf("Node%d: %s\n", node , directory);
169 #endif
170
171 // Create Directory or else an exception might be thrown.
172 if (id == 0 && stat(directory , &st) != 0)
173 {
174 printf("Making directory: %s\n", directory);
175 mkdir(directory , S_IRWXU);
176 }
177
178 if (id == 0)
179 {
180 //Erase seed file.
181 temp = (char *) calloc (( strlen(directory)+strlen(extension)+10), sizeof(char));
182 sprintf(temp , "%s/seed.%s", directory , extension);
183 file = fopen(temp , "w");
184 fprintf(file , "detections ,particles ,y,x,particle time ,real time\n");
185 fclose(file);
186 free(temp);
187 }
188
189 run();
190
191 #ifdef DEBUG
192 if (id == 0)
193 {
194 #ifdef PARALLEL
195 timer = MPI_Wtime () - timer;
196 dif = (int)timer;
197
198 printf("Node%d: Total time on %d cores: %d hours , %d minutes , %LG seconds .\n",
199 node , np, ((int)(dif /60))/60, ((int)(dif /60))%60, timer -(dif -dif %60));
200 #else
201 time(& seconds2);
202 dif = seconds2 - seconds1;
203
204 printf("Node%d: Total time on %d cores: %d hours , %d minutes , %d seconds .\n",
205 node , np, ((int)(dif /60))/60, ((int)(dif /60))%60, dif %60);
206 #endif
207 }
208 #endif
209
210 #ifdef PARALLEL
211 MPI_Barrier(MPI_COMM_WORLD);
212 MPI_Finalize (); //shuts down all mpi commands for each process
213 #endif
214
215 return 0;
216 }
217
218 void run(void)
219 {
220 dataType *newPsiR , *newPsiI , *oldPsiR , *oldPsiI , *olderPsiR , *olderPsiI , *temp;
221 char *seeds;
222 char *aString;
223 int a, b, d, min , max , loop = 1, detections;
224 long c;
225 time_t seconds; //Only used by non -mpi code.
226
227 aString = (char *) calloc (50, sizeof(char));
228
229 yMin = (int *) calloc(np, sizeof(int));

25



230 yMax = (int *) calloc(np, sizeof(int));
231
232 min = 0;
233 for (a = 0;a < np;a++)
234 {
235 max = min +((height -1)/np) -1;
236 if (a <= ((height -1)%(np)))
237 max ++;
238
239 yMin[a] = min;
240 yMax[a] = max;
241
242 min = max +1;
243 }
244
245 #ifdef DEBUG
246 if (id == 0 && node == 0)
247 printf("Initialized Seeds and Constants .\n");
248 #endif
249
250 #ifdef PARALLEL
251 //calls createArray function which creates shared memory array and connects each process to it.
252 newPsiR = (dataType *) createArray("newPsiR", (height +2* radius)*(width +2* radius), sizeof(

dataType));
253 newPsiI = (dataType *) createArray("newPsiI", (height +2* radius)*(width +2* radius), sizeof(

dataType));
254 oldPsiR = (dataType *) createArray("oldPsiR", (height +2* radius)*(width +2* radius), sizeof(

dataType));
255 oldPsiI = (dataType *) createArray("oldPsiI", (height +2* radius)*(width +2* radius), sizeof(

dataType));
256 olderPsiR = (dataType *) createArray("olderPsiR", (height +2* radius)*(width +2* radius), sizeof(

dataType));
257 olderPsiI = (dataType *) createArray("olderPsiI", (height +2* radius)*(width +2* radius), sizeof(

dataType));
258 seeds = (char *) createArray("seeds", (height +2* radius)*(width +2* radius), sizeof(char));
259 #else
260 newPsiR = (dataType *) calloc (( height +2* radius)*(width +2* radius), sizeof(dataType));
261 newPsiI = (dataType *) calloc (( height +2* radius)*(width +2* radius), sizeof(dataType));
262 oldPsiR = (dataType *) calloc (( height +2* radius)*(width +2* radius), sizeof(dataType));
263 oldPsiI = (dataType *) calloc (( height +2* radius)*(width +2* radius), sizeof(dataType));
264 olderPsiR = (dataType *) calloc (( height +2* radius)*( width +2* radius), sizeof(dataType));
265 olderPsiI = (dataType *) calloc (( height +2* radius)*( width +2* radius), sizeof(dataType));
266 seeds = (char *) calloc (( height +2* radius)*(width +2* radius), sizeof(char));
267 #endif
268
269 #ifdef PARALLEL
270 //Start timer.
271 timerStart = MPI_Wtime ();
272 #else
273 time(& seconds);
274 timerStart = seconds;
275 #endif
276
277 detections = seedInit(seeds);
278
279 #ifdef DEBUG
280 if (id == 0 && node == 0)
281 printf("Created and linked the all arrays .\n");
282 #endif
283
284 for (d = detections; d < particles; d++)
285 {
286 if (particleCirclesSeed)
287 {
288 if (particles != 0)
289 centerParticle ((( long double)d)/particles);
290 else
291 centerParticle (0);
292 }
293
294 //Set initial conditions.
295 init(olderPsiR , olderPsiI);
296
297 for (a = yMin[id]*adj + radius*adj; a <= yMax[id]*adj + radius*adj; a += adj)
298 for (b = a+radius; b < a+width + radius; b++)
299 if (seeds[b] == TRUE)
300 {
301 olderPsiR[b] = 0.0;
302 olderPsiI[b] = 0.0;
303 }
304 normalize(olderPsiR ,olderPsiI);

26



305
306 #ifdef PARALLEL
307 MPI_Barrier(comm);
308 #endif
309
310 if (id == 0 && writeFrequency != 0) // Write initial condition to file.
311 {
312 sprintf(aString , "%d 0", d);
313 writePsi(aString , olderPsiR , olderPsiI);
314 }
315
316 //Finds the second initial condition based off of the first.
317 functionOld(olderPsiR , olderPsiI , oldPsiR , oldPsiI);
318
319 #ifdef PARALLEL
320 MPI_Barrier(comm);
321 #endif
322
323 //Write 1st Time Step to file.
324 if (id == 0 && writeFrequency != 0)
325 {
326 sprintf(aString , "%d %.*LG", d, timeStep , DIGITS);
327 writePsi(aString , oldPsiR , oldPsiI);
328 }
329
330 #ifdef DEBUG
331 if (id == 0 && node == 0)
332 printf("Starting Particle Run.\n");
333 #endif
334
335 c = 0;
336 loop = TRUE;
337
338 do // Iterates through all of the timeSteps until the totalTime is reached.
339 {
340 functionNew(olderPsiR , olderPsiI , oldPsiR , oldPsiI , newPsiR , newPsiI);
341
342 for (a = yMin[id]*adj + radius*adj; a <= yMax[id]*adj + radius*adj; a += adj)
343 for (b = a+radius; b < a+width + radius; b++)
344 if (seeds[b] == TRUE)
345 {
346 newPsiR[b] = 0.0;
347 newPsiI[b] = 0.0;
348 }
349
350 normalize(newPsiR , newPsiI);
351
352 #ifdef DEBUG
353 if (id == 0 && node == 0 && c % 100 == 0)
354 printf("Time: %.*LG\n", c * timeStep , DIGITS);
355 #endif
356
357 #if writeFrequency >0
358
359 #ifdef PARALLEL
360 MPI_Barrier(comm);
361 #endif
362 if (id == 0 && c % writeFrequency == 0)
363 {
364 sprintf(aString , "%d %.*LG", d, c * timeStep , DIGITS);
365 writePsi(aString , newPsiR , newPsiI); //write newPsi to a file
366 #ifdef DEBUG
367 printf("Wrote File: \" Particle %s.%s\"\n", aString , extension);
368 #endif
369 }
370 #endif
371
372 #if detectFrequency >0
373
374 #ifdef PARALLEL
375 MPI_Barrier(comm);
376 #endif
377 if (c % detectFrequency == 0)
378 if (detect(newPsiR , newPsiI , seeds))
379 {
380 loop = FALSE;
381 detections ++;
382 writeSeed(d, detections , (double)(c * timeStep));
383 }
384 #endif
385

27



386 if (totalSteps != 0 && c > totalSteps)
387 loop = FALSE;
388
389 borders(newPsiR);
390 borders(newPsiI);
391
392 //each psi gets moved backwards as time just progressed forward.
393 temp = olderPsiR;
394 olderPsiR = oldPsiR;
395 oldPsiR = newPsiR;
396 newPsiR = temp;
397
398 temp = olderPsiI;
399 olderPsiI = oldPsiI;
400 oldPsiI = newPsiI;
401 newPsiI = temp;
402
403 c++;
404 } while (loop);
405 }
406
407 #ifdef DEBUG
408 if (id == 0 && node == 0)
409 printf("Finished Calculation .\n");
410 #endif
411
412 #ifdef PARALLEL
413 freeArray("newPsiR", newPsiR , (height +2* radius)*(width +2* radius), sizeof(dataType));
414 freeArray("newPsiI", newPsiI , (height +2* radius)*(width +2* radius), sizeof(dataType));
415 freeArray("oldPsiR", oldPsiR , (height +2* radius)*(width +2* radius), sizeof(dataType));
416 freeArray("oldPsiI", oldPsiI , (height +2* radius)*(width +2* radius), sizeof(dataType));
417 freeArray("olderPsiR", olderPsiR , (height +2* radius)*(width +2* radius), sizeof(dataType));
418 freeArray("olderPsiI", olderPsiI , (height +2* radius)*(width +2* radius), sizeof(dataType));
419 freeArray("seeds", seeds , (height +2* radius)*(width +2* radius), sizeof(char));
420 #else
421 free(newPsiR);
422 free(newPsiI);
423 free(oldPsiR);
424 free(oldPsiI);
425 free(olderPsiR);
426 free(olderPsiI);
427 free(seeds)
428 #endif
429
430 #ifdef DEBUG
431 if (id == 0 && node == 0)
432 printf("Freed psi arrays .\n");
433 #endif
434
435 free(yMin);
436 free(yMax);
437 free(aString);
438
439 #ifdef DEBUG
440 if (id == 0 && node == 0)
441 printf("Freed remaining arrays and exiting run().\n");
442 #endif
443 }
444
445 #ifdef PARALLEL
446 void freeArray(char *aString , void *array , int length , int size)
447 {
448 char *temp;
449 int a;
450
451 temp = (char *) calloc(strlen(aString)+15, sizeof(char));
452
453 //not sure this is necessary but a harmless safety precaution.
454 MPI_Barrier(comm);
455
456 munmap(array , length * size);
457
458 // everyone must be ready before we remove the shared memory.
459 MPI_Barrier(comm);
460
461 // process zero deallocates the shared memory so that subsequent runs of the program won’t

already have values initialized.
462 if (id == 0)
463 {
464 sprintf(temp , "%s-%d", aString , node);
465 shm_unlink(temp);

28



466 }
467
468 free(temp);
469 }
470
471 void *createArray(char *aString , int length , int size)
472 {
473 void *array;
474 char *temp;
475 int fd, a;
476
477 temp = (char *) calloc(strlen(aString)+15, sizeof(char));
478
479 if (id == 0)
480 {
481 //the node identifier is there in case nodeSize is decreased so multiple virtual "nodes" are

on the same physical compute node.
482 sprintf(temp , "%s-%d", aString , node);
483 // Removes any previous references to this sharedmemory (because this program crashes a lot so

freeArray doesnt get called).
484 shm_unlink(aString);
485 //Opens file of a column of pointers to long doubles.
486 fd = shm_open(aString , O_CREAT | O_RDWR , S_IRUSR | S_IWUSR);
487
488 if (fd == -1) // checks for errors. Dunno what exactly as this is Sorenson ’s code (thanks !).
489 {
490 perror("ERROR: createshm:shm_open :\n");
491 exit (1);
492 }
493
494 // Allocates shm space sufficient to hold all those pointers (or long doubles in this case ...)

.
495 if (ftruncate(fd, length * size) == -1)
496 {
497 perror("ERROR: createshm:ftruncate :\n");
498 exit (1);
499 }
500
501 //maps the array to this shm/file.
502 array = mmap(NULL , length * size , PROT_READ | PROT_WRITE , MAP_SHARED , fd, 0);
503 if (array == MAP_FAILED)
504 {
505 perror("ERROR: createshm:mmap:\n");
506 exit (1);
507 }
508 }
509
510 // groups up all the processes. Everyone waits until ID 0 one shows up.
511 MPI_Barrier(comm);
512
513 //All Processes except process 0 run this code (which makes the above waiting kind of funny).
514 if (id > 0)
515 {
516 //the node identifier is there in case nodeSize is decreased so multiple virtual "nodes" are

on the same physical compute node.
517 sprintf(temp , "%s-%d", aString , node);
518 //this only connects to the existing shared memory as opposed to creating it like what ID 0

did.
519 fd = shm_open(aString , O_RDWR , S_IRUSR | S_IWUSR);
520
521 if (fd == -1) // random error that I know nothing about ...
522 {
523 perror("ERROR: shm open error in getshm\n");
524 exit (1);
525 }
526
527 // Notice there is no call to ftruncate ()? That only needs to be done when the shm is created.

Everyone just needs to map to it.
528
529 //maps to the shm.
530 array = mmap(NULL , length * size , PROT_READ | PROT_WRITE , MAP_SHARED , fd, 0);
531
532 if (array == MAP_FAILED)
533 {
534 perror("ERROR: createshm:mmap:\n");
535 exit (1);
536 }
537 }
538
539 free(temp);
540

29



541 return array; // returns the awesome shm memory 2D array of awesomeness.
542 }
543 #endif
544
545 // function for each iteration using only 1 previous time step.
546 void functionOld(dataType *oldPsiR , dataType *oldPsiI , dataType *newPsiR ,
547 dataType *newPsiI)
548 {
549 int a, b;
550
551 //Calls are being made to neighbor cells so they need to be up -to-date.
552 #ifdef PARALLEL
553 MPI_Barrier(comm);
554 #endif
555
556 for (a = yMin[id]*adj + radius*adj; a <= yMax[id]*adj + radius*adj; a += adj)
557 for (b = a + radius; b < a + width + radius; b++)
558 {
559 newPsiR[b] = oldPsiR[b] - (hbar*timeStep /(2* mass))
560 *( oldPsiI[b+1] + oldPsiI[b-1] + oldPsiI[b+adj] + oldPsiI[b-adj]
561 - oldPsiI[b] - oldPsiI[b] - oldPsiI[b] - oldPsiI[b]);
562 newPsiI[b] = oldPsiI[b] + (hbar*timeStep /(2* mass))
563 *( oldPsiR[b+1] + oldPsiR[b-1] + oldPsiR[b+adj] + oldPsiR[b-adj]
564 - oldPsiR[b] - oldPsiR[b] - oldPsiR[b] - oldPsiR[b]);
565 }
566 }
567
568 // function for each iteration of the solution using 2 previous time steps.
569 void functionNew(dataType *oldPsiR , dataType *oldPsiI , dataType *psiR ,
570 dataType *psiI , dataType *newPsiR , dataType *newPsiI)
571 {
572 int a, b;
573
574 //Calls are being made to neighbor cells so they need to be up -to-date.
575 #ifdef PARALLEL
576 MPI_Barrier(comm);
577 #endif
578
579 for (a = yMin[id]*adj + radius*adj; a <= yMax[id]*adj + radius*adj; a += adj)
580 for (b = a + radius; b < a + width + radius; b++)
581 {
582 newPsiR[b] = oldPsiR[b] - (hbar*timeStep/mass)
583 *(psiI[b+1] + psiI[b-1] + psiI[b+adj] + psiI[b-adj]
584 - psiI[b] - psiI[b] - psiI[b] - psiI[b]);
585 newPsiI[b] = oldPsiI[b] + (hbar*timeStep/mass)
586 *(psiR[b+1] + psiR[b-1] + psiR[b+adj] + psiR[b-adj]
587 - psiR[b] - psiR[b] - psiR[b] - psiR[b]);
588 }
589 }
590
591 int detect(dataType *psiR , dataType *psiI , char *seeds)
592 {
593 int a, b, c, exit = FALSE;
594 long double sum = 0, percent = ((long double)rand())/RAND_MAX;
595 long double sums[np];
596
597 // Calculate the sum of the probabilities in each region.
598 for (a = yMin[id]*adj + radius*adj; a <= yMax[id]*adj + radius*adj; a += adj)
599 for (b = a+radius; b < a+width + radius; b++)
600 if (seeds[b] == FALSE && (seeds[b-adj] || seeds[b-1] || seeds[b+adj] || seeds[b+1]))
601 sum += psiR[b]*psiR[b] + psiI[b]*psiI[b];
602
603 #ifdef PARALLEL
604 MPI_Gather (&sum , 1, MPI_LONG_DOUBLE , sums , 1, MPI_LONG_DOUBLE , 0, comm);
605 #else
606 sums [0] = sum;
607 #endif
608
609 sum = 0;
610
611 //Let process zero do the actual detection in the region with the detection.
612 if (id == 0)
613 {
614 // Determine which region has the detection.
615 for (c = 0; c < np; c++)
616 {
617 sum += sums[c];
618 if (sum >= percent)
619 break;
620 }
621

30



622 if (c == np) //There is no detection.
623 goto nestedLoopBreak;
624
625 sum -= sums[c]; //Went too far , so let’s go back one step.
626
627
628 for (a = yMin[c]*adj + radius*adj; a <= yMax[c]*adj + radius*adj; a += adj)
629 for (b = a+radius; b < a+width + radius; b++)
630 if (seeds[b] == FALSE && (seeds[b-adj] || seeds[b-1] || seeds[b+adj] || seeds[b+1]))
631 {
632 sum += psiR[b]*psiR[b] + psiI[b]*psiI[b];
633
634 if (exit == FALSE && sum >= percent)
635 {
636 seeds[b] = TRUE;
637 exit = TRUE;
638 y = a / adj - radius;
639 x = b - a - radius;
640
641 //Top -Bottom
642 if (a == radius*adj)
643 seeds[( height+radius)*adj+b-a] = TRUE;
644 else if (a == (height - radius)*adj)
645 seeds[b-a] = TRUE;
646
647 //Left -Right
648 if (b-a == radius)
649 seeds[a+(width+radius)] = TRUE;
650 else if (b-a == radius + width - 1)
651 seeds[a] = TRUE;
652
653 goto nestedLoopBreak;
654 }
655 else
656 psiR[b] = psiI[b] = 0.0;
657 }
658 }
659
660 nestedLoopBreak:
661
662 #ifdef PARALLEL
663 MPI_Barrier(comm); //Wait for the detection before erasing.
664 #endif
665
666 for (a = yMin[id]*adj + radius*adj; a <= yMax[id]*adj + radius*adj; a += adj)
667 for (b = a+radius; b < a+width + radius; b++)
668 if (seeds[b] || seeds[b-adj] || seeds[b-1] || seeds[b+adj] || seeds[b+1])
669 psiR[b] = psiI[b] = 0.0;
670
671
672 #ifdef PARALLEL
673 MPI_Bcast (&exit , 1, MPI_INT , 0, comm);
674 #endif
675
676 normalize(psiR , psiI);
677
678 return exit;
679 }
680
681 void borders(dataType *psi)
682 {
683 int a, b;
684
685 // Assumes periodic boundaries.
686 for (a = yMin[id]*adj + radius*adj; a <= yMax[id]*adj + radius*adj; a += adj)
687 for (b = a; b < a+radius; b++)
688 {
689 psi[b] = psi[b+width];
690 psi[b+width+radius] = psi[b+radius ];
691 }
692
693 #ifdef PARALLEL
694 MPI_Barrier(comm); //The borders are being arranged so all the cells need to be ready
695 #endif
696
697 if (id == 0)
698 {
699 for (a = 0; a < radius*adj; a += adj)
700 for (b = a; b < a+width + radius + radius; b++)
701 psi[b] = psi[b+height*adj];
702 }

31



703
704 if (id == np -1)
705 {
706 for (a = 0; a < radius*adj; a += adj)
707 for (b = a; b < a+width + radius + radius; b++)
708 psi[b+( height+radius)*adj] = psi[b+radius*adj];
709 }
710 }
711
712 // writes the psi matrix to a file in comma delimited form
713 void writePsi(char *fileName , dataType *psiR , dataType *psiI)
714 {
715 FILE *file;
716 char *text;
717 int a, b;
718
719 text = (char *) calloc(strlen(directory)+strlen(fileName)+strlen(extension)+15, sizeof(char));
720 sprintf(text , "%s/Particle %s.%s", directory , fileName , extension);
721 file = fopen(text , "w");
722
723 for (a = radius; a < radius + height; a++)
724 {
725 for (b = radius; b < radius + width; b++)
726 fprintf(file , "%.*LG,", psiR[(a)*adj+(b)]*psiR[(a)*adj+(b)] + psiI[(a)*adj+(b)]*psiI[(a)*

adj+(b)], DIGITS);
727 fprintf(file , "\n");
728 }
729
730 fclose(file);
731 free(text);
732 }
733
734 void writeSeed(int particles , int detections , double particleTime)
735 {
736 FILE *file;
737 char *text;
738 double realTime;
739
740 //Only one process should write to a file at a time.
741 if (id != 0)
742 return;
743
744
745 #ifdef PARALLEL
746 realTime = MPI_Wtime () - timerStart;
747 #else
748 time_t seconds;
749 time(& seconds);
750 realTime = seconds - timerStart;
751 #endif
752
753 text = (char *) calloc(strlen(directory)+strlen(extension)+10, sizeof(char));
754 sprintf(text , "%s/seed.%s", directory , extension);
755
756 file = fopen(text , "a");
757
758 fprintf(file , "%d,%d,%d,%d,%f,%f\n", detections , particles , y, x, particleTime , realTime);
759
760 fclose(file);
761 free(text);
762 }
763
764 //Fills the matrix with the initial condition of the system
765 void init(dataType *psiR , dataType *psiI)
766 {
767 long double coef;
768 int a, b;
769
770 #ifdef PARALLEL
771 MPI_Barrier(comm);
772 #endif
773
774 for (a = yMin[id]; a <= yMax[id]; a++)
775 for (b = 0; b < width; b++)
776 {
777 // Normal starting condition of gaussian wave packet.
778 coef = expl((-(b-xCenter)*(b-xCenter)-(a-yCenter)*(a-yCenter))/( particleSize*particleSize))

/sqrtl(particleSize*particleSize*PI/2);
779 psiR[(a+radius)*adj+(b+radius)] = coef;//*cosl(Vx*b+Vy*a);
780 psiI[(a+radius)*adj+(b+radius)] = 0.0;//coef*sinl(Vx*b+Vy*a);
781

32



782 // Uncomment these lines for infinite width starting condition.
783 //psiR[(a+radius)*adj+(b+radius)] = cosl((b + a)*4*PI/(width+height));
784 //psiI[(a+radius)*adj+(b+radius)] = sinl((b + a)*4*PI/(width+height));
785 }
786
787 normalize(psiR , psiI);
788 borders(psiR);
789 borders(psiI);
790 }
791
792 void normalize(dataType *psiR , dataType *psiI)
793 {
794 long double temp , sum = 0;
795 int a, b;
796
797 for (a = yMin[id]*adj + radius*adj; a <= yMax[id]*adj + radius*adj; a += adj)
798 for (b = a+radius; b < a+width+radius; b++)
799 sum += psiR[b]*psiR[b] + psiI[b]*psiI[b];
800
801 #ifdef PARALLEL
802 temp = sum;
803
804 MPI_Allreduce (&temp , &sum , 1, MPI_LONG_DOUBLE , MPI_SUM , comm);
805 #endif
806
807 sum = sqrtl((long double)sum);
808
809 for (a = yMin[id]*adj + radius*adj;a <= yMax[id]*adj + radius*adj; a += adj)
810 for (b = a+radius; b < a + width + radius; b++)
811 {
812 psiR[b] /= sum;
813 psiI[b] /= sum;
814 }
815 }
816
817 void seedBorders(char *seeds)
818 {
819 int a, b;
820
821 // Assumes periodic boundaries.
822 for (a = yMin[id] + radius; a <= yMax[id] + radius; a++)
823 for (b = 0; b < radius; b++)
824 {
825 seeds[(a)*adj+(b)] = seeds[(a)*adj+(b+width)];
826 seeds[(a)*adj+(b+width+radius)] = seeds[(a)*adj+(b+radius)];
827 }
828
829 #ifdef PARALLEL
830 MPI_Barrier(comm); //The borders are being arranged so all the cells need to be ready
831 #endif
832
833 if (id == 0)
834 {
835 for (a = 0; a < radius; a++)
836 for (b = 0; b < width + radius + radius; b++)
837 seeds[(a)*adj+(b)] = seeds[(a+height)*adj+(b)];
838 }
839
840 if (id == np -1)
841 {
842 for (a = 0; a < radius; a++)
843 for (b = 0; b < width + radius + radius; b++)
844 seeds[( height+radius+a)*adj+(b)] = seeds [(a+radius)*adj+(b)];
845 }
846 }
847
848 //Fills the matrix with the initial condition of the system
849 int seedInit(char *seeds)
850 {
851 int a, b, d = 0;
852
853 if (id == 0)
854 for (a = 0; a <= height; a++)
855 for (b = 0; b < width; b++)
856 if (seedStart(a, b) == TRUE)
857 {
858 seeds[(a+radius)*adj+(b+radius)] = 1;
859 y = a;
860 x = b;
861 d++
862 writeSeed(d, d, 0.0);

33



863 }
864
865 #ifdef PARALLEL
866 //Share detection count with every process and act as a barrier.
867 MPI_Bcast (&d, 1, MPI_INT , 0, comm);
868 #endif
869
870 seedBorders(seeds);
871
872 return d;
873 }
874
875 int seedStart(int y, int x)
876 {
877 if (seedType == NO_SEED)
878 return FALSE;
879 else if (seedType == RANDOM_SEED)
880 return rand() % 2;
881 else if (seedType == DOT_SEED)
882 if (( seedCenterX - x)*( seedCenterX - x) <= seedRadius * seedRadius && (seedCenterY - y)*(

seedCenterY - y) <= seedRadius*seedRadius)
883 return TRUE;
884 else
885 return FALSE;
886 else if (seedType == WALL_SEED)
887 if (( seedCenterX - x)*( seedCenterX - x) <= seedRadius * seedRadius)
888 return TRUE;
889 else
890 return FALSE;
891 else
892 return FALSE;
893 }
894
895 void centerParticle(long double percent)
896 {
897 long double theta;
898
899 if (id == 0)
900 theta = ((long double)rand()) * 2 * PI / RAND_MAX;
901
902 #ifdef PARALLEL
903 MPI_Bcast (&theta , 1, MPI_LONG_DOUBLE , 0, comm);
904 #endif
905
906 xCenter = cosl(theta) * (particleMinRadius + (particleMaxRadius - particleMinRadius)*percent) +

seedCenterX;
907 yCenter = sinl(theta) * (particleMinRadius + (particleMaxRadius - particleMinRadius)*percent) +

seedCenterY;
908 }

34


	Butler University
	Digital Commons @ Butler University
	8-15-2011

	Quantum Diffusion-Limited Aggregation
	David Bradley Johnson
	Recommended Citation


	tmp.1317935422.pdf.qP6aH

