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1 Geophysical Prospecting and the Context of this 

Work 

While the problem of simulating non-linear wave propagation can be addressed en­

tirely within the subject of continuum mechanics, it is enlightening to begin by con­

sidering the applications of this work in the fi eld of geophysics. In short, geophy ics is 

the use of physical measurements to deduce the earth 's interior structure. The types 

of measurements employed within this fi eld range from quantifying surface displace­

ments after a dynamite blast to examining variations in the earth 's gravitational or 

electric field [2J. From these measurements, it is then often possible for geophysicists 

to predict the structure and composition of unseen geological formations underfoot . 

Within the fi eld of geophysics, geophysical prospecting is the use of geophysical 

procedures to locate deposits of useful materials such as oi l, natural gas, and minerals. 

This is in contrast to geological prospecting in which scientists look directly at rock 

samples from exposed areas or bore holes to locate deposits. Geophysical pro pecting 

is of particular interest today as recent decades have seen dwindling reserves of many 

of the fossi l fuels and minerals necessary for maintaining the current state of human 

society. In fact, in 2011 Exxon Mobil reported that for the first t ime in the last 17 

years it had pumped more oil than it found in new only 95 barrels 

for every 100 barrels extracted [4J. Among oil producers th is is a relatively high 

replacement rate as most companies rout inely pump more oil t han they find in new 

reserves. Making matters worse, many experts now believe that the estimated reserves 

in the Middle East have been largely inflated . As materials such as oil become more 
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diffi cult to find using conventional methods, it becomes increasingly important to 

develop more advanced prospecting and extraction techniques. 

In this vein , our work focuses on further developing one of the most commonly 

used techniques in geophysical prospecting- the seismic reflection method [2J . In this 

process, pressure pulses are produced near the earth's surface (generally by detonat­

ing strings of dynamite). These pul es propagate downward and then are refl ected 

back towards the surface from underlying geological formations. At the surface, dis­

placements caused by these reflected waves are measured by instruments known as 

geophones. By analyzing the time of arrival and form of these reflected waves , geo­

physicists are able to reconstruct a map of rock layers and other relevant underground 

features. This information can then used to directly predict the presence of materials 

of interest and guide further exploration. 

Specifically, this research is intended to extend the use of the seismic reflection 

method to materials for which traditional linear wave analysis is insufficient. Presently 

prospectors using this method as ume a simple linear or Hook's law-like relation be­

tween the applied force and deformation of underlying geological materials. While 

this approximation is very accurate for small displacements in dense consolidated 

materials and bedrock , unconsolidated materials such as sand exhibit inherent non­

linearity regardless of the size of deformation [6, 12J. The porous and granular nature 

of unconsolidated materials makes them notoriously difficult to model using analytic 

techniques as their behavior depends greatly on the mesoscopic properties and orien­

tations of the individual granules. In general the relationship between applied force 

and deformation, also called the material's constitutive equation, is both non-linear 
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and history dependent for unconsolidated materials. In other words, the relationship 

is complex and is Ilot a function of only the material 's currellt state but also of the 

pr vious states of t he material. 

[n order to cope with these difficulties, our work uses a numerical approach when 

solving the problems relat d to seismic prospecting in areas dominated by sand and 

loose soi l. Rather than using a dO'ed form expression for the force-deformation 

relation, this work u es a model developed by ~lcCall and Guyer[6, [2] which fits 

the empirical constitutive r lation known as the using the P-~I space method[ll]. 

The P-~ I ( Preisach-~ 1 8yergoyz) space model is a general model of hysteretic behavior 

which can be applied to numerous phy ical situations. Applied to unconsolidated 

materials, the P-~I space model is based on the idea that a mesoscopic crack or 

pore in a material Illay be modeled using a highly simplified constitutive equation 

referred to as a hysteretic mesoscopic elastic unit ( HE~I ). By assembling the proper 

eli tribution of these simplified IIE~I Us, a constitutive relat corresponding to 

real unconsolidated material emerges. Using this constructed constitutive equation. 

an accu rate numerical solution to wave motion in unconsolidated material can be 

found. 

Ultimately the goal of this research is to better map geological formations beneath 

the Earth 's surface. By using the P-td space model rather than tradit ional linear 

Illodels for the constitutive relation , geophysicists will be able to better resolve and 

interpret data collected in areas where uncon olidated materials are \Vith 

this improved knowledge of wave propagation behavior, an enhanced data iuversion 

process may be developed resulting in an overall increase in the quality of geological 
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maps. Additionally, an understanding of the dynamics of waves in unconsolidated 

materials will allow for improved design of source arrays when prospecting. Generally 

when prospecting, a number of dynamite charges are arranged in a line in the area to 

be surveyed and simultaneously set off as a single source. When designing a layout 

for these charges it i important to consider the behavior of coherent noise, or ground 

roll , propagated along the surface as t his factor can lead to degraded measurements 

at the surface and large amounts of wasted blast energy. Depending on the extent 

of signal degradation it may become very difficul t to obtain any useful results using 

the seismic refl ection method. At the present, geophysicists attempt to address these 

factors within the framework of the linear wave propagation theory. 

This project is ai med at addressing these aspects of source pulse array design in 

the context of non-linear unconsolidated materials. In accomplishing this task, the 

non-linear wave propagation simulation created by D.W.Kosik (in part described in 

[9]) was modified to accommodate multiple source charges placed at varying locations. 

Following this modification, computational experiments were considered for various 

source pulse layouts. The hope is that eventually t illS research will lead to array 

designs which will lead to significant improvements in the quality of the data ext racted 

in a single shot and expand the number of sites yielding meaningful geophysical data 

to include locations where unconsolidated materials are prevalent. 

As a final note, I point out that the results of our simulation could also be used 

to form a better understanding of materials near the earth 's surface in earthquake 

scenarios [6J. In general , the soil most manmade structures are bui lt upon fit into 

the realm of unconsolidated materials. By understanding the dynamics and the non-
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linear waves produced in these materials, we can better ant icipate structural behavior 

in the event of an earthquake and engineer buildings accordingly. 

2 A Theoretical Description of the Problem 

As stated before, the problem underlying wave propagation in unconsolidated mate­

rials fits into the framework of cont inuum mechanics. Fundamentally, t he problem of 

many particles interacting may be addressed using the equations of motion (coupled 

ordinary differential equations) which result from the application of Newton's laws. 

While this process is useful for small or moderate collections of particles, it becomes 

int ractable in systems where large amounts of particles are involved. For instance, a 

rough estimate of the number of sand grains per cubic meter is on the order of 1010 

(clearly this will vary based on the size distribution of the sand particles). Even with 

the most advanced computer simulations today, such as those used in the gravitational 

N-body problem [8J or molecular dynamjcs[13]' direct integration of the equations of 

mot ion becomes impractical for more than about 106 particles due to exponent ially 

increasing run times. 

In order to circumvent these issues, continuum mechanics chooses to t reat a phys­

ical system consisting of many part icles as a single continuous body. The concept 

of particle mass and position are replaced with density and displacement fields while 

Newton's equations are recast in terms of integral equations known as balance equa­

tions. In general , this sort of cont inuum approximation is possible whenever there is 

a large number of particles inside any given volume (sized according to the relevant 
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length scale of the problem) and groups of nearby particles more or less move to­

gether as a unit . Note the first of these condit ions is equivalent to the density of tbe 

material being approximately continuuous. As this research describes unconsolidated 

materi als using this framework , a brief treatment of the basic continuum mechanics 

principles will be given. Namely, deformation and kinematics, the characterization 

of force, and constitutive (force-deformation) equations will be addressed . This pre­

sentation of the basic cont inuum theory (excluding the sections on the constitut ive 

equation) is loosely based on references [5, 3, 10). 

2.1 Continuum Kinematics: The Displacem ent Field and Mea­

sures of Strain 

In part icle mechanics, the basic tools used to describe the motion of a system are 

the posit ion vectors ,"';. In continuum mechanics, the quant ity chosen for describing 

a body's motion is the displacement field fl . In defining the displacement field , we 

first consider a reference configuration of the body at a t ime to. This snapshot of 

a body's motion can be taken at any t ime but generally is chosen at a t ime when 

the body is in equilibrium. Now to each material point within the body, a label Ii is 

assigned corresponding to its posit ion in the reference configuration. As t ime moves 

forward , each material point then follows a trajectory Xil(t ) (also denoted x( li, t )) 

where Xil(O) = Ii. These trajectories are completely analogous to the position vectors 

,"'; in particle mechanics despite the fact the indices now form a cont inuum. Using 
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this notation , the displacement field is defined by 

u(a, t) = xa(t) - fa(O) 

= fii(t) - a. 

In words, the displacement field is a function which assigns each material point a 

within the reference configuration a displacement vector pointing from its initial po­

sition to its current location. Note that this same system of characterizing motion 

could be used to describe a sy tern of ju t N particles. In this case u would be defined 

on only N points in pace corresponding to the N particle po ition vectors at to. 

While the displacement field clearly and intuitively describes the motion of a 

system, it is not a useful concept when relating a body's configuration to the forces 

acting between its constituent particles. For instance, the forces acting within an 

object are unaltered after the object is translated across the room or rotated in place. 

Yet in each of these cases, the displacement field of the object is non-trivial. Rather 

than using the displacement field to describe a body's configuration, it would be 

ideal to have a function which identifies stretching within a body as these changes 

correspond to changing forces. In particle mechanics this is analogous to the fact that 

particle interactions do not depend directly on the position vectors 1'; but rather on 

displacements of the form ,7; - Ti' 

Trying to take this exact idea from particle mechanics and create a function 

d(a, it, t) which gives the distance between any two material points a and it at time 

t would be very challenging. In general such a function would be highly non-linear 
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and hence difficult to work with. Luckily the interactions in continuum mechanics 

are due to short range forces which result from the direct contact of mesoscopic par-

t icles or microscopic interactions within a body. As a consequence, we need only look 

at changes in the distance between a material point and its close neighbors. More 

specifically, we hope to find a field of functions C(ii,t) which can accomplish this goal. 

Consider a material point ii with close neighbors ii, where i = 1, 2. Define the vectors 

= Xii, (0) - Xii(O) 

s; = Xii, (t) - Xii(t). 

Observe the dot product 

Note that in the limit of ISiI -t 0 this approximation becomes equality which follows 

with our assumptions that the three points all be in a small neighborhood. Thus one 

manifestation of the desired local distance function C(ii,t) is the field of bilinear forms 

defined by the equation 

C(<1,t)(Si, Si ) = [Si]T[Vul(ii,t )n ilu l(<1,t)][Si ] 

= Ils;W· 
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In continuum mechanics this object is called is called the Cauchy- Green strain tensor 

(hence the preemptive naming) . Those who are familiar with different ial geometry will 

recognize the Cauchy- Green Strain tensor to be nothing more than the metric tensor 

or first fundamental form. It is a function field which takes two displacement vectors 

from the material point Ii at time to and gives the dot product of the corresponding 

displacement vectors at time t. Moreover it is just one of the many functions which 

characterizes the deformation of a body. Such a function is called a measure of strain . 

Another useful measure of strain is the Lagrangian strain tensor defined by 

E(-t)(5 5) = ~ (C(-t)(5 5) - 5' 5') Q , ') 1 2 a , II 1 1 1 

= ~ lSifl'VUI (a,t) - 1]TI'Vul (a,t) - 1][Si] 

= ~ (S;]T ( ['Vul (a,t)] + ['Vul (a,tl + ['Vul (a,tll'Vul (a,t)] ) lSi] 

= ~ (1I5:11' - lISiI1 2
) . 

2 

Specifically, consider the limit of the Lagrangian strain tensor in which the part icles 

in a body are displaced only very slight ly. In the limit that these displacements go 

to zero, the displacement fi eld ua(t) and therefore the deformation gradient 'Vual t 

approach zero. Ignoring the second order term due to the product of grad ients, the 

Lagrangian strain measure then reduces to the so called infinitesimal strain tensor 

0(a,t)(5"Si) = = ~[5.f ( ['Vul (a, t ) ] + ['Vul (a,tl) lSi] 

"" ~ (1 15:11' -II~II') 
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This strain measure is of particular importance to the work that follows. To see why 

consider two material points separated by a small amount in the x direction (i.e. 

8 = x~x). In this case it follows that 

118'W -11811 2 
= (118'11-11811)(118'11 + 11811) 

From the fact that the deformation gradient goes to zero, we may make the additional 

approximation that 118'11 "" 11811. It follows that the fractional length change in the x 

direction is equal to Oxx' 

118'11-11811 
11811 11811(118'11 + 11811) 

This fractional measure of length changes will be especially useful in relating the 

deformation of a body to the continuum mechanics notion of force called stress. For 

instance, consider a string which is stretched by some small amount. In th is case 

the relevant quantity in determining the tension is not the net length change but 

rather the fract ional change in the string's length. Clearly when a short string and 

a long string are stretched by the same amount the tension in the shorter string is 

much larger! The other components of the infinitesimal strain tensor have similar 
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int rpr tations. Particularly, the off diagonal t rms of the strain tensor, called the 

shear terms, may be related to fractional changes in the angle between the unit vectors 

corresponding to its indice . This is not surprising considering the relationship of the 

strain tensor to the dot product. 

With this, our discussion of strain is concluded. I ote that for the remainder of 

this work, the strain fields will generally be I'd rred to without the subscripts which 

refer to the field point except for when the field point is not clear from context. Also 

no distinction will be made between the bilinear train functions and their matrix 

I' pI' ntation. 

2.2 Cont inuum Dynamics : Force, Stress, and the Momen­

tum Balance Equation 

In the last section, methods for describing the kinematics the motion and deformation 

of a ontinuou body weI' developed. The urrent ection has two main objectives. 

Fir tIy, the concept of force will be extended into the domain of continuum mechan­

ics through the concept of strain. Secondly, the correct generalization of Newton' 

second law for continuous bodie will be developed , in effect creating a relationship 

between the physical notions of force and mass to the kinematic aspects of a body. 

To begin, consider a material body and , within this body, choose any volume V 

bounded by the surface avo Now consider the total force acting on the region V. 

In general this force may be decomposed into a surface term and a volume term. 
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Mathematically this is encompassed by the equation 

- - -F = Fav+ Fv 

= { Tn(i, t )dA + (B(i, t )dV 
Jav Jv 

-where Tn is the (vector) force per unit area acting on a surface element perpendicular 

- -to n while B is the force per unit volume acting on V. Respectively, the quant it ies Tn 

-and B are called the traction and body force. In general, traction represents both the 

effects of short range forces and direct collisions between particles. In cont rast, the 

body force is due to ent it ies which act at longer distances such as the gravitational or 

electromagnetic fi eld . As tbis work i concerned only with contact forces, the following 

discussion will focus on traction and assume the absence of body forces. Addit ionally 

in what follows, time dependence is a sumed although it will not be explicit ly shown . 

- -To begin , let it be postulated that T;, = T;.(n, i). In other words, the traction field 

is solely a function of the position and orientation of the area element in question. 

Note that this excludes the possibility that traction be a function of the curvature of 

the surface 8V as tbis would be related to derivatives of the normal field n. Using 

this assumption it can be shown that 

-Tn(n,i)= ax ·n 

where ax is a fi eld of linear t ransformations called the stress tensor field. The above 

equation is at t ributed to Cauchy and accordingly called the Cauchy stress relation. 

12 



In words, the strain tensor at a point x can be thought of as a matrix which when 

applied to the unit normal of the surface element in question produces the force per 

unit area. If it is further assumed that the moment of the force (torque) per unit area 

on a urface of diminishing size vanishes, then the ax becomes a symmetric tensor. 

Wi th the concept of stress in hand , the continuum generalization of Newton 's 

second law, called t he momentum balance equation , will now be developed. To do 

so, consider a material body and a collection of material points contained within 

the body. 'ow at any given time, this group of particles can be found in a volume 

V(t) which changes as t he material points move. For this group of particles, Newton's 

second law must hold and the time derivative of the integral of the momentum den ity 

must be equal to the total force on the body. This can be written 

f' = dd ( 15(x, t )dV 
t J V (t ) 

= dd ( p(x, t)ii(x, t )dV. 
t J V (t) 

Note that the domain of the integral is time dependent and the time derivative may 

not enter the integral in the normal way. To overcome this issue, consider the ith 

component of the force. In this case 

Fi = .!!:... ( P;{X, t )dV 
dt J V (t) 

= lim 2.. [ { P;(x, t + t.t )dV - ( P;(X, t )dV] 
t>t->O t.t J V (t+t>t ) J V (t ) 

= lim 2.. [ { P;(x, t + t.t )dV + ( p.(x, t )(ii(x, t )t.t)· dA - ( P;(X, t )dV] . 
t> <->o t.t J V(t ) J av(t) J V (t ) 
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T he surface term can be thought of as a correction to the approximation V(t + ~t ) ~ 

V(t) in the first term of the previous line. Concept ually, as t he material points move 

through space t hey sweep out a v ry t hin volume around the surface V(t). In the case 

that t il particles move away from t he volume V(t) the quant ity (ii~t) ·dA represents 

a new volume added to t he integral and is posit ive. Likewi e, when t he particles 

a t t he edge of V (t ) move into t he interior of t he volume, t he volume is lost and a 

negative correction is made. By virt ue of the divergence t heorem, it follows 

F, = lim ,; [ r P,(x, t + ~t) - P,(x, t) + \1. {P,(X, t )ii(x, t) ~t}dVl 
e.<-+o ut 1 V(, ) 

= { 8;, (x, t) + \1 . {P,(X, t )ii(x, t )}dV 
1 V (') t 

This is t he desired moment um balance equa tion in integral form. While t ill equation 

seems like a set of three equations (one for each component of force) it actually 

encompa ses a et of infinitely many equations as t he volume V(t) is arbit rary. Using 

thi fact , the equa tion 

F, = { a;' (x, t) + \1 . {P,(X, t )ii(x, t)}dV l v(,) t 

= ( 7; (x, t )dA 
lave,) 

( ;; . dA 
lave,) , 

1 \1. ;;dV 
V(' ) i 
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can be reduced to the partial differential equation 

8P 
at' (x, t ) + \l . {'P,(x, t)V(x, t)} = (\l . ;;);. 

The local statement of the momentum balance equation is most useful when written 

in terms of density, velocity, and the stress tensor. Substituting 'Pi = PVi the right 

hand side of the previous equation becomes 

! (pv,) + \l . {PViV} = v, (~ + \l . {pii} ) + p(~~i + v· \lVi ) 

(
aVi _ ,..,) 

= P at + V· v V. 

where the first term vanishes due to the cont inuity equation related to con ervation 

of mass. Replacing \lVi with the full J acobian , the coordinate free local momentum 

balance equation takes its final form 

(
au ,.., __ ) ,.., '" 

P at + v V' V = v . a. 

In terms of the standard coordinate basis this equation can alternately be written 

( av, aV, ) _ aa'j 
P -a +Vja - a . t x · x · J J 

At th is point, we are almost ready to describe the motion of the displacement fi eld . 

The velocity terms in the above can in principle be replaced with terms relating to 
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the displacement fi eld via the relationship 

_ ail ,.., __ 
v = at + v U' v. 

The relationship between stress and the displacement fi eld is more complicated . In 

general , stress is related to the displacement field by a materi al dependent constrai nt 

called the consti tutive equation which will be developed in the next section. 

2.3 The Constitutive Equation: D escribing the R elationship 

B etween Stress and Strain 

In this section, a constitut ive equation, or material dependent stress relation, for un-

consolidated materials will be developed. While the balance equation of the previous 

section corresponded to 1 ewton's second law in particle mechanics, the constitut ive 

relation is analogous to specific force laws such as the Lorentz force law or the N ew-

tonian expre ion for gravity. In essence these equations relate the abstract notion of 

stress and force back to concrete kinematic descriptions of a body. 

In general it has been found that almost all materials have a range of deformations 

in which the constitutive equation takes on the form 

In the case that a material's stress is purely a function of the strain tensor, we call the 

material elastic. Perhaps the simplest elastic constitut ive equation is that of linear 
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elasticity 

where b;jkl is a fourth order tensor which generally varies based on position. In words, 

the above relation states that at every material point the stress tensor elements are 

linear fun tions of the strain tensor at t hat point. 

Unfortunately when dealing with unconsolidated materials, these simple consti­

tutive relations are inadequate. Even for small stresses, the constitutive equations 

for unconsolidated materials exhibit both non-linear and anelastic behavior. For this 

work it will be assumed that the constitutive equation has the form 

where I is a field associated with the internal configuration of each material point. 

More specifically, this internal configuration can be associated with the state of the 

pores and cracks found in the vicinity of a material point. If it is further assumed 

that I is rotation invariant, the constitutive equation for an isotropic material can 

be shown [9, 14] to have the form 

where the scalar coeffici ents e; are functions of both the strain tensor and the internal 

configuration of the material point . When written in terms of longitudinal , transverse, 
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an I shear strain components, the above equation is further reduced to the form [lJ 

In the above G, (3, 'Y, and 1) are respectiv Iy the longitudinal, transverse, shear, and 

longitudinal-transverse stress-strain moduli. As before these moduJj are functions of 

the material 's internal configuration I. For the amplitudes expected in our simulation, 

the second order terms in strain may b ignored giving the final constitutive equation 

Note that the non-linear, anelastic, and hy teretic properties of the above equation are 

due to the dependence of tbe 0: and {3 coefficients on the material 's internal state I. In 

our work it is assumed that 'Y i approximately constant because the shear strains are 

much smaller than the other strains involved. AdditionaUy, the quantity (0: - (3 - 'Y) 

i taken to be approximately zero due to tbe quasi-linear nature of our material. 

This approximation becomes exact in the linear limit. Inserting this constitutive 

equation into the momentum balance equation and assuming smaU magnitudes for 

the displacement field, the two dimensional wave equation for non-linear anelastic 
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materials is obtai ned [IJ. 

cPux _ a [13 (aUx au, ) aUx] a ['"Y (aU, aUx)] p - - + +'"Y +-- +--:::-=-at2 ax ax ax ax az 2 ax az 

pa2u, = ~ [13 ( aUx + aU, ) + aU,] + ~ [ '"Y ( aU, + aUx)] 
at2 az ax ax '"Y az ax 2 ax az 

At this point, the motion of the displacement fi eld is completely described assuming 

that the dynamics of the internal state I and dependence of the moduli a, 13 on I are 

known. In this work these variables are determined with.in the confines of the P-M 

space model which will be discussed in the next section. 

2.4 The P -M Space Model and a Realistic Hysteretic Rela-

tion Between Stress and Strain 

The bas is of the Preisach-Mayergoyz space model [12, 7, 6J is the idea that each 

material point in a body has structure on the mesoscopic scale. In reali ty, a body is 

riddled with numerous pores, cracks, and voids which expand or cont ract based on 

the stresses applied to the body. On a qualitative level, the P-M space model assumes 

each material point contains a large number of such defects and fur thermore that t he 

internal configuration I is based on the states of these defects. 

Like most materials, unconsolidated materials experience increasing (decreasing) 

strain with increasing (decreasing) stress. Wbat makes t hese materials exotic and 

hysteretic is the fact that the rate at which strain increases or decreases is depen-
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dent on whether stress is increasing or decreasing. For most materials, a 1I1crease 

in pressure by an amount /:"P will result in a corresponding change in strain /:"" 1 

while the corresponding decrease -/:,.P will cause a change in strain /:""2 = - /:"",. 

In unconsolidated materials, there is a delay in the decompression of the material. 

These materials retain heightened stress despite a decrease in pressure and hence 

/:,." I > /:""2· 

In order to describe the internal state I of a material point, we first construct 

a model for a single defect which reflects t his fundamental property. To do so, a 

two state system called a HMEU (hysteretic mesoscopic elastic unit) which can be in 

either an "open" or "closed" state will be associated wit h each defect. Each state is 

assigned a characteristic length 10 , Ie and cri tical pressure Po, Pe. The dynamics of the 

system are given as follows. A defect in the open state 10 will transition to the closed 

state Ie when the pressure on the system is increased past the threshold pressure Pe. 

Likewise t he system will move from the closed state Ie to the open state 10 when 

the stress on the system is decreased past the opening threshold Po. The resulting 

relation between length (strain) and pressure (stress) is schematically shown in the 

following diagram [12J . 

While this relationship may not closely model the material as a whole, a distribu­

tion of such elements can be assembled such that the cumulative relationship between 

stress and strain closely mimics that of real materials. For the purpose of t his work , 

aU HMEUs will be assumed to have the same lengths 10 and Ie and will differ solely 

on their pressure thresholds Po, Pe· The distribution of HMEUs can be thought of as 

a set of points in the plane with axis Po and Pe. A typical P-M space distribution in 
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Figure 1: The hysteretic relation corresponding to a single HMEU. 

units of kPa is given in t he following figure[12] . 
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Figure 2: A sample distribution of HM EUs in P·M space. 

For each material point, the internal state I is then characterized by t he subset of 

this plane which is in the closed position or, equivalently, knowledge of which HMEUs 

are open and which are closed . 

Now in general, an arbitrary series of stressing and de-stressing a material can 

cause a nontrivial subset of t he P·M space to become closed. For our model the 

situation is greatly simplified by the fact that the solut ions to the wave equation 
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always correspond to stresses which increase monotonically to a maXJ mum stress 

before monotonically decreasing past zero. Because the system effectively" forgets" 

its history every time it passes through the origin of the P-M space, the resul ting 

description of the P-M space model may be signifi cant ly simplified for our model. In 

particular, the internal state of a system can be characterized by the maximum stress 

alone. For each increase in stress, the P-M space model gives the same curve while 

the curve associated with decreasing stress is parameterized by the maxi mum strain . 

The result ing famjly of curves is exemplified in the following fi gure[12J. To further 

lOO ~-----------------. 
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80 

20 

0'-----'" o 0.02 0.04 0.06 0.08 0.1 
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Figure 3: Family of curves resembling those produced in our simulation. 

simplify matters, our code takes advantage of the fact that these decreasing stress 

curves are very similar in shape and uses a scaijng argument to obtain all information 

from a single maximal stress relation. 
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3 The Simulation of Non-linear Anelastic Waves 

from a Cylindrical Source 

On a qualitative level the simulation used in this work models the detonation of a long 

string of dynamite buried under the earth's surface. Geophysical considerations aside, 

the basic problem associated with our simulation is that of solving the equations of 

motion for a material body which i rectangular in cross section and otherwise infinite 

in extent. Wi thi n thi body i an infinite cylindrical cavity which is circular in cross 

section and punches through the material. The simulation models the propagation 

of a Gaussian pressure pulse which originates on the surface of the cavity and moves 

outward. The boundary of tbe rectangular surface is free to move about. Clearly the 

problem is symmetric along the direction of infinjte extent y and hence the equations 

of Illotion can be reduced to a two-dimensional partial different ial equation in only 

the x and z variables. The scenario is schematically in the following fi gure. 
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Before describing the specifics of the imulations operation, I first will give a qual-

itative rundown of the code's update structure. A surne that the displacement field 

ii, velocity field iJ, and internal configuration I (or equivalently a and f3 parameters) 

are known at time t. Using the given information from above, the stress field a., 
can be deduced. Since the stress field is directly related to the time rate of change 

of the di placement field , updated velocity and displacement fields can be found for 

time t + D.t. Using the displacement field , the infinitesimal strain tensor Ci, at time 

t + D.t follows immediately. From the strain tensor and the rate of change of the 

strain tensor, the P-M space configuration for time t + D.t can be calculated . At this 

point, all state variables are updated and a new iteration begins. 

Now looking at the code in a little more depth , the primary strategy for updating 

the state of the system is a Crank-Nicholson iteration scheme. When calculating the 

updated state of the displacement field, the code begins within a small rectangular 
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" patch" surrounding the circular cross section of the source. In this patch the wave 

is propagated using the one-dimensional radial non-linear anelastic wave equation. 

This is done for several reasons. Firstly it exploits the cyli ndrical symmetry of the 

source 8l1d the surrounding waves to reduce the dimension of the relevant different ial 

equations by one dimension. Furthermore, it makes the boundary condit ions on 

the cylinder manageable and creates a buffer zone between the region where one­

dimensional wave propagation is used and the region of two-dimensional propagation. 

This makes for a smooth transit ion when changing from the single radial coordinate 

r to the rectangular coordinates x and z . Once the patch is fully updated, the 

simulation proceeds to calculate the wave's propagation in the surrounding region 

Cartesian coordinates. Rectangular coordinates are used in this region as they 

fit the symmetry of the outer boundarie of the grid . Additionally, geophones respond 

to vertical displacements at the earth's surface and hence it is important to have the 

z com ponent of the displacement field at the surface of the model. 

In altering this code, my work focused on extending the existing framework to 

al low for mul ti ple sources. This process included a number of stages but C811 be 

summarized as follows. First, parameters relating to the patch which were originally 

scalar variables had to be extended into arrays of length 2. This is done so that the 

posit ion and other specifications relating to each source could be modified individu­

ally. Besides the position of the source, the parameters for each patch defaul t to a 

common value. The second stage of my work involved edit ing the update structure of 

the code. The basic update structure before my modifications involved first updating 

a single patch and then updating the surrounding grid . After the alteration, each 
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of the two patches were updated and then as before, the rectangular propagation 

port ion of the grid was updated. In making these changes, special care was needed 

in the placement of the patches. If one patch overlapped the other, then the update 

from the second patch would effectively "overwri te" the update already completed 

by the first patch. Condi t ions forbidding such a situation are checked at the code's 

onset. If failed , the code stops, prevent ing wasted time and incorrect output . As a 

final note, the update of the remai ning grid was also altered to accommodate mult i­

ple patches. If the original conditions on this update had remained , t his step in the 

update structure would have erased the updates in the region occupied by the second 

patch. 

4 Diagnostics , Results , and Future Work 

Once the alterations to the simulation were made, it was necessary to make checks 

that the simulation was in fact giving a reasonable output . In order to get a qualitative 

picture of the simulation's output, I first looked at the magnitudes of the displacement 

field as the waves propagated outward . Some figures showing this progression for 

linear waves are shown below. In each snapshot , the total grid was taken to be 2000 

meters wide and 500 meters deep. The sources were placed one hundred meters from 

one another , both at a depth of 50 meters. The sources were centered at the 1000 

meter mark . In each plot the left axis is the length in meters along the horizontal 

axis while the right axis is the depth in meters. The vertical axis prot ruding from 

the page gives the magnitude of the displacement field in meters. 
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As can be seen, the imulation exhibits reasonable behavior when two sources are 

used . In reality eacb source has radial symmetry and the apparent elongation of eacb 

wave is due to d iffering length cales among the axes. 

[n general, we are most interested in the behavior of the simulation near the surface 

of the materi al as this corresponds to the location of geophones in an experiment . One 

particular way to test the code's accuracy i to look at one- and two- ource surface 

waves for the case of a linear medium. Theoretically the surface wave corresponding 

to a dual source should be a superposition of tbe surface waves from each individual 

source. A plot sbowing the surface waves from two indi" idual sources and their 

predicted superposition is given below. 

28 



0,0001 0 

0.0000 • 
~ • E -~ 
~ 0,00000 -• 
~ 
~ 

-0,0000 • 

-0.0001 0 

350 

Superposition of Linear Surface Waves 

--- ---, . , . , ,. 
'. " , 

" ,,' 

400 

:", -, , 
, . /n 
r'0 . , 

" " , 
i. j: , . , . , , , , '. . ',: , , 

" 

450 
T1me I l ms) 

, (\.. . 

... Original Source 
- - Displaced Source 
- Superposition 

soo 550 

The wave produced by our simulation is given as follows. Clearly the wave pro-
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duced by the simulation closely matches the theoretically predicted superposition of 

individual source waves. In addition , note that in the previous example the max-

imum amplitude of the two source waveform is smaller than that of either of the 
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original waves. In this project, we hope to achieve this same type of cancellation 

for non-linear waves. Decrea ed amplitude in surface waves means that more energy 

is directed downward giving a better picture of underground features. Addi tional ly, 

smaller surface waves lead to less noise in the signals of the reRected waves which 

geophysicists hope to collect . 

In particular, my research focused on decreasing the intensity of so called Rayleigh 

surface waves in non-linear anelastic materials. When a disturbance from within a 

cont inuous body reaches the body's surface, two distance waves are formed. The 

fu·st, called the direct wave, t ravels with a high velocity and is of relatively small 

amplitude. In contrast the second type of wave, called the Rayleigh wave, is of large 

amplitude and propagates at a much slower peed. Because of the Rayleigh wave's 

amplitude and speed , it is the main contribution to noise in the fi eld. In order to see 

the different waves produced in our simulation , consider the following surface plots. 

In these plots, each line represents a displacement history for a given distance from 

the source. ote that the y-axis is given in meters and represents the distance from 

a single source. The displacements are not drawn to scale, although they are scaled 

properly relative to one another. 
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In these figures, the small amplitude wave is the direct wave wllile the large 

di turbance is the Rayleigh wave. Note that the slope of the direct wave is greater 

than that of Rayleigh wave signifying that the direct wave has a higher speed than the 

Rayleigh wave. Also not ice that for a linear media, the speed of each wave remains 

constant while in the nonlinear media there exists a nonlinear zone close to the source 

in which the wave slows down before attaining a more or less constant speed at larger 

distances. In addition, observe the difference in the waveforms created in both the 

linear and nonlinear material . Specifically, the Rayleigh wave for a linear material 

is large in amplitude but has a relatively low frequency. In contrast the Rayleigh 

wave in the non-linear material is smaller in amplitude but has a rugh frequency. 

This high frequency, or ringing, in the waveform is a common feature observed in 

unconsolidated materials. 

The goal of this work is to place a second (or multiple) source such that the 

overall ampli tude of the Rayleigh wave is reduced by destructive interference. While 

this port ion of the project is in its preliminary stages, I have made a few attempts 

using the superposit ion princi ple as a guide for choosing the distance between the 

sources. The following surface plots show the results of two such runs. In the linear 

case the two sources were placed at a distance of 17 m from one another while in the 

non-linear case the sources were spaced a distance of 7m from one another. As noted 

earl ier, these choices were made using the superposition principle with the hope that 

it would yield an approximately correct result for the non-linear media. 
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Figure 7: Linear waves produced by dual sources at a depth of 10 meters. One source 
is placed at the origin of the horizontal coordinates while the other is displaced to -17 
meters. 
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Figure 8: on-linear waves produced by dual sources at a depth of 10 meters. One 
source is placed at the origin of the horizontal coordinates while the other is displaced 
to -7 meters. 
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Using this te hnique, the maximum amplitude of the Rayleigh wave was reduced 

for the case of the linear media. In the non-linear case, we see a decrease in ampli tude 

as the wave first arrives and a increase in amplitude at the rear of the Rayleigh 

wave. The difficulty in using the superposition princi ple to estimate wave cancellation 

for non-linear media is twofold . First the high frequency and varying wavelength 

associated with a non-linear waveform makes it difficult to find a source spacing which 

is destructive at all points in the wave. In general, the changing wavelength causes 

port ion of the wave to cancel as desired while other port ions interfere constructively. 

Secondly, the superpo ition principle works only approximately in the non-linear case 

as the governing different ial equation are non-linear (quasi-linear) . To see this in 

action, consider the following plots. In the first fi gure are two single source waves 

wi th their sum predicted hy the superposit ion princi ple. The second plot shows the 

solut ion to the non-linear wave equation via our simulation. 
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Clearly, non-li near waves sum in a significant ly more complex way t han linear 

waves. otice both that the peaks do not correspond and t hat t here is a pronounced 

well which develops at t he front of the waveform in between t he Rayleigh and direct 

wave. F\u·ther diagnostics will be necessary in order to ensure this behavior is a char-

acteristic of the two-source solut ion and not merely an art ifact of the computational 

process. 

Moving on from this point, there are a number of directions for fu t ure work in t his 

topic. First and foremost, addit ional diagnostic checks must be made to ensure t hat 

t he code remains stable in t he two source case. While t he code's current divergence 

from the superposit ion principle could be a t rue consequence of non-linear media, it 

is necessary to rule out the possibili ty that it is at least in part due to instability in 

t he simulation. 

Once further diagnostics are complete and we have more confidence in the code's 
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results, additional computational experiments will be performed. Using these exper­

iments we will build an intuition for how the nonlineal" wave formed by two sources 

is related to the individual waves from each source. This work will give guidance in 

the creation of pulse source arrays which should significantly reduce the amplitude 

of Rayleigh waves. After building up an intuition for the superposition of non-linear 

waves, we can then take the simulation one step further and add many sources. Using 

multiple sources, it may be possible to cancel the waves by summing many waves with 

more or less random phase. If we can find a useful fitness parameter which rates the 

effectiveness of different source configurations, it would be possible to systematically 

scan array designs in search of an optimum design. 

In conclusion , t his project aimed to address the problem of reducing the amplitude 

of Rayleigh waves in unconsolidated materials via the interference of multiple source 

pulses. In accomplishing this task , the non-linear wave propagation simulation created 

by D.W. Kosik was modified to accomodate multiple pulse sources. In order to assess 

the modifications, multiple diagnostics were performed including a qualitative analysis 

of propagation (3d plots) and checks of the superposition principle for Iine81' waves. 

To date, mult iple computational experiments have been c81Tied out in order to probe 

the behavior of Rayleigh waves in the non-linear multiple source case. In the future, 

a systematic method for optimizing source pulse design will be developed with the 

hope of significant ly reducing the effects of the Rayleigh wave. 
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