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1 Geophysical Prospecting and the Context of this

Work

While the problem of simulating non-linear wave propagation can be addressed en-
tirely within the subject of continuum mechanics, it is enlightening to begin by con-
sidering the applications of this work in the field of geophysics. In short, geophysics is
the use of physical measurements to deduce the earth’s interior structure. The types
of measurements employed within this field range from quantifying surface displace-
ments after a dynamite blast to examining variations in the earth’s gravitational or
electric field [2]. From these measurements, it is then often possible for geophysicists
to predict the structure and composition of unseen geological formations underfoot.

Within the field of geophysics, geophysical prospecting is the use of geophysical
procedures to locate deposits of useful materials such as oil, natural gas, and minerals.
This is in contrast to geological prospecting in which scientists look directly at rock
samples from exposed areas or bore holes to locate deposits. Geophysical prospecting
is of particular interest today as recent decades have seen dwindling reserves of many
of the fossil fuels and minerals necessary for maintaining the current state of human
society. In fact, in 2011 Exxon Mobil reported that for the first time in the last 17
years it had pumped more oil than it found in new reserves—finding only 95 barrels
for every 100 barrels extracted [4]. Among oil producers this is a relatively high
replacement rate as most companies routinely pump more oil than they find in new
reserves. Making matters worse, many experts now believe that the estimated reserves

in the Middle East have been largely inflated. As materials such as oil become more



difficult to find using conventional methods, it becomes increasingly important to
develop more advanced prospecting and extraction techniques.

In this vein, our work focuses on further developing one of the most commonly
used techniques in geophysical prospecting—the seismic reflection method [2]. In this
process, pressure pulses are produced near the earth’s surface (generally by detonat-
ing strings of dynamite). These pulses propagate downward and then are reflected
back towards the surface from underlying geological formations. At the surface, dis-
placements caused by these reflected waves are measured by instruments known as
geophones. By analyzing the time of arrival and form of these reflected waves, geo-
physicists are able to reconstruct a map of rock layers and other relevant underground
features. This information can then used to directly predict the presence of materials
of interest and guide further exploration.

Specifically, this research is intended to extend the use of the seismic reflection
method to materials for which traditional linear wave analysis is insufficient. Presently
prospectors using this method assume a simple linear or Hook’s law-like relation be-
tween the applied force and deformation of underlying geological materials. While
this approximation is very accurate for small displacements in dense consolidated
materials and bedrock, unconsolidated materials such as sand exhibit inherent non-
linearity regardless of the size of deformation [6, 12]. The porous and granular nature
of unconsolidated materials makes them notoriously difficult to model using analytic
techniques as their behavior depends greatly on the mesoscopic properties and orien-
tations of the individual granules. In general the relationship between applied force

and deformation, also called the material’s constitutive equation, is both non-linear
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and history dependent for unconsolidated materials. In other words, the relationship
is complex and is not a function of only the material’s current state but also of the
previous states of the material.

In order to cope with these difficulties, our work uses a numerical approach when
solving the problems related to seismic prospecting in areas dominated by sand and
loose soil. Rather than using a closed form expression for the force-deformation
relation, this work uses a model developed by McCall and Guyer|6, 12] which fits
the empirical constitutive relation known as the using the P-M space method[11].
The P-M (Preisach-Mayergoyz) space model is a general model of hysteretic behavior
which can be applied to numerous physical situations. Applied to unconsolidated
materials, the P-M space model is based on the idea that a mesoscopic crack or
pore in a material may be modeled using a highly simplified constitutive equation
referred to as a hysteretic mesoscopic elastic unit (HEMU). By assembling the proper
distribution of these simplified HEMUs, a constitutive relationship corresponding to
real unconsolidated material emerges. Using this constructed constitutive equation,
an accurate numerical solution to wave motion in unconsolidated materials can be
found.

Ultimately the goal of this research is to better map geological formations beneath
the Earth's surface. By using the P-M space model rather than traditional linear
models for the constitutive relation, geophysicists will be able to better resolve and
interpret data collected in areas where unconsolidated materials are present. With
this improved knowledge of wave propagation behavior, an enhanced data inversion

process may be developed—resulting in an overall increase in the quality of geological
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maps. Additionally, an understanding of the dynamics of waves in unconsolidated
materials will allow for improved design of source arrays when prospecting. Generally
when prospecting, a number of dynamite charges are arranged in a line in the area to
be surveyed and simultaneously set off as a single source. When designing a layout
for these charges it is important to consider the behavior of coherent noise, or ground
roll, propagated along the surface as this factor can lead to degraded measurements
at the surface and large amounts of wasted blast energy. Depending on the extent
of signal degradation it may become very difficult to obtain any useful results using
the seismic reflection method. At the present, geophysicists attempt to address these
factors within the framework of the linear wave propagation theory.

This project is aimed at addressing these aspects of source pulse array design in
the context of non-linear unconsolidated materials. In accomplishing this task, the
non-linear wave propagation simulation created by D.W.Kosik (in part described in
9]) was modified to accommodate multiple source charges placed at varying locations.
Following this modification, computational experiments were considered for various
source pulse layouts. The hope is that eventually this research will lead to array
designs which will lead to significant improvements in the quality of the data extracted
in a single shot and expand the number of sites yielding meaningful geophysical data
to include locations where unconsolidated materials are prevalent.

As a final note, I point out that the results of our simulation could also be used
to form a better understanding of materials near the earth’s surface in earthquake
scenarios [6]. In general, the soil most manmade structures are built upon fit into

the realm of unconsolidated materials. By understanding the dynamics and the non-
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linear waves produced in these materials, we can better anticipate structural behavior

in the event of an earthquake and engineer buildings accordingly.

2 A Theoretical Description of the Problem

As stated before, the problem underlying wave propagation in unconsolidated mate-
rials fits into the framework of continuum mechanics. Fundamentally, the problem of
many particles interacting may be addressed using the equations of motion (coupled
ordinary differential equations) which result from the application of Newton’s laws.
While this process is useful for small or moderate collections of particles, it becomes
intractable in systems where large amounts of particles are involved. For instance, a
rough estimate of the number of sand grains per cubic meter is on the order of 10"
(clearly this will vary based on the size distribution of the sand particles). Even with
the most advanced computer simulations today, such as those used in the gravitational
N-body problem [8] or molecular dynamics[13], direct integration of the equations of
motion becomes impractical for more than about 10° particles due to exponentially
increasing run times.

In order to circumvent these issues, continuum mechanics chooses to treat a phys-
ical system consisting of many particles as a single continuous body. The concept
of particle mass and position are replaced with density and displacement fields while
Newton's equations are recast in terms of integral equations known as balance equa-
tions. In general, this sort of continuum approximation is possible whenever there is

a large number of particles inside any given volume (sized according to the relevant



length scale of the problem) and groups of nearby particles more or less move to-
gether as a unit. Note the first of these conditions is equivalent to the density of the
material being approximately continuuous. As this research describes unconsolidated
materials using this framework, a brief treatment of the basic continuum mechanics
principles will be given. Namely, deformation and kinematics, the characterization
of force, and constitutive (force-deformation) equations will be addressed. This pre-
sentation of the basic continuum theory (excluding the sections on the constitutive

equation) is loosely based on references [5, 3, 10].

2.1 Continuum Kinematics: The Displacement Field and Mea-
sures of Strain

In particle mechanics, the basic tools used to describe the motion of a system are
the position vectors 7;. In continuum mechanics, the quantity chosen for describing
a body’s motion is the displacement field #. In defining the displacement field, we
first consider a reference configuration of the body at a time t,. This snapshot of
a body’s motion can be taken at any time but generally is chosen at a time when
the body is in equilibrium. Now to each material point within the body, a label @ is
assigned corresponding to its position in the reference configuration. As time moves
forward, each material point then follows a trajectory 7z(¢) (also denoted #(a,t))
where Iz(0) = @. These trajectories are completely analogous to the position vectors

7; in particle mechanics despite the fact the indices now form a continuum. Using



this notation, the displacement field is defined by

In words, the displacement field is a function which assigns each material point a
within the reference configuration a displacement vector pointing from its initial po-
sition to its current location. Note that this same system of characterizing motion
could be used to describe a system of just N particles. In this case @& would be defined
on only N points in space corresponding to the N particle position vectors at ¢,.

While the displacement field clearly and intuitively describes the motion of a
system, it is not a useful concept when relating a body’s configuration to the forces
acting between its constituent particles. For instance, the forces acting within an
object are unaltered after the object is translated across the room or rotated in place.
Yet in each of these cases, the displacement field of the object is non-trivial. Rather
than using the displacement field to describe a body’s configuration, it would be
ideal to have a function which identifies stretching within a body as these changes
correspond to changing forces. In particle mechanics this is analogous to the fact that
particle interactions do not depend directly on the position vectors 7; but rather on
displacements of the form " — 7;.

Trying to take this exact idea from particle mechanics and create a function
d(a,a’,t) which gives the distance between any two material points @ and a’ at time

t would be very challenging. In general such a function would be highly non-linear



and hence difficult to work with. Luckily the interactions in continuum mechanics
are due to short range forces which result from the direct contact of mesoscopic par-
ticles or microscopic interactions within a body. As a consequence, we need only look
at changes in the distance between a material point and its close neighbors. More
specifically, we hope to find a field of functions C(z, which can accomplish this goal.

Consider a material point @ with close neighbors @; where : = 1, 2. Define the vectors

Observe the dot product

51 - 5y~ Vil| 4, (31) - Vil g (52)

= [51)"[Va| ;)" [VE] ;,][5]

Note that in the limit of |5;| — 0 this approximation becomes equality which follows
with our assumptions that the three points all be in a small neighborhood. Thus one

manifestation of the desired local distance function Cz, is the field of bilinear forms

defined by the equation

O[E.t](gia gl) — [gl]T[Vﬁ|{&"J)]T[Vﬁhﬁ’ﬂ][gl]

= [|5%11°.



In continuum mechanics this object is called is called the Cauchy—Green strain tensor
(hence the preemptive naming). Those who are familiar with differential geometry will
recognize the Cauchy—-Green Strain tensor to be nothing more than the metric tensor
or first fundamental form. It is a function field which takes two displacement vectors
from the material point @ at time ¢, and gives the dot product of the corresponding
displacement vectors at time t. Moreover it is just one of the many functions which
characterizes the deformation of a body. Such a function is called a measure of strain.

Another useful measure of strain is the Lagrangian strain tensor defined by

Bao(5:,38) = (C(a,t)(gi,ﬂ) — 8l 5’:)

—
—

b= B -

['%]T[Vﬂl(ait) = I]T[Vﬁ'l(&_‘” = I] [5’1]

1 a . o o i .
= S1807 (9] ) + 9], + 9] 79 5,

1

= SIS = lI5iP).

Specifically, consider the limit of the Lagrangian strain tensor in which the particles

in a body are displaced only very slightly. In the limit that these displacements go

to zero, the displacement field #z(¢) and therefore the deformation gradient Viiz t

approach zero. Ignoring the second order term due to the product of gradients, the

Lagrangian strain measure then reduces to the so called infinitesimal strain tensor
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This strain measure is of particular importance to the work that follows. To see why
consider two material points separated by a small amount in the z direction (i.e.

zAzx). In this case it follows that

s

157117 = 11811 = (115”11 = (15D 1571 + 1131])
~ 25{5J)(§!‘§)

From the fact that the deformation gradient goes to zero, we may make the additional
approximation that ||3”’|| & ||5]|. It follows that the fractional length change in the x

direction is equal to &£,..

IS"I1 = 1I81] _  2esa(Az)?
|131] [311CHS”I + 1131])
_ 2eq5:(An)°
= Az(2A7)

“{h EII'

This fractional measure of length changes will be especially useful in relating the
deformation of a body to the continuum mechanics notion of force called stress. For
instance, consider a string which is stretched by some small amount. In this case
the relevant quantity in determining the tension is not the net length change but
rather the fractional change in the string’s length. Clearly when a short string and
a long string are stretched by the same amount the tension in the shorter string is

much larger! The other components of the infinitesimal strain tensor have similar
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interpretations. Particularly, the off diagonal terms of the strain tensor, called the
shear terms, may be related to fractional changes in the angle between the unit vectors
corresponding to its indices. This is not surprising considering the relationship of the
strain tensor to the dot product.

With this, our discussion of strain is concluded. Note that for the remainder of
this work, the strain fields will generally be referred to without the subseripts which
refer to the field point except for when the field point is not clear from context. Also
no distinction will be made between the bilinear strain functions and their matrix

representations.

2.2 Continuum Dynamics: Force, Stress, and the Momen-
tum Balance Equation

In the last section, methods for describing the kinematics—the motion and deformation—
of a continuous body were developed. The current section has two main objectives.
Firstly, the concept of force will be extended into the domain of continuum mechan-
ics through the concept of strain. Secondly, the correct generalization of Newton'’s
second law for continuous bodies will be developed, in effect creating a relationship
between the physical notions of force and mass to the kinematic aspects of a body.

To begin, consider a material body and, within this body, choose any volume V
bounded by the surface dV. Now consider the total force acting on the region V.

In general this force may be decomposed into a surface term and a volume term.
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Mathematically this is encompassed by the equation

F-:F.av-f-ﬁv

- f Ta(7,t)dA + / B(&,t)dV
aVv Vv

where T}, is the (vector) force per unit area acting on a surface element perpendicular
to 7 while B is the force per unit volume acting on V. Respectively, the quantities Ts
and B are called the traction and body force. In general, traction represents both the
effects of short range forces and direct collisions between particles. In contrast, the
body force is due to entities which act at longer distances such as the gravitational or
electromagnetic field. As this work is concerned only with contact forces, the following
discussion will focus on traction and assume the absence of body forces. Additionally
in what follows, time dependence is assumed although it will not be explicitly shown.

To begin, let it be postulated that T, = Ts(n, Z). In other words, the traction field
is solely a function of the position and orientation of the area element in question.
Note that this excludes the possibility that traction be a function of the curvature of
the surface 9V as this would be related to derivatives of the normal field n. Using

this assumption it can be shown that

where o is a field of linear transformations called the stress tensor field. The above

equation is attributed to Cauchy and accordingly called the Cauchy stress relation.
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In words, the strain tensor at a point & can be thought of as a matrix which when
applied to the unit normal of the surface element in question produces the force per
unit area. If it is further assumed that the moment of the force (torque) per unit area
on a surface of diminishing size vanishes, then the oz becomes a symmetric tensor.
With the concept of stress in hand, the continuum generalization of Newton's
second law, called the momentum balance equation, will now be developed. To do
so, consider a material body and a collection of material points contained within
the body. Now at any given time, this group of particles can be found in a volume
V(t) which changes as the material points move. For this group of particles, Newton’s
second law must hold and the time derivative of the integral of the momentum density

must be equal to the total force on the body. This can be written

o =
F=— | P@&tdv

d

dt V(t) ( )

Note that the domain of the integral is time dependent and the time derivative may

not enter the integral in the normal way. To overcome this issue, consider the ith

component of the force. In this case

d
F; = — Pi(x, t)dV
dt V(t) )
= lim L f Pi(Z,t + At)dV — Pi(Z, t)dV]
At—0 At L V(t+At) V(t)
_lim —[ [ P& t+ A0V + PiF,1)(F(E )AL -dA— | Py, t)dV].
At—0 At L Jy av(t) V(t)
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The surface term can be thought of as a correction to the approximation V(t 4 At) ~
V(t) in the first term of the previous line. Conceptually, as the material points move
through space they sweep out a very thin volume around the surface V(¢). In the case
that the particles move away from the volume V (t) the quantity (7At) .d A represents
a new volume added to the integral and is positive. Likewise, when the particles
at the edge of V(f) move into the interior of the volume, the volume is lost and a

negative correction is made. By virtue of the divergence theorem, it follows

P} = iﬂ; A [ bic Pz, t + At) — Pz, t) + V - {Pi(Z, t)v(T, t)At}dV]
IP;
= )+ V - {Pi(T ) }ydV
v O —(Z, { 1)}

This is the desired momentum balance equation in integral form. While this equation
seems like a set of three equations (one for each component of force) it actually
encompasses a set of infinitely many equations as the volume V'(¢) is arbitrary. Using

this fact, the equation

)+ V {Pi(Z 1)}V

/
at
\/.‘a’

f o-dA
f aVv(t) ;

v-‘&’dv]

| v
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can be reduced to the partial differential equation

-

JIP; T
W(xﬁt) + V i {PI(J:! t)v(Ia t)} = (v : J)i.
The local statement of the momentum balance equation is most useful when written

in terms of density, velocity, and the stress tensor. Substituting P; = pv; the right

hand side of the previous equation becomes

c%(ﬂ’vi) + V- {pviv} = ”"(% Y {pﬁ}) +p(%t’f.+ﬁ-th,-)
= p(%‘_;i +7- V)

where the first term vanishes due to the continuity equation related to conservation
of mass. Replacing Vv; with the full Jacobian, the coordinate free local momentum

balance equation takes its final form

p(%-l—?v"-ﬁ):?'-?.

In terms of the standard coordinate basis this equation can alternately be written

(31;1;_{_”_(?&)_801-;
i ot ja.'li'j _an-

At this point, we are almost ready to describe the motion of the displacement field.

The velocity terms in the above can in principle be replaced with terms relating to
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the displacement field via the relationship

The relationship between stress and the displacement field is more complicated. In
general, stress is related to the displacement field by a material dependent constraint

called the constitutive equation which will be developed in the next section.

2.3 The Constitutive Equation: Describing the Relationship
Between Stress and Strain

In this section, a constitutive equation, or material dependent stress relation, for un-
consolidated materials will be developed. While the balance equation of the previous
section corresponded to Newton's second law in particle mechanics, the constitutive
relation is analogous to specific force laws such as the Lorentz force law or the New-
tonian expression for gravity. In essence these equations relate the abstract notion of
stress and force back to concrete kinematic descriptions of a body.

In general it has been found that almost all materials have a range of deformations

in which the constitutive equation takes on the form

Oij = Jij(Eij)-

In the case that a material’s stress is purely a function of the strain tensor, we call the

material elastic. Perhaps the simplest elastic constitutive equation is that of linear

16




elasticity

Oij = bijkiEri

where b;jx is a fourth order tensor which generally varies based on position. In words,
the above relation states that at every material point the stress tensor elements are
linear functions of the strain tensor at that point.

Unfortunately when dealing with unconsolidated materials, these simple consti-
tutive relations are inadequate. Even for small stresses, the constitutive equations
for unconsolidated materials exhibit both non-linear and anelastic behavior. For this

work it will be assumed that the constitutive equation has the form

0ij = 0ij(€ij, I)

where Z is a field associated with the internal configuration of each material point.
More specifically, this internal configuration can be associated with the state of the
pores and cracks found in the vicinity of a material point. If it is further assumed
that Z is rotation invariant, the constitutive equation for an isotropic material can

be shown [9, 14] to have the form

Oij = 8{]5,'3; -+ EIE,;J‘ -+ €28 kEkj

where the scalar coefficients e; are functions of both the strain tensor and the internal

configuration of the material point. When written in terms of longitudinal, transverse,
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and shear strain components, the above equation is further reduced to the form [1]

0i; = (@ — B — ¥)0imeij + Biserr + ¥ij + N(ExkEnn — Erx)-

In the above «, 3, 7, and 7 are respectively the longitudinal, transverse, shear, and
longitudinal-transverse stress-strain moduli. As before these moduli are functions of
the material’s internal configuration Z. For the amplitudes expected in our simulation,

the second order terms in strain may be ignored giving the final constitutive equation

Oij = (0! i ff e 7)5!m5:'3 : 5 ﬁ‘sijgkk + YEij.

Note that the non-linear, anelastic, and hysteretic properties of the above equation are
due to the dependence of the a and 7 coefficients on the material’s internal state Z. In
our work it is assumed that v is approximately constant because the shear strains are
much smaller than the other strains involved. Additionally, the quantity (a — 5 — )
is taken to be approximately zero due to the quasi-linear nature of our material.
This approximation becomes exact in the linear limit. Inserting this constitutive
equation into the momentum balance equation and assuming small magnitudes for

the displacement field, the two dimensional wave equation for non-linear anelastic
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materials is obtained [1].

Pu, O Ou, Ou, Ou, v [ Ou, 8uI

o “é[ﬁ(ax“Lax) 53 [ A

At this point, the motion of the displacement field is completely described assuming
that the dynamics of the internal state Z and dependence of the moduli v, 3 on Z are
known. In this work these variables are determined within the confines of the P-M

space model which will be discussed in the next section.

2.4 The P-M Space Model and a Realistic Hysteretic Rela-
tion Between Stress and Strain

The basis of the Preisach-Mayergoyz space model [12, 7, 6] is the idea that each
material point in a body has structure on the mesoscopic scale. In reality, a body is
riddled with numerous pores, cracks, and voids which expand or contract based on
the stresses applied to the body. On a qualitative level, the P-M space model assumes
each material point contains a large number of such defects and furthermore that the
internal configuration Z is based on the states of these defects.

Like most materials, unconsolidated materials experience increasing (decreasing)
strain with increasing (decreasing) stress. What makes these materials exotic and

hysteretic is the fact that the rate at which strain increases or decreases is depen-
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dent on whether stress is increasing or decreasing. For most materials, a increase
in pressure by an amount AP will result in a corresponding change in strain Ae;
while the corresponding decrease —AP will cause a change in strain Asgy = —Aef;.
In unconsolidated materials, there is a delay in the decompression of the material.
These materials retain heightened stress despite a decrease in pressure and hence
Ae, > Aes.

In order to describe the internal state Z of a material point, we first construct
a model for a single defect which reflects this fundamental property. To do so, a
two state system called a HMEU (hysteretic mesoscopic elastic unit) which can be in
either an "open” or "closed” state will be associated with each defect. Each state is
assigned a characteristic length [,, [, and critical pressure F,, F,. The dynamics of the
system are given as follows. A defect in the open state [, will transition to the closed
state [. when the pressure on the system is increased past the threshold pressure F..
Likewise the system will move from the closed state [. to the open state [, when
the stress on the system is decreased past the opening threshold F,. The resulting
relation between length (strain) and pressure (stress) is schematically shown in the
following diagram [12].

While this relationship may not closely model the material as a whole, a distribu-
tion of such elements can be assembled such that the cumulative relationship between
stress and strain closely mimics that of real materials. For the purpose of this work,
all HMEUs will be assumed to have the same lengths [, and [. and will differ solely
on their pressure thresholds F,, P.. The distribution of HMEUSs can be thought of as

a set of points in the plane with axis P, and F,. A typical P-M space distribution in
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Figure 1: The hysteretic relation corresponding to a single HMEU.

units of kPa is given in the following figure[12].
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Figure 2: A sample distribution of HMEUs in P-M space.

For each material point, the internal state Z is then characterized by the subset of
this plane which is in the closed position or, equivalently, knowledge of which HMEUs
are open and which are closed.

Now in general, an arbitrary series of stressing and de-stressing a material can
cause a nontrivial subset of the P-M space to become closed. For our model the

situation is greatly simplified by the fact that the solutions to the wave equation
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always correspond to stresses which increase monotonically to a maximum stress
before monotonically decreasing past zero. Because the system effectively ”forgets”
its history every time it passes through the origin of the P-M space, the resulting
description of the P-M space model may be significantly simplified for our model. In
particular, the internal state of a system can be characterized by the maximum stress
alone. For each increase in stress, the P-M space model gives the same curve while
the curve associated with decreasing stress is parameterized by the maximum strain.

The resulting family of curves is exemplified in the following figure[12]. To further

100

(©)

Pressure
o 8 & 8

0O 002 004 006 008 0.1
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Figure 3: Family of curves resembling those produced in our simulation.

simplify matters, our code takes advantage of the fact that these decreasing stress
curves are very similar in shape and uses a scaling argument to obtain all information

from a single maximal stress relation.
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3 The Simulation of Non-linear Anelastic Waves

from a Cylindrical Source

On a qualitative level the simulation used in this work models the detonation of a long
string of dynamite buried under the earth’s surface. Geophysical considerations aside,
the basic problem associated with our simulation is that of solving the equations of
motion for a material body which is rectangular in cross section and otherwise infinite
in extent. Within this body is an infinite cylindrical cavity which is circular in cross
section and punches through the material. The simulation models the propagation
of a Gaussian pressure pulse which originates on the surface of the cavity and moves
outward. The boundary of the rectangular surface is free to move about. Clearly the
problem is symmetric along the direction of infinite extent ¥ and hence the equations
of motion can be reduced to a two-dimensional partial differential equation in only

the z and z variables. The scenario is shown schematically in the following figure.
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Figure 4: Cross section corresponding to simulation.

Before describing the specifics of the simulations operation, I first will give a qual-
itative rundown of the code’s update structure. Assume that the displacement field
i, velocity field ¢, and internal configuration Z (or equivalently @ and g parameters)
are known at time t. Using the given information from above, the stress field o;;
can be deduced. Since the stress field is directly related to the time rate of change
of the displacement field, updated velocity and displacement fields can be found for
time t + At. Using the displacement field, the infinitesimal strain tensor £;; at time
t + At follows immediately. From the strain tensor and the rate of change of the
strain tensor, the P-M space configuration for time ¢ + At can be calculated. At this
point, all state variables are updated and a new iteration begins.

Now looking at the code in a little more depth, the primary strategy for updating
the state of the system is a Crank-Nicholson iteration scheme. When calculating the

updated state of the displacement field, the code begins within a small rectangular
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"patch” surrounding the circular cross section of the source. In this patch the wave
is propagated using the one-dimensional radial non-linear anelastic wave equation.
This is done for several reasons. Firstly it exploits the cylindrical symmetry of the
source and the surrounding waves to reduce the dimension of the relevant differential
equations by one dimension. Furthermore, it makes the boundary conditions on
the cylinder manageable and creates a buffer zone between the region where one-
dimensional wave propagation is used and the region of two-dimensional propagation.
This makes for a smooth transition when changing from the single radial coordinate
r to the rectangular coordinates z and 2. Once the patch is fully updated, the
simulation proceeds to calculate the wave's propagation in the surrounding region
using Cartesian coordinates. Rectangular coordinates are used in this region as they
fit the symmetry of the outer boundaries of the grid. Additionally, geophones respond
to vertical displacements at the earth’s surface and hence it is important to have the
z component of the displacement field at the surface of the model.

In altering this code, my work focused on extending the existing framework to
allow for multiple sources. This process included a number of stages but can be
summarized as follows. First, parameters relating to the patch which were originally
scalar variables had to be extended into arrays of length 2. This is done so that the
position and other specifications relating to each source could be modified individu-
ally. Besides the position of the source, the parameters for each patch default to a
common value. The second stage of my work involved editing the update structure of
the code. The basic update structure before my modifications involved first updating

a single patch and then updating the surrounding grid. After the alteration, each
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of the two patches were updated and then as before, the rectangular propagation
portion of the grid was updated. In making these changes, special care was needed
in the placement of the patches. If one patch overlapped the other, then the update
from the second patch would effectively ”"overwrite” the update already completed
by the first patch. Conditions forbidding such a situation are checked at the code’s
onset. If failed, the code stops, preventing wasted time and incorrect output. As a
final note, the update of the remaining grid was also altered to accommodate multi-
ple patches. If the original conditions on this update had remained, this step in the
update structure would have erased the updates in the region occupied by the second

patch.

4 Diagnostics, Results, and Future Work

Once the alterations to the simulation were made, it was necessary to make checks
that the simulation was in fact giving a reasonable output. In order to get a qualitative
picture of the simulation’s output, I first looked at the magnitudes of the displacement
field as the waves propagated outward. Some figures showing this progression for
linear waves are shown below. In each snapshot, the total grid was taken to be 2000
meters wide and 500 meters deep. The sources were placed one hundred meters from
one another, both at a depth of 50 meters. The sources were centered at the 1000
meter mark. In each plot the left axis is the length in meters along the horizontal
axis while the right axis is the depth in meters. The vertical axis protruding from

the page gives the magnitude of the displacement field in meters.
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As can be seen, the simulation exhibits reasonable behavior when two sources are
used. In reality each source has radial symmetry and the apparent elongation of each
wave is due to differing length scales among the axes.

In general, we are most interested in the behavior of the simulation near the surface
of the material as this corresponds to the location of geophones in an experiment. One
particular way to test the code’s accuracy is to look at one- and two-source surface
waves for the case of a linear medium. Theoretically the surface wave corresponding
to a dual source should be a superposition of the surface waves from each individual

source. A plot showing the surface waves from two individual sources and their

predicted superposition is given below.
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Superposition of Linear Surface Waves
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The wave produced by our simulation is given as follows. Clearly the wave pro-
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duced by the simulation closely matches the theoretically predicted superposition of

individual source waves. In addition, note that in the previous example the max-

imum amplitude of the two source waveform is smaller than that of either of the
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original waves. In this project, we hope to achieve this same type of cancellation
for non-linear waves. Decreased amplitude in surface waves means that more energy
is directed downward giving a better picture of underground features. Additionally,
smaller surface waves lead to less noise in the signals of the reflected waves which
geophysicists hope to collect.

In particular, my research focused on decreasing the intensity of so called Rayleigh
surface waves in non-linear anelastic materials. When a disturbance from within a
continuous body reaches the body’s surface, two distance waves are formed. The
first, called the direct wave, travels with a high velocity and is of relatively small
amplitude. In contrast the second type of wave, called the Rayleigh wave, is of large
amplitude and propagates at a much slower speed. Because of the Rayleigh wave's
amplitude and speed, it is the main contribution to noise in the field. In order to see
the different waves produced in our simulation, consider the following surface plots.
In these plots, each line represents a displacement history for a given distance from
the source. Note that the y-axis is given in meters and represents the distance from
a single source. The displacements are not drawn to scale, although they are scaled

properly relative to one another.
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In these figures, the small amplitude wave is the direct wave while the large
disturbance is the Rayleigh wave. Note that the slope of the direct wave is greater
than that of Rayleigh wave signifying that the direct wave has a higher speed than the
Rayleigh wave. Also notice that for a linear media, the speed of each wave remains
constant while in the nonlinear media there exists a nonlinear zone close to the source
in which the wave slows down before attaining a more or less constant speed at larger
distances. In addition, observe the difference in the waveforms created in both the
linear and nonlinear material. Specifically, the Rayleigh wave for a linear material
is large in amplitude but has a relatively low frequency. In contrast the Rayleigh
wave in the non-linear material is smaller in amplitude but has a high frequency.
This high frequency, or ringing, in the waveform is a common feature observed in
unconsolidated materials.

The goal of this work is to place a second (or multiple) source such that the
overall amplitude of the Rayleigh wave is reduced by destructive interference. While
this portion of the project is in its preliminary stages, I have made a few attempts
using the superposition principle as a guide for choosing the distance between the
sources. The following surface plots show the results of two such runs. In the linear
case the two sources were placed at a distance of 17 m from one another while in the
non-linear case the sources were spaced a distance of 7m from one another. As noted
earlier, these choices were made using the superposition principle with the hope that

it would vield an approximately correct result for the non-linear media.
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Figure 7: Linear waves produced by dual sources at a depth of 10 meters. One source
is placed at the origin of the horizontal coordinates while the other is displaced to -17

meters.
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Figure 8: Non-linear waves produced by dual sources at a depth of 10 meters. One
source is placed at the origin of the horizontal coordinates while the other is displaced

to -7 meters.
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Using this technique, the maximum amplitude of the Rayleigh wave was reduced
for the case of the linear media. In the non-linear case, we see a decrease in amplitude
as the wave first arrives and a increase in amplitude at the rear of the Rayleigh
wave. The difficulty in using the superposition principle to estimate wave cancellation
for non-linear media is twofold. First the high frequency and varying wavelength
associated with a non-linear waveform makes it difficult to find a source spacing which
is destructive at all points in the wave. In general, the changing wavelength causes
portions of the wave to cancel as desired while other portions interfere constructively.
Secondly, the superposition principle works only approximately in the non-linear case
as the governing differential equations are non-linear (quasi-linear). To see this in
action, consider the following plots. In the first figure are two single source waves
with their sum predicted by the superposition principle. The second plot shows the

solution to the non-linear wave equation via our simulation.

Superposition of Non-Linear Surface Waves
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0.00003 Simulated Non-Linear Surface Wave (2 Sources)
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Clearly, non-linear waves sum in a significantly more complex way than linear
waves. Notice both that the peaks do not correspond and that there is a pronounced
well which develops at the front of the waveform in between the Rayleigh and direct
wave. Further diagnostics will be necessary in order to ensure this behavior is a char-
acteristic of the two-source solution and not merely an artifact of the computational
process.

Moving on from this point, there are a number of directions for future work in this
topic. First and foremost, additional diagnostic checks must be made to ensure that
the code remains stable in the two source case. While the code’s current divergence
from the superposition principle could be a true consequence of non-linear media, it
is necessary to rule out the possibility that it is at least in part due to instability in
the simulation.

Once further diagnostics are complete and we have more confidence in the code’s
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results, additional computational experiments will be performed. Using these exper-
iments we will build an intuition for how the nonlinear wave formed by two sources
is related to the individual waves from each source. This work will give guidance in
the creation of pulse source arrays which should significantly reduce the amplitude
of Rayleigh waves. After building up an intuition for the superposition of non-linear
waves, we can then take the simulation one step further and add many sources. Using
multiple sources, it may be possible to cancel the waves by summing many waves with
more or less random phase. If we can find a useful fitness parameter which rates the
effectiveness of different source configurations, it would be possible to systematically
scan array designs in search of an optimum design.

In conclusion, this project aimed to address the problem of reducing the amplitude
of Rayleigh waves in unconsolidated materials via the interference of multiple source
pulses. In accomplishing this task, the non-linear wave propagation simulation created
by D.W. Kosik was modified to accomodate multiple pulse sources. In order to assess
the modifications, multiple diagnostics were performed including a qualitative analysis
of propagation (3d plots) and checks of the superposition principle for linear waves.
To date, multiple computational experiments have been carried out in order to probe
the behavior of Rayleigh waves in the non-linear multiple source case. In the future,
a systematic method for optimizing source pulse design will be developed with the

hope of significantly reducing the effects of the Rayleigh wave.
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