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The disciplines of mathematics and music have existed for centuries, as has the

synthesis of these two subjects. In fact, Pythagoras, a name known to many

mathematicians and dreaded by many algebra students, was one of the first people to

investigate the relationship between math and music. In the 5th century BC, he was

analyzing the ratios between musical notes and their string lengths [L]. He was the first

to connect frequencies of sound to note pitch. Some people might be surprised that the

most basic principle of sounds, and thus music, comes from the mathematics and

physics of vibrations. Since Pythagoras, many different mathematicians and music

theorists have made numerous connections between the two subjects.

Throughout history, the study of music by mathematical means has become a

popular study topic. Music theorists have created numerous tuning schemes that differ

from Pythagoras's tuning ratio. Others have turned to using mathematics to fuel their

composition methods. One well known composition method is the use of twelve-tone

rows, in which a sequence of which each of the twelve notes in Western music must be

iterated at least once before any note can be repeated. Others yet have utilized

mathematical generation of the notes they will compose. Joseph Haydn used

Wurfelspiel, German for a game of dice, to compose minuet trios. This method of

composition "consisted of applying the outcome of throwing dice to choosing which of

several possible musical motives would be selected from tables of precomposed musical

figures" [L]. Today, with the sophistication of computers and other mathematical

theories, composers can simply create a model that will produce music under certain

parameters. The use of Markov chains as the model for musical composition has been a
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valuable tool for mathematically musical composers. Composition by means of Markov

chains will be the focus of the rest of this discussion.

Background:

A Markov chain can be described as a collection of probabilities in the form of a

matrix whose entries are the transitional probabilities from one state to another. A

state can be defined as an event or occurrence that is being modeled. A Markov chain is

an example of a stochastic model. The word stochastic is Greek in origin and means

"random" or "chance" [T]. A stochastic model predicts a set of possible outcomes

weighted by their likelihood or probabilities [T]. Table 1 is a general form of an n-state

matrix. The transition probability Pi,j appearing in the (row-i, column-j) entry of the

matrix gives the relative likelihood of jumping from state i to state l, given that the

current state is at state i [Am]. Markov chains can have a variety of orders. The order of

a Markov chain tells "how much recent history is taken into account when determining

the next state" [L]. For example, a third order Markov chain uses only the three most

recent states in determining the conditional probabilities for the next transition.

Throughout this paper, we consider only the first-order case. The lack of dependence

on the sequence of events preceding the current state gives Markov chains a

memoryless property.
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Table 1

Source Destination
State 1 State 2 State 3 ... State n

State 1 Pl,l P1,2 P1,3 ... PI,,,
State 2 P2,l P2,2 P2,3 .. , P2,II
... . .. ... ... . .. . ..
State n PI/,l P",2 PI/,3 ... P",,,

In the field of actuarial science, actuaries make use a variety of probability

models, including Markov chains. Two important types of Markov chains are

homogeneous and non-homogeneous Markov chains, The main difference between the

two versions is in respect to the aspect of time. When the model does not depend on

the number n of states that have occurred, the chain is said to be homogeneous [Da].

The same model/matrix is applied for each single transition, whether it be the first

transition, the last transition, or anywhere in between. On the other hand, a Markov

chain whose transition probabilities are allowed to depend on the state at time n-1 and

additionally on the number of states that have occurred is said to be non-homogeneous.

In both cases (homogeneous and non-homogeneous), the Markov chain possesses

history independence, that is, the probabilities for the n-th transition do not depend on

which states occurred at times 1 through n - 1, though it could depend on the current

(n-th) state, When referring to a non-homogeneous Markov chain matrix, the notation

Mn will be used for the matrix of transition probabilities from time n to time n + 1, with

n referring to the time the matrix is currently located. For homogeneous Markov chains,

the notation M will be used. The lack of subscript reflects the fact that the same matrix

will be used at each time interval.
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These matrices can be used to model transitions in music from one tone to the

next. For instance, if the melody of the song had the following note sequence:

C.-7C.-7G.-7G.-7A.-7A.-7G (the first few notes of the melody from Twinkle, Twinkle Little

Star). Its first-order transition matrix would resemble the matrix in Table 2. Recall that

a first-order Markov process is defined so that the destination note is determined by

probabilities that depend only on the one note preceding it. In the sequence, the note C

occurs twice, with a C following one time and a G following the other time. The

probability model would then define the transitional probability from a C to a C 50% of

the time and a C to a G 50% of the time. Each row in a transition matrix must have the

probabilities sum to 1. For a non-homogeneous Markov chain, the model could use one

set of transition probabilities for the first grouping of measures (or phrase) and then use

another for the next phrase, and so on.

Table 2

Source Destination
C G A

C 1/2 1/2 0
G 0 1/2 1/2
A 0 1/2 1/2

Many mathematicians and music theorists have used Markov chains for random

generation of music. Loy analyzed the melody from Stephen Foster's Oh Suzanna

through the use of various orders of Markov processes [L]. Claude Alamkan used first-

order Markov chain based on Beethoven's Moonlight Sonata while investigating

similarities of compositional style [AI]. Michael Rubey investigated stochastic music

generation, focusing on the generation aspect through computer programming [Ru].
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While many students and researchers have worked on stochastic music generation,

most tend to focus predominantly on the generation of the music, and all of them have

used homogeneous Markov chains.

Thesis Statement:

As an actuarial science student, my observations have a different focus than the

other composers. In the industry, actuaries aren't interested in a probability model for

its own sake. Rather, they "want to use the model to analyze the ... impact of the events

being modeled" [Da], This analysis focuses equally on the generation of the model as

well as the results of the model. While other researchers have investigated many topics

in the field of musical generation through mathematical means, no one has yet explored

non-homogeneous and homogeneous models simultaneously. This study compares

melodic material generated from both homogeneous and non-homogeneous models in

an attempt to determine which model leads to a more accurate representation of the

given melody.

Assumptions:

There are a few assumptions that are necessary to state for this approach. There

are limitless ways to describe an occurrence in music that goes beyond just the note

being played. Some of those are dynamics, instrumentation, octave, and note duration.

To narrow the focus of this study, the model only accounts for the pitch class of each

note, that is, the pitch names (0, E, F#, et cetera), ignoring differences in octave. Also,

the model analyzes only the melody of the selected songs, excluding all notes that

comprise the harmony of the song. This significantly reduces the number of states
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permissible, as well as making the generated samples easier to use for comparison.

When Loy did his generation only the pitch classes were synthesized; "the rhythms were

copied from the original to aid comparison. This method carries a hint of the musical

character of the original into the synthesized melody" [L]. This is the approach that is

used in this study as well. This ensures that the Markov chain is limited to a finite

number of states, specifically twelve states representing the twelve notes used in scales

found in Western music. This model could be expanded so that the states are the

possible combinations of both pitch and note duration. Rubey used this approach and

had 42 unique states for his first-order probability matrix [Ruj. Since the focus of this

project is more on the model and less on the methods of computer generation, the

simplification of using only pitch classes makes generations of samples by hand much

more obtainable. While the focus of this study is specifically first-order Markov chains,

the study could be expanded to research higher order Markov chains (in which the chain

keeps track of a bit more recent history) and their results. In regards to choosing what

time the non-homogeneous Markov chains will begin and end, the use of musical

phrases shall be used. For non-homogeneous chains, we will use one transition matrix

to model each musical phrases from the original melody: the transition matrix Mn will be

determined by the sequence of notes from the musical phrase that contained the n-th

note in the original melody. We will additionally adopt the notation M(j) to describe the

common one-step transition matrix for all the transition that occur within the j-th

phrase. From the selected songs that shall be modeled, most of them can be divided in
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an obvious way into a few musical phrases that shall mark the limits of each non-

homogeneous Markov chain.

The musical selections used for the formulation of the models come from a

variety of sources. The pieces were chosen for their relatively well-known melodies.

This will make informal aural comparisons of the generated samples back to the original

piece easier due to the familiarity of the melody. Another primary reason for selecting

these specific songs was for the ease of being able to determine where the musical

phrases begin and end, which is important in forming the multi-state transition model.

The songs also range a wide span of musical eras, from the Baroque period to the

modern period. Full analysis was performed on three pieces, including Stephen Foster's

Camptown Races, John Stafford Smith's melody that eventually became the melody of

the Star Spangled Banner, and Aerosmith's I Don't Want To Miss A Thing. We also

performed a more limited analysis on Johann Sebastian Bach's Wachet auf, tuft uns die

Stimme.

It was necessary to make some modifications to the original melodies before

constructing the Markov models. The Aerosmith song repeats the same note back to

back many times throughout the song. This technique, common in modern popular

music, is used in order to sing a lot of words in a short amount of time. In order to avoid

giving extra weight to these repeated notes, an arrangement of this song was composed

to eliminate that bias. Similarly, we focused on an abbreviated version of Wachet auf as

the original melody is fairly repetitive. This truncated arrangement of that piece is

roughly half as long as the original. Nothing aside from the length was altered. The
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other two songs required no alterations. All arrangements of the four songs that were

used for the generation of the models can be found in Appendix A.

Methods:

The first step was to generate the transition probability matrices for each of the

songs. Each song has two different sets of matrices, one homogeneous matrix and a

series of non-homogeneous matrices. The construction of each matrix was a matter of

counting the frequencies of one note passing to the next. Some songs will have a

greater number of notes than others, which may lead to more variation in the

generated samples. From the frequency table, it was only a matter of dividing the

frequency of each possible transition away from the given note by the number of

occurrences of transitions starting from that note to generate the probabilities needed

to construct the transition matrices. For instance, there was one occurrence of a C~C

transition in the Twinkle, Twinkle Little Star example shown above. Since there were

two C's in the given sample, the probability of transitioning from C to Cwould be (1

occurrence of C~C) -;-(2 transitions from C to any eligible note) = 0.5. The

homogeneous transition matrix was generated by including all of the transitions and

note occurrences in the song. The non-homogeneous transition matrices were

generated by including only the note transitions and note occurrences that appeared

during the corresponding selected musical phrase; that is, the entries in the matrix Mn

are the transition probabilities computed using only the phrase of the original melody

that contains the nth note. All of these tables were entered into and stored in a

Microsoft Excel spreadsheet to assist with generation and calculations. The model built
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in Excel could process up to a maximum of twelve states, corresponding with the twelve

pitch classes most commonly used in Western music.

We now describe the mechanics of actually generating a melody using Microsoft

Excel via Markov chain models. We first created cumulative probability tables, which

were used in tandem with a sequence of randomly generated numbers in Excel to

produce each of the song samples. This is best explained by example. If the transition

probability matrix Mn looks like

Source Destination
C G A

C 1/2 1/2 0
G 0 1/2 1/2
A 0 1/2 1/2

then the corresponding cumulative probability table (Table 3) would be as follows:

Table 3.

Source Cumulative
Probability

C G A
C [0, .5) [.5,1) 0
G 0 [0, .5) [.5,1)
A 0 [0, .5) [.5,1)

The right endpoint of the (row I , column j) interval in the cumulative probability table is

equal to the sum Pu + Pj,2 + ... + Pj,j of the firstj transition probabilities from row i of the

transition probability matrix Mn· Using Excel's ability to generate random numbers, a

random sequence of decimal numbers between 0 and 1 were selected from a uniform

distribution on [0, 1]. These numbers are used to select which note shall follow the

current note: when the random number generated falls in a particular interval, the

cumulative probability matrix determines what the next note shall be.
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Let us describe the Excel formulas that were used to implement the procedure of

generating sample melodies. The formula first looks at the current note, and finds that

note's row in the cumulative probability table. Then, it compares the randomly

generated number with the values in that note's row to find which interval the random

number is contained. That interval then determines which note is returned by the

function. This process is repeated until enough notes have been generated to match

the number of notes in the original song. When determining which note to start the

sample on, we decided that the first note of the original song would be the first note of

all the samples generated from that particular song. This assumption assists in the

processing the results of the samples, providing one aspect of consistency in an

otherwise random scenario. It also allowed easier observation as to when, where, and

how quickly the sample diverges from the original sequence.

The homogeneous and the non-homogeneous models have a few key

differences. The homogeneous only has one of each of the three tables. Because all of

the probabilities are pooled together, and there is no regard for differentiating how far

the song has progressed, there is only one table that includes all of the transition

probabilities. For each song, three sample songs were generated from the

homogeneous model. For the non-homogeneous model, the exact number of transition

probability tables depends on the number of phrases each song is divided into. For the

purposes of this study, Camptown Races and The Star-Spangled Banner each have four

musical phrases, I Don't Want To Miss A Thing has three phrases, and Wachet au] has

five phrases. Each musical phrase comes with its own tally table, transition probability
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table, and cumulative table, each of which correspond with only the notes that appear

within that phrase. Three complete samples were generated from each of the different

transition probability tables. Within each model, there is an additional string of

numbers that was used for testing that the model was functioning properly. Instead of

random numbers, the testing numbers run from 0 to 1 incremented by 0.01. This was

used to visually test the models to ensure that they were returning the proper new note

name based for any given random number. All of the transition probability tables can be

found in Appendix B.

Technical Problems:

There were a few problems in generating some of the non-homogeneous

samples. Songs that are shorter in length have fewer opportunities for all of the states

to communicate with one another, particularly when the song is being segmented into

the different phrases. Here communicate means that "two states i and j that are

accessible to each other" [Ro]. A good example of this occurring is the M(2), the second

non-homogeneous matrix in the Camptown Races model. The phrase has an unusual

cadence ending on the note F, the only occurrence of Fwithin that phrase: this makes F

a "dead-end" state. F is a dead-end because there is no note that F can transition to.

This was a problem when generating the samples because through the normal process

of the random transitions, any of the samples can transition to F before the very last

note in the sample, which causes the model to halt. This "dead-end" concept is similar

to that of recurrent, or absorbent, state. A state is said to be recurrent if the probability

of transitioning from state i to state i is equal to 1. This means that once you've entered
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into state i, there is no leaving state i, thus the name absorbent. In the above example,

if the note F had been a recurrent state, then every other note that follows in the piece

would be an F as well. However, the model does not supply valid probabilities for

transitions away from F. So instead of having the note F repeat over and over again, the

model simply shut down and generated no more notes. Table 4 shows the M(2) matrix

with the transition probabilities for F all being zero.

Table 4.

State F G A Bb c D

F 0 0 0 0 0 0
G 0.5 0 0 0.5 0 0
A 0 0.666667 0 0 0.333333 0

Bb 0 0 1 0 0 0

C 0 0 0.5 0 0.25 0.25
D 0 0 0 1 0

The approach that was determined best to circumvent this problem made use of

limiting probabilities. Limiting probabilities are the probability that the "process will be

in [a specific] state after a large number of transitions, and this value is independent of

the initial [state]" [Ro]. When multiplying certain transition probability matrices by

themselves many times over, the product converges to a matrix with identical rows

whose entries are the limiting probabilities. We now describe the steps necessary to

obtain a "replacement out-of-F transition row" for the transition matrix above.

1. Temporarily assume that state F is recurrent/absorbing (F-7 F has transition

probability equal to one) and then
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2. Temporarily replace the other state's "transition-out" probabilities with those

obtained by conditioning upon not ever entering state F from those states. In this case,

only the "out-of-G" row was changed. This matrix is shown in Table 5.

Table 5.

State F G A Bb c D

F 1 0 0 0 0
G 0 0 0 1 0 0
A 0 0.666667 0 0 0.333333 0

sb 0 0 1 0 0 0

C 0 0 0.5 0 0.25 0.25
0 0 0 0 0 1 0L___ .______ ----

3. Raise this matrix to a high power (the ih power was sufficient for our

application) to identify the common approximate limiting transition-out probabilities for

all of the states except "out-of-F", that is, for all the non-absorbing states.

4. Replace the "out-of-F" row of the original M2 with the common row of

limiting probabilities obtained in Step 3, and use the original (unconditional)

probabilities for the other states' rows. This new transition probability matrix (Table 6.)

was then used for the generation process:

Table 6.

State F G A Bb C D

F~o3i'0s34~o~3i5803"'D.ii0S05-~i0s2'90~0s263T
G I o.~ 0 0 0.5 0 0
A 0 0.666667 0 0 0.333333 0

sb 0 0 1 0 0 0

C 0 0 0.5 0 0.25 0.25
0 0 0 0 0 1 0

,_-~---,--¥-.-~--~~~----'~''''''_--~-.-'-~''-----~---~~-'-'-~--.-.._-.--- ---_j
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This allowed the model to continue if it produced the note F anywhere within this

phrase. The note to which F transitioned would be based upon the new limiting

probabilities. Thus, these limiting probabilities are based on the assumption that if F

could transition to another note, it would transition to the other notes based on the

limiting probabilities shown in the first row of table 6. In Camptown Races, M(2) is equal

to M(4), so limiting probabilities were needed for the generation of both of those

phrases. The Camptown Races non-homogeneous model was the only model that

necessitated the use of limiting probabilities. Very rarely would a song have an

absorbing or a dead-end state on its own, since most music starts and ends on tonic.

This regularity ensures there is the communication needed between states to avoid

absorbing and dead-end states, particularly in the homogeneous model.

Another issue that appeared a few times during the sample generation process

was transitioning between phrases. In three out of the twelve samples generated, the

last note in one phrase would not appear in the following matrix. This problem

understandably occurred only in the non-homogeneous samples. For instance, in

Sample 1 of the non-homogeneous sample in Camptown Races, the M(2) phrase ends on

B-flat, and B-flat does not appear at all in M(3). To avoid the model crashing and being

unable to generate an entire song sample, the next note selected by the operator was

based upon two criteria. The first note of the new phrase would be selected from the

possible transitions the current note can transition to. Under the current phrase's

transition matrix, the note with the highest transition probability would be selected to

be the first note in the new phrase, given that that note exists in the new transition
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matrix. All three samples that required this treatment successfully used the highest

transition probability note to conti nue the generation of the sample. While this error

handling process does eliminate some of the randomness of the generation model, it

was necessary for some process to be in place to allow the model to continue. In all

subsequent calculations, the probabilities of these notes that were forced upon the

model by this intervention were disregarded. Considering this study was the first to

investigate non-homogeneous melodic musical generations, there were no prior

examples to base troubleshooting the above two generation errors. If this study were

to be expanded upon, one would want to consider other alternatives for these

generation problems.

Analysis of Melodic Samples:

The first type of analysis done on the musical samples from the various models

was a chi-square goodness-of-fit test on the samples' pitch class. The inspiration to

utilize a chi-square goodness-of-fit test came from Soubhik Chakraborty et al [Ch], who

used a chi-square goodness-of-fit test when evaluating frequencies of particular notes in

the Ragas, melodic modes in classical Indian music. A chi-square goodness-of-fit test is

used to fit a statistical model to observed data to see how well the model actually

reflects the data. It tests the observed data, in this case the randomly generated

samples of music, against the expected model, in our case the original piece of music.

This analysis will evaluate the model's ability to generate a sample that resembles the

original in various ways. This test was used on pitch class, to count and measure the

frequency of each note occurring within the samples compared to the original. Some
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combinations of pitch class into a single category were necessary to ensure that each

category had the minimum number of expected entries necessary to perform a chi-

square goodness-of-fit test. The categories for the chi-square test were the various

scale degrees appearing in the melodies, and possibly an additional "other" category for

notes that are not part of the major scale. Another option for choosing which

categories to combine was pairing notes that served similar purposes within the song,

such as having similar harmonic functions. This type of pairing could be found in the

Camptown Races model. The calculations for this analysis were performed within

Microsoft Excel using the pitch class frequency count for both the original song and each

of the six samples generated for each song, as well as the CHITEST function in Excel.

This function returns the p-value for each test, which measures the degree to which the

frequency of pitch classes in the sample matches the original melody. Table 7 shows the

chi-square table for Wachet auf. All chi-square results can be found in Appendix C.

Table 7.

Homogeneous Non-Homogeneous

Pitch Class Original Sample 1 Sample 2 Sample 3 Sample 1 Sample 2 Sample 3
E b 40 42 46 30 36 44 47
F 32 23 32 23 35 31 46
G 37 32 39 36 38 39 40
A b 21 23 26 25 28 20 17
B b 30 35 24 42 27 30 21
C 17 22 12 21 15 16 13
D 24 22 21 18 25 21 26
Other 10 12 11 16 7 10 1
X2 6.36799 5.34417 16.66136 4.518571 1.020801 20.26299
P-value 0.491497 0.61804 0.019715 0.71848 0.994486 0.005029
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As the P-values in Table 7 show, there is quite a bit of variety in the samples

based on a chi-square goodness-of-fit test based on pitch class. The P-values range from

numbers as large as 0.99 to very small numbers around 0.005. One definition of P-value

is "the probability ...of obtaining a test statistic value at least as contradictory to Ho (null

hypothesis) as the value that actually resulted. The smaller the P-value, the more

contradictory is the data to Ho" [De]. The null hypothesis in our case is that the

generated melody is similar to the original in terms of relative frequency of pitch class

occurrences. To analyze the Wachet auf model, a chi-square value with seven degrees

of freedom was used. Homogeneous Sample 3 and non-homogeneous Sample 3 have P-

values less than 0.10, which indicates that these two generated melodies are

significantly different statistically speaking from the original in terms of counts of pitch

classes. Non-homogeneous Sample 2 has a P-value close to one, indicating that this

sample very closely resembles the original in terms of the relative frequency of scale

degrees appearing in the melody.

The exact same model resulted in melodies that were both incredibly similar to

the original and incredibly divergent from the original. This variety of results can be

seen in both the homogeneous and non-homogeneous cases for each of our songs. Of

the twenty-four samples generated, six of the samples have a P-value less than 0.10 (P=

0.0414,O.0067,O.0001,O.0313,O.0197,O.0050). The samples that are significantly

dissimilar from the original appear in both the homogeneous and non-homogeneous

models (two and four, respectively). Five out of the twenty-four samples had P-values

greater than 0.90 (P= 0.9593,0.9214,0.9676,0.9655, 0.9945), again rather evenly
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distributed between the two types (two for homogeneous and three for non-

homogeneous). When it comes to generating samples that accurately resemble the

original melody based on frequency of pitch class, both the homogeneous and non-

homogeneous models were nearly equally good and equally bad at producing accurate

results.

The next type of analysis done on the musical samples from the various models

was a chi-square goodness-of-fit test on the samples' pitch intervals. In music, an

interval is the distance between two notes' pitches. The frequency of the occurrence of

certain intervals is one way composers impose a certain style within the piece.

Measuring the frequency of intervals will help determine if the model produces samples

that mimic the composer's style. The intervals analyzed within this study are all generic

pitch intervals, such as "Third," "Fourth," "Fifth," etc. The four groupings for the

categories for pitch intervals are measured on net change from the current note. The

note could either identical, with a unison interval; up or down one, with the interval of a

second; up or down two, with an interval of a third; or up or down three, with the

interval of a fourth. Any intervals higher than a fourth are equivalent with a smaller

interval measurement; for example, moving up a fifth is equivalent to moving down a

fourth.

The frequency of each type of interval was counted and tabulated within Excel to

perform the goodness-of-fit test. Camptown Races could not be included in this analysis

because the original melody did not contain at least five of each type of interval.

Wachet aufwas also excluded from this type of analysis. The chi-square table for the



Buenger 20

Aerosmith song is shown in Table 9. To analyze the I Don't Want To Miss A Thing model,

a chi-square value with three degrees of freedom used. Non-homogeneous Sample 2 is

another example of a poor fit; with a P-value of 0.031. However, the non-homogeneous

model still produced melodies with very good fits as well. Homogeneous Sample 1 and

Sample 3 both have P-values above 0.90 (P= 0.9290, 0.9970), indicating a good

approximation of the original in regards to interval frequency.

Table 9.

Homogeneous Non-Homogeneous

Intervals Original Sample 1 Sample 2 Sample 3 Sample 1 Sample 2 Sample 3

Unison 30 31 35 29 34 35 331
Second 58 54 60 59 51 71 60

Third 39 41 30 39 48 28 41

Fourth 24 25 26 24 18 17 17

X2 0.453426 3.145889 0.050575 4.955084 8.891357 2.513196

P-value 0.928998 0.369674 0.997021 0.1751158 0.030771 0.472911

In the twelve samples analyzed, the homogeneous model produces a greater

frequency of more accurate results in terms of interval content. It didn't have any

samples classified as bad fits, whereas the non-homogenous had one. The

homogeneous model also produced two samples that were very good fits, while the

non-homogeneous model didn't create any that could be called a very good fit. Because

only twelve samples were gathered for the chi-square goodness-of-fit test for musical

intervals, more samples could be generated to fully back the assertion that the

homogeneous model is superior to the non-homogeneous model.
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A reason why the homogeneous model seems to outperform the non-

homogeneous model could be that in the non-homogeneous case it is much easier to be

drawn into a repetitive loop that causes the sample to dramatically diverge from the

original. This repetitive loop shares characteristics with a degenerate cye/e. A

degenerate cycle occurs when a state always returns back to itself. In the case of

musical modeling, this would be a sequence of notes that cannot be escaped once they

are entered. In the non-homogeneous Sample 2, there are an unusually high number of

C-7D transitions and D-7C transitions. This causes the song to bounce between these

two notes, increasing the frequency of second intervals disproportionately high. While

the C-7D and D-7C transitions do not quite form the black hole of a degenerate cycle,

they do create a strong pull towards themselves. Escaping that loop, while not

impossible, is difficult for the model. Each of the non-homogeneous samples for I Don 't

Want To Miss A Thing have a high number of the C-7D and D-7C transitions, but Sample

2 has the most, which causes that sample to be very bad fit in both the pitch class and

interval goodness-of-fit tests. Figure 1 shows a flowchart using the transition

probabilities of M(2) matrix from the Aerosmith song. The high probability of

transitioning to and from C and D as well as the pull back towards the notes C and D

from all the other notes explains the possibility of seeing a higher than expected

frequency of Cs and Ds.
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Figure 1.
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Geometric Mean Analysis:

Because probability is the basis for the generation of all of the musical samples,

it is sensible to do some analysis of the probabilities related to each song. Each sample

has an associated probability for each transition between notes that created the

melody, so the Excel model kept track of each song's probability of generation. We

need to calculate a normalized measurement that is able to compare songs of various

lengths. For example, the forty-five notes of Camptown Races will generate a much

larger product of transition probabilities than the 211 notes from the Wachet auj
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arrangement. Longer songs will have lower probabilities simply because more fractions

have been multiplied together. We need an "average transition probability" that is

independent from the number of notes in a song. In order to compare the song's

probability on a relative and normalized basis, one must use the geometric mean of the

probabilities. The geometric mean of n probabilities al through an is defined as the dh

root of their product, 'Val· a2 ..... an, which can be thought of as the average of a

set of factors in a product. Through the use of the geometric mean, the probabilities of

all the songs can be compared against one another, regardless of the number of notes in

the song. We calculated the geometric mean for the original melody based on both the

homogeneous Markov chain and the non-homogeneous Markov chains so as to have an

appropriate basis for comparison. We also calculated the geometric means of each of

the six samples for each song, using the specific model that generated that particular

sample.

Table 10 shows the geometric means of each homogeneous sample for each of

the songs analyzed, as well as the geometric mean for the original melody using the

homogeneous model. The ratios of the geometric means comparing the sample to the

original were calculated to show the magnitude of how much each sample differed from

the original. Of the nine total samples gathered, five had geometric means greater than

their respective original, and the other four had geometric means less than their

respective original melody. Only one song, The Star-Spangled Banner, had all three

samples with geometric means higher than the original. This leads to the conclusion

that the original melody contains sequences of notes that would make this melody
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unique, in the sense that these sequences seem to be hard to generate using our

random processes. The aural interpretation of this phenomenon is discussed below.

When it comes to pitch class and interval frequency, Aerosmith's Sample 3 was one of

the best fits. One might assume that because of quality of fit in those categories, the

ratio of its geometric mean to the original's geometric mean be close to 1; however, this

ratio ends being the furthest from 1 all of the samples tested. This might suggest that

there is not much relationship between the chi-square goodness-of-fit tests and the

geometric mean analysis. With more time, more samples could be generated to

investigate how close the geometric averages of many such sample geometric means

would be to the geometric mean of the original melody.

Table 10.

Geometric means: homogeneous model

Original
Sample 1
Sample2
Sample3

Camptown Sample/ Star- Sample/ I Don't Want Sample/

Races Original Spangled Original To Miss A Original

Ratio Banner Ratio Thing Ratio

0.352378 1 0.274331 1 0.246231 1

0.393844 1.117677 0.279639 1.019350 0.251631 1.021930

0.350886 0.995766 0.289278 1.054484 0.231797 0.941382

0.337786 0.958592 0.296793 1.081881 0.226341 0.919221

Song

Table 11 shows the geometric means of each non-homogeneous sample for each

of the songs analyzed, as well as the geometric mean for the original melody using the

non-homogeneous model. Also shown are the ratios of the geometric means of the

samples to those of the original. Logically, all of the non-homogeneous geometriC

means are greater than their homogeneous counterparts simply because the
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probabilities used in the non-homogeneous models are much greater than those in the

homogeneous models. Of the nine samples gathered from this method, two of the

samples had geometric means were greater than their respective original, while seven

were less than their respective original melody. The song that stands out here is the

Aerosmith song, which was the only song to have all the geometric means fall below

that of the original. An explanation for this could found in the nature of pop music.

Contemporary pop music tends to have a great quantity of notes all within short

intervals of each other, and these notes tend to be repeated frequently. This is because

the musician strives to put more words into the melody in a short amount of time. This

was expected ahead of time, and the arrangement used in this study tried to lessen the

effect of these repeated notes by reducing repeating 16th notes into a single quarter

note. However, this pop music effect still appeared within the geometric analysis as

well as the previously mentioned goodness-of-fit testing. The frequency of these

repeated notes and repetitive loops drove down the geometric means of the samples on

a relative basis to the original by not allowing the melody to explore other sequences of

notes that would have increased the geometric mean. I Don't Want To Miss A Thing's

non-homogeneous Sample 1 has the closest fit regarding geometric mean, but appears

relatively average when analyzed through the pitch class and interval frequency testing

methods. I Don't Want To Miss A Thing's non-homogeneous Sample 2 was by far the

worst performer in regards to the goodness-of-fit tests, but the geometric mean doesn't

have a dramatically different geometric mean. These few test cases again show that the

various methods of testing for accuracy are not strongly related to each other.
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Table 11.

Geometric means: non-homogeneous model

Song Camptown Sample/ Star- Sample/ I Don't Want Sample/
Races Original Spangled Original To Miss A Original

Ratio Banner Ratio Thing Ratio

Original 0.473151 1 0.392975 1 0.333049 1
Sample 1 0.541890 1.145278 0.381902 0.971823 0.332785 0.999206
Sample 2 0.464444 0.981596 0.378186 0.962369 0.319727 0.959999
Sample 3 0.436695 0.922949 0.405878 1.032836 0.324489 0.974297

In an attempt to find an upper limit for the geometric mean for each song, we

investigated the "greedy" case. Here the term greedy is being used rather loosely,

where the greedy case is defined as the melody that chooses the most likely next note

at every opportunity. In the event that there were "multiple most likely" next notes, the

path that results in the highest geometric mean is chosen. Calculating the truly highest

geometric mean in the greedy case turned out to be incredibly difficult due to the

unlimited number of paths and starting points. We placed a constraint upon the

calculation, which stated that the greedy sample must start on the same note as the

original. Because all of the music samples were generated in this method, the

calculation maintained a sense of consistency. However, this number would not be the

true "most likely" sequence of notes because there could be numerous paths that utilize

higher probabilities than the sequence that was forced to start on a particular note.

Moreover, by making a greedy choice at the first transition between pitches, the pitch

sequence could be steered away from the starting point for a path that has a higher

geometric mean of probabilities. Table 12 compares the geometric means of the
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original melody calculated from both the homogeneous and non-homogeneous

methods to the conditional greedy scenario. For each of the three songs, the geometric

means of the greedy case appears to act as an upper limit for the samples in both the

homogeneous and non-homogeneous cases.

Table 12.

Song Camptown Sample/ Star- Sample/ I Don't Want Sample/
Races Original Spangled Original To Miss A Original

Ratio Banner Ratio Ratio

Original 1 0.274331 1 0.246231

Greedy 0.562450 1.596158 0.368421 1.342980 0.391809 1.591226
Homogeneous

Original Non 0.473151 1 0.392975 1 0.333049 1
Homogeneous
Greedy Non- 0.655352 1.385079 0.604589 1.538494 0.449001 1.348154
Homogeneous

Motive Analysis:

In music, motives are important phrases that are frequently found within the

composition. The most famous example of a motive can be found in the first four notes

of Beethoven's Symphony No.5. While none of the songs analyzed in this study have an

instantly recognizable motive when compared to Beethoven's, they do contain certain

sequences of notes that most listeners would be able to identify and associate with the

respective songs. We included these motives, along with other important sequences of

notes, in the sequence analysis. The geometric means for all of the motives analyzed

are displayed in Table 13. On all but a few occasions, the geometric means for the non-

homogeneous models are greater than their respective homogeneous counterparts.

This type of analysis is more subjective than the previous types of analysis due to the
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(mathematically) arbitrary selection of the motives. The motives selected varied in

length, from four to fourteen notes long, with the average length being six notes. All of

the motives can be found in Appendix D.

Table 13.

Homogeneous Non- Homogeneous Non- Homogeneous
:l~WN!'+'l

Non- I
Homoge Homogene Homogeneous

I

neous ous

Motive 1 0.33298 0.39685 0.21669 0.29710 0.29450 0.38385

Motive 2 0.36739 0.62996 0.39490 0.48836 0.33126 0.39447

Motive 3 0.49617 0.63894 0.34824 0.39203 0.28181 0.37927

Motive 4 0.21350 0.50000 0.20087 0.26085 0.24634 0.22690

Motive 5 0.29337 0.36889 0.12784 0.29755 0.20965 0.16708

Motive 6 0.27165 0.36559 0.21302 0.35335

Motive 7 0.38888 0.58989 0.18125 0.32439

Motive 8 0.26451 0.38606 0.21980 0.41714

Motive 9 0.21703 0.41017 0.28002 0.47690

Motive 10 0.20279 0.39936 0.36212 0.41474

Motive 11
0.21458 0.33817

camptown Races Star-Spangled Banner I Don't Want To Miss A Thing

Throughout the three songs analyzed, a full occurrence of a motive was only

observed a total of seventeen times, seven times in Camptown Races and ten times in I

Don't Want To Miss A Thing. The "Do-Da Do-Da" motive, or the A-7G-7A-7G sequence

in the first line in Camptown Races labeled Motive 2 in Table 13, occurred in its entirety

the most often, once in two of the homogeneous models and twice in non-

homogeneous Sample 1. The geometric mean for this motive isn't the highest by any

means, but it still appeared the more frequently than any other motive. In the non-

homogeneous model, this is understandable because once the sequence arrives at A, it

has a strong tendency to bounce between G and A. The fact that only two pitches are

used in this motive is also a factor, especially because of the high probabilities of
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transitioning between those two notes. The most interesting thing about the non-

homogeneous Sample 1 event was that it occurred at the exact same place

chronologically in the song as the original. Only one other motive, Motive 5 in

Camptown Races's non-homogeneous Sample 2, achieved this feat. No other

occurrence of a motive aligned in this way. The non-homogeneous models were better

at producing full length motives, generating ten of the seventeen, with the other seven

generated by the homogeneous models. They were also better at placing those motives

in the same spot as the original. This is unsurprising given the "limited" information

contained in anyone non-homogeneous transition matrix; however, the homogeneous

models weren't too far behind. The advantage of being able to avoid degenerate/cyclic

patterns might help the homogeneous models to produce recognizable motives.

The non-homogeneous model was also better at producing partial motives, or

sequences of notes that resemble the motive briefly before diverging from the true

motive. The non-homogeneous models generated 212 partial motives, compared to the

homogeneous models' ninety-four. However, these numbers are most likely skewed by

some of the flaws of the non-homogeneous model. The non-homogeneous Sample 2

from I Don't Want To Miss A Thing again appears to be distorting the results. Motives 8,

10, and 11 all begin with either a C-)D-)C sequence or a D-)C-)D sequence. These

were the only motives to have occurrences in the double digits, all within that one

sample. Even after discarding the unique results of Sample 2's Motives 8, 10, and 11,

the non-homogeneous models still produce a fair number more partial motives. There
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could be more subtle sequences of notes that are boosting the non-homogeneous

models' ability to generate partial motives.

We also investigated whether the appearance of certain motives depended on a

particular sequence of preceding notes. We calculated a retrospective count of the

notes leading up to the motive. Roughly one-third of all the motives had matching

preceding notes, with most motives having only one matching preceding note. Only

three of the motives had a majority of their sequences with correct preceding notes:

from Camptown Races Motives 3 and 5, and from The Star-Spangled Banner Motive 7.

Along with having all but one of the sequences record preceding notes, they also have a

higher frequency of longer strings of preceding notes. Motive 5 is found in the third line

of phrase of Camptown Races, and all occurrences of this motive depend heavily on the

preceding notes. They also only occur when the model is generating from M(3),the non-

homogeneous transition probability matrix for the third phrase of Camptown Races.

The high probabilities shown in the flowchart of transition probabilities for M(3)(Figure

2) exhibit why this motive is so dependent on the preceding sequence of notes. While

some motives are dependent on preceding notes, these specific motives are really only

generated because the model produced favorable conditions for them to be generated.

When the model does produce these favorable conditions, the model generates very

good representations of the original for that brief span of time.
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Figure 2.
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Aural Analysis:

The aural analysis of each of the samples is a more subjective but still important

part of the analysis of the generated melodies. We looked for a relationship between

good fit songs according to the chi-square tests and how closely they resembled the

original melody in terms an informal sense of what the melody sounds like. With

Camptown Races, two particular samples stand out. The non-homogeneous Sample 2

song was conclusively the best sounding of all the Camptown Races samples. It

generated a P-value of 0.9213 in the pitch class analysis. By comparison, non-

homogeneous Sample 3 sounded the most random and furthest from the original.

However, it generated the greatest P-value of all the Camptown Races samples with p=

0.9676.
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Within The Star-Spangled Banner, non-homogeneous Sample 1 didn't sound very

similar to the original. It deviated from the original very quickly and didn't seem to have

any particular phrases that would enable one to identify the original song. The melody

bounced between a few select notes. This is in contrast to homogenous Sample 3,

which also didn't sound like the original and the notes appeared to wander aimlessly

without any clear path or destination. Here, the non-homogeneous Sample 1 generated

a very low P-value of 0.0414 in the pitch class analysis, while the homogenous Sample 3

produced a P-value of 0.8367. The results from both Camptown Races and The Star-

Spangled Banner point to a basic principle of chi-square testing. With low P-values, we

can hear the bad fits within the song. However, if the song has a high P-value, we can't

determine if the song will sound like the original or not just based upon the P-value. The

homogeneous samples from The Star-Spangled Banner model had a variety of results,

with some having similar shaping to the original, while others only recorded one or two

phrases within the whole sample that sounded comparable to the original. It appears

that capturing those unique aspects of the original melody was indeed difficult for the

model to do.

Within the many samples, there was quite a variety of deviations from the

original melody. Some samples became dramatically repetitive and even degenerative.

Others wandered from the original, but then produced a familiar phrase that would

cause one to relate it back to the original melody. Overall, the best sounding samples

came from the Camptown Races models. This is unsurprising due to the pentatonic

nature of the song, relying on a five-note scale as opposed to the more common seven-
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note major scale. The least successful song in this type of analysis was I Don't Want To

Miss A Thing. Again, this seems to be due to the repetitive nature of pop music, relying

on duplicating notes in order to get more lyrics within a short span of time. Using

Markov processes for melodic musical generation is best suited for genres that use

simple melodies and phrases, such as folk tunes, hymns, and songs that are easy for an

amateur singer to perform.

Concluding Remarks:

There are numerous ways to expand upon this type of mathematical musical

analysis. One could alter the states of the models; instead of using pitch class, one

could differentiate between octaves of notes. Also, instead of duplicating the original's

rhythmic pattern, one could incorporate the individual rhythm paired with the note

when defining the states of the Markov model. Also, instead of using only first-order

Markov processes, one could create a higher-order Markov chain by defining the states

in the Markov processes to be short sequences containing multiple notes. Each of these

approaches would dramatically increase the number of possible states, and a more

sophisticated computing method would be required. There could also be other

alternative mathematical methods for analyzing the musical samples not used in this

project. The motive analysis portion could also use refining. Instead of each motive

needing a minimum of three correct consecutive notes to be counted as an iteration of

a partial motive, each motive should have its own unique minimum to be chosen ahead

of time. This would erase the error of overweighting certain partial motives that are

repetitive in nature, as seen in motive analysis of the Aerosmith song.
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In conclusion, the various types of analysis used on the homogeneous and the

non-homogeneous Markov models did not reveal a clearly superior method of melodic

musical generation. After performing a chi-square goodness-of-fit test on frequency of

pitch class and musical interval, the results showed that both models could produce

very accurate and very inaccurate samples. The geometric mean analysis of the

probabilities of the samples generated also did not expose a better model, and the

results did not clearly correspond with those of the goodness-of-fit tests. While the

non-homogeneous model produced a higher frequency of accurate motives, the ability

of the non-homogeneous model to create repetitive loops skewed the results of this

analysis. Because of the generation challenges observed and the possibility of repetitive

and degenerate cycles found in the non-homogeneous Markov model, the

homogeneous model holds the slight edge in ability to produce accurate melodic

musical samples.
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Appendix A

Musical Arrangements and Samples Generated

Camptown Races Original
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Camptown Races Homogeneous Sample 3

Camptown Races Non-Homogeneous Sample 1
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The Star-Spangled Banner Original
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The Star-Spangled Banner Homogeneous Sample 2
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The Star-Spangled Banner Non-Homogeneous Sample 1
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The Star-Spangled Banner Non-Homogeneous Sample 3
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I Don't Want To Miss A Thing Original

14

-C~~t~j-t::I~~:~~:~rF-'§SGW:.fr-':r~f~f-'~-E.r~f~~¥~~=:~~:~[':;~-~__:~E5·F~1

I Don't Want To Miss A Thing Homogeneous Sample 1
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I Don't Want To Miss A Thing Homogeneous Sample 2

j.,

:~~~~~~~~-.~~C:~=~~~~~;-~~~==~=~:5~;~[~~~:~~~f~=':::_--~~;[-.-:~~~j

I Don't Want To Miss A Thing Homogeneous Sample 3
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I Don't Want To Miss A Thing Non-Homogeneous Sample 1
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I Don't Want To Miss A Thing Non-Homogeneous Sample 2
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I Don't Want To Miss A Thing Non-Homogeneous Sample 3
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Wachet auf, ruft uns die Stimme Original
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Wachet auf, tuft uns die Stimme Homogeneous Sample 1
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Wachet auf tuft. uns die Stimme Homogeneous Sample 2
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Wachet aut ruft uns die Stimme Homogeneous Sample 3

Flute
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Wachet auf, ruft uns die Stimme Non-Homogeneous Sample 1
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Wachet auf, tuft uns die Stimme Non-Homogeneous Sample 2
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Wachet auf tuft uns die Stimme Homogeneous Sample 3
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Appendix B

Probability Tables

Camptown Races

Homogeneous

State F G A Bb c o

~~::~ o=~'~'-Wo~l
A !I 0 0.545455 0.0909091 0 0.363636 0
Bb 0 0 1 0 0 0

c I 0.071429 0 0.4285714 0 0.285714 0.214286
o 0.166667 0 0 0 0.666667 0.166667------

Non-Homogeneous

M(1)

State F G A Bb c 0

F 0 0 0 0 0 0

G 0 0 1 0 0 0

A 0 0.5 0.25 0 0.25 0

Bb 0 0 0 0 0 0

C 0 0 0.5 0 0.25
0 0 0 0 0 1

M(2) and M(4)

State F G A Bb c 0
~::,,%~ :r...~~ -
F 0 0.2105335 0.3158028 0.210505 0.210529 0.0526295
G 0.5 0 0 0.5 0 0
A 0 0.6666667 0 0 0.333333 0

Bb 0 0 1 0 0 0

C 0 0 0.5 0 0.25 0.25
0 0 0 0 0 1 0
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M(3)

State F G A Bb c D

F 0.25 0 0.25 0 0
G 0 0 0 0 0
A 0 0 0 0 1

Bb 0 0 0 0 0

C 1 0 0 0 0
D 0 0 0 0.333333

The Star-Spangled Banner

Homogeneous

State C D E F F# G A B

C 0.217391 0.086957 0.347826 0 0 0.130435
,,,,",,,,,,__,,
o 0.217391 I

D 0.636364 0 0.272727 0.090909 0 0 o 0
E 0.181818 0.318182 0.090909 0.181818 0.136364 0.090909 o 01

F 0 0.125 0.375 0.25 0 0.25 0 0

F# 0 0 0 0 0 1 0 0
G 0.263158 0 0.315789 0.052632 0 0.368421 0 0
A 0 0.166667 0 0 0 0 0.333333 0.5
B 0.375 0 0 0 0 0.125 0.5 0

Non-Homogeneous

State C D E GF F#
~~~*~~~U;!:i/Jf;::~:~" ..:I!jti-.~;).;«.lIt~,~U'!w.lt~~~:!;:.r.:~;K~;;;~~:";:~~~\.o"t·~,.

C 0.1666667 0 0.5 0 0 0.166667
D 1 0 0 0 0 0
E 0.3333333 0.3333333 0 0 0.166667 0.166667
F 0 0 0 0 0 0
F# 0 0 0 0 0 1
G 0.1666667 0 0.5 0 0 0.333333

A 0 0 0 0 0 0
B 0.5 0 0 0 0 0

.~.-..~.--..---- ,.....-~

A B

0 0.166667

0 0

0 0

0 0

0 0

0 0

0 1

0.5 0__ __...
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State C o E F F# G A B

C 0 0 0.5 0 0 0 0 0.5
0 0.5 0 0.5 0 0 0 0 0
E 0 0.2857143 0.285714 0.285714 0.142857 0 0 0
F 0 0 0.4 0.4 0 0.2 0 0
F# 0 0 0 0 0 1 0 0
G 0 0 0 0.5 0 0.5 0 0
A 0 0 0 0 0 0 0 1
B 0.5 0 0 0 0 0 0.5

M(4)

State C 0 E F F# G A B
C 0.428571 0.2857143 0 0 0 0 0 0.285714
0 0.4 0 0.4 0.2 0 0 0 0
E 0 0.3333333 0 0.666667 0 0 0 0
F 0 0.3333333 0.333333 0 0 0.333333 0 0
F# 0 0 0 0 0 0 0 0
G 0.75 0 0 0 0 0.25 0 0
A I 0 0.3333333 0 0 0 0 0.66667 0
B 0 0 0 0 0 0.5 0.5 0~-.-.-~-----,.---.--- --..........--~---...----~-.. ---_,.,._-_.

,~ .
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I Don't Want To Miss A Thing

Homogeneous

State C 0 E F G A B

C 0.266667 0.366667 0 0.0333333 0.133333 0.2 0
0 0.419355 0.225806 0.09677419 0 0.129032 0.129032 0
E 0.10345 0.31035 0.1379310 0 0.34483 0 0.103458
F 0 0 0.6666667 0 0.33333 0 0
G 0.05556 0 0.4444444 0.055556 0.27778 0.16667 0
A 0.11765 0.11765 0.2352941 0 0.35294 0.05882 0.1176~ I
B 0.4 0.6 0 0 0 0

Non-Homogeneous

State c o E F G A B

0.375 0

0 0

0 0.166667
0 0

0.263158 0

0.111111 0.111111

0 0

0 0.4 0.2 0.2 0 0.2
E 0.083333 0.0833333 0.083333 0 0.583333
F 0 0 0 0 0
G 0.052632 0 0.368421 0 0.315789
A > 0 0 0.333333 0 0.444444
B I 0.333333 0.6666667 0 0 0
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M(2)

State C 0 E F G A B

C 0 0.625 0 0 0.375 0 0
0 0.411765 0.235294 0 0 0.117647 0.2352941 0
E 0 0.75 0.25 0 0 0 0
F 0 0 1 0 0 0 0
G 0 0 0.6 0.4 0 0 0
A 0.5 0.5 0 0 0 0 0
B 0 0 0 0 0 0 0

State c o E F G A B
c£r"'"-Io~307~-0707692~=-'"'o'O$OB077~- 0

o I 0.5 0.25 0.125 0 0.125 0 0
E I 0.222222 0.22222 0.11111 0 0.33333 0 0.11111

I
F 000 0 100
G 0.083333 0 0.5 0 0.33333 0.08333 0

A

B
o

0.5

o
0.5

0.25
o

o
o

0.5
o

o
o

0.25
o
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Wachet auf, ruft uns die Stimme

Homogeneous

State Eb F G Ab A Bb c Db D
Eb 0.075 0.325 0.075 0.05 0.025 0.075 0.075 0.025 0.275

F 0.375 a 0.25 0.2813 a 0.0625 a a 0.0313
G 0.1081 0.4595 0.0811 0.1081 0.0811 0.0811 a a 0.0811

Ab a 0.0476 0.8571 a a a 0.0476 a 0.0476

A a a 0.3333 a 0.1111 0.5556 a a a
Bb 0.2069 0.0345 0.069 0.2069 0.1034 0.2069 0.1724 a a
c 0.0588 a a a 0.0588 0.4706 a a 0.4118

Db a a a a a a 1 a a
D 0.625 a a a a 0.0417 0.2917 a 0.0417

Non-Homogeneous

M(l)

State Eb F G Ab A Bb c Db 0

Eb a 0.8 a a a 0.2 a a
F a a 0.3333 0.6667 a a a a
G 0.2 0.2 0.2 a a 0.2 0 0

Ab 0 0 1 a 0 0 0 a a
A 0 0 a 0 0 0 a 0 0

Bb 0.5 0 a 0.5 a 0 0 0 0

c a 0 a 0 0 a a 0 0

Db 0 0 0 a 0 0 a a 0

0 1 0 0 0 0 a 0 0 0

I



II
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M(2)

State Eb F G Ab A Bb c Db D
Eb 0.1429 0.1429 0.0714 0 0.0714 0 0.0714 0 0.5

F 0.4444 0 0.1111 0.1111 0 0.2222 0 0 0.1111
G 0 0.6667 0 0 0.3333 0 0 0 01
Ab 0 0 1 0 0 0 0 0 0

A 0 0 0.3333 0 0.1111 0.5556 0 0 0

Bb 0.125 0.0625 0.125 0.0625 0.1875 0.1875 0.25 0 0

C 0.1 0 0 0 0.1 0.5 0 0 0.3 I
Db 0 0 0 0 0 0 0 0 01

D 0.4545 0 0 0 0 0.0909 0.4545 0 01

M(3)

State Eb F G Ab A Bb c Db D
Eb 0 1 0 0 0 0 0 0 0

F 0 0 0.3333 0.6667 0 0 0 0 0
G 0.2 0.2 0.2 0 0 0.2 0 0 0.2

Ab 0 0 1 0 0 0 0 0 0

A 0 0 0 0 0 0 0 0 0

Bb 0.5 0 0 0.5 0 0 0 0 0

C 0 0 0 0 0 0 0 0 0

Db 0 0 0 0 0 0 0 0 0

D 1 0 0 0 0 0 0 0 0
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M(4)

State Eb F G Ab A Bb c Db D
,\";f.)iGj;:&-;::;:.wJt*!.'it;m:'Jt'_~fn:~;:;:;~a~m~~~4f:mtW:f',Ji~-;'·~"jm~k'dtt':iN::m"jwe;~{'?!,~~ii.~W:~:k"'Kj~r."~~~~'€:1!M,!~.~T!:i:~~~~~ ."..

Eb 0 0.4286 0.1429 0.1429 0 0 0.1429 0 0.1429

F 0.5714 0 0.1429 0.2857 0 0 0 0 0
G 0 0.6667 0 0.3333 0 0 0 0 0

Ab 0 0 0.8 0 0 0 0.2 0 0

A 0 0 0 0 0 0 0 0 0

Bb 0 0 0 0.3333 0 0.3333 0.3333 0 0

C 0 0 0 0 0 0.25 0 0 0.75

Db 0 0 0 0 0 0 0 0 0

D 0.75 0 0 0 0 0 0.25 0 0

M(s)

State Eb F G Ab A Bb c Db D
~'T.Z£!-~~

Eb 0.1 0.2 0.1 0.1 0 0 0.1 0.1

F 0.5714 0 0.4286 0 0 0 0 0
G 0.1429 0.5714 0 0.2857 0 0 0 0

Ab 0 0 0.75 0 0 0 0 0 0.25

A 0 0 0 0 0 0 0 0 0

Bb 0.3333 0 0 0.3333 0 0.3333 0 0 0

C 0 0 0 0 0 0.6667 0 0 0.3333

Db 0 0 0 0 0 0 1 0 0

D 0.6667 0 0 0 0 0 0.1667 0 0.1667
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Appendix C

Chi-Square Goodness-of-Fit Results

Pitch Class Frequency testing

Camptown Races

Pitch (lass Original Sample 1 Sample 2 Sample 3 Non Non Non
Sample 1 Sample 2 Sample 3

~~;~'~).j.:;~-~j:K.:;:m;:i;;'ii~f.:~~:':i>r.ii.,~¥m::.;;:'~;~t:mici~'1f{.,1W:.ii.~ ;.'i.ww.4"i$;;''i;~~~.:m4WE;;m~''1' •.:lJr.:X':;';iii}l$llm!r,:~rA''''iW~::.'i.''?ftM:r~:~'_'j};ii'f5K';;'7JiM~<';;>:!!f~~1~1>~:rn::r'~'~~~

F ! 5 4 8 6 7 4 ~II 8 10 5 8 12 7 7 !

!III 11 13 10 11 12 13 11 II
. 15 12 15 13 8 16 16

I

6 6 7 7 6 5 51

G + Bb
A

c
D

X2
P-Value

1.663636
0.797312

3.182576
0.52775

0.633333
0.959289

6.157576

0.187685

0.92197
0.921388

0.558333
0.967579

The Star-Spangled Banner

Pitch (lass Original Sample 1 Sample 2 Sample 3 Non Non Non
Sample 1 Sample 2 Sample 3

m:f.:l-~.....<f~~~ ...:<.:e.1i;~::'l'lmlM..~~~'ml't.'~~;'i'T41.JiZX-~'-':m'-~%%<?~::<:l'.J..~:,*,~.~;.v~~':Z"XX.~"(i,,"'1f~"'_:tt..~~~~;~

c 23 31 25 26 31 19 31

D 11 13 9 8 15 10 11

E 22 19 24 23 22 24 19

F 8 3 9 6 4 13 5

G 20 18 15 18 9 18 16

A 6 5 8 6 6 8 11

B + F# 11 12 11 14 14 9 8

X2 7.137912 2.761034 2.773123 13.10534 3.141864 27.52131

P-Value 0.308281 0.838186 0.836736 0.041393 0.503018 0.12044



I Don't Wont To Miss A Thing
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Pitch Class Original Sample 1 Sample 2 Sample 3 Non Non Non
Sample 1 Sample 2 Sample 3~f~"-""I~-'':''''''''=~'''':''''''''''-'''''''''''':''~'''''I'

G 37 41 26 39 41 22 27
A 17 11 21 20 12 17 11
F + F# + B 8 11 12 7 5 5 9
X2 4.30908 16.04945 0.962594 3.49821 145.2977 12.27123
P-Value 0.505827 0.006704 0.965526 0.623659 0.000111 0.031254

Wachet auf, ruft uns die Stimme

Pitch Class Original Sample 1 Sample 2 Sample 3 Non
Sample 1

~!%.~~~n,~:J:lt'~~~_~,S£1&':l5w:mt~~lWtWti!fS3'Ilb.':ltt."LUdiiiitC3lite •

Eb I 40 42 46 30 36

F I 32 23 32 23 35

G ',i 37 32 39 36 38
b 21 23 26 25 28:, I 30 35 24 42 27

C I 17 22 12 21 15

AXD2+Db ['I ~~ ~~ ~~ ~: 2~
6.36799 5.344173 16.66136 4.518571

P-Value 0.497497 0.61804 0.019715 0.71848

Non Non
Sample 2 Sample 3
•

144

31 46
39 40
20 17

30 21

16 13'
21 26
10 1

1.020801 20_262991
0.994486 0.005029
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Interval Frequency testing

The Star-Spangled Banner

Interval Original Sample 1 Sample 2 Sample 3 Non Non Non Sample 3
Samplel Sample 2

mm'j;;:f$J"'X#'~~~l"-'ifiW.,"%f.%~J$f$_"'Um."is~"Jt';mtitmfi<.Jf~.~J:tZ'iw,m!;:iP.t$;;~-.J>Si!f;!M;'t~:~"'i.W;~'m;lW1f$i:.';1.WiJt#.t~i'.wJf~~"f,."Ul;,';"~'),:~;:J~J.m&",?>':"~'$~"~~;iJtJ1C'liiW.~;!i»&."..t~;:.lI,:m.-.Y'!::o'1~r:ji~"fu~'MJt:~iifIa-~~n~.

Unison 18 19 15 18 16 18 27
Second 52 55 50 48 59 48 44

Third 21 18 27 26 17 26 19

Fourth 9 8 8 8 8 8 10
X2 0.768315 2.40232 1.60928 2.0375458 1.60928 6.032357

Pvalue 0.85703 0.493203 0.657288 0.5646506 0.657288 0.110047

I Don't Want To Miss A Thing

Interval Original Sample 1 Sample 2 Sample 3 Non Non Non Sample 3
Sample 1 Sample 2

Unison 30 31 35 29 34 35 33

Second I 58 54 60 59 51 71 60

Third I 39 41 30 39 48 28 41

Fourth I 24 25 26 24 18 17 17

X2 0.453426 3.145889 0.050575 4.955084 8.891357 2.513196
I 0.928998 0.369674 0.997021 0.1751158 0.030771P value i 0.472911
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Appendix D

Motive list

Camptown Races

,__~~)ti:!~I , , __ ~~)_t~~~_~_____ Motive 3

~-W~~£~~Ul~~

The Star-Spangled Banner

Motive 1 Motive 2 Motive 3

tF-iJfTg~~~>':;_f~:fi=~··~·=····-··=·::·····=··f····:····,·~···-·F······~··········:··f··f······:·=:···=·~·::~~t

Motive 4

~"i=~~~~~~~E~-=E~~cf~
Motive 5--- Motive 6
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