

Butler University Digital Commons @ Butler University

Graduate Thesis Collection

Graduate Scholarship

8-1-1965

The MMPI as a Predictor of Success Among Seminary Students

Sue Webb Cardwell

Follow this and additional works at: http://digitalcommons.butler.edu/grtheses Part of the Educational Assessment, Evaluation, and Research Commons, Psychology Commons, and the <u>Religion Commons</u>

Recommended Citation

Cardwell, Sue Webb, "The MMPI as a Predictor of Success Among Seminary Students" (1965). *Graduate Thesis Collection*. 470. http://digitalcommons.butler.edu/grtheses/470

This Thesis is brought to you for free and open access by the Graduate Scholarship at Digital Commons @ Butler University. It has been accepted for inclusion in Graduate Thesis Collection by an authorized administrator of Digital Commons @ Butler University. For more information, please contact fgaede@butler.edu.

This thesis is approved for recommendation to the Graduate Council

Major Professor: Wildy

Thesis Committee:

)

'Nin na. î くえ

THE MMPI AS A PREDICTOR OF SUCCESS AMONG

<u>ن</u> ۱

SEMINARY STUDENTS

A Thesis

Presented to

The Faculty of the School of Education

Butler University

In Partial Fulfillment of the Requirements for the Degree Specialist in Education

by

Sue Webb Cardwell

August 1965

TABLE OF CONTENTS

CHAPTE	ER		PA	Œ
Ι.	THE PROBLEM AND DEFINITIONS OF TERMS USED	0	0	1
	The Problem	o	•	1
	Purpose of the study.	¢	•	2
	Importance of the study	o	•	2
	Hypotheses of the study	•	e	9
	Definitions of Terms Used	•	•	11
	Ministerial effectiveness	o	0	11
	Grade point average	o	•	11
	Limitations of the study	e	ø	12
	Organization of remainder of thesis	•	0	16
II.	REVIEW OF THE LITERATURE	0	•	17
	Use of Psychological Tests in Seminaries	o	Ð	17
	Research on Seminary Students	ç	o	28
	Normative studies	•	o	32
	Predictive validity studies	0	8	38
III.	DESIGN OF THE STUDY	•	•	48
	Instruments Used	ö	0	49
	Minnesota Multiphasic Personality Inventory	c	0	49
	Ministerial Effectiveness Rating Scale	•	o	51
	Grade Point average	¢	e	53
	Subjects for the Study	•	0	54

•

701 • B824, 0 372 0,2

Collecting the Data	
Statistical Procedures	
Experimental group	
Norms and intercorrelations 62	
Crossvalidation	
IV. RESULTS: NORMS	
Clinical and Research Scales 68	
CTS Clinical scale norms and intergroup	
comparisons	
Comparison with other norms	
General population norms	
College males and Catholic seminarians 80	
United Presbyterian and Southern	
California School of Theology norms 82	
Research scale norms	
Experimental Scales	
V. RESULTS: PREDICTIVE VALIDITY 103	
Comparison of the experimental and cross-	
validation groups	
Intercorrelations 108	
Grade Point Average Predicted	
Clinical and research scales	

.

PAGE

California Test of Mental Maturity add	deo	d.		• •	120
Experimental scales	¢	٠	e	ø	121
Peer Ratings Predicted	•	6	¢	٥	125
Agreement among the raters	٥	¢		•	126
Prediction by the clinical and researd	ch				
scales	٩	٠		o	127
Prediction by the experimental scales	•	•	•	٠	133
Faculty Ratings Predicted	e	٠	٠	•	136
Agreement among the ratings	÷	e	•	•	136
Clinical scales	•	•	•	٠	137
Research scales	¢	•	•	Ð	139
Clinical and research scales	o	•	ò		141
Experimental scales	ø	•	Þ	٠	143
VI. SUMMARY AND CONCLUSIONS	•	•	٠	۰	146
Summaries and conclusions	c	•	•	¢	146
General conclusions	¢		e	•	154
Recommendations for further research	•	•	9	•	155
BIBLIOGRAPHY	•	٠	٠	Ð	157
APPENDIX A. Descriptions of Experimental Scales	•	Ð	æ	¢	165
APPENDIX E. Tables of analyses of variance for					
regression and intercorrelations	•	٥	•	ø	180

PAŒ

LIST OF TABLES

TABLE	PAGE
I.	Psychological Testing in Theological Schools 22
II.	Most Widely Used Tests in 1962
III.	Comparison of the Means of the Experimental,
	Crossvalidation, Graduate, 1964, and Total
	Groups on the MMPI Clinical Scales 71
IV.	The Mean Scores, Standard Deviations, and the
	Difference Between Means on a Test-retest of
	SCST Students
۷.	MMPI Clinical Norms for General Population,
	Christian Theological Seminary and Presbyterian
	Seminary Males
VI.	Means and Standard Deviations of the Experi-
	mental, Crossvalidation, and CTS Norm groups
	on the Research Scales
VII.	Comparison of MMPI Auxiliary Scale Norms for
	CTS and Presbyterian Seminary Male Students 101
VIII.	Significance of the Difference Between the Means
	of the Experimental and Crossvalidation Groups . 107

X. Analysis of Variance for Regression, MMPI

XI. Analysis of Variance for Regression, MMPI

Clinical Scales with Grade Point Average . . . 114

Research Scales with Grade Point Average . . . 116 XII. Analysis of Variance for Regression, MMPI

- XIII. Analysis of Variance for Regression, MMPI Experimental Scales with Grade Point Average . 123
 - XIV. Analysis of Variance for Regression, MMPI Research Scales with Peer Ratings 129

xv. Analysis of Variance for Regression, MMPI

Clinical Scales with Peer Ratings 130

PACE

TABLE

XVIII. Analysis of Variance for Regression, MMPI

	Clinical	Scales wi	th Fac	culty Ra	atings	•	• •	•	ø	138
XIX.	Analysis o	f Variance	for F	Regressi	ion, MM	PI				

Research Scales with Faculty Ratings..... 140

- XXI. Analysis of Variance for Regression, MMPI Experimental Scales with Faculty Ratings . . . 144

XXIII. Data; Analysis of Variance for Regression, MMPI Clinical Scales with Grade Point Average . 181 XXIV. Data; Analysis of Variance for Regression,

MMPI Research Scales with Grade Point Average . 183 XXV. Data; Analysis of Variance for Regression, MMPI

TABLE

PAGE

XXVI.	Data;	Analysis of Variance for Regression,	
	MMPI	Experimental Scales with Grade Point	
	Aver	age	186
XXVII.	Data;	Analysis of Variance for Regression,	
	MMPI	Clinical Scales with Peer Ratings	188
XXVIII.	Data;	Analysis of Variance for Regression,	
	MMPI	Research Scales with Peer Ratings	190
XXIX.	Data:	Analysis of Variance for Regression,	
	MMPI	Clinical and Research Scales with	ν
	Peer	Ratings	191
xxx.	Data:	Analysis of Variance for Regression,	
	Expe	rimental Scales with Peer Ratings	193
XXXI.	Data:	Analysis of Variance for Regression,	
	MMPI	Clinical Scales with Faculty Ratings	195
XXXII.	Data:	Analysis of Variance for Regression,	
	MMPI	Research Scales with Faculty Ratings	197
XXXIII.	Data:	Analysis of Variance for Regression,	
	MMPI	Clinical and Research Scales with	
	Facul	lty Ratings	198
XXXIV.	Data:	Analysis of Variance for Regression,	

MMPI Experimental Scales with Faculty Ratings. 200

TABLE

×

XXXV. Intercorrelations of CTMM, MMPI Clinical and Research Scales, and the Criteria . . . 202

XXX VI. Intercorrelations of MMPI Experimental

Scales and Criteria	203
---------------------	-----

FIGURE PAGE
1. Comparative MMPI Profiles of the Entering
Class of 1963, Upperclassmen, and Graduate
Students
2. Mean Profiles of the Entering Class and Upper-
classmen at CTS in the fall of 1963 Compared
with the Test-retest Profile of the Class at
SCST at Entrance and on Graduation
3. Profiles of the CTS Norm Group on the Clinical
Scales of the MMPI at the Mean and at Two
Standard Deviations Above the Mean, Compared
with the Mean Profiles of Catholic Seminarians
and College Males
4. Comparison of the Profiles of CTS, Presbyterian,
and SCST Norm Groups on the Clinical Scales of
the MMPI
5. Mean Profile on the Research Scales of the MMPI
for the Experimental, Crossvalidation, and
Norm Groups of CIS

6.	CTS Means on MMPI Experimental Scales Compared
	with United Presbyterian Noras 100
7.	Mean Profiles of the Experimental and Cross-
	validation Groups on the Clinical Scales of
	the MMPI

CHAPTER I

THE PROBLEM AND DEFINITIONS OF TERMS USED

Since World War II there has been a rapidly growing interest in the psychological testing of seminary students, brought about by increasing concern for both the quality and quantity of clergymen needed in this period of extensive population growth. The accelerating rise in the number needed is complicated by the ever more complex task of the minister as he adds to his roles of preacher, teacher, administrator, pastor, and counselor. The increased use of psychological testing, in general, has been noticed by those charged with the recruitment and guidance of ministerial candidates, and they have looked to a technique found useful in other fields for help in their task.

I. THE PROBLEM

The problem in using existing psychological tests with seminary students is two-fold. First, are there ways in which clergymen differ from non-clergymen that can be identified by the test? Are the general norms applicable to clergymen, or should special norms be taken into consideration in the interpretation of the test results? Second, are there variables in the test which can differentiate between the effective and the ineffective minister?

Purpose of the study. Since the Minnesota Multiphasic Personality Inventory is the psychological test that is most widely used in seminaries in the United States, it was the purpose of this study (1) to establish norms for Christian Theological Seminary that could be compared with general norms and with the norms of two other studies, those of United Presbyterian and Southern California School of Theology seminarians, to help answer the question of how clergymen differ from nonclergymen and whether special norms need to be taken into consideration in the interpretation of MMPI protocols with seminary students; and (2) to see whether there are variables measured by the MMPI which can differentiate between effective and ineffective ministers and/or predict ministerial effectiveness as measured by (a) academic success as shown by grade point average for two semesters of seminary work, (b) ratings by the faculty and (c) ratings by fellow students, both using the Ministerial Effectiveness Rating Scale.

Importance of the study. The problem of selection and

guidance of the ministry is a crucial one for the church, and one that is neither new nor newly recognized. Two quotations from other centuries sound as timely today as then:

Synod of Philadelphia, 1723: "Though we are satisfied as to his piety and Godly life, yet we think he wants necessary qualifications required in the Word of God for a gospel minister, and therefore advise him to continue in the vocation wherein he is called and endeavor to be useful as a private Christian."

General Assembly 1839: "The General Assembly feels it to be of unspeakable importance, that weak, ignorant, and imprudent men should not be introduced into the ministry. Such men, tho' incapable of doing much good even if pious, yet may do immense mischief to the cause of true religion, and only serve to bring the holy ministry into contempt, a result against which we are repeatedly admonished in the sacred Scriptures. It is not enough to increase the number of the clergy. The church's wants cannot be supplied by merely multiplying the number of ministers, unless they are well qualified for the duties of the sacred office. Indeed, the greater the number of unsound, or ignorant ministers, the greater the injury to the church."

Furthermore, from the viewpoint of the ministerial student himself, it is of vital importance that any weaknesses and limitations be recognized early and proper steps be taken to overcome them. If he should be a really unsuitable candidate for the ministry, he needs to be guided into other areas

¹Clifford E. Davis, <u>Guide for Counseling Prospective</u> <u>Church Workers, General Procedures</u> (Pittsburgh, Board of Christian <u>Education</u>, United Presbyterian Church U.S.A., 1964), p. 3.

of work before spending several years of preparation for a career in which he can only find failure.

It is in order to accomplish this double task of serving the needs of the church and of the ministerial candidate that the seminaries have turned to psychological testing as one among several useful tools, to be used along with grades, interviews, and recommendations. Each one of these has its strengths and weaknesses, and any one or two alone are not sufficient. Indeed, it was the recognition of the inadequacy of the last three that led to the development and use of psychological tests. These tests, in their turn, also have their limitations, and probably should never be used as the sole basis for accepting or rejecting a student.² This fact must be recognized so the tests will not be misused. It is in part the improper use of psychological tests that has led to the present widespread criticism of them.³ So it is very important to know as clearly

²Robert C. Nichols and John L. Holland, "The Selection of High Aptitude High School Graduates for Maximum Achievement in College," <u>Personnel and Guidance Journal</u>, XLIII, (September, 1964), pp. 33-40; <u>A Description of the College Board Scholastic</u> <u>Aptitude Test</u> (Princeton, N. J., College Entrance Examination Board, 1963), p. 5.

³James R. Barclay, "The Attack on Testing and Counseling," <u>Personnel and Guidance Journal</u>, XLIII, (September, 1964), pp. 6-16.

and definitely as possible just what each can and cannot do. Anything that can contribute to that end is important.

At the time that this study was undertaken, Christian Theological Seminary was using as its entrance battery of tests, under the supervision of the Eureau of Clinical Services of Butler University, the <u>California Test of Mental Maturity</u>, Short Form, 1957; the <u>Guilford-Zimmerman Temperament Survey</u>; the <u>Kuder Preference Record</u>, Form C; the <u>Conservatism-Radicalism Opinionaire</u>, Form J; and the <u>Theological School Inventory</u>. The <u>Minnesota Multiphasic Personality Inventory</u> was administered individually as special need for its use was felt in counseling.

In 1962-63, Dr. Duane Spiers was in the process of studying the predictive validity of this entrance battery, using as criterion measures of ministerial effectiveness grade point averages, peer ratings, faculty ratings, and ratings by leaders in the churches served by the students involved. Knowing that the MMPI is used by more seminaries than any other psychological test with general norms,⁴ it was felt that a study of its effectiveness using the same procedures and therefore directly comparable, would be very valuable, both in making decisions as to what tests to use for most efficiency and for sharpening the

⁴Ministry Studies Board <u>Newsletter</u>, April, 1962.

effectiveness of its use in counseling.

The MMPI was originally developed in a psychiatric setting for diagnostic screening and is widely used as a measure of "mental health." It is generally agreed that a certain level of mental health is necessary for effective functioning in the ministry.⁵ This study does not question the usefulness of the MMPI in indicating any student who may be seriously disturbed and so referred for psychiatric examination, or in indicating those less seriously disturbed who are in need of counseling to lessen their psychological discomfort and to enable them to function more efficiently. This usefulness is sufficient to justify its inclusion in the entrance battery of tests given by a seminary.

However, the scales of the MMPI have been found to have meaning within the normal range as well. Dependable relationships have been shown to exist between demonstrated differences in normal groups and certain scales.⁶

⁵James Dittes, "Research on Clergymen," <u>Religious Edu</u>cation, <u>57</u>, 1962, Research Supplement, p. 143.

⁶George Schlager Welsh and W. Grant Dahlstrom, <u>Basic</u> <u>Readings on the MAPI in Psychology and Medicine</u> (Minneapolis, University of Minnesota Press, 1963), p. 561.

The <u>Handbook</u>⁷ gives personality characteristics found associated with various levels of the clinical and validity scales, taken separately and in certain combinations, in medical, psychiatric, and college settings. The usefulness of the MMPI in counseling with normal populations in college settings has been greatly extended by the findings reported in <u>An MMPI</u> Codebool: for <u>Counselors</u>.⁸

The MIPI pool of 550 items has lent itself to the development of over 200 other scales, eleven of which are now routinely scored by some scoring services. Others are widely used in specialized situations. Some thirty-four of these have been chosen by Dr. Clifford D. Davis, Church Occupations Counselor for the United Presbyterian Church, as promising for use in counseling with seminary students, and included in normative studies just completed and published in 1964.

The application of a test valid for one population to a different type of group often leads to serious errors of interpretation. An earlier study by Bier of Catholic seminarians

7Dahlstrom and Welsh, <u>An MNPI Handbook</u> (Minneapolis, University of Minnesota Press, 1960)

⁸L. E. Drake and E. R. Oetting, An MMPI Code book for Counselors (Minneapolis, University of Minnesota Press, 1959)

had shown that their mean profile on the MMPI was significantly different from the mean of the general population. They scored above the mean of the population on all nine of the scales (Si was not included), and significantly so at the .01 level on six of these.⁹ So Bier recommends the use of modified norms as the minimum requirement for use of the MMPI with this group. "A certain elevation of the MMPI profile would be accepted as normal for this group, and individual interpretation made upon this basis."¹⁰

Davis found similar results in his study of Presbyterian Seminary students,¹¹ and Fielder reports a mean profile for students at Southern California School of Theology that shows the same tendencies.¹² A more detailed comparison will be made

10_{Ibid.}, p. 606.

¹¹Davis, op. cit., Supplement II, p. 21.

¹²Daniel W. Fielder, "A Nomothetic Study of the Southern California School of Theology Seminarian" (Unpublished Doctor's thesis, Southern California School of Theology, 1964), pp. 73-87.

⁹W. C. Bier, "A Comparative Study of a Seminary Group and Four Other Groups on the MMPI," reprinted in <u>Basic Readings on</u> the <u>MMPI</u> in <u>Psychology</u> and <u>Medicine</u>, (Minneapolis, University of Minnesota Press, 1963), pp. 497-98.

later in this paper, but it was felt that data from other geographical regions and other denominations were needed to indicate whether these norms are generally applicable to Protestant clergymen, or whether local seminary norms are needed for the specific seminary. The possibility that the data from several seminaries could be pooled to form more inclusive norms for Protestant seminary students was envisaged, and could be an important result of the study.

<u>Hypotheses of the Study</u>. It was hypothesized that the same type of profile pattern found in the United Presbyterian and Southern California School of Theology normative studies of Protestant seminary students would be found in norms developed for students at Christian Theological Seminary, making imperative a consideration of this pattern in counseling with them, and that it would not be sufficiently different from the others to make the use of local norms necessary.

It was further hypothesized that some of the clinical, research, and experimental scales of the MMPI would be highly enough correlated with ministerial effectiveness as measured by academic success, peer and faculty ratings, to have predictive validity; that regression equations could be calculated which could predict at a significant level the grade

point average, and the peer and faculty ratings on the <u>Min-isterial Effectiveness Rating Scale</u> for the student, using his raw scores on the appropriate scales of the MMP1.

The Christian Churches (Disciples of Christ) require graduation from seminary before ordination to the ministry, and the Methodist Church requires successful completion of half the seminary course before ordination as a Deacon, and graduation plus two years of successful experience in the pastorate before ordination as an Elder and admission to the Conference. Academic success is then a prerequisite for becoming a minister. Therefore grade point average was included as one of the criterion measures. It has long been known that intelligence is a prerequisite for good grades and is highly correlated with academic success. But other variables enter in to account for the differences in achievement shown by students of similar intelligence. It was hypothesized that the MMPI might measure some of the personality variables involved.

Personality enters decisively into effectiveness in any vocation dealing with people, so one might expect a test of personality to contain variables which might correlate with effectiveness in such a vocation. With the MMPI, granted that a certain level of mental health is necessary, it remained a

question whether any of the scales within normal range might have sufficient linear correlation with judges' ratings of effectiveness in the ministry to be able to predict such ratings from raw scores on those scales.

II. DEFINITIONS OF TERMS USED

<u>Ministerial effectiveness</u>. Unfortunately, the question of an adequate definition of ministerial effectiveness is as yet an unresolved one.¹³ The different roles involved in the functions of the minister require different characteristics, so a man may be adequate or better as a pastor, for example, and less than adequate as an administrator. For the purpose of this study, ministerial effectiveness is defined as (1) adequate academic achievement, and (2) being rated as effective by fellow students and faculty members on the <u>Ministerial</u> Effectiveness <u>Rating Scale</u>.

<u>Grade Point Average</u>. Grades at Christian Theological Seminary are letter grades, but for grade point average each is assigned a numerical value: A = four, B = three, C = two, D = one, and F = zero. The grade point average is calculated

13Dittes, op. cit., pp. 142-44.

by finding the sum of the products of the numerical value of the letter grade multiplied by the number of hours credit for the course, then dividing by the total number of hours credit. This quotient, carried to two decimal places, is what is called grade point average, or GPA.

III. LIMITATIONS OF THE STUDY

The study is limited by the limitations of the MMPI itself. Like other self-report instruments, the MMPI is influenced by the ability of the person to understand himself and by his willingness to respond honestly. With seminary students one can assume the ability to understand the questions, and with many, indeed, the ability to understand the nature of some of the questions and to respond in such a way as to give a favorable or unfavorable picture of himself. Fortunately, the MMPI contains the validity scales, which give some measure of test-taking attitude and so afford a rough check on the validity of the resulting profiles.

Another limitation is that the multiple regression and correlation analyses are with the various scales of the MMPI taken discretely, whereas personality is too complex for measurement by single scales. English and English define personality as the "pattern of motivation and of temperamental or emotional traits of the individual (in contrast to cognitive traits and ability)" and "the dynamic organization within the individual of those psychophysical systems that determine his unique adjustment to his environment. (G. Allport)"¹⁴ Long experience with the MMPI has led to increasing use of profile patterns, leading to the publication of "Codebooks" for help in the interpretation of some of the more frequently found complex patterns.¹⁵ Later studies may find certain patterns to be more valid predictors than these scales taken singly.

It should, of course, be kept in mind that the MMPI was not designed to predict grades or ministerial effectiveness as measured by peer and faculty ratings, but to do so would be an extension of its usefulness.

The matter of criterion measures of ministerial effectiveness is a thorny question which has plagued research in this field, and must be recognized as a limitation of this study. Dittes, indeed, raises the question as to whether faculty and peer ratings based on observations made in the seminary com-

14Horace B. English and Ava Champney English, <u>A</u> <u>Compre-</u> <u>hensive Dictionary of Psychological and Psychoanalytical Terms</u>, (New York, Longmans, Green and Co., 1958), p. 382.

¹⁵Drake and Oetting, op. cit., pp. 10-11.

munity, are not rather themselves predictor variables, "based on a large and unchecked theory held by the raters as to what makes an effective clergyman. 16 Admittedly, the faculty raters had to call on their own past experiences and intuition in trying to rate the students involved in the study on the Ministerial Effectiveness Rating Scale. Student ratings were often made on the basis of acquaintance at the seminary, in car pools, and in general, rather than on the basis of observation in their parishes. Furthermore, ratings made for the Spiers study by leaders of the churches which the students served as pastors "had a 'halo effect' and thus a restricted This was even more evident in the field work ratings range. received for the crossvalidation group. In some cases comments were written on the form that the raters didn't want to mark their student minister down in any area because they had not known him long enough. The ratings were not very discriminating and did not distinguish sharply between the better or poorer performing student ministers."¹⁷ So the church evalua-

¹⁶Dittes, op. cit., p. 158.

17_{Duane E. Spiers, "A Study of the Predictive Validity of a Test Battery Administered to Theological Students," (unpublished Doctor's Thesis, Purdue University, West Lafayette, 1965), pp. 109-10.}

tion ratings were not included in this study. However, after all his criticism, Dittes suggests for the measurement of the criterion, "Ratings or nominations or reports of behavior can be obtained from laymen, colleagues and peers, supervisors and church superiors, theological faculties and from clergymen themselves, or by independent observers."¹⁸ So he himself suggests nothing better.

The question of whether these ratings should be along a single good-bad continuum, or along several dimensions of the criteria has not been settled. Do different variables enter into being an effective pastor, an effective administrator, and an effective preacher? Should several scales be used for rating the various aspects of the minister's functioning? One study has seemed to indicate that halo effect, in that raters tend to rate a person high or low on all or most items without much discrimination, operates to such an extent that a global rating is preferable,¹⁹ so the ratings on the different items of the MERS have been averaged to give one over-all score for a global rating.

The validity of the <u>Ministerial Effectiveness Rating</u> Scale is "face validity," based on its content and manner of

18Dittes, op. cit., p. 161. ¹⁹Ibid., p. 157.

construction. Spiers has suggested that the MERS needs further refinement if it is to be used in later studies, since the raters themselves narrowed the ten-point scale on each item to about five points, and that factor analysis might reduce the number of items rated from the seventeen presently included.²⁰

The literature related to the problem will be reviewed in the next chapter. The plan and methodology of the study will be described in Chapter III, while the results will be presented in two chapters, norms in Chapter IV, and correlations, regression equations and crossvalidation in Chapter V. A summary, conclusions, and suggestions for further research will be given in Chapter VI.

CHAPTER II

REVIEW OF THE LITERATURE

A vast amount of research has been done on the <u>Minne-</u> <u>sota Multiphasic Personality Inventory</u>, most of which is beyond the purview of this study. In this chapter that part of it which has to do more specifically with clergymen or seminary students, and which seems more pertinent to this particular study, will be considered. As a background for this, a little of the history of psychological testing in Seminaries seems appropriate.

I. USE OF PSYCHOLOGICAL TESTS IN SEMINARIES

<u>History</u>. Theological schools have been using psychological tests in one form or another since about 1921, according to Billinsky's report to the American Association of Theological Schools in 1956. He felt that little progress had been made for several important reasons :

First of all, testing in our theological schools has been handled by men whose training in psychological measurments and statistics was either very poor or completely absent. Furthermore, many of those men were younger men with limited pastoral experience and lacking realistic interpretation of the ministry. Secondly, the tests that

had been used were standard tests often poorly selected and as far as I know none of these tests were ever validated for the purpose for which they were used in our theological schools. Thirdly, the battery of tests administered to our students was changed so frequently. often for no valid reason, that it became impossible to accumulate correlative data over a long period of time. Fourthly, there has never been made a serious intent to bring together all those who are interested in testing theological students for a series of workshops where the information could have been freely exchanged and correlated. Fifth, there has never been a serious follow-up study of the students tested in our theological schools. in order to discover the validity of our interpretation of our test results or our predictable success or failure and of actual performance of the student, not only in the seminary but also in the pastorate.

The first move toward general discussion of the use of tests and the sharing of results was made by the Department of the Ministry of the National Council of Churches in 1954.² A letter was sent to 107 theological schools listed in the 1950 Bulletin of the American Association of Theological Schools asking for information on how they used tests to discover and enlist students, to screen out undesirable or unpromising applicants, and as an aid to counseling. Eighty schools replied, of which fifty-three reported using forty-

¹John M. Billinsky, "Using the Results of Testing," Bulletin of the AATS, 1956, 22, pp. 135-6.

²Elmer G. Million, "Psychological Testing in the Seminaries," <u>Bulletin of the AATS</u>, 1954, 21, pp. 85-96.

six different psychological tests. Twenty other schools recorded an interest in using them. A few seminaries were using them for screening purposes, but most said they were using them for counseling purposes after admission. There were three major patterns of administration and use, where a seminary assumed complete responsibility for developing and administering its testing program, where a partnership existed between a college or university and a seminary, and where a seminary cooperated with a denominational program. Froyd summarized, "Considerable activity, great diversity, rugged individualism, and almost no cross-communication -- these are the general characteristics of the testing program on the seminary level."³

A Consultative Conference under the auspices of the Department of the Ministry of the National Council of Churches in 1955 asked Educational Testing Service of Princeton, New Jersey, to begin a study of testing as related to the ministry, to evaluate tests already in use, and to undertake the development of a test for use with theological students. This was begun in 1956 under the directorship of Frederick R.

³M.C. Froyd, "Pretesting for the Ministry," <u>Christian</u> Century, June 27, 1956, pp. 769-70.

Kling,⁴ and resulted in the <u>Theological School Inventory</u>. It was first used on a trial basis in 1958, then administered in twenty-eight theological schools in 1959 to establish norms. Christian Theological Seminary was one of these twenty-eight. In 1960 it was made available to all theological schools. It is designed to evaluate the strength and type of motivation which attracts persons to the ministry.

A very important outgrowth of this activity was the formation of the Ministry Studies Board in 1960, with the financial support of Lilly Endowment, Inc., of Indianapolis. Four of its eleven trustees are nominated by the Department of Ministry, Vocation, and Pastoral Services of the National Council of Churches, and four by the American Association of Theological Schools. The other three are elected at-large by the trustees, and the eleven represent many different denominations. Harry DeWire became Director in 1960 on a part-time basis, but this year, 1965, a full-time director is being appointed.

That this development has great significance for psychological testing in seminaries is evident from the state-

⁴Frederick R. Kling, "A Study of Testing as Related to the Ministry," <u>Religious Education</u>, 1958, 53, pp. 243-8.

ment of purpose of the Ministry Studies Board, as found in

its Prospectus:⁵

To conduct, stimulate, and promote research on any and all matters relative to the improvement of professional leadership in the churches and initiate or sponsor programs of this nature which may be referred to it by the denominations, theological schools, or foundations.

To promote the development of tests and other techniques designed to aid in the identification, guidance, selection, and evaluation of ministerial candidates.

To assist in the collection and dissemination of information bearing on tests and other research techniques used in the guidance, selection, and evaluation of ministerial candidates.

To conduct programs of training and instruction on the use of such tests and techniques.

To consider ways and programs in which tests and techniques can be used in reference to ministerial candidates and where necessary, to execute the same.

As a part of its work, the Ministry Studies Board, in 1961, sent survey forms to 115 accredited and associated seminaries in the American Association of Theological Schools. The statistics on the 108 returns received in time to be reported in the <u>Newsletter</u>, April, 1962, are found in Table I. The figures for the 1954 survey are also included for comparison. Of the 108 reporting, nineteen used no test at all, in

⁵<u>A</u> <u>Prospectus on the Ministry Studies</u> Board, Dayton, Ohio.

TABLE I

PSYCHOLOGICAL TESTING IN THEOLOGICAL SCHOOLS

	1954*	1962**
Total number of seminaries	107	115
Number of reports returned	80	108
Number of schools using tests	53	89
Number of schools using no tests	27	19
Total Number of tests used	46	72
Largest number of tests used by single school	8	11
Number of schools using only one test	10	10
Average number of tests per school	3.3	3.7
*Million, AATS Bulletin, 1954. **MSB N	ewsletter,	April, 196

the majority of cases because they knew of no test in which they had sufficient confidence, or had no one trained to carry on a testing program. The eighty-nine schools using tests were using seventy-two different tests: thirty different personality inventories, twenty-five different achievement tests. and seventeen different vocational and interest tests. The thirteen tests used in five or more seminaries, with the number of schools using each, are listed in Table II. It is worthy of note that the MMPI is the one used by the largest number, or fifty-eight percent of the schools using tests. Four other returns were received later, and a mimeographed report in December listed 112 schools, with ninety-two using tests. The Theological School Inventory was listed as being used by fifty-six seminaries.

There was evidence of considerable shift in the choice of tests used from 1954 to 1962. Thirty-two seminaries indicated that they had made changes in their selection of tests during the previous five years. In nearly every case, the test discontinued was replaced by one similar, as the Bernreuter Personality Inventory being replaced by the MMPI. Some of the tests listed as being used are used as part of an entrance battery, while others are used only where special
TABLE II

MOST WIDELY USED TESTS IN 1962*

Test	No. of Schools	Percentage
Minnesota Multiphasic Personality Invento	ory 52	58%
Strong's Vocational Interest	28	31%
Standard-Objective Rorschach Test	17	19%
Miller Analogies Test	15	17%
Graduate Record	15	17%
Ohio State Psychological (all forms)	14	16%
Guilford-Zimmerman	13	1.5%
California Mental Maturity	Ş	10%
Bernreuter Personality Inventory	7	8%
Thematic Apperception Test	7	8%
Allport-Vernon Study of Values	5	6%
Wechsler Adult Intelligence	5	6%
Otis-Hennon-Nelson	5	6%

*MSB Newsletter, April, 1962.

problems or needs arise.

Seventy-two of the eighty-nine schools using tests administered them at or shortly after admission. About sixty percent of the schools indicated that they used them for counseling purposes only. Only nine indicated that they used them solely for screening, and the twenty-seven others used them for both counseling and screening.

While some of the increases may be due to the larger number of seminaries reporting, one can agree with DeWire's observation, "It is apparent that psychological testing has become standard procedure in seminary training."⁶

Attitudes toward testing. Attitudes toward the use of psychological testing have ranged from hostile to tolerant to enthusiastic. In the early years it was often seen as a conflict between the psychological test and the Holy Spirit. If a man was called of God, who could question it? In another vein and spirit, Hiltner in 1957 maintained that psychological tests in unskilled hands are reduced to gadgets; it has not been demonstrated that tests peculiar to their purpose are necessary for ministerial students; if tests are for "screening

⁶Ministry Studies Board Newsletter, April, 1962.

out," why not use general tests; faculty skill in using these tests may be no more valuable than his increased skill in interviewing and related techniques.⁷ To which Saunders replied that it seemed premature to quibble over whether to use special or general tests, and that such techniques as the interview have not been shown to surpass tests in validity.⁸

This type of questioning is not limited to seminaries, however. Barclay, writing in defense of testing in the <u>Per-</u> <u>sonnel and Guidance Journal</u>, September, 1964, has to admit that there are valid deficiencies in present programs.⁹

Others question whether the implications of the "call" 10 mean that "religious vocation" differs from other vocations, and Sweeney, writing on "The Morality of Psychological Testing of Vocations," takes exception to the practice of compulsory

7_{Seward} Hiltner, "Psychological tests for Ministerial Candidates," <u>J. Past. Care</u>, 1957, 11, pp. 106-8.

⁸D. R. Saunders and S. C. Webb, "A Reply to Dr. Hiltner," J. Past. Care, 1957, 11, pp. 108-10.

⁹James R. Barclay, "The Attack on Testing and Counseling--An Examination and Reappraisal," <u>The Personnel and Guidance</u> Journal, 1964, 43, pp. 6-16.

¹⁰J. O. Nelson, "Vocation, Theism, and Testing," <u>Pastoral</u> Psychology, 1959, 89, pp. 33-40. testing.

In its Prospectus, the Ministry Studies Board still has to say:

There are mixed reactions to the use, relevance, and effectiveness of psychological testing for ministerial candidates. Because the spiritual implications of the profession are considered both valid and basic, there is an understandable resistance to the indiscriminate use of tests. On the other hand, if tests can help in the process of evaluation and guidance and otherwise increase our understanding of the ministry, they should not be discounted.

Among people deeply involved in using psychological tests with ministers, as were those attending the Conference on the Guidance of Ministerial Candidates in Columbus, Ohio, May 10-13, 1965, the question of whether psychological tests should be used for screening, or for counseling only, is still a live issue. There was some feeling that screening out the brilliant misfits would lead to safe mediocrity. That no psychiatrist would have passed St. Paul was mentioned several times. The usual formula seemed to be, "we don't use tests to screen, but to guide." Indeed, a recent intensive followup study by Harrower, using intelligence and "positive mentalhealth potential" as measured by a battery of psychological

¹¹Robert Howard Sweeney, C. S. C., <u>National Catholic</u> Education Association Bulletin, August, 1964.

tests, shows these to be meaningful when compared with excellence of performance in the ministry, but she also says, "On the other hand, it would seem that psychological tests and our concepts of positive mental-health potential give no clue as to which students will voluntarily withdraw, decide on a teaching career in the religious field, enter a different denomination, or leave the ministerial field completely."¹² Davis put it succinctly, "But there is a human factor which cannot be measured, and a divine factor which cannot be ignored."¹³

II. RESEARCH

The amount of research on seminary students has perhaps been in proportion to that on other groups, and is increasing with the impetus of the Ministry Studies Board and the wide use of psychological tests in seminaries. In 1962, thirtynine of the theological schools surveyed indicated that some

¹²Molly Harrower, "Mental Health Potential and Success in the Ministry," <u>Journal of Religion and Health</u>, Vol. 4, No. 1, October, 1964, p. 58.

¹³Clifford E. Davis in an address to the Conference on Guidance of Ministerial Candidates, Columbus, Ohio, May 12, 1965. Permission to quote secured.

sort of study had been undertaken or was under way, according to the April MSB <u>Newsletter</u>. In about September, 1965, a comprehensive bibliography of more than 700 titles of books, articles, theses, and dissertations pertaining to research on clergymen, produced jointly by the Board of Theological Education of the Lutheran Church in America and the Ministry Studies Board, will be published.¹⁴ The two most recent issues of the <u>Newsletter</u> mentioned several interesting studies presently under way.

Dittes, however, writing in 1962 about research on clergymen, was quite critical of most of the research done to that time. "There has, regrettably, not yet developed from research activities to date any firm set of trustworthy and important conclusions. It appears, after a review of studies in this field, that most research has proceeded to collecting data and drawing conclusions without first solving important methodological problems. Conversely, the research which has most successfully tackled the methodological problems has not yet applied the methodology to a full-blown

¹⁴Robert J. Menges and James E. Dittes, <u>Psychological</u> <u>Studies of Clergymen: Abstracts of Research</u>, Thomas Nelson and Sons, to be published about September 1, 1965.

study. For example, perhaps the single most successful solution to the problem of developing a criterion for effectiveness has been accomplished in a study which has used a total sample of six! (Stern, 1954)ⁿ¹⁵ He continues, "If the futility of borrowing secondhand measures from other research problems and other areas of research were not apparent on the a priori grounds just argued, it would quickly become apparent empirically by a survey of research findings actually reported. These conclusions present a discouraging parade of negative results, no relationship between the predictor and criterion measurement--except in such non-surprising instances as when a measure of intelligence proves predictive of seminary grades."¹⁶

He lists three major difficulties with most current research:

Short-cut criteria, in which certain easily available estimates of some kinds of performance are used--the classic example being grade point averages--without any attempt to validate as to whether this is related with

15 James E. Dittes, "Research on Clergymen," <u>Religious</u> Education, 1962, 57, Research Supplement, pp. 141-2.

¹⁶Ibid., p. 145.

actual performance criteria in the field.

Single dimensional criteria, in which it is assumed that a single good-bad dimension is adequate to account for clergy performance.

<u>Pickup predictors</u>, employed promiscuously because easily available, without any proper introduction into the research by way of theoretical expectations.¹⁷

While admitting the validity of much of his criticism, it might be suggested that a "firm set of trustworthy and important conclusions" in this field are not usually easily arrived at, that readily available variables are the logical ones to begin with before trying for more esoteric ones, and that negative results may contribute to progress, as in trial and error learning, provided they are communicated and taken into account in future research. Indeed, it may be as important to know what a test will not do as to know what it will do. Most importantly, additions to our knowledge in most fields come much more frequently in small increments than in dramatic break-throughs, and these break-throughs are usually preceded by the long, patient building-up of these small increments. With this in mind, some of the research done with the MMPI will be considered, first normative studies, then predictive ones.

17_{Ibid.}, p. 155.

Normative studies. One of the early and most thorough normative studies of the MMPI was done by Bier on Catholic seminarians in 1948.¹⁸ Subjects for the study included 171 seminarians from different geographical regions, 208 medical students, 121 dental students, fifty-five law students. and 369 college students. The groups were equated to be comparable, in that all students were both Catholic and unmarried. and all were of at least college level in education, giving a rough equation of intelligence. Even age was equated statistically by a covariance technique. All groups scored higher than the mean for the general population, and the seminarians the highest of all, making them "the most deviant portion of an already deviant population." Seminarians scored above the mean of the population on all nine of the MMPI scales, and differently from the other groups in six of the nine scales at the .Ol level of significance. However, he found that the welladjusted seminarians differ far more from poorly adjusted sem-

¹⁸ W. C. Bier, "A Comparative Study of Five Catholic College Groups on the MMPI," <u>Basic Readings on the MMPI in Psy-</u> <u>chology and Medicine</u>, G. S. Welsh and W. G. Dahlstrom, eds. (Minneapolis, Univ. of Minnesota Press, 1956) pp. 586-609.

¹⁹Ibid., p. 593.

inarians than they do from well-adjusted medical, dental, law and college students. So he concluded, "Psychological adjustment emerges as something basic transcending purely vocational lines... The MMPI will serve as a substantially suitable instrument in the testing of seminary adjustment because it is accomplishing essentially the same thing, giving essentially the same differentiation in the seminary group as it is in the others."20 However. he felt some modification essential, and proceeded to do an item analysis of the first 366 items. He found that "four of the ten items which serve most to differentiate the seminary group from the others are sex items. Ιt is perfectly clear that sex adjustment for the seminarians. dedicated as they are to a life of celibacy, is a very different thing than it is even for the unmarried groups comprising the present study... The seminary group is differentiated from the others because a certain number of items either do not apply to the group at all, or apply in a very different way from that in which they apply to the other groups."21 Bier recommended modification of content, and put out a modified form of the MMPI to be used with Catholic seminarians. but felt that a minimum requirement would be modified norms.

²⁰Ibid., p. 595. ²¹Ibid., pp. 604-5.

in which " a certain elevation of the MMPI profile would be accepted as normal for this group, and interpretation made on this basis."²²

In spite of the fact that Goodstein (among others) found the same general differences for male college students and recommended the use of new norms for university screening work, though considering regional or local norms unnecessary,²³ Welsh and Dahlstrom do not agree. They write, "However, the conculusion reached by several of these authors that specialized norms will have to be constructed for these populations is not one with which we would agree. Our interpretation is that there are inferences which can legitimately be made from a specified score value of an MMPI scale regardless of the relative frequency or infrequency of this score value in the group under consideration. A standard normative group forms the only defensible reference for score comparison."²⁴

²³L. D. Goodstein, "Regional Differences in MMPI Responses among Male College Students," <u>Basic Readings on the MMPI in</u> <u>Psychology and Medicine</u>, G. S. Welsh and W. G. Dahlstrom, eds. (Minneapolis, Univ. of Minnesota Press, 1956) pp. 6574-8.

²⁴G. S. Welsh and W. G. Dahlstrom, <u>Basic Readings on the</u> <u>MMPI in Psychology and Medicine</u>. (Minneapolis, Univ. of Minnesota Press, 1956) p. 561.

^{22&}lt;sub>Ibid., p. 606.</sub>

Extensive work with Protestant seminarians has been done by Clifford E. Davis, of the United Presbyterian Church. Under his direction a denomination-wide program of testing for counseling on three levels has been set up, the local level, the presbytery level, and the seminary level. On the presbytery level, the Strong Vocational Interest Test, the Guilford-Zimmerman Temperament Survey, and the MMPI are administered by a proctor. and returned to the Office of the Church Occupations Counselor for scoring and interpretation. The results are available for admissions committees at the time of seminary application. Used in the seminary itself are various projective tests, reading tests, and some portions of intelligence tests.²⁵ In his Guide for Counseling Prospective Church Workers, with its two supplements, are found seminary norms for the Zulliger Test, the Director of Christian Education scale for the Kuder Preference Record, Vocational Form D, and, in more detail, for the Strong Vocational Interest Blank and the MMPI. For the latter two, norms have also been established for seminary women, and National and Ecumenical Missions Workers, both men and women.

²⁵Clifford E. Davis, <u>Guide for Counseling Prospective</u> <u>Church Workers</u>, (Pittsburgh, Board of Education of the United Presbyterian Church, 1963) p. 8.

Davis uses the usual profile forms for the general population norms, then recommends the use of plastic overlays on which the special norms have been drawn. A comparison of these Presbyterian Seminary Norms and those found for CTS will be made in Chapter IV.

As mentioned in Chapter I, Davis selected thirty-four of the additional scales listed in the Appendix of the <u>Handbook</u> for study purposes, as giving promise of usefulness with church populations, and calls them Auxiliary Scales. These scales are included in the present study, and comparison will be made with the Presbyterian norms. In addition, Davis chose thirty-four sub-scales, taken from the longer D, Hy, Ma, Mf, Pa, Pd, and Sc scales, and included norms and profile forms in his <u>Guide for Counseling Prospective Church Workers</u>. He is studying patterns of success and failure of National and Ecumenical Missions Workers on the Auxiliary scales.

Vayhinger and Wise have made a longitudinal study of students at Garrett Theological Seminary, using the MMPI as part of the study, but the findings are not yet published.²⁶

²⁶John Vayhinger and Carroll Wise, <u>A Psychological Study</u> of Theological Students, to be published.

Jalkanen used a sample of one hundred Lutheran seminarians and compared their mean profile with the established MMPI norms for male college students. He found that the seminarians were significantly higher on Hs, Hy, Pd, Mf, and Pa, and lower on D, but not significantly so.²⁷

Fielder made a normative study of students at Southern California School of Theology, using the tests administered as an entrance battery since the establishment of the school in 1956, that is, the Graduate Record Examination, the Guilford-Zimmerman Temperament Survey, the Strong Vocational Interest Blank, and the Minnesota Multiphasic Personality Inventory. On the MMPI, he also made comparative studies of the mean profiles of married and unmarried students, of dropouts, failures, and the changes from entrance to graduation of one class.²⁸ The norms for the MMPI found in his study will be compared with those found for Christian Theological Seminary students in this study.

²⁷g. J. Jalkenen, "The Personality Structure of Seminarians: The use of Available MMPI norms for Diagnosis." (Unpublished Master's Thesis, Roosevelt University, 1955)

²⁸Daniel W. Fielder, "A Nomothetic Study of the Southern California School of Theology Seminarian." (Unpublished Doctor's Thesis, Southern California School of Theology, 1964)

While more detailed comparison will be made later, generally, considering Catholic and Protestant together, compared with general norms and those of control groups, seminarians have high scores on K, Mf, Hs, Hy, Pt and Sc. Protestants tend to score low on Si, which was not scored for the Catholic groups, and to score higher on Pd and Ma than the Catholics. A "very general kind of interpretation" is made by Dittes:

Seminarians appear moved by some sensitivity to and awareness of tribulations of the human situation. The Protestants might seem to be a little more active or "freer" in their response. However, an item analysis would be very illuminative. The Ma and Pd scales contain some items which could clearly be interpreted as a restivness under authority. If it happened that these were the items which were contributing to the high score among Protestants, this might be impressive evidence in favor of one of the theories...Catholic seminarians tend to be lower than Protestant seminarians and lower than other control groups on Pd which can be labeled as unconventionality.²⁹

Predictive Validity Studies. Studies of the predictive validity of the MMPI used with seminary students have been plagued by the yet unresolved question of valid criterion measures of ministerial success. As students, ministerial experience is limited to student churches on a part-time basis.

²⁹Dittes, <u>op</u>. <u>cit</u>., p. 153.

Real measures of effectiveness need to be applied after five to ten years in the full-time ministry, implying an urgent need for follow-up studies. However, as the possible rather than the ideal, measures used have included grade point average, faculty ratings, self ratings, and field work ratings.

Although Dittes says that grade point average is the most used of "short-cut" criteria, 30 only one study of the correlations of the scales of the MMPI with academic average. incompletely reported, and one profile analysis with honor point ratio were found. Webb and Goodling made a study of test validity in the Chandler School of Theology using two samples. one of 220 students in their sixth or lower quarter, and the other of 136 entering students in the fall of 1953. The battery included the Ohio State Psychological, the Cooperative English Test, the Cooperative General Culture Test, the Guilford-Zimmerman Temperament Survey, the Strong Vocational Interest Blank, the MMPI, and college grade point average. The criteria used were average grades, grades for selected courses, and ratings of certain written work. The numerical values assigned were A = 40, B = 30, C = 20, D = 10, F = 0.

³⁰Ibid., p. 155.

In general it was found that the average on the required courses had a higher correlation with test scores, using Pearson's r. "For Sample I scores on seventeen scales of the MMPI and ten scales of the <u>Guilford-Zimmerman</u> were correlated with the first year average. Only one scale, Dominance on the MMPI, correlated significantly with the criterion (r = .14).³¹ One wishes more information had been given in the report, for more detailed comparison with the correlations found in this study. The seventeen scales of the MMPI used were not named.

Thompson made a study of 140 first year students at three Lutheran seminaries, using the <u>Ohio State Psychological</u> <u>Test</u>, the <u>Strong Vocational Interest Blank</u>, and the MMPI. Criteria measures were honor point ratio and a faculty rating scale. MMPI profile analysis showed lower grade averages for student with elevated profiles than for those with "normal" profiles, at the .05 level of significance.³²

³¹S.C. Webb and R. A. Goodling, "Test Validity in a Methodist Theological School," <u>Educational</u> and <u>Psychological</u> Measurement, 18. (1958) pp. 859-866.

³²J. S. Thompson, "A Study of Relationships Between Cegtain Measured Psychological Variables and Achievement in the First Year of Theological Seminary Work." (Dissertation Abstracts, Vol. XVI, No.10) pp. 1846-47.

Ratings have often been used, but studies using the MMPI with them are few. Two studies of Catholic seminarians are reported. Hispanicus studied fifty seminarians who were given a battery of tests and rated by faculty as to prospects for success. Significant agreement among judges was found. Those who were on the well-adjusted end of the MMPI scales were rated higher.³³ Wauck used a sample of 207 major seminarians, administering the <u>Ohio State Psychological</u> <u>Test</u>, the <u>Kuder Preference Record</u>, the MMPI, and the <u>Group</u> <u>Rorschach</u>, and having the faculty rate them on adjustment. They were divided into groups on the basis of these ratings. The better adjusted group was higher on Depression and Psychastenia, though both groups were in normal range on all MMPI scales.³⁴

One study of Protestant seminarians using the MMPI and ratings was found, that of Webb and Goodling, a companion study of the one using grade point averages referred to above,

³³M. B. Arnold, P. Hispanicus, C. A. Weisgerber, P. F. D'Arcy, <u>Screening Candidates for the Priesthood and the Rel</u>igious Life. (Loyola University Press, 1962)

³⁴L. Wauck, "An Investigation into the Use of Psychological Tests as an Aid in the Selection of Candidates of the Diocesan Priesthood." (Doctor's thesis, Loyola University, 1957)

but using field work ratings. The authors prepared a graphic rating scale, scored with a ten interval key, containing eight scales. Six of these were constructed to parallel the content of the corresponding scales of the <u>Guilford-</u> <u>Zimmerman Temperament Survey</u>: Leadership, Emotional Stability, Restraint, Friendliness, Sociability, and Objectivity. Two others, Responsibility and Judgment, were added. Rating was done by the student's field work supervisor, usually a pastor or district superintendent, each student rated by only one person. They found "no significant correlations between selected MMPI scales and selected graphic rating scales."³⁵ Which MMPI scales were "selected", or which graphic rating scales, was not indicated.

A third study in this same series using the same samples, but using faculty ratings, did not use the MMPI. However, it is unusual in that faculty members rated students on four traits, intelligence, interests appropriate for the pastoral ministry, personality, and overall effectiveness, using a five-point rating scale. Four faculty members, who

^{358.} C. Webb, R. A. Goodling, I. L. Shepherd, "The Prediction of Field Work Ratings in a Theological School," Religious Education, 1958, <u>53</u>, pp. 534-538.

were presumed to be most familiar with the largest number of students, did all the rating. Reliability, computed by the procedure of Horst, was intelligence .65; interest .50; personality .66; and total effectiveness .60, significant at the .01 level. Since intercorrelations were high, secondorder partial correlations indicated that the total effectiveness ratings were highly and significantly associated with their estimate of the student's personality, significantly but less strongly with interest, and not significantly with their estimates of the student's intelligence. Several predictors, i.e. academic, interest, and personality measures, correlated significantly with faculty ratings, but the results are considered tentative.³⁶

The Spiers study, just completed, made use of the statistically more sophisticated procedures made possible by computers to test the predictive validity of the Entrance Test Battery, and each test separately, using as criterion measures grade point average, faculty ratings, peer ratings, and field work ratings on the MERS. In each case, each student

³⁶R. A. Goodling and S. C. Webb, "An Analysis of Faculty Ratings of Theological Students," <u>Religious Education</u>, 1959, 54, pp. 228-233.

was rated by three persons, the entire faculty taking part, and the Senior Practicum cooperating in the peer ratings. Interjudge reliability, computed by Kendall's Coefficient of Concordance W, was significant at the .05 level for the faculty ratings, and at the .Ol level for the peer ratings. Ιt was impossible to check the field work ratings, since each judge (church officer) rated only one person, but halo effect was observable, making "the inclusion of the church ratings questionable." Multiple regression and correlation analyses were done, and multiple regression equations calculated. These equations were applied to the appropriate scores of a second sample for crossvalidation. The California Test of Mental Maturity was found to be a good predictor of grade point average and of faculty ratings. The Guilford-Zimmerman Objectivity and Thoughtfulness together, and the Kuder Mechanical, negatively weighted, were able to predict peer ratings for the experimental group, but the results did not hold for the cross-validation group. "It was discovered that the ratings (for the crossvalidation group) lacked agreement in the case of peer

³⁷Duane E. Spiers, "A Study of the Predictive Validity of a Test Battery Administered to Theological Students," (Unpublished Doctor's Thesis, Purdue University, 1965) p. 63.

ratings."³⁸ The Theological School Inventory Intellectual Concern, negatively weighted, was able to predict field work ratings for both groups. In light of the halo effect, "this result must be accepted cautiously because no other variables were able to predict field work ratings for the crossvalidation group."³⁹ Guilford-Zimmerman Masculinity, negatively weighted. was able to predict church ratings for the experimental group, but not for the crossvalidation one. Similar results were found for the Guilford-Zimmerman Emotional Stability and Thoughtfulness variables for GPA, but the combination of Emotional Stability and California Test of Mental Maturity IQ together were able to predict for both groups. It should be noted that what was attempted here was precise prediction of grade point average and ratings to two decimal places.

In this chapter we have seen that psychological testing has been used increasingly in theological seminaries, especially since World War II. In 1954 was the beginning of real communication and cooperation, culminating in the establishment of the Ministry Studies Board in 1960. This venture has been successful enough that a full-time director is being called this year.

³⁸Ibid., p. 114. ³⁹Ibid., p. xii.

1965. In 1962, of 115 theological schools polled, 112 responded, of which ninety-two were using psychological tests, seventy-two different ones. DeWire could say, "It is apparent that psychological testing has become standard prodedure in seminary training."

Testing is, except in a few cases, used for guidance rather than "screening out." It has come to be more generally accepted, but there are still notes of caution being sounded against using test results for screening, and against the misuse of testing, as indeed there are in personnel and guidance circles in general. In the case of the seminary student, there is always also the matter of the "call," which enters in, in addition to the questions of ability and mental health.

Research on seminary students--and clergymen--has been perhaps in proportion to that on other groups. It has been criticised for too largely using short-cut and single dimensional criteria, and pick-up predictors. It has been handicapped by the lack of generally recognized criteria for ministerial effectiveness. The multiple roles of the minister make these criteria even harder to establish. The research has usually been of two kinds, normative studies and predictive validity studies. The first have shown that ministers differ significantly from men in general, while the second have had mixed and not too encouraging results, partly because of the real problem of criterion measures. Some studies of both kinds using the MMPI have been reviewed.

CHAPTER III

DESIGN OF THE STUDY

As stated in the first chapter, the purpose of this study was (1) to establish norms for the Minnesota Multiphasic Personality Inventory for Christian Theological Seminary that could be compared with general norms and with norms of two other studies to help answer the question of how clergymen differ from non-clergymen and whether special norms need to be taken into consideration in the interpretation of MMPI protocols with Seminary students; and (2) to see whether there are variables measured by the MMPI which can differentiate between effective and ineffective ministers and/or predict ministerial effectiveness as measured by (a) academic success as shown by grade point average for two semesters of Seminary work, (b) ratings by the faculty and (c) ratings by fellow students. both using the Ministerial Effectiveness Rating Scale.

The first required the calculation of means and standard deviations for the groups involved, and the second, the calculation of intercorrelations and the analysis of variance for regression of each set of scales with each criterion measure, to be used in a Wherry-Doolittle test selection proceedure to establish the proper regression equation for each. This regression equation then was used to predict the criterion measure for a crossvalidation group, and the coefficient of correlation between the predicted and achieved scores found and tested for significance. The description of the instruments involved, the subjects used, the process of gathering the data, and the statistical procedures used, form the subject matter of this chapter.

I. INSTRUMENTS USED

The Minnesota Multiphasic Personality Inventory. The Group Form of the MMPI was administered, using the National Computer Systems answer sheets, and sent to the National Computer Systems for scoring. The answer sheets were scored for the usual validity scales, ?, L, F, and K, the usual clinical scales, Hs, D., Hy, Pd, Mf, Pa, Pt, Sc, and Si. The descriptions of these scales are found in the <u>Manual</u>, and in much more complete detail, in <u>An MMPI Handbook</u>. In addition, NCS scored the answer sheets for the eleven other Research scales they score routinely: A - First Factor, R- Second Factor, Es -Ego Strength, Lb - Low Back Pain (Functional), Ca - Caudality, Dy - Dependency, Do - Dominance, Re - Social Responsibility, Pr - Prejudice, St - Social Status, and Cn - Control.

By special request, the sheets were also scored according to the "Clifford E. Davis Output", their designation for the set of thirty-four Auxiliary scales chosen by Dr. Davis as having possible usefulness with seminary students, and included in his normative studies of Presbyterian Seminarians. These thirty-four are listed below, the scale number being the number of the scale as listed in An MMPI Handbook, pp. 443-468.

Ac	Academic Achievement	
Ae	College Achievement	
At	Iowa Manifest Anxiety	
Hsx	Homosexuality	
De	Delinquency	
Do-r	Dominance	
Dу	Dependency	
Ec	Escapism	
Em	Emotional Immaturity	
Eo	Ego Overcontrol	
Es	Ego Strength	
Gr	Graduate School Potential	
HC	Hostility Control	
Hr	Honor Point Ratio	
Ie	Intellectual Efficiency	
Im	Impulsivity	
Lp	Leadership	
Mp	Malingering	
No	Neurotic Overcontrol	
Nu	Neurotic Undercontrol	
Or	Originality	
Pr	Prejudice	
Pv	Pharisaic Virtue	
Re-r	Social Responsibility, revised	
Rg-m	Rigidity, Male	
Rp	Role Playing	
Sf	Self-sufficiency	
So-r	Social Desirability, revised	
Sp	Social Participation	
	Ac Ae At Hsx De Do-r Dy Ec Em Eo Es Gr Hc Hr Ie Im Lp Mp No Nu Or Pr Rg-m Rp Sf So-r Sp	

St-r	Social Status, revised
Sv	Sexual Deviation
To	Tolerance
Тр	Teaching Potentiality
Un	Underachievement
	St-r Sv To Tp Un

A short description of these scales is found in Appendix A. The scores for these scales were listed close to the right hand edge of the NCS MMPI profile report form.

The Ministerial Effectiveness Rating Scale. This scale is used routinely by the Department of Field Education of Christian Theological Seminary for securing ratings of the effectiveness of the students in their student church assignments. It was devised by Dr. Lowell G. Colston of the Department of Pastoral Care and a committee of the faculty, and approved by the entire faculty for use. Each of sixteen items and a seventeenth global item is rated on a ten point scale, with O being low and nine being high. The items are:

- Quality of Religious Life. The vitality of his personal Christian Commitment.
- Christian Influence.
 His influence in inspiring faith in others.
- Personal Habits.
 Courtesy, neatness and manners.
- General Culture Esthetic sensitivity: appreciation for cultural pursuits.

- 5. Personal Integrity. The degree of his dependability, honesty, sincerity, reliability.
- 6. Financial Responsibility. Evidence of concern for financial obligations and responsible effort to meet them promptly.
- 7. Social Participation. How active was/is he in his participation in the life of the community where you have known him?
- 8. Intellectual Growth. Evidence of intellectual growth and critical thought.
- 9. Theological Alertness. Interest in theological discussion and awareness of theological issues and trends.
- 10. Common Sense. Ability to "size-up" situations quickly and accurately; to use "good judgment"; and to exercise self-control.
- 11. Empathy. Insight into the way the other person views things; capacity to "feel with" him; and to understand his meanings.
- Emotional Stability.
 Ability to meet problems under pressure.
- 13. Social Conscience. Moral sensitivity to social issues in contemporary society.
- 14. Ability to Communicate. Evidence that through written or spoken word he is able to organize and communicate his ideas clearly, coherently, and concisely.
- 15. Administrative skill. Ability in organizing and leading groups of individuals.

- 16. Attitude Toward Other Churches. The degree of his cooperation with other churches and his responsible action in interfaith activity.
- 17. General Impression. How would you rate this person as to his potential effectiveness in the ministry?

Instructions included that where the rater felt he had no basis for judgment on a particular item, he was to place a large "X" through the entire statement. A copy of the <u>Minis</u>terial Effectiveness Scale is included in Appendix A.

<u>Grade Point Average</u>. Grades at Christian Theological Seminary are on a four point system: A = Superior = four gradepoints, B = Good = three grade points, C = Fair = two gradepoints, D = Poor = one grade point, F = Failure = zero points. Further markings are: I = Incomplete, W = Official Withdrawalby stated date, UWF = Unofficial Withdrawal Failure, or any withdrawal after final date and unofficial withdrawal at any time. The student must earn a grade point average of 2.0 to receive the Bachelor of Divinity degree (B.D.), the Master of Religious Education degree (M.R.E.), or the Master of Sacred Music (M.S.M.). A 3.5 average is required for the Master of Theology degree (Th.M.). Any undergraduate student whose grade point average falls below 2.0 is placed on probation and allowed to take only the minimum enrollment of nine hours until the required grade point average is again achieved.

II. SUBJECTS FOR THE STUDY

<u>The Experimental Group</u>. The students who had been included in the Spiers study in the Spring, 1963, and on whom therefore there were criteria data available, were asked to take the MMPI on a voluntary basis in September, 1963. Of fifty-one enrolled, forty-seven actually took the test, and made up the experimental group.

The Crossvalidation Group. The MMPI was administered to the entering class in September, 1963, as part of the entrance battery. After women and foreign students were eliminated, there remained thirty-two subjects for the crossvalidation group.

The Cross Section Group. In addition to the two groups above, other students took the MMPI on a voluntary basis, sixteen graduate students and eleven upperclassmen who had not been included in the Spiers study for lack of some part of the data needed. The MMPI scores of this group were added to those of the experimental and crossvalidation groups to calculate

norms that might be called "cross section" norms, including as large a part of the student body as possible. There were 106 in this group.

The Norm Group. Since the United Presbyterian and the Southern California School of Theology norms were based on the MMPI given at entrance, for valid comparison, CTS norms had to be calculated using the scores of entering classes. So the forty-four male, non-foreign, students of the entering class of September, 1964, were used with the thirty-two students of the entering class of 1963 (crossvalidation group) as the subjects for the norm group, with an N of seventy-six.

III. COLLECTING THE DATA

Independent Variables. The independent, or predictor variables, were the clinical scales of the MMPI taken with and without K correction, the validity scales L, F, and K, the eleven research scales, and thirty-four auxiliary scales included in the "Clifford E. Davis output" described previously. In order to collect these data, all returning students were asked at the time of registration to take the MMPI on a voluntary basis. The MMPI was administered to the entering class as part of their entrance battery. All this was done in September and early October, 1963, and the answer sheets scored by the National Computer Systems, as described previously.

The raw scores were entered on data sheets, and punched on IBM cards, one card for the Clinical and Research scales, and another for the Auxiliary scales. A duplicate deck was punched in each case and the two decks printed out for verification by comparison.

The Language Factor, Non-language, and Total Mental Factors scores on the <u>California Test of Mental Maturity</u>, Short Form, 1957, were also punched on the card with the clinical and research scale scores for another purpose, but were found useful later in this study.

Dependent Variables. The dependent, or criterion variables were grade point average, faculty ratings, and peer ratings. The grade point averages for the students at the end of two semesters of seminary work were furnished by the registrar's office, and recorded on the data sheet for criterion measures.

To secure faculty ratings on the students involved in the experimental group, a list of the students was first given to each faculty member, with instructions to check how well he

knew each student according to the following key: 0 = not acquainted; 1 = casual acquaintance; 2 = average acquaintance; 3 = well acquainted. The students were assigned on a random basis to faculty members who had checked either a 2 or a 3 by their name, indicating sufficient acquaintance for rating. Three ratings were secured for each student, by sending the <u>Ministerial Effectiveness Rating Scale</u> forms to the faculty members in a sealed envelope, to be returned the same way. The student's names and the name of the faculty member were coded.

The spread on the rating of the items was narrowed by the raters themselves from ten to about five points, making it less discriminating. And previous research has shown that "halo effect" in ratings of this kind further reduce the discrimination shown, in that raters who rate a person high in one thing tend to rate him high in all, or vice versa, so only a global score seemed valid to use.¹ Therefore, the ratings on the seventeen items were averaged together to give a global rating. Since instructions were, "Where you have no basis for judgment, please place a large "X" through the entire statement," all seventeen items were not always rated. In this case the

¹James Dittes, "Research on Clergymen," <u>Religious</u> <u>Edu-</u> <u>cation</u>, 1962, 57, Research Supplement, p. S-157.

scores of those which has been checked were averaged. Each average, or global, rating was entered on the data sheet for criterion measures, three for each student. Then the three ratings were averaged together to give the mean rating used as the criterion measure called Facrat (Faculty Rating).

The same general procedure was used in securing the peer ratings using the MERS. These ratings were done by the students in the Senior Practicum, with the cooperation of Professor Vinton Bradshaw, Director of Field Education. The students were first asked to indicate how well they knew those to be rated, using the same form mentioned above. Then assignments for rating were made on the basis of the names marked with a "2" or a "3," as indicating sufficient acquaintance for rating. Again, the names of both raters and rated were coded. The rating was done during class time. As with the faculty ratings, the scores on the items were averaged for a global score, and the three scores entered on data sheets and averaged together to give the mean rating, which became the student's score on Peerat (Peer Rating).

These three dependent variables, GPA, Facrat, and Peerat, were punched into the IBM criterion card for each student, together with his identifying information.

The same procedure was followed in collecting data for the crossvalidation study. The grade point averages were supplied by the registrar's office. The peer ratings were done by students in the Senior Practicum, with the cooperation of Dr. James Blair Miller, who replaced Professor Bradshaw during his leave of absence. This was done in the Spring of 1965, in order to give the students as long as possible to get well acquainted. Since the crossvalidation group had entered in September, 1963, this represented a year and a half for most. These scores were entered on appropriate data sheets, but not punched on IEM cards, since other statistical procedures were used in the crossvalidation process.

IV. STATISTICAL PROCEDURES

Experimental Group. The statistical analysis of the data was done on the 7090 Computer at Purdue University, using the BIMD 29 Program to compute the Multiple Regression and Correlation Analyses. This program was developed by the Health Sciences Computing Facility, Department of Preventive Medicine and Public Health, School of Medicine, University of California, Los Angeles. A description of this program is found in the BMD Biomedical Computer Programs Manual, W. J. Dixon,
Editor, 1964 Edition. The BIMD 29 program has been slightly changed, a step of printing out the F-test for each variable added in building up the Multiple R having been added, and in this manual is known as the BMD 3R.

This program is designed to simulate a Wherry-Doolittle test selection procedure. The independent variables are listed in the order of their importance based on the reduction of sum of squares of the dependent variable attributable successively to each independent variable. Output for this program includes:

- (1) Sums and sums of squares
- (2) Cross-products of deviations
- (3) Simple correlation coefficients
- (4) Means and standard deviations
- (5) Regression coefficients, their standard errors and t-values
- (6) Sums of squares and mean squares due to regression and deviation about regression, with degrees of freedom and F-value
- (7) Sums of squares due to regression for each variable
- (8) Standard error of estimate
- (9) Partial correlation coefficients
- (10) Multiple correlation coefficient, R

(11) Table of residuals.²

Since three dependent or criterion variables were used, separate analyses were made for each. The program was run once using the clinical and research scales separately then together with each of these measures. Then another run was made using the thirty-four experimental scales with each of the dependent variables. For each regression equation the computer calculated the predicted score for each subject, then compared it with the obtained score, in the Table of Residuals.

Though the computer used all the variables in its analysis of variance for regression, and again used all of them in the regression equation, the F-value often did not reach the .05 level of significance. But in most cases some of the variables taken together had a significant F-value, so a simpler regression equation was calculated, using the Wherry-Doolittle Test Selection Procedure. Only those variables that met the following restrictions were used:

a. Each variable must account for a significant proportion of the variance as tested by the F-value for each

^{2&}lt;sub>N.</sub> J. Dixon, Ed., <u>BMD Biomedical Computer Programs</u> <u>Manual(Los Angeles, University of California, Los Angeles, 1964)</u>, p. 258.

term at the .05 level.

b. Each variable must serve to reduce the standard error of estimate.

c. Each variable must yield a significant Multiple R when used with the other variables in the regression equation.

The new, simplified regression equation was found first using beta weights, then transformed into an equation in score form, ready to use for prediction of the criterion measures from the raw scores of the appropriate independent variables. As a part of the process, the percentage of the variance of the criterion measure accounted for by the battery, and for each scale in the battery, was calculated. Then the shrunken multiple correlation coefficient, corrected for chance errors, was found, and the standard error of estimate calculated, following the procedure as given by Garrett in his <u>Statistics in Psychology and Education</u>.³

Norms and Intercorrelations. A third run of the BIMD 29 program was made, using the MMPI raw score data for all the students who took it, against Grade Point Average as the only

³Henry E. Garrett, <u>Statistics in Psychology and Edu-</u> cation (New York, Longmans, Green and Co., 1958), pp.426-40.

criterion measure available on all of them. The total of 106 subjects included the forty-seven upper-classmen who formed the experimental group, the thirty-two entering students who were the subjects of the crossvalidation group, and the twentyseven others, both undergraduates and several working toward graduate degrees. This represented as large a part of the student body as possible, 106 out of 145 after women, foreign students, and students registered for "thesis only" were eliminated. Means and standard deviations for this group are given under the heading "cross section."

However, the norms for the Presbyterian seminary students were based on the MMPI administered at entrance, as were the norms for the Southern California School of Theology. Therefore, to be strictly comparable, norms for CTS had to be calculated on the scores of entering students only. So the scores of the entering class of 1964 were pooled with the scores of the entering class of 1963, who made up the crossvalidation group, and used for the calculation of "norms." This was done by calculator, using the formula for calculating standard deviation from original scores by the short method:⁴

⁴Ibid., p. 53.

$$SD = \frac{N\Sigma x^2 - (\Sigma x)^2}{N}$$

It is difficult for statistical comparison when some norms are given in raw scores and some in T scores. The Presbyterian norms are in raw scores, while those of the Southern California School of Theology are given in T scores. General Population norms on the profile form usually used give both, so a comparison is most easily made by plotting profiles on this report form. Comparison with the Presbyterian norms was made in raw scores, while all four were compared by plotting the appropriate profiles on the same form.

Comparative profiles of the experimental and crossvalidation groups were based on the means and standard deviations of these groups as found in the appropriate analyses. The significance of the difference between the means of these two groups was calculated to see whether the two groups were comparable, using the formula for calculating the standard error of the difference between uncorrelated means:⁵

$$\sigma_{\rm D} = \sqrt{\frac{\sigma_1^2}{N_1} + \frac{\sigma_2^2}{N_2}}$$

⁵Ibid., p. 214.

Then the critical ratio was computed by dividing the difference between the sample means by its standard error $(CR = D/\sigma_0)$.⁶ From Table A, the .05 level of significance is 1.96, and the .01 level of significance is 2.58.⁷ The .05 level was accepted for this study.

The intercorrelations of the criterion measures themselves were found in the statistical procedures for the experimental group, as part of the analysis of variance for regression.

<u>Crossvalidation</u>. Each multiple regression equation found in the procedures described above was used with the raw scores on the appropriate scales to predict the criterion measure for each student included in the crossvalidation group. The correlation between the predicted and the achieved scores was found in each case, using the formula for calculating r from raw scores when deviations are taken from zero:⁸

$$r = \underbrace{N\Sigma XY - \Sigma X \times \Sigma Y}_{\left[N\Sigma X^{2} - (\Sigma X)^{2}\right] \left[N\Sigma Y^{2} - (\Sigma Y)^{2}\right]}$$

These correlations were tested for significance, and the standard error of estimate calculated.

⁶<u>Ibid.</u>, p. 215. ⁷<u>Ibid.</u>, p. 446 ⁸<u>Ibid.</u>, p. 143. Inter-judge Reliability. When it seemed appropriate to test the inter-judge reliability of the ratings, Kendall's Coefficient of Concordance W as described in Siegel's <u>Nonparametric Statistics for the Behavioral Sciences</u> was used. The peer ratings for both the experimental and the crossvalidation groups and the faculty ratings for the experimental groups were tested. "A high or significant value of W may be interpreted as meaning that the observers or judges are applying essentially the same standard in ranking the N objects under study."⁹ W expresses the degree of association among several sets of rankings, and is computed by the formula:

$$W = \frac{s}{\frac{1}{12} k^2 (N^3 - N)}$$

where s = sum of squares of the observed deviations from the mean of

$$R_{j}$$
, that is, $s = \sum \left(R_{j} - \frac{R_{j}}{N}\right)^{2}$
 $k = number of sets of rankings, e.g., the number of judges
 $N = number of entities (objects or individuals) ranked$
 $\frac{1}{12} k^{2}(N^{3} - N) = maximum possible sum of the squared$$

⁹Sidney Siegel, <u>Nonparametric Statistics for the Behav-</u> ioral Sciences (New York, McGraw Hill Book Co., Inc., 1956), p. 237.

deviations, i.e., the sum s which would occur with

perfect agreement among k rankings.¹⁰

The value of W was tested for significance by computing Chisquare by the formula: $X^2 = k(N-1)W$, with N-1 degrees of freedom.

The level of significance set for the study was .05, and in any tables, this level is indicated by an asterisk(*). The .01 level is indicated by two asterisks(**).

The results of the procedures described in this chapter will be given in the next two chapters. Chapter IV will include the means and standard deviations for various groups in the study, and the norms for Christian Theological Seminary. These norms will be compared with those for United Presbyterian and Southern California School of Theology seminarians. In Chapter V the results of the analyses of variance for regression will be presented, and the multiple regression equations found for prediction of each of the criterion measures. Whether these equations were able to predict significantly the scores of the crossvalidation group will be seen.

101bid., p. 231

CHAPTER IV

RESULTS: NORMS

One of the purposes of this study was to establish norms for students at Christian Theological Seminary that could be compared with general norms and with the norms of two other studies of Protestant seminarians. It was felt that this would help answer the questions of (a) how clergymen differ from non-clergymen and (b) whether special and/or local CTS norms are needed. The findings of this part of the study will be presented in this chapter, first those having to do with the clinical and research scales, and then those with regard to the experimental scales.

I. CLINICAL AND RESEARCH SCALES

As a part of the statistical procedures of the study, means and standard deviations for several groups and groupings within the student body of CTS were calculated, including the experimental group, the crossvalidation group (entering class of 1963), graduate students, the entering class of 1964, the cross section grouping of the first three, and the "norm" group, composed of the entering classes of 1963 and 1964. These intra-seminary groups will be compared first, then the norms established for CTS on the clinical scales will be compared with the norms of the United Presbyterian seminarians and with those of the Southern California School of Theology, as well as with general population norms.

CTS Norms and intergroup comparisons. In September and October of 1963, 106 men students at CTS took the MMPI. This was out of 145 after women, foreign students, and students working on "thesis only" were eliminated. Of this 106, thirtytwo were entering students who took the MMPI as part of their battery of tests. This group became the crossvalidation group. Forty-seven who had been included in the Spiers study in the spring took it on a voluntary basis, and were used as the experimental group. Twenty-seven others also took it voluntarily, of whom sixteen were graduate students and twelve were upperclassmen on whom some data had been lacking and who therefore could not be included in the Spiers study. The data of the entire group of 106 were used for the calculation of means and standard deviations of the "cross section" group, representing a typical student body at one time. These could be considered "norms" and would correspond to Bier's norms

for Catholic seminarians, who were also in various years of their study when tested.¹

However, the norms for the United Presbyterian seminary students and those for the students at Southern California School of Theology were based on the MMPI administered at entrance. So, to be comparable, norms for CTS had to be established on entering students. During the study another class had entered, that of September, 1964, who had also taken the MMPI as part of their entrance battery of tests. The data for the two entering classes were pooled and used for the calculation of "norms" for the seminary, with an N of seventy-six. Since the MMPI is now part of the entrance battery, and interpretation of profiles will be made during the first year of seminary work, as a rule, these may be preferable to use for norms.

A comparison of the means of the various groups within CTS is very interesting. In Table III are listed the means of the clinical scales for the Experimental, Crossvalidation, Graduate, Cross section, Entering class, 1964, and Norm groups.

¹W. C. Bier, "A Comparative Study of Five Catholic College Groups on the MMPI", <u>Basic Readings on the MMPI in Psychology</u> and <u>Medicine</u>, G. S. Welsh and W. G. Dahlstrom, eds. (Minneapolis, Univ. of Minnesota Press, 1956), pp. 587-88.

TABLE III

MINNESOTA MULTIPHASIC PERSONALITY INVENTORY COMPARISON OF THE MEANS OF THE EXPERIMENTAL, CROSSVALIDATION, GRADUATE, 1964, AND TOTAL GROUPS

1	Experi- mental	Crossval- idation	Graduate	Entering 1964	Norms	Cross section
L	3.26	4.47	3.56	4.50	4.49	3.65
F	3.00	4.28	2.75	2,80	3.42	3.41
K	17.17	17.34	18.06	17.36	17.36	17.35
Hs+.5	(13.26	13.13	13.69	12.36	12.68	13.18
D	19.32	18.09	19.06	17.45	17.72	18.81
Hy	22.51	21.41	22.56	20.64	20.96	22.08
Pd+.4	22.74	21.94	22.81	21.84	21.88	22.55
Mſ	29.28	29.13	29.06	27.11	27.96	29.11
Pa	10.17	9.63	10.13	9.89	9.78	9.92
Pt+lk	27.28	27.28	28.75	26.45	26.80	27.42
Sc+1K	26.45	25.50	27,31	24.91	25.16	26.11
Ma+.24	(18.60	21.06	19.81	18.84	19.78	19.61
Si	25.21	22.50	24.56	23.25	22.93	23.97
4	N = 47	N = 32	N = 16	N = AA	N = 76	N = 106
Age	27.66	27.63	33.94	28.30	28.02	.,

The similarities and differences are more easily seen when the profiles are plotted on the usual profile form, which also gives a comparison with the general population norms at the same time. The comparison of the profiles of three groups within the seminary at the same time, the entering class of 1963 (crossvalidation group), the upperclassmen (experimental group), and the graduate students, is shown in Figure 1. The profiles show a general tendency to be higher as the groups progress through seminary, the upperclassmen and the graduate students having higher mean scores on Hs, D, Hy, Pa, Sc, and Si, with the graduates higher than the other two on Pt and K. Mf scores for all three are very close together, within .22 of a raw score point. The older students were lower on L and F, however. One might make a very general interpretation that the advanced students are more frank and rational, less optimistic, more conventional, with a somewhat lower level of energy and ambition, and less extroverted and outgoing socially.

This raises the question of what factors might be operating. Because of the early noted tendency for higher scores at higher ages,² Bier corrected for age differences by

²S. R. Hathaway and J. C. McKinley, "Scale 2 (Depression)", <u>Basic Readings on the MMPI in Psychology and Medicine</u>, G. S. Welsh and W. G. Dahlstrom, eds. (Minneapolis, Univ. of Minnesota Press, 1956), p. 80.

Entering class_____ Upperclassmen----- Graduate ----

Figure 1. Comparative MMPI profiles of the entering class of 1963 (crossvalidation group), upperclassmen (experimental group), and graduate students.

ÿ

a covariance technique, and found a "tendency for the scores of the older groups to be lowered and those for the youngest group to be raised."³ This was true for the first seven clinical scales, but the opposite was true for the last two, Sc and Ma (Si was not included in the study). "The general average correction for age difference is 0.593 (T scores). The D scale shows an average age correction of more than twice that amount, namely, 1.187; while the Pd scale shows hardly any influence at all, 0.010. On the basis of these results, therefore, D appears more than one hundred times more subject to the influence of age differences than the Pd scale. These scales represent the extremes in this respect. the others ranging in between."4 When the average ages of the three CTS groups are compared, these for the experimental and crossvalidation groups are almost the same, 27.66 and 27.63 respectively. However, the average age of the graduate students is 33.94. While age undoubtedly enters in, other factors must also be involved.

Chance is certainly another factor. When tested for the significance of the difference between the means, only two differences between the experimental and crossvalidation groups were significant: L at the .02 level and Ma+K at the .01

³Bier, <u>op. cit.</u>, p. 590. ⁴Ibid., p. 590.

level, with the older group lower on both these two scales. The other differences could be due to chance.

But that something other than chance may be involved may be deduced from a comparison with the findings of Fielder in a test-retest study of seminarians at Southern California School of Theology. One class, the graduating class of 1963, were asked to retake the MMPI at the end of their senior year when they had finished their academic work, and all of them complied. This gave a comparison of the mean profiles of the same students when they entered seminary, and when they completed their work three years later. His findings, expressed in T scores, are reproduced in Table JV while the two profiles are compared in Figure 2.⁵ Although only one difference shown in Table IV was significant at the .05 level, the fact that the differences were so similar in direction and degree to those found at CTS would seem to indicate that some similar factor or factors were operating. In both studies, L was lower, Ma was lower, and Hs, D, Hy, Pd, Pa, Sc, and Si were higher. In Figure 2 comparative profiles for both

⁵Daniel W. Fielder, "A Nomothetic Study of the Southern California School of Theology Seminarian." (Unpublished Doctor's thesis, Southern California School of Theology, 1964), pp. 206-211.

TABLE IV

Junior Year			Se	nior Year		
	Scale	Mean	Standard Deviation	Mean	Standard Deviation	Difference Between Means
	L	50.95	7.93	47.62	4.47	1.20
	F	48.57	4.24	49.67	3.87	.78
	K	62.4 8	6.78	64.90	4.69	1.58
1	Hs	51.71	5.47	55.86	8.37	2.59*
2	D	52.38	8.25	52.48	10.32	.49
3	Hy	60.43	4.69	62.71	6.00	1.48
4	Pd	58.14	5.91	60.19	8.14	1.16
5	Mr	67.67	7.21	65.86	8.60	.95
6	Pa	54.81	5.47	56.95	6.85	1.28
7	Pt	58.71	7.93	59.34	9.49	.32
8	Sc	57.71	9.16	60.19	9.79	1.64
9	Ma	60.53	8.36	58.00	8.88	1.30
0	Si	43.86	6.93	44.81	6.33	.55

THE MEAN SCORES, STANDARD DEVIATIONS, AND THE DIFFERENCE BETWEEN MEANS ON A TEST-RETEST OF SCST STUDENTS (N-21)**

*Significant at the .05 level

**From Daniel W. Fielder, "A Nomothetic Study of the Southern California School of Theology Seminarian", (Unpublished Doctor's Thesis, Southern California School of Theology, 1964). p. 208.

77

Figure 2. Mean profiles of the entering class and upperclassmen at CTS in the fall of 1963 compared with the testretest profile of a class at SCST at entrance and on graduation. studies are placed side by side for easy comparison, and the similarities are striking.

Fielder also studied the records of nine students who dropped out, either while in the seminary or shortly afterwards, and changed to other occupations. While the sample is small, it may be suggestive. He found "the scores of drop-outs tend in the direction of the general population on all scales except the L and Sc scales. The differences may be interpreted to indicate that the persisting minister is characterized and sustained in his ministry by a certain elevation, characteristic of the ministry, from the general population as shown on the MMPI scales and the drop-out leaves the ministry because he is more like the general population."⁶

This is an interesting theory, and one which would need verification by repeated studies. If true, the net effect of the self-elimination of the drop-out with his profile closer to the population mean would be to leave the students with higher profiles, and raise the mean profile of the upperclassmen. But it still would not explain the fact that test-retest showed higher profiles for the same students on graduation

⁶Ibid., pp. 233-235.

than on entrance. More study is needed to discover whether this trend is consistently found, and what the nature of the factor or factors operating might be, whether it be something in the seminary experience or in the experience in the ministry, or self-selection. Item analyses might be most helpful here.

Comparison with other norms. In Figure 3 the CTS norm profiles at the mean and at two standard deviations above the mean are plotted on the usual report form giving general population norms. The CTS means on all scales except Si are above the mean of the general population. The scores on Hy, Pd, Pa, Pt, Sc, and Ma are more than half a standard deviation above the mean, meaning that they exceed the scores of 69 per cent of the general population. Mf, the peak score, reaches a T score of sixty-five, one and a half standard deviations above the mean, exceeding the scores of 87 per cent. Probably 20 per cent of the CTS students could be expected to have a T score on Mf above seventy, which compares with an expected 2 per cent of the general population. A consideration of the profile at two standard deviations above the mean of their own group would indicate that a much larger than average percentage of seminary students can be expected to have T scores

above seventy on some scales.

It was similar findings that led other researchers to feel that special norms were necessary for certain groups. Goodstein found that, "if 70 is used as the cutting score,... we would have identified approximately half of our 5000 male college students as abnormal...While this, of course, may be a valid 'diagnosis,' the capabity of our college mental hygiene facilities certainly demands a more rigorous screening instrument. Seemingly the usefulness of the MMPI as a screening test in the collegiate setting would depend upon the development of new cutting scores."⁷ The mean profile of the college students in his study is plotted on Figure 3, for comparison with the CTS profile, and the CTS profile is even more deviant.

Bier found that the seminary group differed significantly from the other groups involved at the .01 level on six of the nine scales, and continued, "the entire experimental population shows in accentuated form the general

⁷L. D. Goodstein, "Regional Differences in MMPI Responses among Male College Students," <u>Basic Readings on</u> <u>the MMPI in Psychology and Medicine</u>, G. S. Welsh and W. G. Dahlstrom, eds. (Minneapolis, University of Minnesota Press, 1956), p. 577.

¥

Figure 3. Profiles of the CTS norm group on the clinical scales of the MMPI at the mean and at two standard deviations above the mean, compared with the mean profiles of Catholic seminarians and college males.

tendency of college and college-educated groups to score higher on the MMPI scales than the general population on which the test norms have been based. If the seminary group is differentiated to the extent indicated above from other groups in an already deviant population, it is an <u>a fortiori</u> argument that the differentiation from the general population is even greater and hence that the modification of these general norms is even more necessary."⁸ The profile of Bier's Catholic seminarians is also plotted in Figure 3, and on most scales the CTS scores are even higher.

It would seem to follow, then that the CTS norms are sufficiently different from general population norms to make it necessary to take them into consideration in the interpretation of individual profiles. This might be most conveniently done by using plastic overlays with the special norms on them, as recommended by Davis.⁹

The comparison of CTS norms with those of the Southern California School of Theology and United Presbyterian

⁸Bier, <u>op</u>. <u>cit</u>., p. 597.

⁹Clifford E. Davis, <u>Guide for Counseling Prospective</u> <u>Church Workers</u>, Supplement II, (Pittsburgh, Board of Christian Education, United Presbyterian Church, 1963), p. 21. seminarians shows that Protestant seminarians may have a characteristic profile that is more similar to each other than to Catholic seminarians or college population. The means and standard deviations of the general population, United Presbyterian, and CTS norm groups, in raw score form, are presented in Table V. The scores of the SCST students are given in T score form, so comparison with these is made by means of the profiles in Figure 4.

The differences between the means of the United Presbyterian and the CTS norms are very small: L, .15; F, .68*; K, 1.64**; Hs, .71; D, 1.93**; Hy, .62; Pd, .27; Mf, .19; Pa. .01; Pt, 1.19*; Sc, .25; Ma, .47; and Si, 3.62**. When these differences were tested for the significance of the difference between the means, the differences on F and Pt were found to be significant at the .05 level, and those on D, K, and Si at the .01 level. It should be noted that with a N of 300 for the Presbyterian group and of seventy-six for the CTS group, a difference of only .68 of a raw score point on F was significant at the .05 level, as was the difference of 1.19 on Pt. The differences on K and D, though statistically significant, were only 1.64 and 1.93 respectively, and the largest difference, on Si, was 3.62, less than half a standard

TABLE V

MINNESOTA MULTIPHASIC PERSONALITY INVENTORY CLINICAL SCALE NORMS FOR GENERAL POPULATION, CHRISTIAN THEOLOGICAL SEMINARY AND PRESBYTERIAN SEMINARY MALES

	General	Population*	Christian Theological Seminary			Presbyterian Seminary**	
	Mean	Standard Deviation	Mean	Standard Deviation	Mean	Standard Deviation	
L F K HS+.5K D HY PD+.4K MF PA PT+1K SC+1K MA+.2K	4.05 3.88 13.45 11.34 16.63 16.49 19.30 20.44 8.06 22.95 22.26 17.00	2.89 4.24 5.66 3.90 4.18 5.51 4.11 5.13 3.56 4.88 5.21 3.87	4.49 3.42 17.36 12.68 17.72 20.96 21.88 27.96 9.78 26.80 25.16 19.78	2.34 2.68 4.66 3.60 4.05 4.37 3.43 4.67 2.51 4.47 4.14 3.67	4.34 2.74 19.00 11.97 15.79 21.58 22.15 27.77 9.79 25.61 25.41 19.31	2.56 1.86 4.19 2.94 3.56 3.82 3.74 4.53 2.89 4.23 4.45 4.13	

*From "Some Normative Data of New MMPI Scales " by Starke R. Hathaway and Peter F. Briggs, in <u>Journal of Clinical</u> Psychology, XIII, No. 4, pp. 364-368, October 1957.

**From <u>Guide for Counseling Prospective Church Workers</u>, Supplement II, by Clifford E. Davis Pittsburgh, Board of Christian Education, United Presbyterian Church, 1963.

deviation of the CTS mean. While these are statistically significant, they seem to the author to be too small to be of practical significance, especially when the differences of .01 to .71 on the other eight scales are so very small. This would be in accord with Black's conclusion from his study of MMPI data on college females from fifteen different colleges and universities. Although he did not have an over-all test of significance, he concluded, "these data suggest that there is a characteristic profile for college women which does not differ from college to college. It is certainly true that some of the differences are statistically significant, but that they are of little practical significance.¹⁰ The same general conclusion was reached by Goodstein in his study of College males. "there were no significant regional differences...The obtained differences are apparently of such little Consequence that the development of regional or local norms seems unnecessary."11

Examination of the profiles in Figure 4 strengthens

11 Goodstein, op. cit., p. 578.

^{10&}lt;sub>J.</sub> D. Black, "The Interpretation of MMPI Profiles of College Women," <u>Dissertation Abstracts</u>, 1953, 13, pp. 870-871.

this impression. The scores are almost identical on Mf, Pa, L, and Sc. The greatest spread is on D, with the Presbyterian seminarians seeming more optimistic than the average person, the SCST seminarian exactly average, and the CTS student somewhat less optimistic than average. The SCST and Presbyterian profiles coincide on Si, lower than the CTS student. They seem to be more outgoing, socially extroverted than the CTS student, who, in turn, is more outgoing than the average person. The SCST seminarian seems to be the most defensive against psychological weakness, with the Presbyterian next. and the CTS student least, but still scoring a full standard deviation above the mean of the general population. The other differences are slighter. Indeed, one can say that the same type of profile pattern found in the normative studies of United Presbyterian and Southern California School of Theology seminarians is found in the norms for students at Christian Theological Seminary; that this pattern is sufficently different from the general population norms to make it imperative that it be taken into account in the interpretation of individual profiles of seminary students; but that these three Protestant profile patterns are so similar that strictly local norms would seem unnecessary. A cooperative study,

CTS: Mean — Two SD above the mean — Presbyterian: Mean — Two SD above the mean — Two SD above the mean — Two SD above the mean — Mean — Two SD above the mean — Two SD above —

Figure 4. A Comparison of the profiles of the Christian Theological Seminary (N = 76), Presbyterian (N = 300), and Southern California School of Theology (N = 179) norm groups on the clinical scales of the MMPI at the mean and at two standard deviations above the mean.

¥

using students from many seminaries might profitably develop "Protestant Seminary Norms."

An interpretation of the meaning of this profile pattern is beyond the purview of this thesis, but some comments might be made. The elevations on Hs, Pd, Pt, and Sc may be due to the elevation on K and an effect of K correction. The T scores on these scales without K corrections are more nearly, or entirely, normal: The raw score of 4.47 on Hs = T score of 50; 15.83 on Pd, T score of 55; 10.06 on Pt, T score of 50; 9.15 on Sc, T score of 49. 2. With K correction eliminated, then, the true elevations seem to be on Hy, Mf, Pa, Ma, and Pd. Item analyses of these scales, plus K, would seem to be profitable to try to determine just what personality factors are responsible for the elevations, or whether it is due to certain items that apply in a special way to seminary students, as Bier found with Catholic seminarians. 13

An item analysis of the K scale with seminary students is presently being done at Michigan State University,¹⁴ but

 $¹²_W$. G. Dahlstrom and G. S. Welsh, <u>An MMPI Handbook</u>(Minne-apolis, University of Minnesota Press, 1960), p. 460.

^{13&}lt;sub>Bier, op. cit., pp. 604-609.</sub>

¹⁴ MSB <u>Newsletter</u>, February, 1965, p. 2.

the writer knows of no other. Since the peak score for seminarians seems to be on Mf, it would be a good scale to This is particularly true since probably 20 per analvse. cent of seminary students have scores above a T score of seventy. Davis suggests that high scores on all of three scales would suggest a pattern of homosexuality: T score of seventy or above on Mf, raw score of thirty-one on Sv, and a raw score of twelve or above on HSX.¹⁵ But the fact that several subscales have been separated out of the Mf scale shows that several different factors may contribute to high scores, and that persons may have identical scores by endorsing different subsets of items. The subscales of Mf include: Personal and emotional sensitivity, fifteen items; Sexual identification, six items; Altruism, nine items; Feminine occupational identification, seventeen items; Denial of masculine occupations, ten items.¹⁶ Indeed, according to Aaronson, Mf correlates highly with intelligence (.26 was the correlation found for the experimental group of this study), and highly with socio-economic status, and, in general, high

15Davis, op. cit., p. 15.

¹⁶Dahlstrom and Welsh, op. cit., p. 460.

Mf scores in males means that they are interested in people as opposed to being interested in things. He advises caution in diagnosing homosexuality from this scale, quoting Meehl as stating that a T score of eighty is "suspicious", and a T score of ninety, a "secure" diagnosis.¹⁷ Various divergent conclusions are also expressed by other authorities.¹⁸ Furthermore, items may apply in a different way to seminary students, as two items on the HSX scale, developed on prison populations, are, "I pray several times every week," and "I go to church almost every week" -- "True" answers on each of which contribute to a high homosexuality score! All the above would underline the need of an item analysis, and particularly, the necessity of taking special norms for seminary students into consideration in the interpretation of individual MMPI

¹⁷Bernard Aaronson, in a series of lectures on the MMPI, given at Indiana University Medical Center, n. d.

¹⁸Dahlstrom and Welsh, op. cit., pp. 308-318; G. S. Welsh and W. G. Dahlstrom, <u>Basic Readings on the MMPI in Psychology and Medicine</u>, (Minneapolis, University of Minnesota Press, 1956), p. 375; H. C. Modlin, "A Study of the MMPI in Clinical Practice," in <u>Basic Readings</u>, pp. 390-391; A. L. Benton, "The MMPI in Clinical Practice," in <u>Basic Readings</u>, pp. 404-405; H. G. Gough, "Diagnostic Patterns on the MMPI" in <u>Basic Readings</u>, pp. 345-46.

profiles.

Norms for the eleven research scales also scored by National Computer Systems and plotted on their profile report forms were also found. Table VI shows the means and standard deviations of the experimental, crossvalidation, and norm groups on these scales, while Figure 5 visualizes these in graphic form as plotted on the usual profile report form. Some of these scales were developed for and found useful in a medical setting, as Lb (Low back pain, functional), found to discriminate between patients complaining of low back pain whose pain was functional and those whose pain was organic in origin; and Ca (Caudality), useful in indicating the possible presence of a certain type of brain lesion. Cn (Control) was developed to differentiate between psychiatric patients who need to be hospitalized and those who, while having equally deviant profiles and seeming equally disturbed, may be able to maintain themselves outside the hospital -- or the locked ward of the hospital. Its usefulness with normal, seminary students is not certain. Full-scale discussions and articles on these and the other eight research scales are found in Basic Readings on the MMPI in Psychology and Medicine. 19

¹⁹Welsh and Dahlstrom, op. cit., pp. 187-255 and 264-282.

TABLE VI

MEANS AND STANDARD DEVIATIONS OF THE EXPERIMENTAL. CROSSVALIDATION, AND CTS NORM GROUPS ON THE RESEARCH SCALES OF THE MMPI

	Experimen	tal Group	Crossvalidation Gro		up Norm	Group
Scale	Mean	SD	Mean	SD	Mean	SD
А	9.43	7.43	8.91	6.96	8,82	7.81
R	15.72	3.90	14.91	3.43	15.64	3.35
Es	49.89	5.31	47.50	5.59	48.48	4.15
Lb	9.94	2.67	9.03	2.22	9.51	2.03
Ca	8.68	5.26	8.16	4.21	7.81	4.27
Dy	18.74	8.45	18.47	8.72	18.00	7.75
Do	19.15	3.01	17.53	3.39	17.93	2.75
Re	22.70	2.66	23.02	3.12	23.27	2.82
Pr	6.28	3.68	6.34	3.56	6.66	4.38
St	22.21	3.36	22.84	3.30	22.12	2.59
Cn	25.17	4.66	23.47	4.46	22.23	4.34
	N = 47		N = 32		N = 76	

The other eight scales are more useful. No other Protestant seminary norms are available on them, except Presbyterian norms on Es, Dy, and Pr, which are included in the thirty-four auxiliary scales. Do, Re, and St, as included in the auxiliary scales, are the revised forms. So the basic comparison, as shown in Figure 5, is with general population norms, except where the Presbyterian mean scores on the three available, Es, Dy, and Pr, are indicated by an "x".

Examination of the profile shows that the seminary students tend to have a characteristic profile on these scales too, the profiles of the norm, experimental, and crossvalidation groups showing very little variation. The A and R scales are usually used together. "High A scores are related to disability of a dysthymic and dysphoric nature in which anxiety is prominent. The disorders exhibited by high R scorers are characterized by repression and denial; low R accompanies externalized and 'acting out' behavior...It is not argued that A is a direct measure of anxiety and R of repression...Among diagnostic groups anxiety states fall high on A; but of those with high A scores who are also high on R, depression will be seen primarily, while those low on

Norm _____ Experimental -----

ÿ

Crossvalidation ——— Presbyterian x

Figure 5. Mean profile on the Research scales of the MMPI for the experimental, crossvalidation, and norm groups of CTS, and the Presbyterian means on Es, Dy, and Pr.

R will show schizoid features."²⁰ CTS students score low on A and average on R, showing little anxiety with or by the use of average amounts of denial and repression.

Originally designed to predict the response of psychoneurotic patients to therapy, the Es scale is useful in giving "an estimate of adaptability and personal resourcefulness," or "ego strength." High scores indicate characteristics of "physiological stability and good health, a strong sense of reality, feelings of personal adequacy and vitality, permissive morality, lack of ethnic prejudice, emotional outgoingness and spontaneity, and intelligence," evident or latent in the personality.²¹ CTS students average almost a standard deviation above the mean on Es, for a T score of 58, which means that they possess these characteristics to a higher degree than the average person.

The Dy scale was designed to be a measure of direct

²⁰G. S. Welsh, "Factor Dimensions A and R," <u>Basic</u> <u>Readings on the MMPI in Psychology and Medicine</u>, G. S. Welsh and W. G. Dahlstrom, eds. (Minneapolis, University of Minnesota Press, 1956), p. 280.

²¹F. Barron, "An Ego-Strength Scale Which Predicts Response to Psychotherapy," <u>Basic Readings on the MMPI in</u> <u>Psychology and Medicine</u>, G. S. Welsh and W. G. Dahstrom, eds. (Minneapolis, University of Minnesota Press, 1956), pp 226-233.
and manifest dependence, and while Dahlstrom and Welsh feel there is a need for more information on this measure, it seems to be useful.²² CTS students seem to be a little less dependent than average.

The "Dominance" of the Do scale does not mean "dominineering," but is supposed to be a measure of social initiative, leadership ability, persistence, and strong and forceful actions²³ The mean score for CTS students is almost a full standard deviation above the general mean, for a T score of 59. For ministers, who are in a leadership role, this is a very favorable, perhaps even a necessary, trait.

One might expect seminary students to score high on the Re (Social Responsi bility) Scale, as indeed they do, for a T score of 58. The Re scale indicates "willingness to take the consequences of one's own behavior and trustworthiness, dependability, and a sense of obligation to the group."²⁴

The Pr (Prejudice) scale was designed to measure anti-semitism and prejudice in general. Several personality

²³<u>Ibid</u>., p. 360-61. ²⁴<u>Ibid</u>., p. 360.

²²W. G. Dahlstrom and G. S. Welsh, <u>An MMPI Handbook</u> (Minneapolis, University of Minnesota Press, 1960), p. 376.

trends were found to be characteristic of more prejudiced students. The high Pr person is "harrassed, tormented, resentful, peevish, querulous, constricted, disillusioned, embittered, distrustful, rancorous, apprehensive, and somewhat bewildered.²⁵ Understandably, the CTS mean is over a full standard deviation below the general population mean, for a T score of 39. The average Presbyterian seminarian seems to be a little less prejudiced yet.

On the theory that personality is affected by social status, the St (Social Status) scale was designed to measure gocioeconomic status by means of items from the MMPI that make no mention of status. The items selected fall into five groups: "Literary-esthetic attitudes; social poise, security, confidence in self and others; denial of fears and anxieties; 'broadminded,' 'emancipated,' and 'frank,' attitudes toward moral, religious, and sexual matters;

²⁵H. G. Gough, "A Personality Scale for Anti-Semitic Prejudice (Pr)", Basic Readings on the MMPI in Psychology and Medicine, G. S. Welsh and W. G. Dahlstrom, eds. (Minneapolis, University of Minnesota Press, 1956), p. 210.

and positive, dogmatic, and self-righteous opinions."²⁶ The last two groups seem contradictory, and either could contribute to a high score. In any case, CTS students score highest of all on this scale, for a T score of 62.

These scales are discrete, and do not show the interrelationship of the clinical scales, so profile configuration as such does not have the same importance as for the clinical scales. However, the traits that seem to be characteristic of CTS students are quite positive and favorable.

11. EXPERIMENTAL SCALES

In contrast to the clinical scales, the thirty-four auxiliary scales are considered experimental, and are in the process of being studied for possible usefulness. Therefore, they will not be considered in detail. Short descriptions of these scales are found in Appendix A.

Except for the three also included in the research scales, Es, Pr, and Dy, plus the At scale, general population

²⁶H. G. Gough, "A Scale for a Personality Dimension of Socioeconomic Status (St)", <u>Basic Readings on the MMPI in Psy-</u> <u>chology and Medicine</u>, G. S. Welsh and W. G. Dahlstrom, eds. (Minneapolis, University of Minnesota Press, 1956), p. 197.

norms on these scales are not easily available. The Handbook lists the items and the scoring direction, but no norms.²⁷ So the norms found by Davis for United Presbyterian seminarians are used, and the profile form found in Supplement II of his Guide for Counseling Prospective Church Workers is used for recording the individual profiles of CTS students. The mean profile of the CTS norm group is plotted on this form in Figure 6. It must be kept in mind that the comparison is between the two seminary norms, and that the norms for the deneral population may be different in many respects. That this is likely is shown by a comparison with the three included in the research scales. The United Presbyterian mean score of 49.79 on Es has a T score of 59 according to general population norms; the score of 14.62 on Dy, a T score of 45; and the score of 4.62 on Pr, a T score of 37.

The means and standard deviations of the United Presbyterian and CTS norm groups are presented in Table VII, except for those of the HSX and Sv scales, which are not given on the United Presbyterian form. The differences between the means are also listed. Eighteen of the differences are less

27Dahlstrom and Welsh, op. cit., pp. 448-468.

Scale		#		-2	SD	-	-1	SD N	1	+1 ;	SD	+2 5	SD	
No	Abbrev.	Ttems	Scale Name	· -	30		4	0 5	0	6	0	70)	
		100110				******		1	4					
2	Ac	18	Academic achievement) 2		13	:4	15	16	17	18			
4	Ae	26	College achievement	8	9	10	31	12 13	14 15	16	17	18 29	20	
16	At	50	lowa manifest anxiety		0	J	<u>ب</u>	10	111	2	1 1			
	HSX	22												
47*	De	12	Delinquency	6	5		4	3	2	1				
50*	Do-r	16	Dominance	8	B	9		10 /11	12	23	14	15	16	
57*	Dy	57	Dependen cy			25		20 15		10		5	1	
58	Ec	41	Escapism	1	ig	15 14	13	12 11 0	9	8	7 6	 Ş	4	
59	Em	48	Emotional immaturity	15	5 14	13 :	12	11 10 9 8	7 6	5	4 3	2	1 1	
60	Eo	23	Ego overcontrol	1	9	8 17	16	15 14 13	12 11	. 10	9 8	3 7	6	
62*	Es	68	Ego strength	41	42	43 44	45	46 47 48 7	50 51	52 57	5 54 55	56 57	58	
71*	Gr	14	Graduate school potential	7		8	9	رد (د	12		13	14	·1	
74	Hc	34	Hostility control	9		3	7	6 5	4	3	2	ŗ		
78*	Hr	16	Honor point ratio	9	1	10	11	12	ų	14	15	16		
92*	Ie	39	Intellectual efficiency	28	29	. 30	31	32 33 34	35	36	37 38	39		
93*	Im	21	Impulsivity	ſ	L1	10 9		8 7 4	5 4	3	2	1		
106*	Lp	50	Leadership		30			35	40		45		50	
124	Mp	33	Malingering	?	3	9 10	11	12 13 14 15	15 17	18 19	20 21	22 23	24	
131	No	18	Neurotic overcontrol	9	8	?	6	5	3	2	1			
134	Nu	33	Neurotic undercontrol	1	8 17	16 15	14	13 12 11 10 9	8 7	6 5	4 3	2 1		
135*	Or	25	Originality	8		9 1	0	11 12	13 14	15	5 16	17	18	
162×	Pr	32	Frejudice	1	1 7	0 9	8	7 6 5	4 3	2	1			
167	Pv	50	Pharisaic virtue		ļ	.5		20 15	ļ	10	1	5		
174*	Re-r	20	Social responsibility, rev.	13		14	15	16	17	18	19	20		
176	Rg-m	. 10	Rigidity, male	8	<u> </u>		6	5		4	_	3	2	
<u>177*</u>	Rp	32	Role playing		0	21		22 23	24	-	25	26	27	
189	Sf	34	Self-sufficiency	18	19	20 21	22	23 24 25 26	27 28	29 30	31 32	33 34		
195	So-r	39	Social desirability, rev.	29	X Y	31	32	33 34 35	36 37	38	39			
196*	Sp	25	Social participation	16		17	18	1 20	21	źżz	23	24 1	25	
200	St-r	19	Social status, rev.	9	, ,	0 1	1	12 13	14	15	16	17	18	
201*:	* Sv	100	Sexual deviation										·	
205 *	То	30	Tolerance	19	20	21	2,2	23 24 25	26 2	7 21	8 29	્ર		
206	Тр	98	Teaching potentiality	60	l	65	70	75 80	85	90	\$5			10
210	Un	22	Underachievement	2.9	5	14	13	12	11 1	10	9	8	7	0

Figure 6. CTS means on MMPI experimental scales compared with United Presbyterian norms.

IEV SIEAS

9999, al 3800 a de a	Presbyterian		Christian	Theological	Difference
	Semi	nary*	Se	mi n ary	between M's
	M	SD	M	SD	<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>
Ac	15.84	1.72	15.27	1.79	.57
Ae	14.00	2.66	13.59	2.77	.41
At	8.78	5.88	11.69	7.04	2.91
Hsx	**	**	12.25	2.31	
De	2.36	1.40	2.59	1.42	.23
Do-r	11.59	1.72	10.88	2.62	.71
Dy	14.62	5.91	17.93	7.83	3.31
Ec	9.96	2.55	10.39	3.05	.41
Em	7.89	3.31	8.68	4.76	.79
Eo	12.70	2.94	12.43	3.09	.27
Es	49.79	3,97	48.84	4.66	.95
Gr	11.26	1.70	9.99	2.40	1.27
Hc	4.56	2.05	5.57	2.49	1.01
Hr	12.94	1.73	12.44	1.83	.50
Ie	34.10	2.58	32.49	3.11	1.61
1 m	5.50	2.60	5.95	2.89	.45
Lp	39.54	4.96	36.88	6.51	2.66
Мр	15.35	4.10	16.03	4.04	.68
No	3.87	2.08	4.00	2.43	.13
Nu	8.76	4.46	9.43	4.50	.67
Or	12.81	2.26	11.55	2.45	1.26
Pr	4.62	3.06	6.47	4.03	1.85
Ρv	14.32	6.02	17.49	6.26	3.17
Re-v	16.86	1.82	16.56	1.88	.30
Rg	4.82	1.10	5.24	1.21	.42
Ro	23.29	1.37	22.42	2.95	.86
Sf	26.87	3.96	24.07	5.54	2.80
So-r	35.64	3.17	33.15	5.02	2.49
Sp	20.33	2.04	19.09	3.51	1.24
St-r	13.20	1.91	12.55	2.07	.65
Sv	**	**	29.33	7.11	
To	25,44	2.88	23.76	3.86	1.68
Тр	82.19	10.45	77.90	12.34	4.28
Un	11.19	1.69	11.56	1.78	.37

COMPARISON OF MMPI AUXILIARY SCALE NORMS FOR CTS AND PRESEVERIAN SEMINARY MALE STUDENTS

*From <u>Guide for Counseling Prospective Church Workers</u>, by C. E. Davis, Pittsburgh, Board of Christian Education, United Presbyterian Church, 1963. than one point, and only seven are greater than two score points. The largest difference is on Tp (Teaching Potential), where means are 82.19 and 77.90 for the Presbyterian and CTS groups respectively, so the difference of 4.28 is not large proportionately. So it would seem again that there is perhaps a pattern fairly characteristic of seminary students.

More will be said about many of these scales in Chapter V, when the predictive aspects of the study will be considered.

CHAPTER V

RESULTS: PREDICTIVE VALIDITY

The second purpose of this study was to see whether any one or several of the scales of the MMPI could predict ministerial effectiveness as measured by (a) grade point average for two semesters of seminary work, (b) peer ratings, and (c) faculty ratings using the <u>Ministerial Effectiveness</u> <u>Rating Scale</u>. As described in detail in Chapter III. the EMD 29 program was used on the 7090 Computer at Purdue University to compute the appropriate multiple regression and correlation analyses. The results of these analyses, the simplified regression equations found, and the results of the crossvalidation studies form the subject matter of this chapter.

In brief, the procedure was to use the results of the analyses, to select the variables which met three further restrictions, and to use a Wherry-Doolittle test selection procedure with these to calculate a simpler regression equation.¹

¹Henry E. Garrett, <u>Statistics in Psychology and Education</u> (New York, Longmans, Green and Co., 1958), pp. 426-40.

This regression equation was used to predict the criterion scores of the crossvalidation group, and the coefficient of correlation between predicted and achieved scores found and tested for significance. The regression equations found and the results of the crossvalidations will be considered for each criterion measure in turn: grade point average, peer ratings, and faculty ratings. But first it will be important to establish the comparability of the experimental and crossvalidation groups.

Comparison of the experimental and crossvalidation groups. For valid crossvalidation, the new group must be equivalent to the experimental group in all important respects. Both groups were students at Christian Theological Seminary. Important ways in which they might differ could be age, denominational affiliation, and in the means of their scores on the predictor variables, the scales of the MMPI. The average age of the experimental group was 27.66, and that of the crossvalidation group was 27.63--a difference of about ten days, obviously not a significant difference. In denominational background, the forty-seven subjects of the experimental group included thirtyfour Disciples, nine Methodists, three Baptists, and one Presbyterian. The crossvalidation group of thirty-two included

twenty Disciples, eight Methodists, one Baptist, one Presbyterian, one from the United Church of Christ, and one from the United Church of Canada. Both groups, then, were roughly equivalent, both being heterogeneous as to denominational affiliation, but with about two-thirds Disciples students.

Examination of the profiles of the two groups on the clinical scales of the MMPI as shown in Figure 7 indicates that they are almost identical on K, Hs, Mf, and Pt. The crossvalidation group has slightly higher means on L. F. and Ma, and slightly lower means on D, Hy, Pd, Pa, and Si, the greatest differences being on L and Ma. To determine whether any of these differences were significant, the significance of the difference between the means was calculated for each scale, first using the formula for the standard error of the difference of uncorrelated means, then finding the critical ratio and testing it for significance.² In Table VIII are shown the means and standard deviations of the two groups on the clinical scales of the MMPI, the differences between these means, and the critical ratio of each difference. Most of the differences are negligible, and only two were found to be

²Ibid, pp. 213-17.

Experimental Clossvalidation -----

Figure 7. Mean profiles of the experimental and crossvalidation groups on the clinical scales of the MMPI.

¥

\$8.9\$ \$*******	Experime	ental	Crossvalid	ation		
Scale	Grou	qı	Group			
	Mean	SD	Mean	SD	Difference	CR
L	3.26	1.94	4.47	2.42	1.21	2.331
F	3.00	2.50	4.28	3.45	1.28	1.79
к	17.17	4.51	17.34	4.34	.17	.16
Hs+.5K	13.26	3.58	13.13	3.91	.13	.15
D	19.32	4.89	18.09	3 69	1.23	1.27
Hy	22.51	4.21	21.41	4.50	1.10	1.10
Pd+.4K	22.74	3.69	21.94	2.86	.80	1.08
Mf	29.28	5.21	29.13	4.70	.15	.13
Pa	10.17	2.49	9.63	2.28	.54	1.00
Pt+1K	27.28	5.05	27.28	3.89	.00	.00
Sc+1K	26.45	5.22	25.50	3.77	.95	.94
Ma+.2K	18,60	3.82	21.06	3.45	2.46	2.98*;
Si	25.21	9.57	22.50	8.21	2.71	1.33
Age	27.66		27.63			
	N = 47		N = 32			
6419839979797979797979797979797979797979797	* Signif:	icant at	the .05 level	CR	2 = 1.96	*****
4	** Signif:	icant at	the .01 level	CR	2 = 2.58	
	' Signif	icant at	the .02 level	CI	₹ ≥ 2.33	

SIGNIFICANCE OF THE DIFFERENCE BETWEEN THE MEANS OF THE EXPERIMENTAL AND CROSSVALIDATION GROUPS

significant, L at the .02 level and Ma at the .01 level.³ All considered, the two groups can be accepted as equivalent on all but these two scales.

Intercorrelations. The basis for the Wherry-Doolittle test selection procedure is the correlation matrix, so one of the early steps in the multiple regression and correlation analysis is the calculation of the coefficients of correlations between all variables, both dependent and independent. The complete tables of intercorrelations between all variables are found in Appendix B, but Table IX lists the correlations between the criteria measures and the scales of the MMPI plus the Language, Non-language, and Total Mental Factors of the California Test of Mental Maturity, and the intercorrelations of the criteria themselves. For an N of forty-seven, with therefore forty-five degrees of freedom, a correlation of.288 is significant at the .05 level, of .340 at the .02 level, and of .372 at the .01 level. 4 Some of the correlations

³E. F. Lindquist, <u>A First Course in Statistics</u> (New York, Houghton Mifflin Co., 1942), p. 132.

⁴Garrett, op. cit., p. 201.

were .28, just short of significance.

It is easily noted from Table IX that the highest correlations with GPA are CTMM Language Factor, .48**; CTMM Total Mental Factors, .46**; MMPI Mf, .36'; CTMM Non-language, .29*; and MMPI Sc+K, .28 (almost significant); and MMPI Experimental scales, Or, .29*; and ReR, .28. The highest correlations with peer ratings are Ma+K, .34'; and Ma without K correction, .28; next highest, but not significant is CTMM Language Factor, .24. None of the experimental scales correlates significantly with peer ratings. As to faculty ratings, the highest correlations are Cn,.32*; Ma+K, .31*; Ma without K, .30*; and next highest, but not significant, are Pa, -.25; Do, .24; and CTMM Language Factor, .24.

It is interesting to note that the intelligence scores are not significantly correlated with either faculty or peer ratings, but that grade point average is significantly correlated with faculty ratings, .36', and almost so with peer ratings, .28. Both faculty and peers seem to be impressed with actual classroom performance, then, and with a high energy and ambition level as shown by higher Ma+K scores. Faculty and peer ratings are significantly correlated, .34'.

Of the scales designed to predict academic achievement,

CORRELATIONS	BETWEEN	THE	SCALES	S OF	THE	CI	MM,	THE	CLINICAL,
RESEARCH	AND EXI	PERIN	MENTAL	SCAL	ES	OF	THE	MMPI	•
	AND TI	E CI	RITERIC	DN ME	EASU	RES	5		

C = 2	PAC		CU7.4		200	مراد مرادر». مرادر مرادر مر	
Scale	FAC	PEER	GFA	Scale	PAC	PEER	GFA
Lr	. 24	. 24	.48**	AC	.03	.03	• 12
NL	.24	.10	.29*	Ae	16	.05	14
TM	.19	.22	.40**	At	02	10	.05
L	14	.01	17	HSX	18	.05	17
F	.04	03	.03	De	14	12	10
K	.01	.13	.02	Do	. 14	.06	.06
Hs	20	15	07	Dy	.04	16	.05
Hs+K	20	05	04	Ec	.10	.02	.23
D	.04	13	15	Em	.03	06	.02
Hy	04	.07	05	Eo	18	05	.01
Pd	.01	09	11	Ës	.17	.15	.15
Pd+K	.03	02	09	Gr	10	.02	07
Mf	.07	01	.361	Hc	05	06	.05
Pa	25	21	.15	Hr	.04	.10	.02
Pt	.08	06	.04	Ie	.04	.00	.14
Pt+K	.11	.04	.06	Im	.07	06	.07
Sc	.11	.06	.21	Lp	.07	.05	03
Sc+K	.14	.20	.28	Mp	00	.10	12
Ma	.30*	.28	.21	No	10	.02	.04
Ma+K	.31*	.34	.21	Nu	.17	11	.02
Si	09	02	.07	Or	14	10	.29*
A	.08	15	01	Pr	.06	.12	03
R	.22	08	.07	Pv	08	20	02
Es	.19	.14	.16	Re	.03	00	.28
Lb	.03	.19	20	Rg	04	03	02
Ca	02	20	04	Rp	.02	.08	24
Dy	.04	16	.05	Sf	08	.18	12
Do	.24	.10	.24	So	.02	.08	11
Re	04	.01	.13	Sp	.10	03	۵ 0 8 ،
Pr	.06	.12	03	St	.19	.06	03
St	.18	.19	.10	Sv	20	06	02
Cn	.32*	.06	.22	Îo	01	09	,04
FAC		.34'	.361	Tp	08	.01	07
PEER			.28	Un	13	26	. 1.8
				FAC		.34	.361
				PEER		-	.28
	4 4 ja mai pinakarta kan kan makara di kana dan makar					N =	47

*Significant at the .05 level: ≥ .288 ** Significant at the .01 level: ≥.372 'Significant at the .02 level: ≥ .340 only Or, Originality, had any significant correlation with the grade point average, .29*. Academic Achievement had a correlation of only .12, College Achievement of -.14; Graduate School Potential, -.07; Honor Point Ratio, .02; Intellectual Efficiency, .14; and Underachievement, -.18. This correlation with the Or scale seems to bear out Gough's predication of a "significant shift in the psychological processes involved in academic success from high school, where conformity is given high weighting, to college, or more clearly graduate school, where success through independence and originality is given increasingly greater emphasis."⁵

1. GRADE POINT AVERAGE PREDICTED

Multiple regression and correlation analyses with grade point average were done with the clinical scales, the research scales, then both together, and with the experimental, or auxiliary scales. The complete data of the analyses of variance for regression are found in Tables XXIII to XXVI in Appendix B, but part of the data is reproduced in tables in this section. Each such table includes the degrees

⁵W. Grant Dahlstrom and George Schlager Welsh, <u>An MMPI</u> <u>Handbook</u> (Minneapolis, University of Minnesota Press, 1960), PP. 251-52.

of freedom due to regression (the number of independent varior scales of the MMPI), and due to deviation about regression (N -1 - the number of independent variables), and the total, which is N minus one; the sums of squares, and the mean squares (the sums divided by the degrees of freedom); and the F value for the entire set of variables. The information in the body of the tables includes the means and standard deviations of each variable, the coefficient of correlation between each and the criterion, the regression coefficient, the F values of the variables included at each point, and the multiple correlation of these with the criterion. The F values for the appropriate degrees of freedom were checked for significance in the tables of F values in Garrett⁶ and Ostle,⁷ and the .05 level is indicated by one asterisk (*) and the .01 level by two asterisks(**). The regression equation as calculated by the computer included all the variables, and though often most of the variables had a significant F value, the entire set did not. Such a large number of scales in an

⁶Garrett, op. cit., pp. 451-54.

⁷Bernard Ostle, <u>Statistics in Research</u> (Ames, Iowa State University Press, 1963), pp. 529-43.

equation is completely unwieldy for practical purposes, and the standard error of estimate would make the possibility of significant prediction most improbable. So three further restrictions were accepted for choosing three or four variables for the simpler regression equation, as descriped in Chapter III. In each case the simpler equation was used to predict the grade point average for the crossvalidation group, and the coefficient of correlation between predicted and achieved GPA calculated and tested for significance.

<u>Clinical and research scales</u>. Tables X, XI, and XII present the data of the analyses of variance for regression of the clinical, the research, and the clinical and research scales together with grade point average. In Table X, the clinical scales with GPA, the first variable chosen was Mf, with a simple and multiple correlation of .36, significant at the .02 level, and almost at the .01 (.01 = .372 for 45 degrees of freedom). When D, negatively weighted, was added, the multiple R was increased to .46244, and the F value was significant at the .01 level. The addition of Sc+K, positively weighted, raised the multiple R to .55183, and of Pd (without K correction), negatively weighted, increased R to .57744, a lesser increase. Each addition increased the

TABLE X

ANALYSIS OF VARIANCE FOR REGRESSION MMPI CLINICAL SCALES WITH GPA

Sour	ce of Var	riation		D.F.	S.S.	MS. 1	7 Value
Due	to Regres	ssion	•	18	5.25613	0.29201	1.71088
Devi	Lation abo	out Regre	ession	28	4.77894	0.17068	
			Total	40	10.03507		
18-4-50 area area area area area area area are	ng Maria Dhaith gang Barana a bandan tang tang tang tang tang tang tang ta	II	ntercep	t (A V	alue) is 1	.09231	Laggerine an Anna an An
				Simple	Reg.	F I	Multiple
No.	Name	Mean	SD	T	Coef.	Value	R
13	CLIMF	29.28	5.21	.36	0.03965	6.71704*	0.36039
9	CI ND	19.32	4.88	15	-0.02227	5.98466**	0.46244
18	CLNSCK	26.45	5.22	.28	0.02071	6.27568**	0.55183
11	CLNPD	15.83	3.40	11	-0.08480	5.25242**	0.57744
10	CLNHY	22.51	4.21	05	-0.02012	4.53709**	0.59683
14	CLNPA	10.17	2.49	.15	0.02271	3.94185**	0.60957
7	CL NHS	4.47	3.59	07	-0.51863	3.34859**	0.61270
4	CLNL	3.26	1.94	17	-0.02823	2.90400**	0.61596
8	CLNHSK	13.26	3.58	04	0.50658	2.57821*	0.62082
6	CLNK	17.17	4.51	.02	0.26357	2.60117*	0.64766
19	CLNMA	15.13	3.92	.21	0.43635	2.33 349*	0.65046
20	CLNMAK	18.60	3.82	.21	-0.41527	2.54645*	0.68799
15	CLNPT	10.06	7.07	.04	0.25570	2.30572*	0.68991
16	CL.NPTK	27.28	5.05	.06	-0.41500	2.47641*	0.72113
5	CLNF	3.00	2.50	.03	0.01272	2.26571*	0.72317
12	CL NPDK	22.74	3.69	09	0.05423	2.06140*	0.72366
17	CLNSC	9.15	6.16	.21	0.00651	1.87600	0.72370
21	CLNSI	25.21	9.57	.07	-0.00072	1.71088	0.72372
Depe	endent						
35	GPA	2.85	0.47		and a state of the	*****	N = 47

multiple R, until with all eighteen variables, it is .72372, but the F value is significant only through the first sixteen.

With the research scales, as shown in Table XI, the highest simple correlation was with Do, Dominance, the first chosen variable, .24405. No F values were significant, so the research scales alone, so far as this study is concerned, show no probability of being able to significantly predict GPA. It is interesting to note that Webb and Goodling also found Dominance significantly correlated with grades at the end of the first year at Chandler.⁸

When the clinical and research scales were combined in an analysis, the order of variables was changed from that of the clinical scales alone, as can be seen in Table XII. Mf was still the first variable chosen, but the next was Es, with a correlation with the criterion of .16. This is less than several others, but with a negative correlation of -.39 with Mf, Es added more unique variance. The multiple R was raised to .48949, and the F value is significant at the .01 level.

⁸S. C. Webb and R. A. Goodling, "Test Validity in a Methodist Theological School, "<u>Educational</u> and <u>Psychological</u> <u>Measurement</u>, 18, 1958, pp. 859-866.

TABLE XI

ANALYSIS OF VARIANCE FOR REGRESSION MMPI RESEARCH SCALES WITH GPA

Sour	cce of V	ariation		D.F.	S.S.	M.S.	F Value
Due Dev:	to Regr iation a	ession bout Reg	cession Total	11 35 46	2.75822 7.27685 10.03507	0.25075 0.20791	1.20604
		II	ntercep.	t (A Va	lue) is -	0.88125	
			,	Simple	e Reg.	F	Multiple
No.	Name	Mean	SD	r	Coef.	Value	R
28	RESDO	18.15	3.01	. 24	0.05018	2. 84990	0.24405
27	RESDY	18.74	8.45	.05	0.01472	3.00391	0.34661
23	RESR	15.72	3.90	.07	0.02594	2.5 9911	0.39179
24	RESES	49.89	5.31	.16	0.00824	2.53382	0.44091
25	RESLB	9.94	2.67	20	-0.03601	2.26423	0.46516
30	RESPR	6.28	3.68	03	0.03358	1.98888	0.47935
29	RESRE	22.70	2.66	.13	0.06031	1.84271	0.49854
32	RESCN	25.17	4.66	.22	0.03332	1.73225	0.51694
26	RESCA	8.68	5.26	04	-0.01114	1.53306	0.52117
31	RESST	22.21	3.36	.10	-0.00902	1.36177	0.52383
22	RESA	9.43	7.43	01	-0.00415	1.20604	0.52427
Depe	endent						

35	GPA	2.35	0.47	Ν		47
					the Rest of Lot	

ANALYSIS OF VARIANCE FOR REGRESSION MMPI CLINICAL & RESEARCH SCALES WITH GPA

Source of Variation	D.F.	S.S.	M.S.	F Value
Due to Regression	29	6.90732	0.23818	1.29458
Deviation about Regression	17	3.12775	0.18399	
Total	46	10.03507		

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Multiple
No.NameMeanSDrCoef.Value13CLNMF29.28 5.21 .36 0.03058 6.71704 24RESES49.89 5.31 .16 0.03277 6.93229 18CLNSCK 26.45 5.22 .28 -0.01418 6.32158 25RESLB 9.94 2.67 20 -0.07394 7.19234 9CLND19.32 4.89 15 -0.04203 6.86227 23RESR15.72 3.90 .07 0.04564 6.33923 32RESCN 25.17 4.66 .22 0.01361 6.69143 14CLNPA 10.17 2.49 .15 0.02238 6.12561 12CLNPDK 22.74 3.69 09 -0.05571 5.81251 28RESDO 18.15 3.00 .24 0.05196 5.29016	
13 CLNMF 29.28 5.21 .36 0.03058 6.71704 24 RESES 49.89 5.31 .16 0.03277 6.93229 18 CLNSCK 26.45 5.22 .28 -0.01418 6.32158 25 RESLB 9.94 2.67 20 -0.07394 7.19234 9 CLND 19.32 4.89 15 -0.04203 6.86227 23 RESR 15.72 3.90 .07 0.04564 6.33923 32 RESCN 25.17 4.66 .22 0.01361 6.69143 14 CLNPA 10.17 2.49 .15 0.02238 6.12561 12 CLNPDK 22.74 3.69 09 -0.05571 5.81251 28 RESDO 18.15 3.00 .24 0.05196 5.29016	R
13 CLNMF 29.28 5.21 .36 0.03058 6.71704 24 RESES 49.89 5.31 .16 0.03277 6.93229 18 CLNSCK 26.45 5.22 .28 -0.01418 6.32158 25 RESLB 9.94 2.67 20 -0.07394 7.19234 9 CLND 19.32 4.89 15 -0.04203 6.86227 23 RESR 15.72 3.90 .07 0.04564 6.33923 32 RESCN 25.17 4.66 .22 0.01361 6.69143 14 CLNPA 10.17 2.49 .15 0.02238 6.12561 12 CLNPDK 22.74 3.69 09 -0.05571 5.81251 28 RESDO 18.15 3.00 .24 0.05196 5.29016	
24 RESES 49.89 5.31 .16 0.03277 6.93229 18 CLNSCK 26.45 5.22 .28 -0.01418 6.32158 25 RESLB 9.94 2.67 20 -0.07394 7.19234 9 CLND 19.32 4.89 15 -0.04203 6.86227 23 RESR 15.72 3.90 .07 0.04564 6.33923 32 RESCN 25.17 4.66 .22 0.01361 6.69143 14 CLNPA 10.17 2.49 .15 0.02238 6.12561 12 CLNPDK 22.74 3.69 09 -0.05571 5.81251 28 RESDO 18.15 3.00 .24 0.05196 5.29016	* 0.36039
18 CLNSCK 26.45 5.22 .28 -0.01418 6.32158 25 RESLB 9.94 2.67 20 -0.07394 7.19234 9 CLND 19.32 4.89 15 -0.04203 6.86227 23 RESR 15.72 3.90 .07 0.04564 6.33923 32 RESCN 25.17 4.66 .22 0.01361 6.69143 14 CLNPA 10.17 2.49 .15 0.02238 6.12561 12 CLNPDK 22.74 3.69 09 -0.05571 5.81251 28 RESDO 18.15 3.00 .24 0.05196 5.29016	** 0.48949
25 RESLB 9.94 2.67 20 -0.07394 7.19234 9 CLND 19.32 4.89 15 -0.04203 6.86227 23 RESR 15.72 3.90 .07 0.04564 6.33923 32 RESCN 25.17 4.66 .22 0.01361 6.69143 14 CLNPA 10.17 2.49 .15 0.02238 6.12561 12 CLNPDK 22.74 3.69 09 -0.05571 5.81251 28 RESDO 18.15 3.00 .24 0.05196 5.29016	** 0.55322
9 CLND 19.32 4.89 15 -0.04203 6.86227 23 RESR 15.72 3.90 .07 0.04564 6.33923 32 RESCN 25.17 4.66 .22 0.01361 6.69143 14 CLNPA 10.17 2.49 .15 0.02238 6.12561 12 CLNPDK 22.74 3.69 09 -0.05571 5.81251 28 RESDO 18.15 3.00 .24 0.05196 5.29016	** 0.63759
23RESR15.723.90.070.045646.3392332RESCN25.174.66.220.013616.6914314CLNPA10.172.49.150.022386.1256112CLNPDK22.743.6909-0.055715.8125128RESDO18.153.00.240.051965.29016	** 0.67498
32 RESCN 25.17 4.66 .22 0.01361 6.69143 14 CLNPA 10.17 2.49 .15 0.02238 6.12561 12 CLNPDK 22.74 3.69 09 -0.05571 5.81251 28 RESDO 18.15 3.00 .24 0.05196 5.29016	** 0.69815
14CLNPA10.172.49.150.022386.1256112CLNPDK22.743.6909-0.055715.8125128RESDO18.153.00.240.051965.29016	** 0 .7 3869
12CLNPDK23.743.6909-0.055715.8125128RESDO18.153.00.240.051965.29016	** 0.75050
28 RESDO 18.15 3.00 .24 0.05196 5.29016	** 0.76533
	** 0.77140
15 CLNPT 10.07 7.07 .04 0.02641 5.05759	** 0.78347
8 CLNHSK 13.26 3.5804 0.33802 4.64765	** 0.78820
30 RESPR 6.28 3.6803 0.03508 4.33436	** 0.79414
20 CLNMAK 18.60 3.82 .21 -0.17171 4.09628	** 0.80116
7 CLNHS 4.47 3.5907 -0.31245 3.87979	** 0.80775
17 CLNSC 9.15 6.16 .21 0.04182 3.78627	** 0.81780
19 CLNMA 15.13 3.92 .21 0.19885 3.59498	** 0.82352
27 RESDY 18.74 8.45 .05 -0.00826 3.31296	** 0.82492
29 RESRE 22.70 2.66 .13 0.01371 3.05258	** 0.82604
31 RESST 22.21 3.36 .10 -0.00890 2.81742	* 0.82720
22 RESA 9.43 7.4301 0.01117 2.60603	* 0.82851
6 CLNK 17.17 4.51 .02 -0.02048 2.39501	* 0.82889
5 CLNF 3.00 2.50 .03 0.00870 2.28079	* 0.82920
4 CLNL 3.26 1.9417 -0.00946 2.02150	0.82947
10 CLNHY 22.51 4.2105 -0.00322 1.85345	0.82954
11 CLNPD 15.83 3.4011 0.03134 1.69841	0.82962
26 RESCA 8.68 5.2604 0.00215 1.55404	0.82965
21 CLNSI 25.21 9.57 .07 -0.00025 1.41969	0.82965
16 CLNPTK 27.28 5.05 .06 0.00053 1.29458	0.82965
Dependent	
35 CDA 3 25 0 47	Bī — 472

Again, Sc+K was the third variable included, raising multiple R to .55322, but Lb was the fourth, negatively weighted, making the multiple R .63759. The increments in R were less thereafter, for a maximum of .82965 after twenty-seven variables had been included. F values were significant through the first twenty-three.

Applying the three added restrictions to this analysis, the standard error of estimate was reduced very little after the fourth variable (though the first increase came after the ninth), so the first four variables, Mf, Es, Sc+K, and Lb were chosen for the calculation of a new regression equation, using the Wherry-Doolittle test selection procedure. The equation, found first in beta weights, when transformed into score form, was:

 $Y_{GPA} = .035 \text{ Mf} + .042 \text{ Es} \div .040 \text{ Sc+K} - .062 \text{ Lb} - .7132.$ This battery accounted for forty-one per cent of the variance of the criterion: Mf, 14 per cent, Es, 8 per cent, Sc+K, 13 per cent, and Lb, 7 per cent. The multiple R corrected for chance errors was .6093, and the standard error of estimate was .3703.

The equation was then used with the raw scores on Mf, Es, Sc+K, and Lb to predict the GPA for each subject of the crossvalidation group. The coefficient of correlation between the predicted and achieved scores was found to be .3034. A correlation of .349 was needed to be significant at the .05 level,⁹ so the equation had not significantly predicted the grade point averages of the crossvalidation group.

Because of the possibility that the error introduced by four scales might have been enough to prevent the prediction from being significant, another regression equation using only the first three, Mf, Es, and Sc+K, was calculated:

 y_{GPA} = .038 Mf + .0384 Es + .0262 Sc+K -.867. This battery accounted for 30 per cent of the variance of the criterion; Mf, 15 per cent, Es, 7 per cent, Sc+K, 8 per cent. The corrected multiple R was .5235, and the standard error of estimate of the predicted criterion score was found to be .3979.

This new equation was used with the raw scores of the crossvalidation group on Mf, Es, and Sc+K to predict their GPA scores. The correlation between predicted and achieved scores was found to be .4210, significant at the .02 level, (.02 = .412). So this regression equation was able to predict

⁹Garrett, op. <u>cit.</u>, p. 201.

the grade point average of the crossvalidation group significantly.

<u>CTMM added</u>. Since the intercorrelations between the <u>California Test of Mental Maturity</u> Language, Non-language, and Total Mental factors were available, it was questioned whether a combination of IQ as measured by the CTMM and the and the MMPI could predict better than the MMPI alone. A Wherry-Doolittle test selection procedure, using the CTMM Language factor, and the MMPI Mf, Sc+K, Es, Do, Lb, D, Ma, and Ma+K, was done, and the regression equation calculated. The variables chosen were CTMM Language factor, Mf, and D, and the regression equation was:

 $Y_{GPA} = .0119 \text{ CTMM LF} + .031 \text{ Mf} - .0234 \text{ D} + .9437.$ This battery had a corrected multiple correlation of .5581 with the criterion and accounted for 34 per cent of the variance of the criterion: LF, 18 per cent; Mf, 12 per cent; and D, 4 per cent. The standard error of estimate was .3875. When this equation was applied to the scores of the crossvalidation group, the coefficient of correlation between predicted and achieved scores was .3168, just short of the .05 level of significance.

Once again, one scale was eliminated, D, and the

regression equation found was:

 $Y_{GPA} = .0132$ CTMM LF + .0226 Mf + .5791. The shrunken multiple correlation coefficient was .5234, and the battery accounted for 29 per cent of the variance of the criterion; CTMM Language factor, 20 per cent, and Mf, 9 per cent. The standard error of estimate was found to be .3935.

When this regression equation was applied to the scores of the crossvalidation group, the coefficient of correlation between the predicted and achieved scores was .4124, significant at the .02 level, (.02 = .412).

In order to see whether this represented an improvement over prediction using the CTMM Language factor alone, the regression equation for it was found:

 $Y_{GPA} = .0153 \text{ CTMM LF} + .9850.$

The coefficient of correlation between LF and GPA was .48, and the standard error of estimate was found to be .4097. When this equation was used to predict the grade point averages of the crossvalidation group, the coefficient of correlation between predicted and obtained scores was .4452, significant at the .02 level, and lacking only .004 of reaching the .01 level.

Experimental scales. Part of the data of the analysis

of variance for regression of the experimental, or auxiliary scales of the MMPI with GPA are presented in Table XIII. while the complete analysis is found in Table XXVI in Appendix B. Or, originality, was the first variable chosen, with a correlation of .2878 with the criterion, and an F value significant at the .05 level. Rp, Role-playing, when added. increased the multiple R to .43292, an increase of over .14 points, with an F value significant at the .05 level. The addition of Es, Ego strength, increased the multiple R to .52315, and contributed to an F value significant at the .01 level. The addition of further variables added smaller increments to the R, though the F values remained significant at the .Ol level until after twenty-five variables had been included, and significant at the .05 with the addition of five more, with a cumulative multiple R of .89912.

The F values had increased rapidly for the first three variables, then started decreasing rapidly, though significant at the .Ol level for the appropriate degrees of freedom. Therefore, the first three, Or, Rp, and Es, were used in a Wherry-Doolittle test selection procedure, and a regression equation calculated:

 $^{\rm Y}$ GPA = .056 Or - .0789 Rp + .030 Es + 2.276.

ANALYSIS OF VARIANCE FOR REGRESSION MMP1 EXPERIMENTAL SCALES WITH GPA

Sour	ce of Va	riation	&: (\$ M-16, 1,	D.F.	S.S.	M.S.	F Value
Due	to Reare	ession		34	8.17835	0.24054	1.55461
Devi	ation ab	out Rea	ression	12	1.85672	0.15473	
			Total	46	10.03507		
		NAR A MEN ALAR ALAR ALAR ALAR ALAR ALAR ALAR ALA	Interce	ot (A	Value) is	-0.48598	
			•	Simpl	le Rég.	F N	ultiple
No.	Name	Mean	SD	r	Coef.	Value	R
21	EXPOR	12.96	2.87	.29	0.06754	4.06612*	0.28787
26	EXPRP	21.13	3.02	24	-0.05776	5.07417*	0.43292
11	EXPES	50.47	5.38	.15	-0.00497	5 .40093**	0.52315
12	EXPGR	10.34	2.19	07	-0.12130	5.00053**	0.56798
29	EXPSP	18.62	3.39	.08	-0.02058	4.55887**	0.59775
34	EXPUN	11.38	1.60	18	-0.15190	4.33237**	0.62760
24	EXPRER	16.53	1.94	.28	0.25520	4.19054**	0.65519
2	EXPAE	14.81	2.68	14	-0.08304	4.43829**	0.69501
4	EXPHSX	12.19	1.86	17	-0.11426	4.5254]**	0.72387
1	EXPAC	15.04	2.18	.12	0.02004	4.16397**	0.73234
32	EXPTO	24.13	3.40	.04	0.10518	4.00385**	0.74646
25	EXPRGM	5.64	1.36	02	-0.15835	3.74505**	0.75452
10	EXPEO	11.55	3.24	01	-0.14363	3.57119**	0.76454
30	EXPSTR	12,43	1.99	03	-0.13308	3.59618**	0.78192
20	EXPNU	10.60	4.69	.02	-0.09404	3.54186**	0.79468
9	EXPEM	10.87	5.53	.02	0.09582	3.45700**	0.80520
17	EXPLP	36.19	6.39	03	0.08437	3.72023**	0.82802
7	EXPDY	18.74	8.45	.05	0.03197	3.87142**	0.84461
23	EXPPV	15.74	6.53	.02	0.01926	3.76291**	0.85198
15	EXPIE	32.43	3.46	.14	-0.00420	3.58072**	0.85653
5	EXPDE	2.15	1.41	10	0.09691	3.37833**	0.85990
31	EXPSV	27.98	8.39	02	0.04906	3.33295**	0.86799
13	EXPHC	5.79	3.14	.06	-0.03874	3.13262**	0.87064
3	EXPAT	13.34	8.05	.05	-0.06869	2.98316**	0.87461
18	EXPMP	12.81	4.20	12	-0.03427	2.98046**	0.88325
22	EXPPR	6.28	3.68	03	0.15572	2.96447*	0.89105
б	EXPDOR	10.66	2.38	.06	0.08810	2.79257*	0.89372
19	EXPNO	5.74	3.17	.04	0.11401	2.61783*	0.89602
16	EXPIM	6.38	3.01	.07	0.05673	2.42904*	0.89754
]4	EXPHR	12.79	1.73	. 02	0.05081	2.25041*	0.89912
33	EXPTP	76.62	12.89	07	0.01902	2.09733	0.90141
27	EXPSF	23.70	5.82	12	-0.02740	2.92224	0.90255
8	EXPEC	11.79	3.77	.23	-0.00542	1.73429	0.90272
28	EXPSOR	32.40	4.95	11	-0.00416	1.55461	0.90276
Depe	endent						
37	GPA	2.85	0.46				N = 47

This battery accounted for 27 per cent of the variance of the criterion; Or, 10 per cent, Rp, 12 per cent; Es, 5 per cent. The multiple R corrected for chance errors was .494, and the standard error of estimate was .4071.

When this equation was used to predict the grade point averages of the crossvalidation group, the coefficient of correlation between the predicted and achieved scores was .4186, significant at the .02 level. This equation, then, was able to predict GPA for the crossvalidation group.

The four equations found to have predictive validity for predicting GPA for students at CTS, arranged in order of highest to lowest correlation between predicted and achieved scores are:

> Y GPA = .0153 CTMM LF + .9850: .4452' Y GPA = .038 Mf + .0384 Es + .0262 Sc+K - .867: .4210' Y GPA = .056 Or - .0789 Rp + .030 Es + 2.276: .4186' Y GPA = .0132 CTMM LF + .0226 Mf + .5791: .4124'

The range of the predicted scores was less than that of the achieved scores in each equation. The range of the achieved scores was from 1.47 to 4.00, while the range of the predicted scores for the equations in the order listed was 2.41 - 3.17 (CTMM LF only); 2.19 - 3.14 (MMPI Clinical Scales); 2.17 - 3.13 (MMFI Experimental Scales); and 2.19 - 3.24 (CTMM LF + MMPI Mf). The range of the predicted scores was restricted because, in each case, the equation was the constant plus what varied from 23 per cent to 30 per cent of the variance of the criterion.

It was interesting to note that in the five cases in which the achieved score was more than .50 grade point lower than the predicted score, as predicted by the equation using MMPI variables only (the second in order as listed above), four of the five students dropped out at the end of the year. Two of these had a GPA of less than 2.00, and had been put on probation. The two who were not on probation re-enrolled the second semester of the next year. The one who did not drop out, even though on probation, had the lowest achieved score and the lowest predicted score, though not the lowest CTMM Language factor score.

II. PEER RATINGS PREDICTED

Essentially the same procedures were followed with peer ratings as with grade point average, except that when ratings are used, some test of interjudge reliability is needed. In this case, Kendall's Coefficient of Concordance W was used.

Agreement among the ratings. The degree of agreement between the raters as shown by Kendall's Coefficient of Concordance W was tested for both the experimental and crossvalidation groups. This relation was tested for significance by computing Chi-square by the formula $X^2 = k(N - 1)W$, with N - 1 degrees of freedon. Chi-square for the experimental group was found to be 73.68, with 46 degrees of freedom, significant at the .01 level, and almost at the .001 level (.001 = 74.7).¹⁰ For the crossvalidation group, Chi-square was found to be 65.339, with twenty-nine degrees of freedom, significant at the .001 level (.001 = 58.3). It can be concluded, then, that the judges were "applying essentially the same standard."¹¹

The judges were in even greater agreement in rating the crossvalidation group than those in rating the experimental group. In the experimental group were combined what

¹¹Sidney Siegel, <u>Nonparametric Statistics</u> for the Behavioral Sciences (New York, McGraw-Hill Book Co., 1956), p. 237.

¹⁰Ostle, <u>op</u>. <u>cit.</u>, p. 525.

had been two groups for the Spiers study, his "experimental" and "crossvalidation" groups. He had found the degree of agreement as measured by W to be less for the "crossvalidation" group than for the "experimental" group, since the former had been known by the judges for only six or seven months as compared with the latter, who had been known for a year and a half. Therefore, he recommended that peer ratings be done after as long acquaintance as possible.¹² This, then would explain the greater degree of agreement among the raters of the crossvalidation group of this study, after a year and a half of acquaintance.

Prediction by the clinical and research scales. Complete data of the analyses of variance for regression of the clinical, research, and the clinical and research scales together with peer ratings are found in Tables XXVII to XXIX in Appendix B. Part of the data for each is found in tables in this section. A glance at the analysis of variance for regression of the research scales with peer ratings in

¹²Duane E. Spiers, "A Study of the Predictive Validity of a Test Battery Administered to Theological Students" (unpublished Doctor's thesis, Purdue University, January, 1965), p. 109.

in Table XIV shows that the research scales taken alone showed no promise of predictive validity, only one F value, that of the first two variables taken together, being significant at the .05 level. Examination of Tables XV and XVI shows that the same three variables were the first three chosen when the clinical scales were taken alone, and when they were taken together with the research scales.

The first variable chosen was Ma+K, which had a simple correlation coefficient of .34 with the criterion, or more exactly, of .33512, and an F value significant at the .05 level. The first variable added was Pa, with a negative correlation with peer ratings of -.21, increasing the multiple R to .41801. Ma (without K correction) was added next, making the multiple R .45678. These three variables were used in a Wherry-Doolittle test selection procedure, and a regression equation calculated:

 $Y_{PEERAT} = .2718$ Ma+K - .0884 Pa - .1850 Ma + 5.3866. This battery accounted for 21 per cent of the variance of the criterion, with a corrected multiple R of .4224, and a standard error of estimate of .839.

This equation was used with the scores on Ma+K, Pa, and Ma, of the crossvalidation group to predict their peer

TABLE XIV

ANALYSIS OF VARIANCE FOR REGRESSION MMPI RESEARCH SCALES WITH PEER RATINGS

Source of Variation	D.F.	S.S.	M.S.	F Value
Due to Regression	11	8.27605	0.75237	0.86456
Deviation about Regression	35	30.45820	0.87023	
Total	46	38.73425		

	Intercept (A Value) is 3.68255							
				Simple	Reg.	F	Multiple	
No.	Name	Mean	SD	I	Coef.	Value	R	
2 6	DESCA	\$ 68	5 26	- 20	-0 04502	1 95149	0 10870	
30	RESPR	6.28	3.68	.12	0.12388	3.39436*	0.36360	
25	RESLB	9,94	2.67	.19	0.06831	2.81762	0.40532	
31	RESST	22.21	3.36	.17	0.02602	2.58017	0.42988	
24	RESES	49.89	5.31	.14	0.03789	1.98481	0.44145	
23	RESR	15.72	3.90	08	-0.02045	1.67410	0.44801	
32	RESCN	25.17	4.66	.06	-0.04628	1.43400	0.45244	
28	RESDO	18.15	3.00	.10	0.06269	1.26214	0.45818	
22	RESA	9.42	7.43	15	0.02095	1.11209	0.46143	
29	RESRE	22.70	2.66	.01	-0.01638	0.97807	0.46221	
27	RESDY	18.74	8.45	16	0.00120	0.86456	0.46224	

Dependent

		A DESCRIPTION OF THE OWNER OF THE OWNER OF		₩~₩₽₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩			-
34	PEERAT	6.72	0.92		Ν	-	47

ANALYSIS OF VARIANCE FOR REGRESSION MMPI CLINICAL SCALES WITH PEER RATINGS

Sour	rce of Va	riation	1	D.F.	S. S.	M.S.	F Value
Due	to Reare	ession		18	17,47080	0.97060	1.27810
Devi	iation ab	out Rec	ression	28	21.26346	0.75941	
			Total	46	3 8.7 3425		
	1999		Interce	ot (A V	/alue) is 3	3.70086	
				Simple	e Reg.	Ŧ	Multiple
No.	Name	Mean	SD	r	Coef.	Value	R
20	CLNMAK	18.60	3.82	.34	0.09362	5.69297*	0.3351 2
14	CL NPA	10.17	2.49	21	-0.10550	4.65792*	0.41801
19	CLNMA	15.13	3.92	.28	-0.02016	3.77913*	0.45673
21	CLNSI	25.21	9.57	.02	0.03358	3.55033*	0.50268
12	CL NPDK	22.74	3.69	02	0.04153	3.34749*	0.53842
9	CLND	19.32	4.88	13	-0.05246	2.94526*	0.55355
15	CLNPT	10.06	7.07	06	0.02858	2.64678*	0.56751
7	CLNHS	4.47	3.59	15	-1.31536	2.35900*	0.57605
10	CLNHY	22.51	4.21	.07	0.08239	2.37786*	0.60535
8	CLNHSK	13.26	3.58	05	1.20202	2.20440*	0.61626
б	CLNK	17.17	4.51	.13	-0.62906	2.52349*	0.66506
5	CLNF	3.00	2.50	03	-0.04486	2.28757*	0.66836
4	CLNL	3.26	1.94	.01	0.03718	2.06305*	0.66958
18	CLNSCK	26.45	5.22	.20	0.04291	1.87230	0.67103
11	CLNPD	15.83	3.40	09	-0.08808	1.69517	0.67128
17	CLNSC	9.15	6.16	06	-0.02395	1.53952	0.67148
16	CL NPTK	27.28	5.05	04x	0.03795	1.40112	0.67153
13	CLNMF	29.28	5.21	01	-0.00226	1.27818	0.67160
Depe	endent						

34 PEERAT 6.72 0.92 N = 47

ANALYSIS OF VARIANCE FOR REGRESSION MMPI CLINICAL AND RESEARCH SCALES WITH PEER RATINGS

and the second	and the second se			and a stand and a second se
Source of Variation	D.F.	S.S.	M.S.	F Value
Due to Regression	2 9	29.10873	1.00375	1.77276
Deviation about Regression	17			
Total	46			
And a subscription of the		The second state of a second state of the seco	A DESCRIPTION OF THE OWNER	

Intercept (A Value) is -4.72951

				Simple	Reg.	F	Multiple
No.	Name	Mean	SD	r	Coef.	Value	R
20	CLNMAK	18.60	3.82	.34	0.63423	5.69297*	0.33512
14	CLNPA	10.17	2.49	21	0.07163	4.65792*	0.41801
19	CLNMA	15.13	3.92	.28	-0.49559	3.77913*	0.45678
30	RESPR	6.28	3.68	.12	0.23244	4.20681**	0.53483
12	CLNPDK	22.74	3.69	02	0.75298	4.07454**	0.57615
24	RESES	49.89	5.31	.14	0.06282	3.91592**	0.60830
11	CLNPD	15.83	3.40	09	0.63175	3.54537**	0.62361
31	RESST	22.21	3.36	.17	0.14367	3.26456**	0.63822
21	CLNSI	25.21	9.57	02	0.08860	2.98149**	0.64836
27	RESDY	18.74	8.45	16	-0.12450	2.78177**	0.66022
16	CLNPTK	27.28	5.05	04	-0.01619	2.86707**	0.68846
26	RESCA	8.68	5.26	.20	-0.14523	2.75572**	0.70218
10	CI NHY	22.51	4.21	.07	0.10539	2.93232**	0.73212
25	RESLB	9.94	2.67	.19	-0.13250	3.15084**	0.76129
23	RESR	15.72	3.90	08	-0.10304	3.05247**	0.77220
9	CLND	19.32	4,89	13	0,10392	3.04538**	0.78672
17	CLNSC	9.15	6.16	.06	-0.29814	2.99725**	0.79830
22	RESA	9.43	7.43	15	0.12174	3.00534**	0.81536
13	CLNMF	29.28	5.31	01	0.04163	3.11563**	0.82871
18	CLNSCK	26.45	5.22	.20	0.17720	2.96789**	0.83391
4	CLNL	3.26	1.94	.01	-0.06897	2.80889**	0.83805
32 ்	RESCN	25.17	4.66	.06	-0.07130	2.73432**	0.84547
б	CLNK	17.17	4.51	.13	-0.30256	2.54712*	0.84740
8	CLNHSK	13.26	3.58	05	0.98332	2.35713*	0.84853
7	CLNHS	4.47	3.59	15	-1.01576	2.43319*	0.86219
29	RESRE	22.70	2.66	.01	-0.06256	2.28812*	0.86510
28	RESDO	18.15	3.01	.10	0.04402	2.12374*	0.86667
15	CLNPT	10.06	7.07	06	0.11175	1.94387	0.86638
5	CLNF	3.00	2,50	03	0.00320	1.77276	0.86689
Depe	ndent						
34	PEERAT	5.72	0.92	and the second secon			N = 47
ratings, and the correlation between predicted and achieved scores was found to be -.1605.

To see whether the elimination of Ma would make possible an equation that would have predictive validity, a regression equation with only Ma+K, positively weighted, and Pa, negatively weighted, was calculated:

YPEERAT = .0882 Ma+K -.0923 Pa + 6.0143 This battery accounted for 18 per cent of the variance, 13 per cent by Ma+K and 5 per cent by Pa. The standard error of estimate was .8413. When this equation was used to predict the peer ratings of the crossvalidation group, the coefficient of correlation between predicted and achieved scores was -.2684, an even greater negative correlation.

Peer ratings for the experimental group had a mean of 6.72, and a standard deviation of 0.92. This is quite a small standard deviation for a scale having a mean of over six points, indicating that there was not much discrimination shown in the ratings, which would make prediction more difficult. The mean of the crossvalidation group was 6.6059, somewhat lower than that of the experimental group, and the mean of the predicted scores was 6.9725, higher than either. In comparing the profiles of the two groups, in Figure 7, the greatest difference is on Ma+K. The mean of the experimental group was

18.60, and that of the crossvalidation group was 21.06, a difference of 2.46 raw score points. This difference was significant at the .01 level. The two groups were not equivalent so far as scores on this scale were concerned, and when prediction to two decimal places is attempted from raw scores, the difference between the means of 2.46 points is enough to make a difference.

Prediction by the experimental scales. Part of the results of the analysis of variance for regression for the experimental, or auxiliary, scales with peer ratings are presented in Table XVII, while the complete data are found in Table XXIX, in Appendix B. The variable with the highest correlation with the criterion was Un, Underachievement, -. 26. The Un scale consists of the twenty four items which distinguished extreme underachievers from extreme overachievers in a study at the University of Wisconsin. F value was significant at the .05 level. Added next was Sf. Self sufficiency, positively correlated with the criterion .18, increasing the multiple R to .31468. The addition of Pr, Prejudice, with a positive correlation of .12 with peer ratings, raised the multiple R to .46140, with an F value significant at the .05 level. The F value remained significant until the thirteenth

ANALYSIS OF VARIANCE FOR REGRESSION MMPI EXPERIMENTAL SCALES WITH PEER RATINGS

No. Management		and the second	and the second	an and the second s	and the second		
Sour	ce of Va	riation		D.F.	S.S.	M.S.	F Value
Due	to Regre	ession		34	21.37975	0.62882	0.43480
Devi	lation at	out Reg	ression	12	17.35450	1.44621	
		a in su statistica and an	Total	46	38.73425		
		I	ntercep	ot (A Va	alue) is -	5.34741	
				Simple	Reg.	FI	Multiple
No.	Name	Mean	SD	r	Coef.	Value	R
34	EXPUN	11.38	1.60	26	-0.47271	3.29557*	0.26122
27	EXPSF	23.70	5.82	.18	0.05315	2.41789*	0.31468
22	EXPPR	6.28	3.78	.12	0.51913	3.87682*	0.46140
12	EXPGR	10.34	2.19	.02	-0.31063	3.79801*	0.51546
14	EXPHR	12.79	1.73	.10	0.39795	3.56478*	0.55048
1	EXPAC	15.04	2.18	.03	-0.22736	3.05483*	0.56057
20	EXPNU	10.60	4.60	11	-0.17028	2.79342*	0.57788
6	EXPDOR	10.66	2.38	.06	0.40970	2.76811*	0.60679
10	EXPEO	11.55	3.24	05	-0.16431	2.57778*	0.62079
4	EXPHSX	12.19	1.86	.05	-0.21053	2.39772*	0.63227
3	EXPAT	13.34	8.06	16	-0.20207	2.22892*	0.64183
28	EXPSOR	32.40	4.95	.08	-0.07937	2.20986*	0.66196
13	EXPHC	5.79	3.14	.06	-0.06762	2.05841*	0.66917
9	EXPEM	10.87	5.53	06	0.17703	1.95459	0.67894
31	EXPSV	27.98	8.39	06	0.10089	1.89868	0.69197
23	EXPPV	15.74	6.53	20	0.11212	1.76472	0.69631
33	EXPTP	76.62	12.89	.01	0.08307	1.65219	0.70143
18	EXPMP	12.81	4.20	.10	-0.06029	1.56132	0.70776
2	EXPAE	14.81	2.68	.05	-0.04560	1.45869	0.71171
24	EXPRER	16.53	1,94	00	0.20822	1.36610	0.71582
21	EXPOR	12.95	2.87	10	-0.04223	1.28064	0.71989
32	EXPTO	24.13	3.40	09	0.38602	1.19132	0.72249
7	EXPDY	18.74	8.45	16	0.02958	1.10711	0.72486
11	EXPES	50.47	5.38	.15	-0.04592	1.02923	0.72727
19	EXPNO	5.74	3.17	.02	0.01095	0.95614	0.72971
17	EXPFP	36.19	6.39	.05	0.05723	0.89668	0.73366
25	EXPROM	5.64	1.35	05	-0.09391	0.82545	0.73472
29	EXPSP	18.62	3.39	03	-0.09328	0.76244	0.73658
16	EXPIM	6.38	3.01	06	0.10077	0.70006	0.73774
30	EXPSTR	12.43	1.99	.06	-0.09946	0.64457	0.73974
5	EXPDE	2.15	1.41	12	-0.10669	0.59369	0.74227
26	EXPRP	21.13	3.02	.08	0.02766	0.53803	0.74265
15	EXPIE	32.43	3.46	.00	0.01620	0.48531	0.74295
8	EXPEC	11.79	3.77	.02	-0.00011	0.43480	0.74294
Depe	ndent						
36	PEERAT	6.72	0.92				N = 47

variable was added, and the standard error of estimate started increasing after twelve. Knowing that in actual practice the error seems to build up rapidly after the first two or three variables, especially when the correlation with the criterion is slight, only the first three were used for the calculation of the regression equation:

YPEERAT = -.1619 Un + .0724 Sf + .1092 Pr + 6.1572. This battery accounted for 21 per cent of the variance of the criterion: Un, 7 per cent; Sf, 8 per cent; Pr, 5 per cent. The corrected multiple R was .4153, and the standard error of estimate, .8347. This equation was used to predict the peer ratings of the crossvalidation group, and the correlation between predicted and achieved scores was found to be -.1046, a slight negative correlation. It was not able to predict peer ratings for this group.

A comparison of the means of the two groups on these three scales shows that they are very similar:

Scale	Experimental	Crossvalidation
Un	11.38	11.75
Sf	23.70	24.16
Pr	6.28	6.34

Therefore there are no significant differences between the means to help explain the lack of predictive validity on crossvalidation. On the other hand, no scale taken alone was significantly correlated with the criterion.

III. FACULTY RATINGS PREDICTED

Agreement among the ratings. Kendall's Coefficient of Concordance W was used to measure the agreement among the faculty ratings, and this relation was tested by Chi-square. For thirty-two degrees of freedom, a value of 46.2 is needed to be significant at the .05 level.¹³ The value found for the faculty ratings of the experimental group was 37.5686, not significant. This could mean that the faculty were not applying essentially the same standards in their ratings, or that they did not know the subjects equally well. The procedure used by Goodling and Webb of having the four faculty members who knew the students best do all the rating¹⁴ might be preferable to having all the faculty take part in the rating, as in this study.

In any case, the fact that there was not significant agreement among the faculty ratings means that the results of the analyses of variance for regression must be taken as

¹³Ostle, <u>loc</u>. <u>cit</u>.

¹⁴R. A. Goodling and S. C. Webb, "An Analysis of Faculty Ratings of Theological Students," <u>Religious</u> <u>Education</u>, 1959, 54, pp. 228-233.

suggestive only. Therefore, no new regression equations were calculated, and no attempt to crossvalidation was made.

Clinical Scales. Complete data of the analysis of variance for regression of the clinical scales with faculty ratings (FACRAT) are found in Table XXX in Appendix B, but part of the data is reproduced in Table XVIII. The first variable was Ma+K, with a significant (.05 level) correlation with the criterion of .31, and an F value significant at the .05 level. The next variable added was Pa, with a negative correlation of -.25 with faculty ratings, which raised the multiple R to .41880. Next was Pt+K, correlated .11 with the criterion, increasing R to .47599. The addition of Hs (without K correction) increased the Multiple R to .54513, and gave an F value significant at the .01 level. Thirteen of the fourteen variables together had an F value significant at the .05 level, and contributed to a multiple correlation of .73787. However, after ten variables the standard error of estimate increased.

It is worthy of note that the first two variables of the clinical scales chosen for both peer and faculty ratings were Ma+K and Pa. One might conclude that both faculty and fellow students are impressed favorably by a high level of

TABLE XVIII ANALYSIS OF VARIANCE FOR REGRESSION MMPI CLINICAL SCALES WITH FACULTY RATINGS

Source of Variation	D.F.	S.S.	M.S.	F Value
Due to Regression	18	19.55378	1.08632	1.86220
Deviation about Regression	28			
Total	46			

Intercept (A Value) is 4.26512

				Simple	Reg.	F	Multiple
No.	Name	Mean	SD	r	Coef.	Value	R
20	CL NMAK	18.60	3.82	.31	-1.16347	4.70182*	0.30757
14	CLNPA	10.17	2.49	25	-0.18925	4.67932*	0.41880
16	CLNPTK	27.28	5.05	.11	-0.28797	4.19884*	0.47599
7	CLNHS	4.47	3.59	20	-0.59257	4.43946**	0.54513
13	CLNMF	29.28	5.21	.07	0.02936	3.71517**	0.55839
21	CLNSI	25.21	9.57	09	-0.04733	3.52281**	0.58799
19	CL NMA	15.13	3.92	.30	1.19447	3.74628**	0.63408
10	CLNHY	22.51	4.21	04	0.08187	3.57576**	0.65535
8	CLNHSK	13.26	3.58	20	0.54800	3.34252**	0.66966
9	CLND	19.32	4.89	.04	0.04434	3.15817**	0.68360
15	CLNPT	10.06	7.07	.08	0.39104	2.88339*	0.68949
18	CLNSCK	26.45	5.22	.14	0.11071	2.67133*	0.69662
11	CLNPD	15.83	3.40	.01	-0.87612	2.47620*	0.70270
12	CL NPDK	22.74	3.69	.03	0.86828	2.67097*	0.73407
5	CLNF	3.00	2.50	.04	-0.01992	2.43832*	0.73570
17	CLNSC	9.15	6.16	.11	-0.07079	2.22420*	0.73661
6	CLNK	17.17	4.51	.01	-0.17115	2.03875*	0.73787
4	CLNL	3.26	1.94	14	-0.01377	1.86220	0.73815

Dependent

33	FACRAT	6.35	0.88	N	47
55	PHONAI	0.00	0.00		

energy and ambition, and unfavorably by suspiciousness and hypersensitivity.

Research scales. The only research scale significantly correlated with faculty ratings was Cn, Control, .32, and thus was the first variable used in the regression equation, as seen in Table XIX (complete data in Table XXXII in Appendix B). The second variable included was Do, Dominance, which had a simple correlation of .24 with the criterion, and increased the multiple R to .38467, with an F value significant at the .05 level. Prejudice, when added, increased the multiple R to .41296, and had a significant F value, but with the addition of other variables, the value of F was insignificant. Only the three, then showed any promise of predictive validity.

The most highly correlated scale, Cn, is a hard scale to interpret in normal populations. It was designed to distinguish psychiatric patients who would require hospitalization from those equally disturbed who might be able to maintain themselves outside a hospital--or outside the locked ward of the hospital. One of the factors involved that seems fairly well confirmed in validation studies seems to be that of realistic self-appraisal. "Inspection of the items suggests that a person answering in the indicated direction

Sour	rce of V	aristion		D.F.	nen and and a state of the stat	M.S.	F Value
Due Dev:	to Regr lation a	ession bout Reg	ressi on	11 35	10.66258 25.22511	0.96933 0.72072	1.34495
			Total	46	35.88770		
4) 100 ABADANA	**************************************	L es é s	ercept ((A Valu	.e) is -1.0	3878	₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩
			,	Simpl	le Reg.	F	Multiple
No.	Nane	Mean	SD	г. Г.	Coest.	Valua	ET
32	RESON	25.17	4.66	.32	-0.02142	5.19257*	0.32164
28	RESDO	18.15	3.00	.24	0.15945	3.82082*	0.38467
30	RESPR	6.28	3.68	.06	0.07231	2.94690*	0.41296
34	RESES	49.89	5.31	.19	0.06627	2.54928	0.44199
22	RESA	9.43	7.43	.08	0.09307	2.60252	0.49083
35	RESLB	9.94	2.67	.08	0.06176	2.33899	0.51363
26	RESCA	8.68	5.26	02	-0.05690	2.18173	0.53047
23	RESR	15.72	3.90	.22	-0.02514	1.93282	0.53779
27	REGDY	18.74	8.45	.04	0.01559	1.71867	0.54298
39	RESKE	22.70	2.66	04	0.02431	1.51788	0.54459
31	REUST	22.21	3,36	.18	-0.00770	1,34495	0.54508
Depa	andent						
33	FACRAT	6,35	0.88	****	99999999999999999999999999999999999999	৻য়৽৽৽৾৽৻ৼ৾ঢ়৾৾ঢ়৾৾৻ড়৾৾৽৻ড়৾৾ড়ৣ৾৾ড়৾৾৾৾৾ঢ়৾৾৽ৼ৾ৼ৾৽ড়৽৾৻৽ড়ঢ়৾৾৻ড়ঢ়৾৾৻ড়৾ঢ়৾৾ড়৾৾ড়৾	N = 47

ANALYSIS OF VARIANCE FOR REGRESSION MMPI RESEARCH SCALES WITH FACULTY RATINGS

might be described by acquaintances as rather sophisticated, realistic, somewhat impatient with naive, overly moralistic, and opinionated persons but withal quite aware of his own weaknesses and inwardly sensitive to social criticism."¹⁵ However, many of the items included are scored in the opposite direction from the normal population, and a high score on the Control scale accompanies elevations on the clinical scales. Several items have to do with religious beliefs. Dahlstrom and Welsh feel, "There is a need for a good deal more information about the Cn scale before it can be interpreted as an index of personality control."¹⁶ It can be noted from Figure 5, page 94, that there is considerable variation from group to group of CTS students on this scale.

<u>Clinical and research scales</u>. When both sets of scales are combined, the order of the variables is Cn, Hs (without K correction), Sc+K, and Pa, as seen in Table XX. Ma+K is far

¹⁶W. G. Dahlstrom and G. S. Welsh, <u>An MMPI Handbook</u>. (Minneapolis, University of Minnesota Press, 1960), p. 301.

¹⁵C. A. Cuadra, "A Scale for Control in Psychological Adjustment (Cn)" <u>Basic Readings on the MMPI in Psychology</u> and <u>Medicine</u>, G.S.Welsh and W.G.Dahlstrom, eds. (Minneapolis, Univ. of Minnesota Press, 1956), p. 249.

late d

ANALYSIS OF VARIANCE FOR REGRESSION MMPI CLINICAL AND RESEARCH SCALES WITH FACULTY RATINGS

Sour	rce of Va	riation		D.F.	S.S.	M.S.	F Value
Due	to Regre	ession		29	24.60116	0.84832	1.27775
Dev	iation at	out Regi	ression	17	11.28653		
			Total	46	35.88770		
		In	tercept	(A Val	lue) is -1	.71622	
				Simple	≥ Reg.	F	Multiple
No.	Name	Hean	SD	r	Coef.	Value	R
32	RESCN	25.17	4.66	.32	0.00185	5.19257*	0.32164
7	CLNHS	4.47	3.59	20	-0.75510	5.07358*	0.43290
18	CLNSCK	26.45	5.22	.14	0.23358	4.51868**	0.48958
14	CLNPA	10.17	2.49	25	-0.09457	4.48774**	0.54720
10	CLNHY	22.51	4.21	04	-0.0257 3	4.27317**	0.58531
16	CLNPTK	27.28	5.05	.11	-1.02948	4.05562**	0.61501
23	RESR	15.72	3.90	.22	-0.06028	3.99079**	0.64603
28	RESDO	18.15	3.01	.24	0.17490	3.71532**	0.66249
22	RESA	9.43	7.43	.05	0.13758	3.95249**	0.70012
4	CLNL	3.26	1.94	14	0.04529	3.72983**	0.71334
29	RESRE	22.70	2.66	04	0.04952	3.42557**	0.72003
30	RESPR	6.28	3.68	.06	0.20432	3.27184**	0.73206
21	CLNSI	25.21	9.57	09	-0.01004	3.08558**	0.74070
13	CLNMF	29.28	5.21	.07	0.06793	2.96049**	0.75121
9	CL ND	19.32	4.89	.04	0.01785	2.82409**	0.75989
].]	CLNPD	15.83	3.40	.01	-1.46834	2.61782*	0.76333
12	CLNPDK	22.74	3.69	.03	1.47961	2.45894*	0.76838
15	CLNPT	10.06	7.07	.08	1.05701	2.37987*	0.77764
31	RESST	22.21	3.36	.18	-0.08699	2.34433*	0.78905
17	CLNSC	9.15	6.16	.11	-0.31453	2.29550*	0.79902
19	CLIMA	15.13	3.92	.30	0.58542	2.24686*	0.80849
8	CLNHSK	13.26	3.58	20	0.56127	2.14136*	0.81394
25	RESLB	9.94	2.67	.08	0.08936	2.04793*	0.81970
20	CL NMAK	18.60	3.82	.31	-0.53545	1.94960	0.82474
26	RESCA	8.68	5.26	02	0.02988	1.811.59	0.82656
6	CL NK	17.17	4.51	.01	0.21263	1.66838	0.82730
24	RESES	49.89	5.31	.19	-0.01138	1.53074	0.82769
27	RESDY	18.74	8.45	.04	-0.00660	1.40092	0.82792
5	CLNF	3.00	2.50	.04	0.00470	1.27775	0.82795
Depe	endent						
33	FACRAT	6.35	0.88				N = 47

down, in twenty-fourth position to be added, because of intercorrelations between it and scales added previously, though its correlation with the criterion is .31, as compared to .32 for Cn. The F value is significant at the .05 level for the first two variables, then becomes so at the .01 level with the addition of the third. F value remains significant through the addition of twenty-three variables, with a multiple R of .81970. Complete data are found in Table XXXIII, in Appendix B.

Experimental scales. No one of the experimental, or auxiliary scales had a significant correlation with faculty ratings, but the highest of -.20 for Sv, Sexual Deviation, made it the first variable chosen for the regression equation, shown in the analysis of variance for regression of the experimental scales with faculty ratings in Table XXI. When Tp, Teaching Potential, was added, the multiple R more than doubled to .46230, and the F value became significant at the .01 level. The third variable included was No, Neurotic overcontrol, increasing the multiple R to .50959, and with a F value significant at the .01 level. All three of these variables are negatively correlated with faculty ratings. This is not surprising for Sv, which has been found to be more a measure of general personality disintegration than specifically sexual

ANALYSIS OF VARIANCE FOR REGRESSION MMPI EXPERIMENTAL SCALES WITH FACULTY RATINGS

Sou	rce of	Variatio	on	D.1	F. S.S.	M.S.	F Value
Due	to Rec	ression	144 B.D.V. 1-1994 - 2-1994 - 2-1994 - 2-1994 - 2-1994 - 2-1994 - 2-1994 - 2-1994 - 2-1994 - 2-1994 - 2-1994 - 2	34	31.106	13 0.9148	<u>2.29603</u>
Dev	iation	about Re	egress:	ion 12	4.781	5 7 0.3984	6
			To	tal 46	35.887	7 0	
		and from the local day in a subgroup of the bold in the	Inter	cept (A	Value) is	-23.97927	₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩
				Simple	Reg.	P	Multiple
No.	Name	Mean	SD	r	Coef.	Value	R
31	EXPSV	27.98	8.39	20	-0.02795	1.91301	0.20194
33	EXPTP	76.62	12.89	08	-0.00999	5.98001**	0.46230
19	EXPNO	5.74	3.17	10	-0.01061	5.02785**	0.50959
22	EXPPR	6.28	3.68	.06	1.15097	4.52666**	0.54886
16	EXPIM	6.38	3.01	.07	-0.15137	4.74276**	0.60534
11	EXPES	50.47	5.38	.17	-0.15417	4.38352**	0.62979
27	EXPSF	23.70	5.82	08	0.07454	4.03810**	0.64824
23	EXPPV	15.74	6.53	08	0.06343	4.16388**	0.68346
14	EXPHR	12.79	1.73	.04	-0.16902	4.27361**	0.71393
18	EXPMP	12.81	4.20	00	-0.10324	3.94182**	0.72295
20	EXPNU	10.60	4.69	.37	0.15690	3.57893**	0.72758
7	EXPDY	18.74	8.45	.04	0.09948	3.33982**	0.73554
24	EXPREM	16.53	1.94	.03	0.54703	3.17361**	0.74538
28	EXPSOR	32.40	4.95	.02	0.05578	3.0 2772**	0.75487
25	EXPRO	5.64	1.36	04	-0.38233	3.04098**	0.77161
10	EXPEO	11.55	3.24	18	-0.15506	2.99456**	0.78419
17	EXPLP	36.19	6.39	.07	0.05006	2.89214**	0.79309
3	EXPAT	13.34	8.06	02	-0.23826	2.81420**	0.80221
32	EXPTO	24.13	3.40	00	1.23036	2.90101**	0.81927
4	EXPHSX	: 12.19	1.86	18	-0.19650	2.90876**	0.83134
2	EXPAE	14.81	2.69	16	-0.06564	2.98421**	0.84548
12	EXPGR	10.34	2.19	10	-0.32696	3.13040**	0.86115
6	EXPDOR	10.66	2.38	. 14	0.32323	3.401]4**	0.87908
26	EXPRP	21.13	3.02	.02	-0.04299	3.39276**	0.88729
15	EXPIE	32.43	3.46	.04	-0.02655	3.31161**	0.89312
1	EXPAC]5.04	2.18	.03	0.17919	3.29125**	0,90031
34	EXPUN	11.38	1.60	13	0.04579	3.26262**	0.90696
9	EXPEM	10.87	5.53	.03	0.09154	3.12017**	0.91058
29	EXPSP	18.62	3.39	.10	-0.13591	3.03665*	0.91553
21	EXPOR	12.96	2.87	14	-0.12654	3.03482*	0.92224
13	EXPHC	5.79	3.14	05	0.06104	2.91701	0.92613
5	EXPDE	2.15	1.41]4	-0.16641	2.75057	0.92885
8	EXPEC	11.89	3.77	.10	0.05528	2.55970	0.93093
30	EXPSTR	12.43	1.99	.19	-0.01510	2.29603	0.93100
Depe	endent						
35	FACRAI	6.35	0.88				N = 47

deviation,¹⁷ or for No, which shows "susceptibility of the personality structure to stress and anxiety in which the anxiety is handled primarily by obsessive, constrictive, and withdrawing techniques."¹⁸

Inspection of the table is interesting, but the information therein can only be taken as suggestive, in view of the low coefficient of concordance found between the faculty ratings.

> 17 Ibid., p. 317.

18_{Ibid.}, p. 303.

CHAPTER VI

SUMMARY AND CONCLUSIONS

This study had two general purposes. One was to establish norms for the <u>Minnesota Multiphasic Personality</u> <u>Inventory</u> for students at Christian Theological Seminary that could be compared with general population norms and with the norms of two other studies of Protestant seminarians. It was assumed that this would help answer the questions of (a) how seminarians differ from men in general, and (b) whether special and/or local CTS norms are needed for the interpretation of individual profiles of seminary students. The other purpose was to see whether any one or any combination of the scales of the MMPI could predict ministerial effectiveness as measured by (a) grade point average after two semesters of seminary work, (b) peer ratings, and (c) faculty ratings.

Summary. Norms for CTS were established upon an N of seventy-six, using the scores of the entering classes of 1963 and 1964. The CTS mean scores on the clinical scales were higher than the general norms on all scales except Si. The scores on Hy, Pd, Pa, Pt, Sc, and Ma were more than half a standard deviation above the mean, while the peak score on Mf was one and a half standard deviations above, for a T score of sixty-five.

<u>Conclusion</u>. The general tendency of college and college-educated groups to score higher than the general population mean was found also with this group. Special seminary norms need to be taken into consideration in the interpretation of the MMPI profiles of students at CTS.

<u>Summary</u>. Comparison of the CTS profile on the clinical scales with the profiles of United Presbyterian and Southern California School of Theology seminarians indicated that they were very similar indeed, more similar to each other than to Catholic seminarians or to college populations. The mean scores on Mf, Pa, L, and Sc were almost identical. The greatest difference found was on D, 1.93 raw score points, less than half a standard deviation according to the general norms. The differences on the eight other scales were smaller, less than the difference found in comparative studies of college populations.

Conclusion. These three Protestant seminary profiles

are so similar that local norms for each seminary would seem unnecessary.

Summary. The profiles of upperclassmen and graduate students compared with entering students showed a tendency for lower scores on L, F, and Ma, very little change on Mf, and higher scores on all the other nine scales. Test-retest findings on students at Southern California School of Theology indicated very similar tendencies.

-<u>Conclusion</u>. This seems to indicate that personality changes may be taking place during the seminary experience.

Summary. Norms were also established for the eleven research scales. CTS mean scores differed from general norms by more than half a standard deviation on Es, Do, Re, Pr, St, and Cn. United Presbyterian norms on these scales were not available, except on three also included in the experimental scales.

CTS norms found for the thirty-four experimental (auxiliary) scales were compared with the United Presbyterian Seminary Male Norms for the Auxiliary Scales of the MMPI.¹

¹Clifford E. Davis, <u>Guide for Counseling Prospective</u> <u>Church Workers</u>, Supplement II (Pittsburgh, Board of Christian Education, United Presbyterian Church, 1963), p. 22.

The differences between the means of eighteen of the scales were less than one raw score point, and the differences on only seven exceeded two score points.

<u>Conclusion</u>. The same divergence from general population norms and similarity to other seminarians found for the clinical scales were found for these scales, and further indicate the need for special seminary, but not local, norms.

<u>Summary</u>. Criteria for the predictive validity aspect of the study included grade point average fr two semesters of seminary work; peer rating, obtained by averaging the scores of three ratings of each student by peers on the <u>Ministerial Effectiveness Rating Scale</u>; faculty rating, the average of three ratings by faculty members using the MERS. These three criteria were used as the dependent variables, and the clinical, research, and experimental scales of the MMPI were used as the independent variables for multiple regression and correlation analyses.

A matrix of intercorrelations of the clinical and research scales with the dependent variables and a matrix of the experimental scales with the dependent variables were calculated. Grade point average was found to have a

coefficient of correlation with Mf of .36, significant at the .@2 level; with Or of .29, significant at the .05 level; with Sc+K of .28, and with Re-r of .28.² Peer ratings had a correlation of .34 with Ma+K, significant at the .02 level; of .28 with Ma (without K correction). The highest correlations with faculty ratings were Cn (.32), significant at the .05 level; Ma+K (.31), significant at the .05 level, and Ma (without K correction) (.28). Grade point average was found to be significantly correlated with faculty ratings (.36) at the .02 level, and correlated .28 with peer ratings. Faculty and peer ratings were significantly correlated (.34) at the .02 level.

The analyses of variance for regression used all the variables in each set of scales, but three further restricttions were used to choose variables for a simpler regression equation, because the whole set of variables did not have a significant F value. These variables were used first in a Wherry-Doolittle test selection procedure, then the regression equation calculated using beta weights and transformed into score form. In each case the new equation was used to predict the criterion scores of the crossvalidation group,

 $^{2}.05 = .288; .02 = .340; .01 = .372.$

the correlation coefficient between the predicted and the achieved scores calculated, and tested for significance. A summary of these equations, the multiple correlation with the criterion found for the experimental group, and the correlation between the predicted and achieved scores of the crossvalidation group is given in Table XXII, on the following page. Because data was available on the <u>California Test of</u> <u>Mental Maturity</u>, Form S, Adult, 1957, two of the equations include it, to see whether the combination of the CTMM and the MMPI could predict better than either alone.

The evidence in Table XXII indicates that (1) the equation using the CTMM Language Factor alone predicted grade point average significantly at the .02 level; (2) the equation using the Mf, Es, and Sc+K scales of the MMPI predicted it significantly at the .02 level; (3) the equation using the Or, Rp and Es scales of the MMPI predicted grade point average at the .02 level; and (4) the combination of the CTMM Language Factor and the MMPI Mf scale predicted it significantly at the .02 level.

<u>Conclusion</u>. The best predictor of grade point average was, not surprisingly, the <u>California</u> <u>Test of Mental</u>

A SUMMARY OF REGRESSION EQUATIONS, MULTIPLE R WITH EXPERIMENTAL GROUP, AND CORRELATION OF PREDICTED AND ACHIEVED SCORES OF CROSSVALIDATION GROUP

Regression Equations	R, Exp.	r, CV.
1. ^Y GPA = .035 Mf +.042 Es +.040 Sc+K 062 Lb7132	.6093**	.3034
2. ^Y GPA = .038 Mf +.0384 Es + .0262 Sc+K867	• 5235**	.4210'
3. ^Y GPA = .0119 CTMM LF +.031 Mf 0234 D +.9437	.5581**	.3168
4. ^Y GPA = .0132 CTMM LF +.0226 Mf +.5791	.5234**	.4124'
5. $Y_{GPA} = .0153$ CTMM LF +.9850	.48 **	.4452'
6. $Y_{GPA} = .056 \text{ Or }079 \text{ Rp } + .030 \text{ Es } + 2.276$.4914**	.4186'
7. YPEERAT = .2718 Ma+K0884 Pa 1850 Ma + 5.3866	。4224**	1605
8. ^Y PEERAT = .0882 Ma+K0923 Pa + 6.0143	.4214**	2684
9. ^Y PEERAT = -1619 Un +.0724 Sf +.1092 Pr + 6.1572	.4153**	1046
*Significant at the .05 level:	≥ .288	≥.349
'Significant at the .02 level:	≥ .340	≥.412
**Significant at the .01 level:	≥ .372	≥.449

<u>Maturity</u>, Language Factor, used alone, since it was designed to predict academic success. However, personality variables as measured by some of the scales of the MMPI were also found to predict at the same level of significance. Correlations between the CTMM Language Factor and scales of the MMPI were not significant, indicating that they were measuring different things. Therefore, further study of combinations of intellective and personality variables as measured by the MMPI seem promising.

<u>Summary</u>. The degree of agreement between the peer ratings as tested by Kendall's Coefficient of Concordance W was significant at the .01 level for the experimental group, and at the .001 level for the crossvalidation group. Equations using the Ma+K, Pa (negatively weighted) and Ma scales of the clinical scales, and using the Un (negatively weighted), Sf, and Pr of the experimental scales, had a multiple correlation with peer ratings of the experimental group significant at the .01 level, as shown in Table XXII. When these equations were used to predict the peer ratings of the crossvalidation group, the correlation between predicted and achieved scores was not significant at the .05 level--it was a negative correlation. <u>Conclusion</u>. Though having significant correlation with the criterion for the experimental group, no equation found using MMPI variables was able to significantly predict peer ratings for the crossvalidation group.

Summary. When the faculty ratings were tested for degree of agreement by Kendall's Coefficient of Concordance, the agreement found was not significant at the .05 level accepted as minimum for this study. Therefore no regression equations using fewer variables were calculated.

General conclusions. The hypothesis that the same type of profile pattern found in United Presbyterian and Southern California School of Theology normative studies of Protestant seminary students would be found in norms developed for students at Christian Theological Seminary can be accepted. The three profile patterns were found to be quite similar, almost identical at several points, making local norms for each seminary unnecessary. However, all three differ sufficiently from general norms that special norms for seminary students need to be taken into consideration in the interpretation of MMPI profiles of seminarians.

The hypothesis that regression equations could be calculated that could predict grade point average using the

scores on some of the clinical, research, or experimental scales of the MMPI can be accepted. That regression equations could be calculated which could predict peer ratings, using scores on the appropriate scales of the MMPI, must be rejected. Faculty ratings did not show significant agreement among the raters, so the hypothesis that they could be predicted must be rejected.

<u>Recommendations for further research</u>. There were questions raised and difficulties encountered in this study that indicate a need for further research. Some recommendations are:

1. That data from several Protestant seminaries be pooled to establish "Protestant Seminary Norms for the <u>Minne-</u> sota Multiphasic Personality Inventory."

2. That item analyses of the Mf, Hy, Pa, Ma, and Pd scales be made, to see just what factors are contributing to the elevation characteristically found in the profiles of seminary students on these scales.

3. That further study of the question of criteria of ministerial effectiveness is needed, since the first requirement of prediction is adequate criteria.

4. That further studies be made of ratings, especially

of faculty ratings, to determine how validity and reliability might be improved.

5. That studies be made of drop-outs, and their MMPI profiles that might be characteristic or predictive.

6. That longitudinal studies be made as students progress through the seminary and into the pastorate. BIBLIOGRAPHY

BIBLIOGRAPHY

- Arnold, M. B., et al. <u>Screening Candidates for the Priesthood</u> and the <u>Religious Life</u>. Chicago: Loyola University Press, 1962.
- Barclay, James R. "The Attack on Testing and Counseling--An Examination and Reappraisal," <u>Personnel and Guidance</u> Journal, 43; 6-16, September, 1964.
- Barron, F. "An Ego-Strength Scale Which Predicts Response to Psychotherapy," <u>Basic Readings on the MMPI in Psychology</u> <u>and Medicine</u>, G. S. Welsh and W. G. Dahlstrom, editors. <u>Minneapolis</u>: University of Minnesota Press, 1956. Pp. 226-234.
- Benton, A. L. "The MMPI in Clinical Practice," <u>Basic Readings</u> on the <u>MMPI</u> in <u>Psychology</u> and <u>Medicine</u>, G. S. Welsh and W. G. Dahlstrom, editors. Minneapolis: University of Minnesota Press, 1956. Pp. 403-7.
- Bier, W. C. "A Comparative Study of a Seminary Group and Four Other Groups on the MMPI," <u>Basic Readings on the MMPI in</u> <u>in Psychology and Medicine</u>, G. S. Welsh and W. G. Dahlstrom, editors. Minneapolis: University of Minnesota Press, 1956. Pp. 586-609.
- Billinsky, John M. "Using the Results of Testing," <u>Bulletin of</u> the AATS, 22: 136-37, 1956.
- Black, J. D. "The Interpretation of MMPI Profiles of College Women," Dissertation Abstracts, 13: 870-71, 1953.
- Booth, Gotthard. "Practical Considerations from Twenty-four Years of Testing and Psychotherapy with Seminarians," Journal of Religion and Health, 2: 267-76, 1963.

. "Unconscious Motivation in the Choice of the Ministry," <u>The Minister's Own Mental Health</u>, Wayne E. Oates, editor. Great Neck, N. Y.: Channel Press, Inc., 1961. Pp. 76-85.

- Christensen, Carl W. "The Occurrence of Mental Illness in the Ministry," <u>The Minister's Own Mental Health</u>, Wayne E. Oates, editor. Great Neck, N. Y.: Channel Press, Inc., 1961. Pp. 245-59.
- Cuadra, C. A. "A Scale for Control in Psychological Adjustment (Cn)," <u>Basic Readings on the MMPI in Psychology and</u> <u>Medicine</u>, G. S. Welsh and W. G. Dahlstrom, editors. <u>Minneapolis:</u> University of Minnesota Press, 1956. Pp. 235-54.
- Dahlstrom, W. Grant, and G. S. Welsh. <u>An MMPI Handbook</u>. Minneapolis: University of Minnesota Press, 1960.
- Davis, Clifford E. <u>Guide for Counseling Prospective Church</u> <u>Workers</u>. Pittsburgh: Board of Education of the United Presbyterian Church, 1963.
- Description of the College Board Scholastic Aptitude Test. Princeton, N. J.: College Entrance Board, 1963.
- DeWire, H. A. "Psychological Testing in Theological Schools," Ministry Studies Board Newsletter, 1: 2-4, 1962.
- Dittes, James B. "Research on Clergymen," <u>Religious Education</u>, 57: Research Supplement, pp. 141-65, 1962.
- Dixon, W. J. (ed.) <u>BMD</u> <u>Biomedical</u> <u>Computer</u> <u>Programs</u>. Los Angeles: University of California, 1964.
- Drake, L. E. and E. R. Oetting. <u>An MMPI Codebook for Counselors</u>. Minneapolis: University of Minnesota Press, 1959.
- English, Horace B., and Ava Champney English. <u>A Comprehensive</u> <u>Dictionary of Psychological and Psychoanalytical Terms</u>. New York: Longmans, Green and Co., 1958.
- Fielder, Daniel W. "A Nomothetic Study of the Southern California School of Theology Seminarian." Unpublished Doctor's thesis, Southern California School of Theology, 1964.
- Froyd, M. C. "Pretesting for the Ministry," Christian Century, June 27, 1956, pp. 769-70.

- Garrett, Henry E. <u>Statistics in Psychology and Education</u>. New York: Longmans, Green and Co., 1958.
- Goodling, R. A., And S. C. Webb. "An Analysis of Faculty Ratings of Theological Students," <u>Religious Education</u>, 54: 228-33, 1959.
- Gough, H. C. "Diagnostic Patterns on the MMPI," <u>Basic Readings</u> on the MMPI in Psychology and Medicine, G. S. Welsh and W. G. Dahlstrom, editors. Minneapolis: University of Minnesota Press, 1956. Pp. 340-50.
 - . "A Personality Scale for Anti-Semitic Prejudice (Pr)," <u>Basic Readings on the MMPI in Psychology</u> and Medicine, G. S. Welsh and W. G. Dahlstrom editors. Minneapolis; University of Minnesota Press, 1956. Pp. 205-11.
- . "A Scale for a Personality Dimension of Socioeconomic Status (St)," <u>Basic Readings on the MMPI in Psychology</u> and <u>Medicine</u>, G. S. Welsh and W. G. Dahlstrom, editors. Minneapolis: University of Minnesota Press, 1956. Pp. 187-95.
- , H. McClosky and P. E. Meehl. "A Personality Scale for Dominance (Do)," <u>Basic Readings on the MMPI in Psychology</u> <u>and Medicine,</u> G. S. Welsh and W. G. Dahlstrom, editors. Minneapolis: University of Minnesota Press, 1956.
- Guilford, J. P. Fundamental Statistics in Psychology and Education. New York: McGraw-Hill Book Co., Inc., 1956.
- Hanvik, L. J. "MMPI Profiles in Patients with Low-Back Pain,"
 <u>Basic Readings on the MMPI in Psychology and Medicine,</u>
 G. S. Welsh and W. G. Dahlstrom, editors. Minneapolis:
 University of Minnesota Press, 1956.
- Harrower, Molly. 'Mental Health Potential and Success in the Ministry," Journal of Religion and Health, Vol. 4, No. 1, October, 1964, pp. 30-58.

. "Selection of Personnel for the Clergy," <u>Significant</u> <u>Areas of Research in Religion and Health</u>, H. C. Meserve, editor. New York: Academy of Religion and Mental Health, 1962.

- Hathaway, S. R. "Scales 5 (Masculinity-Feminity), 6 (Paranoia), and 8 (Schizophrenia)," <u>Basic Readings on the MMPI in</u> <u>Psychology and Medicine</u>, G. S. Welsh and W. G. Dahlstrom, editors. Minneapolis: University of Minnesota Press, 1956.
- , and Peter Briggs. "Some Normative Data of New MMPI Scales," Journal of Clinical Psychology, XIII, No. 4, October, 1957, pp. 364-68.
- , and J. C. McKinley. "Construction of the Schedule," Basic Readings on the MMPI in Psychology and Medicine, G. S. Welsh and W. G. Dahlstrom, editors. Minneapolis: University of Minnesota Press, 1956.
- , and J. C. McKinley. <u>The MMPI Manual</u>. New York: The Psychological Corporation, 1951.
- , and J. C. McKinley. "Scale 2 (Depression)," <u>Basic</u> <u>Readings on the MMPI in Psychology and Medicine</u>, G. S. Welsh and W. G. Dahlstrom, editors. Minneapolis: University of Minnesota Press, 1956.
- Higdon, E. K. <u>New Missionaries</u> for <u>New Days</u>. St. Louis: Bethany Press, 1956.
- Hiltner, Seward. "Psychological Tests for Ministerial Candidates," Journal of Pastoral Care, 1957, 11: 106-08.
- Hovey, H. B. "Positive Characteristics of MMPI Elevations in a Nursing Group," <u>Basic Readings on the MMPI in Psychology and Medicine</u>, G. S. Welsh and W. G. Dahlstrom, editors. Minneapolis: University of Minneasota Press, 1956.
- Jalkanen, R. J. "The Personality Structure of Seminarians: the Use of Available MMPI Norms for Diagnosis," Unpublished Master's thesis, Roosevelt University, 1955.
- Kemp, Charles F. "Occupational Information for Church Vocation," <u>The Minister's Own Mental Health</u>, Wayne Oates, editor. Great Neck, N. Y.: Channel Press, Inc., 1961. Pp. 261-69.
- Kling, F. R. "A Study of Testing as Related to the Ministry," Religious Education, 1958, 53: 243-48.

- Lindquist, E. F. <u>A First Course in Statistics</u>. New York: Houghton Mifflin Co., 1942.
- Masserman, J. H. and R. T. Palmer. "Psychiatric and Psychological Tests for Missionary Personnel," <u>Pastoral</u> Psychology, 12: 24-33, March, 1961
- McKinley, J. C. and S. R. Hathaway. "Scale 1 (Hypochondriasis),"
 <u>Basic Readings on the MMPI in Psychology and Medicine,</u>
 G. S. Welsh and W. G. Dahlstrom, editors. Minneapolis:
 University of Minnesota Press, 1956. Pp. 64-72.
- , and S. R. Hathaway. "Scales 3 (Hysteria), 9 (Hypomania), and 4 (Psychopathic Deviate)," <u>Basic Readings</u> on the MMPI in Psychology and Medicine, G. S. Welsh and W. G. Dahlstrom, editors. Minneapolis: University of Minnesota Press, 1956. Pp. 87-163.
- , S. R. Hathaway and P. E. Meehl. "The K Scale," <u>Basic</u> <u>Readings on the MMPI in Psychology and Medicine</u>, G. S. Welsh and W. G. Dahlstrom, editors. Minneapolls: University of Minnesota Press, 1956.
- Meehl, P. E., and S. R. Hathaway. "The K Factor as a Suppressor Variable in the MMPI", <u>Basic Readings on the MMPI in</u> <u>Psychology and Medicine</u>, Minneapolis: University of Minnesota Press, 1956. Pp. 12-40.
- Menges, Robert J., and James E. Dittes. <u>Psychological Studies</u> of <u>Clergymen</u>: <u>Abstracts</u> of <u>Research</u>. New York: Thomas Nelson and Sons, to be published about September 1, 1965.
- Million, E. G. "Psychological Testing in the Seminaries," Bulletin of the AATS, 1954, 21:85-99.
- Ministry Studies Board Newsletter. Dayton: Ministry Studies Board. April, 1962. - February, 1965.
- Modlin, H. C. "A Study of the MMPI in Clinical Practice," <u>Basic Readings on the MMPI in Psychology and Medicine,</u> <u>G. S. Welsh and W. G. Dahlstrom, editors. Minneapolis:</u> University of Minnesota Press, 1956. Pp. 388-402.
- Morse, P. K. "The SVIB and MMPI as Measures of Persistence Toward the Ministry as a Vocational Goal," <u>Dissertation</u> <u>Abstracts</u>, 1963, 23:3239.

- Nelson, J. O. "Vocation, Theism, and Testing," Pastoral Psychology, 1959, 9:33-40..
- Nichols, Robert C., and John L. Holland. "The Selection of High Aptitude High School Graduates for Maximum Achievement in College," <u>Personnel and Guidance Journal</u>, 43: 33-40, September, 1964.
- Oates, Wayne E. The Minister's Own Mental Health. Great Neck, N. Y.: The Channel Press, 1961.
- Ostle, Bernard. <u>Statistics in Research</u>. Ames, Iowa: Iowa State University Press, 1963.
- Prospectus on the Ministry Studies Board. Dayton: Ministry Studies Board, n. d.
- Saunders, D. R., And S. C. Webb. "A Reply to Dr. Hiltner," Journal of Pastoral Care, 1957, 11:108-110.
- Siegel, Sidney. <u>Nonparametric Statistics for the Behavioral</u> Sciences. New York: McGraw Hill Book Co. Inc., 1956.
- Spiers, Duane E. "A Study of the Predictive Validity of a Test Battery Administered to Theological Students," Unpublished Doctor's Thesis, Purdue University, 1965.
- Stern, George G. "Personality Assessment and the Prediction of Academic Success," <u>American Psychologist</u>, 1952, 7: 324-28.
- Sweeney, Robert Howard. "The Morality of Psychological Testing of Vocations," <u>National Catholic Education Association</u> <u>Bulletin</u>, August, 1964, cited in MSB <u>Newsletter</u>, February, 1965.

ĩ

- Thompson, J. S. "A Study of Relationships Between Certain Measured Psychological Variables and Achievement in the First Year of Theological Seminary Work," <u>Dissertation</u> Abstracts, 1956, 16:1846-47.
- Vayhinger, John, and Carroll Wise. <u>A Psychological Study of</u> Theological Students. To be published.

- Wauck, L. "An Investigation Into the Use of Psychological Tests as an Aid in the Selection of Candidates to the Diocesan Priesthood," <u>American Catholic Psychological</u> <u>Association Newsletter</u>, 1958, Supplement 35.
- Webb, S. C., R. A. Goodling, and I. L. Shepherd. "The Prediction of Field Work Ratings in a Theological School," Religious Educations 1958, 53:534-38.
- , and R. A. Goodling. "Test Validity in a Methodist Theological School," <u>Educational and Psychological</u> Measurement, 1958, 18: 859-66.
- Welsh, George Schlager and W. Grant Dahlstrom. <u>Basic Readings</u> on the <u>MMPI in Psychology and Medicine</u>. <u>Minneapolis:</u> University of Minnesota Press, 1956.
- . "Factor Dimensions A and R," <u>Basic Readings on the MMPI</u> in <u>Psychology and Medicine</u>. Minneapolis: University of Minnesota Press, 1956. Pp. 264-81.
- Williams, H. L. "A Caudality Scale for the MMPI," <u>Basic</u> <u>Readings on the MMPI in Psychology and Medicine</u>. Minneapolis: University of Minnesota Press, 1936. Pp. 221-26.
- Williams, M. O. Jr. "The Psychological-psychiatric Appraisal of Candidates for Minnionary Service," <u>Pastoral Psychology</u>, 1958, 9: 41-44.

APPENDIX A

DESCRIPTION OF THE AUXILIARY SCALES OF THE MMPI*

2 Ac - Academic Achievement

This is an attempt to develop a brief personality scale to predict college undergraduate course grades. The author hoped its findings would contribute to a broader understanding of some of the nonintellective factors relating to academic achievement, particularly those factors having to do with personal values, beliefs, and self-definitions.

This scale was standardized on introductory psychology classes at the University of California, University of Minnesota and Vanderbilt University.

Harrison G. Gough, <u>Journal of Applied Psychology</u>, 1953, 37, 361-366.

4 Ae - College Achievement

This scale is an attempt to find some significant relationships between the way college students respond to adjustment items and the type of grade averages which they earn, intelligence being held constant. The method of equated groups was used, the basis of the equating being the standard scores earned on the "Altus Measure of Verbal Aptitude."

Two classes in elementary psychology at the Santa Barbara College, University of California (1947) were used.

W. D. Altus, <u>Journal of Applied Psychology</u>, 1948, 32, 385-397.

16 At - Iowa Manifest Anxiety

The use of the anxiety scale in this connection was based on two assumptions: (1) that variation in drive level of the individual is related to the level of internal anxiety

^{*}C. E. Davis, <u>Guide for Counseling Church Workers</u>. (Pittsburgh, Board of Christian Education, United Presbyterian Church, 1963) Supplement II, pp. 8-15.

emotionality; (2) that the intensity of this anxiety could be ascertained by a paper and pencil test consisting of items describing overt or manifest symptoms of this state. This test consists of 50 items* from the MMPI.

* These 50 items represent the At scale on the MMPI.

This test was given to 1971 students at the State University of Iowa from 1948 to 1951; also to 683 airmen at the beginning of basic training at Lackland Air Force Base; and to 201 Northwestern University night school students.

Janet A. Taylor, Journal of <u>Abnormal Social Psychology</u>, 1953, 48, 285-290.

HSX - Homosexuality

The HSX scale shows considerable promise in distinguishing male homosexuals from nonhomosexuals in a prison population. The norms for this scale were made from the responses of inmates in the North Carolina prison system. From this sample, a raw score of 12 or higher indicates 81 percent of the homosexuals, but only 13 percent of the "normal" prison population.

The scale itself is not a good indicator of homosexuality among theological students, but is useful in connection with two other scales: sexual deviation (SV) and masculinityfemininity (Mf). The following high score pattern indicated 35 percent of the homosexuals and includes only 6 percent of the normals. These figures are based on a small sample of 17, but suggest a pattern for further study.

High Score Pattern

Mf70 and aboveSV31 and aboveHSX12 and above

James H. Panton, "A New MMPI Scale for the identification of Homosexuality," Journal of Clinical Psychology, Vol.XVI.17.

47 De - Delinquency

All items on this scale are found on the So scale of the
California Psychological Inventory. The So scale (Socialization) indicates the degree of social maturity and integrity which the individual has attained. Scores to the right suggest a serious, honest industrious person who is conscientious, responsible, and conforming. Scores to the left suggest a defensive, demanding, opinionated individual who may be deceitful in dealing with others.

Harrison G. Gough, <u>California</u> <u>Psychological</u> <u>Inventory</u> Manual, 1957.

50 Do-r - Dominance

All items on this scale are found on the Do scale of the California Psychological Inventory. This scale attempts to assess factors of leadership, dominance, persistence, and social initiative. Scores to the right are aggressive, confident, persistent, persuasive, and verbally fluent. Scores to the left tend to be retiring, inhibited, indifferent, and unassuming.

Harrison G. Gough, <u>California</u> <u>Psychological</u> <u>Inventory</u> Manual, 1957.

57 Dy - Dependency

This paper reports the development and initial use of an MMPI scale to measure dependence. Sixteen judges independently specified the MMPI items that they felt would bear on dependence.

Fifty-seven items survived and constitute the scale. Reliability is .91.

Leslie Navran, Journal of Consulting Psychology, 1954, 18, 192.

58 Ec - Escapism

Propensity for escape among imprisoned felons derives at least in part from constellations of personality variables, which if identified could serve to differentiate between potential escapist and nonescapist. The 42 variables used in the index appear to be derived independently of any single scale or groups of scales of the MMPI.

Norms were established on 413 male felons (1955) with intelligence above 80; and 103 escapees - experimental group and 100 nonescapees - control group.

H. S. Beall and J. H. Panton, <u>Journal of Clinical Psy-</u> chology, 1956, 13, 392-394.

59 Em - Emotional Immaturity

This investigation has developed as an effort to improve the professional understanding and application of the term "emotional immaturity" through analysis of responses to the MMPI of various groups of adult subjects.

This trait has been described as a "feeling tone." The immaturity may be overt, but it does not have to be. The individual may express his immature emotionality via temper tantrums, pouting, etc. Even if he successfully inhibits such expressions he is still emotionally immature if he feels like doing so.

Major findings stem from the analysis of responses to MMPI items of several groups of psychiatric patients in relation to the responses of various normal groups.

The assumption that individuals mature in their emotional adjustments as they grow older did not hold up in this investigation. Rather, it appeared that the older adults responded slightly more frequently in the manner characteristic of emotionally immature psychiatric patients.

John Simner Pearson, Ph.D. dissertation, University of Minnesota, 1954.

60 Eo - Ego Overcontrol

Unpublished material.

J. Block, mimeographed materials, Berkeley, Institute

of Personality Assessment and Research, University of California, 1953.

62 Es - Ego Strength

This paper reports the development and cross-validation of a scale which was originally designed to predict the response of psychoneurotic patients to psychotherapy. However, a somewhat broader psychological interpretation could be placed upon it, making it useful as an assessment device in any situation where some estimate of adaptability and personal resourcefulness is wanted. It appears to measure the various aspects of effective personal functioning which are usually subsumed under the term "ego strenght."

Frank Barron, Journal of Consulting Psychology 1953, 17, 327-333.

71 Gr - Graduate School Potential

Gough (1953b) has also found evidence that achievement in college programs and in graduate school may be more closly correlated with independence and originality than with the conformity that is typically rewarded at the high school level.

74 HC - Hostility Control

One of the most difficult stages of therapy for the therapist to handle adequately is the "negative transference" phase. The patient's neurosis is threatened with the loss of infantile gratifications which it previously gained from the symptoms. To counteract this process, the patient reacts with defensive behavior which is unconsciously formulated to break up the therapy relationship. Any information the psychologist has about how the patient is liable to manifest his defensive hostility is of great value in helping him work through this phase of therapy with the patient.

Two groups of patients were used. The first group was 119 patients from the Veterans Administration Mental Hygiene Clinic at Oakland, California. The second group was 52 patients from the Psychological Clinic at Pennsylvania State University. Starling Donald Schultz, Ph.D. dissertation, Pennsylvania State University, 1954.

78 Hr - Honor Point Ratio

It is not at all certain that this is actually a measure of intellect. Nevertheless, it does correlate significantly with conventional tests of intelligence. The two immediate aims of this project were to determine whether a criterionspecific set of personality inventory items could be assembled which would correlate significantly with accepted measures of intellect, and to determine whether individual items could be combined in a scale which would have anything approaching practical significance and value.

Items on this scale are identical with items on the Ai scale of the California Psychological Inventory. The Ai scale (Achievement via independence) was designed to identify those factors of interest and motivation which facilitate achievement in any setting where autonomy and independence are positive behaviors.

Harrison G. Gough Journal of Consulting Psychology, 1953. 17, 242-246.

California Psychological Inventory

Manual, 1957.

92 Ie - Intellectual Efficiency

All items on this scale are identical to items found on the Ie scale of the California Psychological Inventory. The Ie scale (Intellectual efficiency) was designed to indicate the degree of personal and intellectual efficiency which the individual has attained. Scores to the right suggest a clearthinking, planful, thorough, alert, and well-informed individual. Those on the left suggest a cautious, confused, defensive, shallow, and unambitious person.

Harrison G. Gough, <u>California Psychological Inventory</u> Manual, 1957.

93 Im - Impulsivity

This scale is a reversal of the Sc scale on the Califor-

nia Psychological Inventory. The Sc scale (Self-control) was designed to assess the degree and adequacy of selfregulation and self-control and freedom from impulsivity and self-centeredness. Scores to the left suggest an impulsive. excitable, irritable, inhibited individual. Those to the right suggest a calm patient, slow, self-denying person who is strict and thorough in his own work and in his expectations for others. Such a person is described as being honest and conscientious.

Harrison G. Gough, <u>California</u> <u>Psychological Inventory</u> Manual, 1957.

106 Lp - Leadership

The only information available is in the listing in <u>An MMPI Handbook</u>, W. Grant Dahlstrom and George Schlager Welsh.

124 Mp - Positive Malingering

Falsification of response has long been known to be an important factor which limits the validity of the personality inventory or questionnaire. The present study was designed to investigate malingering on the MMPI by investigating the behavior of F and K malingering; attempting to discover "malingering susceptible" and "malingering proof" items; and studying the relationship of these latter items to Wiener's subtle and obvious items.

Three groups of college sophomores were used: positive malingerers, negative malingerers, and controls. This group was composed of 81 males and females.

C. N. Cofer, June E. Change, and A. J. Judson, Journal of Psychology, 1949, 27, 491-499.

131 No - Neurotic overcontrol
134 Nu - Neurotic undercontrol

High No scores (to the left) are described as reluctant to enter into new experiences, are self-conscious in social situations, and are overly responsive to other people's

valuations rather than their own.

High Nu scores (left) present physical signs of tenseness, restlessness, embarrassment. They are unable to control impulses manifested in acting out, externalizing, and even antisocial behavior.

The reference briefly describes the work of Block on these two scales. The correlation between them is not significant.

Nakamura, C. Y., "Measures of Over-controlled and Undercontrolled Behavior: a Validation," <u>Journal of Clinical Psy-</u> <u>chology</u>, 1960, 16, 149-153.

135 Or - Originality

The only information available is in the listing in An MMPI Handbook, W. Grant Dahlstrom and George Schlager Welsh, and on pp. 251-252 in that book.

162 Pr - Prejudice

Previous work with the MMPI has revealed that quite useful scales for the prediction of socio-economic status and academic achievement could be developed, and this fact suggested that a similar analysis with respect to ethnic attitudes might yield a number of items that would bear no apparent relationship to the continuum being studied, but which would nevertheless constitute reliable predictors of it. Furthermore it was found in the previous studies that inspection of the items themselves added appreciably to an understanding of the psychological dimensions considered, in addition to any usefulness attaching to the scales as such. It was decided to carry out an item analysis of the MMPI to determine whether an "anti-Semitism" scale might be developed.

The first step was to administer the Levinson-Sanford anti-Semitism scale to a class of 271 high school seniors in a Midwestern community. From this scale the 40 highest scoring students (22 boys, 18 girls) and the 40 lowest scoring students (22 boys, 18 girls) were chosen for special consideration. The responses of these two subsamples to the MMPI were next tabulated and each item discriminating at or beyond the .05 level were retained. 47 items appeared in this analysis. These 47 items were given to a new senior class of 263 students, who had also taken the Levison-Sanford antisemitism scale. The 32 items retained were considered as a scale, which appeared to be sufficiently reliable and valid to be used as a measuring instrument in its own right.

Harrison G. Gough, <u>Journal of Social Psychology</u>, 1951, 33, 247-255.

167 Pv - Pharisaic Virtue

An attempt to develop scales for the MMPI which measure a person's ability to get along well with others was the aim of this study. This type of scale should prove valuable in selecting personnel who must deal with the public or work harmoniously and effectively with a group. This scale may prove useful in the selection of salespeople, officers and noncommissioned officers in the Armed Forces, foremen, and other personnel who must be able to establish rapport with others and maintain group morale.

When the Minnesota Teachers Attitude Inventory was standarized on a large sample of Minnesota teachers, it was possible to identify in the extremes of distribution two groups of teachers sharply differing in their ability to get along with pupils. The MMPI was administered to these two groups and 212 completed the test--112, representing approximately 8 percent of the teachers scoring highest, and 100, the 8 percent scoring lowest (among all the public-school teachers in Minnesota) on the MTAI. The Pv scale, along with the Hostility scale, was taken from 250 discriminating items on the MMPI. The reference cited suggests that a person with a high Pv score is preoccupied with morality and ridden with fears and tensions.

W. W. Cook and D. M. Medley, Journal of Applied Psychology, 1954, 38, 414-418.

```
174 Re-r - Social Responsibility, Revised
```

This paper is a second report on the development of

scales and measuring instruments designed to be utilized in a large-scale study of political participation. As in the case of the Dominance scale, the study was begun with an externally defined social criterion. The aim of the present study is not the construction of a factorially pure measuring instrument, but the development of a scale which will order individuals according to their social responsibility. The peer group nomination technique was used in developing this Subjects were asked to choose the "most" and "least" scale. responsible members in their particular group, and were urged to ignore such considerations as friendliness, popularity, etc. A scale-questionnaire plus some MMPI items was then used.

The responsible person is one who shows a ready willingness to accept the consequences of his own behavior, depend-ability, trustworthiness, and a sense of obligation to the group. For screening college students the scale would properly classify 78 percent of the cases.

H. G. Gough, H. McClosky, and P. E. Meehl, <u>Journal of</u> Abnormal Social Psychology, 1952, 47, 73-80.

175 Rg.f - Rigidity-Female 176 Rg-m - Rigidity-Male

The purpose of the present study was to test two hypotheses about the unidimensionality of emotional responsiveness and rigidity.

Two scales were presented: (1) a personality scale of emotional responsiveness (E scale) and (2) a personality scale of rigidity (R scale).

Three hundred ten subjects were used: 155 males and 155 females. The females consisted of 134 students in the General Arts Courses at the University of Toronto and 21 clinical patients from a psychiatric hospital and a female reformatory. The males consisted of 121 students in the General Arts Courses at the University of Toronto and 34 patients from a psychiatric hospital and clinic for drug addicts and alcoholics.

V. Cervin, Journal of Personality, 1957, 25, 626-642.

177 Rp - Role-playing

The term "role-taking ability" refers to the facility with which a person can perceive and act out organized behaviors or roles (i.e., putting himself in someone else's position).

It may well be a combination of some more basic factors: (1) It is largely a product of social inter-action. (2) It is a quantitative variable. (3) The concept appears to be a useful one despite the unclear nature of role-playing ability as a "trait."

William A. McClelland, Journal of Consulting Psychology, 1951, 15, 102-108.

189 Sf - Self-sufficiency

The aim of this investigation was to study the "generality of certainty" and its relation to manifest anxiety. The assumption was that a person reporting more instances of self-sufficiency was indicating more subjective certainty.

Sixty Stanford women enrolled in Introductory Psychology were tested.

W. M. Wolff, Journal of Abnormal Social Psychology, 1955, 50, 59-64.

195 So-r - Social Desirability, Revised

The original work on this scale was done by Allen L. Edwards and is discussed in the manual to his test: Edwards Personal Preference Schedule Manual. It represents an extensive effort to decide how much social desirability has affected the person's answers to the questions. The correlation between this scale and the K scale has been found to be .63

Edwards suggests that high scores (right) are those who tend to get suggestions from others, to follow instructions, and to do what is expected of them. They accept the leadership of others, avoid the unconventional, and tend to let others make decisions.

Allen L. Edwards, <u>Edwards</u> <u>Personal Preference</u> <u>Schedule</u> <u>Manual</u>, 1954. The Psychological Corporation, New York.

196 Sp - Social Participation

This particular factor frequently turns out to be the key element in a counseling problem.

Four high school senior classes were used. The most and least participant students in a number of extracurricular activities were selected, and their responses to a questionnaire were analyzed.

The original research behind this scale plans to incorporate it into a group of related auxiliary scales. The scale itself appears to measure the following items:

- (1) Self confidence
- (2) Frankness
- (3) Liking for social interaction
- (4) Intellectual and cultural interests
- (5) Broadminded social outlook
- (6) Satisfaction with living

Harrison G. Gough, <u>California</u> <u>Psychological</u> <u>Inventory</u> Manual, 1957.

200 St-r - Social Status, Revised

The items on this scale are identical with items found on the Cs scale of the California Psychological Inventory. The Cs scale (Capacity for status) was designed to serve as an index of an individual's capacity for status (not his actual or achieved status). The scale attempts to measure the personal qualities and attributes which underlie and lead to status. High Scores (right) indicate ambitious, active, insightful, resourceful persons. Low scores suggest apathetic, shy, conventional, and dull individuals.

Harrison G. Gough, <u>California</u> <u>Psychological</u> <u>Inventory</u> <u>Manual</u>, 1957.

201 Sv - Sexual Deviation

Subjects for this study were male sex offenders convicted of some sex offense and who were in the state hospital for observation, diagnosis, and treatment. Almost 60 percent had records of one or more previous convictions. Charges included indecent exposure, child molestation, rape, and homosexual contacts with minors.

	Freq	ue n cy
MMPI Scale	Normals	Sex Offenders
Sogre	(N-145)	(N-200)
66-70		2
61-65		3
56-60		14
51-55		26
46-50		31
41-45	2	30
36-40	4	36
31-35	12	38
26-30	22	9
21-25	38	9
16-20	39	2
11-15	25	
6-10	3	
0-5		
Mean	21.3	42.1
SD	6.5	9.3

Distribution of 145 Normals and 200 Sex Deviates on a 100-Item Sexual Deviation Scale

The best cutoff point to distinguish these groups seem to lie between 30 and 31 items.

When MMPI scale scores were compared for these extremes, it was found that those with high sexual deviation scores also had significantly higher scores on the F, D, Pa, Pt, and Sc scales. A significant difference was also found for the K scale, high deviation scores being associated with low K values.

205 To - Tolerance

The items on this scale are identical with items found on the To scales of the California Psychological Inventory. This scale To (Tolerance) was designed to identify persons with permissive, accepting, and non-judgmental social beliefs and attitudes.

Harrison G. Gough, <u>California</u> <u>Psychological</u> <u>Inventory</u> <u>Manual</u>, 1957.

206 Tp - Teaching Potentiality

The study reported here is directed toward predicting the initial success of teaching candidates going into the field rather than evaluating the competence of those of considerable experience.

From the MMPI answer sheets of 661 males and 1059 females who passed through the teacher selection process at the Teachers Selection and Counseling Service of the School of Education University of Minnesota, were used as a basis for this scale.

J. C. Gowan and May S. Gowan, <u>Journal of Educational</u> Research, 1955, 49, 1-12.

210 Un - Underachievement

An achievement scale was constructed which consists of 24 items of the MMPI which distinguished a group of freshman males of the University of Wisconsin who had been clients of the Student Counseling Center and extreme overachievers in their first semester's work from a similar group of extreme underachievers.

J. P. McQuary and W. E. Truax, Journal of Educational Research, 1955, 48, 393-399.

MAPLETON STATION, BOX 88267

INDIANAPOLIS 8, INDIANA

MINISTERIAL EFFECTIVENESS SCALE

180

For	Date
To	.Your Position
In what capacity have you known this person?	How long?

We are asking your assistance in estimating this person's qualifications as a minister. Please block out the square on each scale which you feel indicates the degree of his development in terms of the particular category described.

Where you feel you have no basis for judgment, please place a large "X" through the entire statement. What you indicate on this form will be kept confidential and will not be communicated to the student or go outside the Seminary offices.

1. Quality of Religious Life. The vitality of his personal Christian commitment.

CHRISTIAN THEOLOGICAL SEMINARY

								1
	1							
1	2	3	4	5	6	7	8	9 High

2. Christian Influence. His influence in inspiring faith in others.

					and the second second	and the second second of the	av		
	1						í		
	1			1		1	i		
1			t ·						
~	4	0	0	4	=	C	7	0	0
0	1	- 2	చ	-4	Ð	0	4	0	5
								IJ	ich
LOV	7							п	15 LL

3. Personal Habits.

Courtesy neatness and manners. 0 1 2 3 4 5 6 7 8 9 Low High

4. General Culture. Esthetic sensitivity: appreciation for cultural pursuits.

									-
			: 1						1
		1	i i				·		
Ω	٦	2	2	Δ	5	6	7	8	9
0	1	4	0	-	0	0	•	0	0
Low									High

5. Personal Integrity. The degree of his dependability, honesty, sincerity, reliability.

0	1	2	3	4	5	6	7	8	9
Low									High

6. Financial Responsibility. Evidence of concern for financial obligations and responsible effort to meet them promptly.

0	1	2	3	4	5	6	7	8	9
Low									High

- 7. Social Participation.
- How active was is he in his participation in the life of the community where you have known him?

0	1	2	3	4	5	6	7	8	9
Low	•								High

8. Intellectual Growth.

Evidence of intellectual growth and critical thought.

i	1									
0)	1	2	3	4	5	6	7	8	9
Lo	W									High

- 9. Theological Alertness.
- Interest in theological discussion and awareness of theological issues and trends.

0	1	2	3	4	5	6	7	8	9
Low									High

10. Common Sense. Ability to "size-up" situations quickly and accurately; to use "good judgment"; and to exercise self-control.

0 Low	1	2	3	4	5	6	7	8	9 High

11. Empathy. Insight into the way the other person views things; capacity to "feel with" him; and to understand his meanings.

0	1	2	3	4	5	6	7	8	9
Low]	High

12. Emotional Stability.

Ability to meet problems under pressure.

-	•								
0	1	2	3	4	5	6	7	8	9
Low								1	High

13. Social Conscience. Moral sensitivity to social issues in contemporary society.

								1	1 1
0 Lo₩	1	2	3	4	5	6	7	8	9 High

14. Ability To Communicate.

Evidence that through written or spoken word he is able to organize and communicate his ideas clearly, coherently, and concisely.

								1	
0 Low	1	2	3	4	5	6	7	8	9 High

15. Administrative Skill.

Ability in organizing and leading groups of individuals.

ĺ										
-	0 Low	1	2	3	4	5	6	7	8	9 High

16. Attitude Toward Other Churches. The degree of his cooperation with other churches and his responsible action in interfaith activity.

ī	1	1	1	1	1		1			
	1	1				1				
	0	1	2	3	4	5	6	7	8	9
	Low							-]	High

- 17. General Impression.
 - How would you rate this person as to his potential effectiveness in the ministry?

1		1 1								
0 ow	1	2	3	4	5	6	7	8	9 High	

18. Other Impressions You May Have. (Please write on other side.)

Signed......Address.....

APPENDIX B

. . .

TABLE XXIII PROBLEM NUMBER G3,5 REPLACEMENT AND DELETION 3

·····

. .

DEPENDENT VARIABLE IS NOW 35 NUMBER OF VARIABLES DELETED 16 VARIABLES DELETED... 1 2 3 22 23 24 25 26 27 28 29 30 31 32 33 34

ANALYSIS OF VARIANCE FOR REGRESSION

1

SOURCE OF VARIATION	C.F.	SUM DF SQUARES	MEAN	F
DUE TO REGRESSION,	18	5.25613	0.29201	1.71088
DEVIATION ABOUT REGRESSION	2 8	4.77894	0.17068	1.12000
TOTAL	46	10.03507		

INTERCEPT (A VALUE) IS 1.09231

VAF	RIABLE	MEAN	STANDARD	REG.	STD. FRROR	COMPLITED	
NO. 13 9 18 11 10 14 7 4 8 6 19 20 15 16 5 12 17 21 DEP 35	NAME CLNMF CLND CLNSCK CLNPD CLNHY CLNHS CLNHSK CLNHSK CLNK CLNK CLNMA CLNMAK CLNMAK CLNPT CLNPTK CLNF CLNF CLNSC CLNSI TENDENT	29.27660 19.31915 26.44681 15.82979 22.51064 10.17021 4.46809 3.25532 13.25532 13.25532 17.17021 15.12766 18.59574 10.06383 27.27660 3.0000 22.74468 9.14894 25.21277 2.84894	DEVIATION 5.21162 4.88612 5.22040 3.39641 4.20596 2.48753 3.59257 1.93894 3.58419 4.50757 3.91550 3.82020 7.07231 5.05493 2.50217 3.69175 6.15728 9.56655 0.46707	CDEF. 0.03965 -0.02227 0.02071 -0.08486 -0.02012 0.62271 -0.51863 -0.02823 0.50658 0.26357 0.43635 -0.41527 0.43117 -0.41500 0.01272 0.05423 0.00651 -0.00072	OF REG.COEF. 0.01617 0.02513 0.09241 0.28925 0.02873 0.03197 0.30527 0.04661 0.29593 0.35894 0.30481 0.30239 0.25570 0.25137 0.03899 0.25748 C.09196 0.01704	COMPUTED T VALUE 2.45232 -0.88612 0.22408 -0.29316 -0.70037 0.71048 -1.69893 -0.60566 1.71181 0.73430 1.43156 -1.37329 1.68623 -1.65096 0.32636 0.18231 0.07082 -0.04197	PARTIAL CURR. COEF. 0.42648 -0.16516 0.04231 -0.05532 -0.13121 0.13307 -0.30570 -0.11372 0.30780 0.13745 0.26115 -0.25121 0.30362 -0.29784 0.06156 0.33443 0.01338 -0.00793
55	GFA						

181

. . .

1.

.

100 - 100 -

COMPARE CHECK ON FINAL COEFFICIENT..... -0.00072

INCREMENTS	FOR INDEPEND	ENT VARIAB	LES *		CUMULATIVE	REGRESSIO	vS		
VARIABLE NO. NAME 13 CLNMF 9 CLND 18 CLNSCK 11 CLNPD 10 CLNHY 14 CLNPA 7 CLNHS 4 CLNL 8 CLNHSK	SUMS OF SQUARES 1.30336 0.84269 0.90974 0.29026 0.22855 0.15417 0.03840 0.04023 0.06033	PROP. VAR. 0.12988 0.08397 0.09066 0.02892 0.02278 0.01536 0.00383 0.00401 0.00601	F VALUE * EACH TERM * 6.71704 4.69998 5.60502 1.82252 1.45045 0.97790 0.23896 0.24545 0.36195	STD. ERROR DF ESTIMATE 0.44050 0.42343 0.40288 0.39908 0.39695 0.39706 0.40089 0.40483 0.40827	SUMS DF SQUARES 1.30336 2.14605 3.05579 3.34605 3.57460 3.72877 3.76718 3.80740 3.80740	PRÖP.VAR. = R SQ. C.12988 C.21385 C.30451 C.33344 C.35621 C.37157 C.37540 U.37941 C.38542	F VALUE 6.71704 5.98466 6.27568 5.25242 4.53709 3.94185 3.34859 2.90400 2.57821	MULTIPLE P C.30079 J.40244 0.55163 C.57744 C.59663 0.60957 U.61271 0.61595 0.62082	S, M-12 F , 34 -, 15 . 23 . 11 -, 27

	۲۰۰۲ - ۲۰۰۲ میلید به ۲۰۰۲ میلید ورد به ۲۰۰۶ مر در ۲۰۰۲ میلید به ۲۰۰۶ م		182		- Alexandre Die
6 CLNK 19 CLNMA 20 CLNMAK 15 CLNPT 16 CLNPTK 5 CLNF 12 CLNPDK 17 CLNSC 21 CLNSI	TABLE 0.34162 0.03642 0.50419 0.02649 0.44199 0.02960 0.00707 0.00070 0.00070	XXIII (Continued) 0.03404 2.11106 0.00363 0.22017 0.05024 3.24358 0.00264 0.16624 0.04404 2.93646 0.00295 0.19171 0.09070 0.04438 0.00007 0.00425 0.00003 0.00176	0.402284.209360.406704.245780.394264.749970.399194.776460.387975.218460.392965.248060.399165.255130.405965.255830.413135.25613	0.41946 0.42309 0.47334 0.47598 0.52002 0.52297 0.52368 0.52375 C.52378	2.60117 0.64466 21 2.33349 0.65046 21 2.54645 0.65799 21 2.30572 0.65991 04 2.30572 0.65991 04 2.47641 0.72113 01 2.26571 0.72317 03 2.06140 0.72305 09 1.87600 0.72372 07

PROPORTION OF VARIANCE SPE-CIFIED TO LIMIT VARIABLES

0.

PROBLEM NUMBER G3,5 REPLACEMENT AND DELETION 6

DEPENDENT VARIABLE IS NOW 35 NUMBER OF VARIABLES DELETED 23 VARIABLES DELETED... 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 33 34

TABLE XXIV

183

6

. .

ANALYSIS OF VARIANCE FOR REGRESSION

SOURCE OF VARIATION	D.F.	SUM OF	HEAN	F
		SQUARES	>>UARES	VALUE
DUE TO REGRESSION	11	2.75822	5.25075	1.20604
DEVIATION ABOUT REGRESSION	3 5	7.27685	9.20791	
. TOTAL	46	10.03507		

INTERCEPT (A VALUE) IS -0.88125

						*	
V/ NO 28 27 23 24	ARIABLE NAME RESDO RESDY RESR RESES	MEAN 18.14894 18.74468 15.72340 49.89362	STANDARD DEVIATION 3.00708 8.45311 3.89929 5.31297	REG. COEF. 0.05018 0.01472 0.02594 0.00824	STD. ERROR DF REG.COEF. 0.04862 0.01948 0.01942 0.02472	COMPUTED T VALUE 1.03195 0.75525 1.33564	PARTIAL CORR. COEF. 0.17184 0.12663 0.22022
25 30 29 32 26 31 22 DEPEN	RESLB RESPR RESRE RESCN RESCA RESCA RESST RESA	9.93617 6.27660 22.70213 25.17021 8.68085 22.21277 9.42553	2.67358 3.68134 2.66144 4.66401 5.26311 3.36178 7.43302	-0.03601 0.03358 0.06031 0.03332 -0.01114 -0.00902 -0.00415	0.02721 0.02992 0.04392 0.03314 0.02773 0.02556 0.02964	$\begin{array}{c} -1.32344 \\ 1.12229 \\ 1.37320 \\ 1.00523 \\ -0.40180 \\ -0.35296 \\ -0.13995 \end{array}$	-0.21831 0.18638 0.22610 0.16751 -0.06776 -0.05956 -0.02365
35	GPA	2.84894	0.46707				

COMPARE CHECK ON FINAL COEFFICIENT..... -0.00415

	INCREMENT	S FOR INDEPEN	DENT VARIA	BLES	¥		CUMULATIVE	REGRESSID	NS	
VA 28 27 23 24 25 30 29 32 29 32 26 31 22	RIABLE NAME RESDO RESDY RESR RESES RESLB RESPR RESRE RESCN RESCA RESCA RESCA RESST RESA	SUMS OF SQUARES D.59768 D.60791 0.33478 0.41048 0.22052 D.13450 0.18825 D.18755 D.04404 0.02843 0.00407	PROP. VAR. 0.05956 0.06058 0.03336 0.04090 0.02198 0.01340 0.01876 0.01869 0.00439 0.00283 0.00283 0.00041	F VALUE EACH TERM 2.84990 3.02940 1.69465 2.13257 1.14976 0.69605 0.97358 0.96918 0.22296 0.14059 0.01959	* *	STD. ERROR DF ESTIMATE 0.45795 0.44796 0.44447 0.43873 0.43795 0.43958 0.43972 0.43990 0.44447 0.44972 0.45597	SUMS OF SQUARES 0.59768 1.20559 1.54037 1.95085 2.17137 2.30587 2.49412 2.68167 2.72571 2.75415 2.75822	PROP.VAR. = R SQ. 0.05956 0.12014 0.15350 0.19440 0.21638 0.22978 0.24854 0.26723 0.27162 0.27445 0.27486	F VALUE 2.84991 3.00391 2.59911 2.53382 2.25423 1.98888 1.84271 1.73225 1.53305 1.36177 1.20604	MULTIPLE SIMPLE R R C.24415 R C.34661 Jest C.34661 Jest C.44091 Je C.46516 -20 C.40516 -20 C.49854 J3 C.49854 J3 C.52117 R C.52388 Je C.52388 Je C.52427 -5

PROPORTION OF VARIANCE SPE-CIFIED TO LIMIT VARIABLES

.

0.

PROBLEM NUMBER G3,5 TABLE XXV REPLACEMENT AND DELETION 9

DEPENDENT VARIABLE IS NOW 35 NUMBER OF VARIABLES DELETED 5 VARIABLES DELETED... 1 2 3 33 34

ANALYSIS OF VARIANCE FOR REGRESSION

- SOURCE OF VARIATION	D.F.	SUM OF SQUARES	MEAN	F
DUE TO REGRESSION	29	6.90732	0.23818	1.29458
DEVIATION ABOUT REGRESSION	17	3.12775	0.18399	1012 100
TOTAL	46	10.03507		

INTERCEPT (A VALUE) IS -2.64953

٧	ARIABLE	MEAN	STANDARD	REG.	STD. FRRDR	COMPLITED	PARTIAL
ND.	NAME		DEVIATION	COEF.	OF REG COEF.	T VALUE	CORP CORE
13	CLNMF	29.27660	5.21162	0.03058	0.02254	1-35661	3 31254
24	RESES	49.89362	5.31297	0.03277	0.03052	1.07380	0.26203
18	CLNSCK	26.44681	5.22040	-0.01418	0.11475	-0.12355	-0 02005
25	RESLB	9.93617	2.67358	-0.07394	0.05674	-1.30310	-0.30136
9	CLND	19.31915	4.88612	-0.04203	0.04211	-0.99806	
23	RESR	15.72340	3.89929	0.04564	0.03218	1,41792	C 32520
32	RESCN	25.17021	4.66401	0.01361	0.04094	0.33247	C 18038
14	CLNPA	10.17021	2.48753	0.02238	0.05090	0.43962	0.10602
12	CLNPDK	22.74468	3.69175	-0.05571	0.47297	-0.11779	-1 12855
28	RESDO	18.14894	3.00708	0.05196	0.05934	0.87574	0 20776
15	CLNPT	10.06383	7.07231	0.02641	0.39408	0.06702	0.20770
8	CLNHSK-	≈ ° 🚈 .25532	3.58419	0.33802	0.38182	0.88528	0.2003
30	RESPR	6.27660	3.68134	0.03508	0.06282	0.55845	C 13622
20	CLNMAK	18.59574	3.82020	-0.17171	0.45627	-0.37633	19722 - 190090
7	CLNHS	4.46809	3.59257	-0.31245	0.40224	-0.77678	-7 12514
17	CLNSC	9.14894	6.15728	0.04182	0.12773	0.32741	0.07916
19	CLNMA	15.12766	3.91550	0.19885	0.45673	0.43537	0.07910
27	RESDY	18.74468	8.45311	-0.00826	0.02522	-0.32762	-3 37071
29	RESRE	22.70213	2.66144	0.01371	0.05379	0.25496	0.06172
31	RESST	22.21277	3.36178	-0.00890	0.03880	-0.22924	-0.05551
22	RESA	9.42553	7.43302	0.01117	0.04680	0.23862	0.05778
6	CLNK	17.17021	4.50757	-0.02048	0.43724	-0.04685	-0.01136
5	CLNF	3.00000	2.50217	0.00870	0.04906	0.17736	0.04208
	CLNL ·	3#25532	1.93894	-0.00946	0.06162	-0.15347	-0 03720
10	- GLNHY	22.51054	4.20596	-0.00322	0.03855	-0.08362	-0.00720
11	CLNPD	15.82979	3.39641	0.03134	0.45759	0.06850	
26	RESCA	8.68085	5.26311	0.00215	0.04331	0.04972	C.01001
21	CLNST	25,21277	9.56655	-0.00025	0.02216	-0 01123	-0 00070
16	CLNPTK	27.27660	5.05493	0.00053	0.40573	0.00130	
DEP	ENDENT						0.0003L
35	GPA	2.84894	0.46707				

184

COMPARE CHECK ON FINAL COEFFICIENT..... 0.00052

¥

					di entre	185					· · · · · ·	
		TABLE XXV	(Continued)		#	CTD FRROR		SUMS OF	PROP.VAR.	F	NUETIPLE	SUMPLE
		OF	PROP.	F VALUE	Ŧ	STU: LINATE		SOUARES	= R SQ.	VALUE		- 3
VAR	IABLE	SUMS UF	VAD	EACH TERM	¥	UF ESTIMATE		1 30336	12988	6.71704	0. 3e639	, 3 G
NO.	NAME	SQUARES	VAN•	6.71704		0.44050		2.0000	c 23960	6.93229	. 14594)	.1+
13	CLNME	1.30336	0.12900	6.34909		0.41644		2.40444	0 23696	6.32153	1.50322	13
24	RESES	1.10108	0.10972	/ 11773		0.40243		3.07130	0.0000	7.19234	759	1.20
18	CLNCCK	0.66686	0.06645	7 10001		0.37656		4.07948	(,,40002	6 96227	-574-18	-,- 5
25		1 00818	0.10047	1.10771		0.36503		4.57191	(.42229	6 33023		
0	RESLB	0 40243	0.04907	3.69997		0.35860		4.89121	0.48741	6.00020		
22	CLND	0.47272	0.03182	2.48298		0.34191		5.47580	C.54567	6.09143	- 7-507	
23	RESR	0.31930	0.05825	5,00055		0 33962	•	5.65218	0.56324	6.12001		
32	RESCN	0.58459	0.01758	1.52924		0.22520		5.87779	<u>58572</u>	5.81251	1.65533	-, -, -,
14	CLNPA	0.17638	0.01120	2.00792		0.33520		5 97145	C.59506	5.29016		1 4 4
12	CINPDK	0.22561	0.02240	0.82973		0.33391		4 15082	6.61383	5.05759	2.72347	
28	RESDO	0.09366	0.00933	1.70132		0.33215		0 • 1 3 7 0 Z	0 62126	4.64765	0.78820	- 22
15		0.18837	0.01877	a 66727		0.33434		0.23.441	0.63365	4.33430	,79414	. CÜ
8	CLAPT	n 17459	0.00743	- 92898		0.33514		6.32864	C. 44185	4.09625	5.8.116	21
30	CLNHSK	0.09423	0.00939			0.33513		6.44100	0.04107	3.87979	.: 1775	T 07
20	RESPR	0.09729	0.01120	1.00044		0.33542		6.54742	(.65242	3 78627	81780	21
20	CLNMAK	0.11250	0.01060	0.94591		0.33285		6.71148	0.65880	2 5040		121
. (CLNHS	0.10642	0 01635	1.48081		0.33371		6.80561	C.67818	$3 \cdot 3 \cdot 7 = 2 \cdot 2 \cdot 7 = 2 \cdot 3 \cdot 7 = 2 \cdot $	G 42402	, 05
17	CLNSC	0.16405	0.00938	0.84532		0.33840		6.82873	0.68049	- 3.31290	J - 202 172	., 3
19	CLNMA	0.09414	0.00930	0,20190		0.34360	÷	6.84742	68235	3.09290	2.2027	
27	RESOV	0.02312	0.00290	0.15830		0.34000		6.86668	0.68427	2.81/42	1. • 0212J	-, 5 /
29	DECOL	0.01869	0.00186	0.15801		() 34909		6 88836	0.68643	2.60603		
31	NESKE	0.01926	0.00192	0 17224		0.35478		4 99462	0.68705	2.39501	0.82889	
22	KE221	0 02168	0.00216	0.1/22		0.36173		6.09402	68758	2.200797	0.82920	
6	RESA	0.02100	0,00062	0.04700	•	0.36920		6.89989	0.68801	2.02150	j.82947	7.4 T
5	CLNK	0.00020	0.00053	0.03860		0.37724		6.90426	0.000013	1.85345	1.52954	- 65
2	CLNF	0.00521	0 00044	0.03015		0.38604		6.90546	0.00017	1.69841	0.82962	11
4	CLNL	0.00438	0.00012	0.00802		n. 39549		6.90686	0.68821	1 55404	2.82985	-, c ^{.,}
10	CINHY	0.00120	0.00014	0.00899		0 40573		6.90730	0.68832	1 41969	- 5 955	, C i
11		0.00141	0.00014	0.00262		0.41685		6.90732	0.68832	1 2945~	0,80965	100
26		0.00043	0.00004	0.00013		0.41000		6.90732	0.68832	1.29470		
21	NESUA CLNCT	0.00002	0.00000	0,00000		0.42094						
16	ULNSI	0.00000	0.00000	0.00000					•			
	CLNPTK	0.00000	•									

PROPORTION OF VARIANCE SPE-CIFIED TO SIMIT VARIABLES

G.

~

TABLE XXVI

136

PROBLEM NUMBER G3,6 REPLACEMENT AND DELETION 3

العاهية أمعالما العدادها

DEPENDENT VARIABLE IS NOW 37 NUMBER OF VARIABLES DELETED 2 VARIABLES DELETED... 35 36

ANALYSIS OF VARIANCE FOR REGRESSION

			MEAN	F
SOURCE OF VARIATION	D.F.	SQUARES	SQUARES	VALUE 1.55461
DUE TO REGRESSION	34 12 46	8.17835 1.85672 10.03507	0.15473	

INTERCEPT (A VALUE) IS -0.48598

			TATEDCEPT (A VALUE) IS	0.0			
			-INTERCETT			STD FRROR	COMPUTED	PARTIAL .
				STANDARD	REG.	OF DEC COEF.	T VALUE	CURK . COLI
	14.44	TABLE	MEAN	DEVIATION	COEF.	UF REGIOULI	1.21257	0.33038
	NO NO	NAME		0 04628	0.06754	0.05570	-1 02492	-0.28371
<u>ر</u> ٠.	NU.		12,95745	2.80020	-0.05776	0.05636	-1.0272	-0.03395
	21	EXPUR	21,12766	3.01890	-0 00497	0.04219	-0.11/12	-0.40672
	26	EXPRP	50 46808	5.38053	0 12130	0.07865	-1.54222	-0.06291
	11	EXPES	24043	2.18967	-0.12100	0.09426	-0.21836	-0.46155
÷	12	EXPGR	10.34043	3.38509	-0.02090	0 08428	-1.80234	-3.40175
	29	EXPSP	18.61702	1,59555	-0.15190	0.09880	2.58295	0.27113
	26	EXPUN	11.38298	1 94323	0.25520	0,09000	-1.55999	-C.41283
	24	EVDRER	16.53191	1 · J · J · J · J · J	-0.08304	0.05205	-1.74366	-0.44961
	24		14.80851	2.00377	-0.11426	0.06553	n 21749	0.05979
	2	EXPAC	12,19149	1.86019	0.02004	0.09656	0.20179	0.13410
	4	EXPHSX	15 04255	2.17653	0 10518	0.22436	0.45017	-0.33564
· · · · ·	1	EXPAC	24 12766	3.39832	0.15935	0.12830	-1.23421	-0 62343
	32	EXPTO	24.12100	1.35816	-0.19099	0.05200	-2.76208	0.02345
	25	EXPRGM	5.63030	3.24244	-0.14303	0 08455	-1.57393	- 3.41 305
۰.	10.	EXPED	11.55319	1,98631	-0.13308	0.05518	-1.70434	-0.44140
	20	EYDSTR	12.42553	6 68884	-0.09404	0.09910	1.77686	0.45540
	30		10.59574	- 63708	0.09582	0.05352	1 72726	j . 44621
	20	EXPNO	10.87234	5.52700	0.08437	0.04885	0 60077	0.17088
	9	EXPEM	36, 19149	6.39170	0 03197	0.05321	0.00011	0.12835
5	17	EXPLP	19 74468	8.45311	0.01926	0.04296	0.44032	-0.02354
	. 7	EXPDY	10.74468	6.53242	0.01/20	0.05148	-0.08157	0.022-74
	23	EXPPV	15.14400	3.46250	-0.00420	n. 12016	-0.80646	-0.22017
	15	FXPIE	32.42333	1,41389	-0.09691	0.03688	1.58871	3.41001
		EXPDE	2.14894	8 39381	0.04906		-0.75350	-0.21200
	2	CYDSV	27.97872	2 14114	-0.03874	0.00141	-1.53985	-0.40619
	31		5.78723	2.1711	-0.06869	0.04401	-1 03698	-0.28678
	13	EXPRO	13.34043	8.05701	-0.03427	0.03305	-1.000070	3.22609
	3	EXPAI	12,80851	4.19958	0 15572	0.19367	0.00400	0.21958
	18	EXPMP	4 27660	3.68134	0.19910	0.11300	0.11900	C 04405
	22	EXPPR	0.21000	2.37996	0.00010	0.09168	0.15278	0.01103
	6	EXPDOR	10.65957	3,17235	0.01401	0.07533	0.75308	· U. CICTU
	10	EXPNO	5.74468	3.01123	0.05673	0.0739	0.58143	9.16555
	19	CYDIM	6.38298	1 73125	0.05081	0.08137	0-48237	0.13/92
	16	ENFID	12.78723	1.7522	0.01902	0.03943	à 25203	-6.10110
	14	EXPER	76.61702	12.09007	-0.02740	0.07784	-0.00240	-0.02666
	33	EXPIP	23,70213	5.81570	-0.00542	0.05862	-0.09240	-2.02061
	27	EXPSE	11 78723	3.77023	0.00416	0.05818	-0.07143	
	8	EXPEC	22 60425	4,94606	-0.00410			
• ··· · ·	28	EXPSOR			. <u>.</u>	مرد مرج معرف المراجم المراجم المراجم الم	- ·· · · .	

DEPENDENT 37 GPA

2.84894 0.46707

COMPARE CHECK ON FINAL COEFFICIENT

-0.00416

TABLE XXVI (Continued)

ر در العم الرف محمود معرف الم	an a	ار این این اور این	and a state of the second s Second second	n an ang ang ang ang ang ang ang ang ang	А		CUMULATIVE	REGRESSI	ONS		
	INCREMENTS	FOR INDEPEN	DENT VARIAE	LES	*				E	MULTIPLE	SIMPLE
and a second		an an an Arran an Arra an Arra. An	2002	E VALUE	*	STD. ERROR	SUMS OF	PROP.VAR.	VALUE	2 2	R
VAR	IABLE	SUMS OF	PRUP.	EACH TERM	¥	OF ESTIMATE	SQUARES	= R SQ.	VALUE 4 06612*	0.25787	24
NO.	NAME	SQUARES	VAR.	EACH 12KA		0.45224	0.83161	0.08287	4.00012	0 43232	-, 24
21	EXPOR	0.83161	0.08287	4.00012		0.43049	1.88075	0.18742	5.37417	- 0.475272 - 0.57215	15
26	FXPRD		0.10455	5,80105		0.41171	2.74643	0.27368	5.400.93	0 55708	07
11	FYDEC	0.86568	0.08627	5.10710		0.40231	3.23735	0.32260	5.00053	(50775	08
12	EYDCD	0.49093	0.04892	3.03320		0.39661	3.58563	0.35731	4.55887	0.27717	- 18
29		0.34828	0.03471	2.21405	-	0.38995	3.95268	0.39389	4.33237	. USDZIOU - 5 (EE10	- 5
34	CAPSP	0.36705	0.03658	2.41383		0.38321	4.30778	0.42927	4.19054	0.00019	
24	EXPUN	0.25510	0.03539	2.41805		024-049	4.84732	0.48304	4,43829	0.09001	
5 T	EXPRER	0.53054	0.05377	3.95211		0.30377	5,25823	6.52399	4.52541	(.12381	12
<u>د</u>	EXPAE	0.55974	0.04095	3.18281		0.35951	5.38200	0.53632	4.15397	0.13234	,
4	EXPHSX	0.41091	A 01233	0.95762		0.35952	5.59153	55720	4.00385	6.74646	.07
1	EXPAC	0.12317	0.02088	1.65039		0.35031	5 71203	0.56930	3.74505	0.75452	-102
32	EXPTO	0.20953	0.02000	0.95495		0.35634	5 94546	0.58452	3.57119	0.76454	2,0,
25	EXPRGM	0.12139	0.01210	1,20885		0.35542	5.00500	0.61140	3.59618	0.78192	-, 03
10	EXPED .	0.15273	0.01522	2,21361		0.34909	0 · 13342	6 63151	3.54186	0.79468	,02
30	EXPSTR	0.26976	0.02088	1 69230		0.34537	0.33120	6 64835	3.45700	0,80520	,02
20	EXPNII	0.20186	0.02012	1 43630		0.34297	6.50623	6 68562	3.72023	£.82302	-, 0.0
9	FXPEM	0.16895	0.01684	2 / 2761		0.32983	6.88021	0.00002	3.87142	0.84461	,05
17	EXPLO	0.37397	0.03727	2.71074		0.32051	7.15868	0.11557	3.76291	6.85198	. 62
7	EVODV	0.27847	0.02775	2.71074		0.31919	7.28421	0 72765	3,58072	0.85653	.14
23		0 12553	0.01251	1.23200		0.32063	7.36219	0.73043	3.37833	0.85990	10
15	EXPLO	0.12335	0.00777	0.15858		0.32341	7.42027	0.73943	3,33295	0.85799	-,02
5	CAPIE	0.01198	0.00579	0.55528		0.32111	7.56046	0.75340	3,13262	6.87054	.06
31	EXPDE	0.05000	0.01397	1.35962		0.32493	7.60681	C. 75802	2 98316	0.87461	.03
13	EXPSV	0.14019	0 00462	0.43904		0.32744	7.57630	0.76495	2.90910	0.88325	_,12
12	ЕХРНС	0.04635	0.00102	0.64811		0.32414	7.82867	0.78013	$2 \cdot 90070$	0.89105	- 63
3	EXPAT	0.06949	0.01518	1.45028		0.22152	7.96761	0.79398	2.90471	0.8+372	.06
18	EXPMP	0.15238	0.01010	1.34404		0.32172	8.01528	ü.79873	2.19201	0.89552	, e ++
22	EXPPR	0.13894	0.01505	0.44847		0.52007	8.05661	0.80285	2.61785	5-30754 5-30754	,07
6	EXPDOR	0.04767	0.004/2	0.37603		0.33100	8.08411	0.80559	2.42904		02
19	EXPNO	0.04133	0,00412	0 23959		0.3381	8.11247	0.80841	2.25041	0.00141	07
16	EXDIM	0.02750	0.00274	0.22597		0.34604	8,15390	0.81254	2.09/33		-, 1 ÷
14		0.02835	0.00283	0.20020	•	0.35413	8.17455	0.81450	1.92224	U-90200 	23
33		0 04144	0.00413	0.33007		0.36455	R 17756	0.81490	1.73429	0.30212	
27		0.0717	0.00206	0.15559		0.37800	0 1702F	0.81498	1.55461	0.90275	+* ÷ 14
8	EXPSE	0.02000	0.00030	0.02104		0.39335	0.11000				
28	EXPEC	0.00301	0.0008	0.00510		-					
-0	EXPSOR	0.00079	0.000000								

187

PROPORTION OF VARIANCE SPE-CIFIED TO LIMIT VARIABLES

0.

PROBLEM NUMBER G3,5 TABLE XXVII REPLACEMENT AND DELETION 2

DEPENDENT VARIABLE IS NOW 34 NUMBER OF VARIABLES DELETED 16 VARIABLES DELETED... 1 2 3 22 23 24 25 26 27 28 29 30 31 32 33 35

ANALYSIS OF VARIANCE FOR REGRESSION

SOURCE OF VARIATION	D.F.	SUM OF SQUARES	MEAN	F VALUE
DUE TO REGRESSIEN	18	17.47080	0.97060	1.27810
DEVIATION ABOUT REGRESSION TOTAL	28 46	21.26346 38.73425	0.75941	•

		INTERCEPT (A VALUE) IS	3.70086				
٧A	RIABLE	MEAN	STANDARD	REG.	STD. ERROR	COMPUTED	PARTIAL	
NO.	NAME		DEVIATION	COEF.	OF REG.COEF.	T VALUE	CURR. COEF.	·
20	CLNMAK	18.59574	3.82020	0.09362	0.63785	0.14677	0.02773	
14	CLNPA	10.17021	2.48753	-0.10550	0.06744	-1.55443	-0.28352	
19	CLNMA	15.12766	3.91550	-0.02016	0.64295	-0.03135	-0.00593	
21	CLNST	25,21277	9.56655	0.03358	0.03595	0.93414	0.17385	
12	CINPDK	22,74468	3.69175	0.04153	0.62749	0.06618	0.01251	
9	CLND	19.31915	4.88612	-0.05246	0.05301	-0.98957	-0.18382	
15	CLNPT	10,06383	7.07231	0.02858	0.53936	0.05299	0.01001	
7	CLNHS	4.46809	3.59257	-1.31536	0.64393	-2.04272	-0.36013	
10	CLNHY	22,51064	4,20596	0.08239	9.06050	1.35967	C.24887	
8	CLNHSK	13,25532	3.58419	1.20202	0.62423	1.92561	0.34197	
6	CLNK	17.17021	4.50757	-0.62906	0.75712	-0.83085	-0.15511	
5	CLINE	3,00000	2,50217	-0.04486	0.08224	-0.54541	-0.10253	
4	CLNI	3,25532	1,93894	0.03718	0.09832	0.37817	0.07129	
18	CLNSCK	25.44581	5.22040	0.04291	0.19493	0.22014	0.04157	
11	CLNPD	15.82979	3.39641	-0.08808	0.61013	-0.14436	-0.02727	
17	CLNSC	9.14894	6.15728	-0.02395	0.19397	-0.12347	-0.02333	
16	CLNPTK	27.27660	5.05493	0.03795	0.53023	0.07157	6.01352	
13	CLNME	29.27660	5.21162	-0.00226	0.03410	-0.05636	-0.01254	
DEPE	NDENT							
34	PEERAT	6.71574	0.91763					

COMPARE CHECK ON FINAL COEFFICIENT..... -0.00226

	INCREMEN	TS FOR INDEPEN	DENT VARIA	BLES	¥ #		CUMULATIVE	REGRESSIC	INS .		
VΑ	RIABLE	SUMS OF	PROP.	F VALUE	¥	STD. ERROR	SUMS OF	PROP.VAR.	F	MULTIPLE	Simple
NO.	NAME	SQUARES	VAR.	EACH TERM	¥	OF ESTIMATE	SQUARES	= R SQ.	VALUE		R .
20	CLNMAK	4.34997	0.11230	5.69297		0.87413	4.34997	0.11230	5.69297	0.33512	, 34
14	CINPA	2,41804	0.06243	3.32832		0.85235	6.76801	0.17473	4.65792	1.415.1	
19	CLNMA	1.31380	0.03392	1.84304		0.84430	8.08182	0.20865	3.77913	C.45678	. 28
21	CLNST	1.70581	0,04404	2.47504		0.83018	9.78763	0.25269	3.55033	1.51268	. 0 2
12	CLNPDK	1,44125	0,03721	2.14836		0.81906	11,22888	0.28990	3.34759	2.53342	-,02
9	CLND	0,63995	0.01652	0.95283		0.81953	11.86883	0.30642	2.94526	0.55355	13
15	CLNPT	0.60602	0,01565	0.90005		0.82056	12.47485	0.32206	2.64678	0.5e751	
7	CLNHS	0.37843	0.00977	0.55564		0.82527	12.85328	0.33183	2.35900	0.57605	- 15
10	CLNHY	1.34073	0.03461	2.02146		0.81440	14.19401	0.36645	2.37786	0.60535	07

. . . .

8 6 5 4 18 11 17 16 13	CLNHSK CLNK CLNF CLNL CLNSCK CLNPD CLNSC CLNPTK CLNMF	TABLEXXVII(Continued)0.516490.013332.421860.062520.170680.004410.063150.001630.075360.001950.012980.000330.009770.000250.003150.000080.003340.00009) 0.77398 3.92396 0.27078 0.09753 0.11325 0.01890 0.01377 0.00430 0.00440	189 0.81690 0.78562 0.79393 0.80468 0.81572 0.82852 0.84202 0.85635 0.87144	14.71051 17.13236 17.30304 17.36620 17.44156 17.45453 17.46430 17.46745 17.47080	0.37978 C.44231 C.44671 C.44834 C.45029 C.45029 C.45087 C.45087 C.45096 C.45104	2.20440 2.52349 2.28757 2.06305 1.87230 1.69517 1.53952 1.40112 1.27810	C.51826 G.51826
--	---	---	--	--	--	--	---	--------------------

-

PROPORTION OF VARIANCE SPE-CIFIED TO LIMIT VARIABLES

0.

PROBLEM NUMBER G3,5

REPLACEMENT AND DELETION 5

DEPENDENT VARIABLE IS NOW 34 NUMBER DF VARIABLES DELETED 23 VARIABLES DELETED... 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 33 35

ANALYSIS OF	VARIANCE	FOR REGRESSION		.
SOURCE OF VARIATION	D.F.	SUM OF SQUARES	MEAN SQUARES	VALUE 0.86456
DUE TO REGRESSION DEVIATION ABOUT REGRESSION TOTAL	11 35 46	8.27605 30.45820 38.73425	0.87023	

	- (ALLIE) IS	3.68255		
VARIABLE NO. NAME 26 RESCA 30 RESPR 25 RESLB 31 RESST 24 RESES 23 RESE 32 RESE 23 RESCN 28 RESDO 22 RESA 29 RESRE 27 RESDY	INTERCEPT (A VALOL / 10) MEAN STANDARD DEVIATION 8.68085 5.26311 6.27660 3.68134 9.93617 2.67358 22.21277 3.36178 49.89362 3.89929 15.72340 4.66401 25.17021 3.00708 18.14894 7.43302 9.42553 2.66144 18.74468 8.45311	REG. CDEF. -0.04502 0.12388 0.06831 0.02602 0.03789 -0.02045 -0.04628 0.06269 0.02095 -0.01638 0.00120	STD.ERRORCOMPUTEDOFREG.COEF.TVALUE0.05673-0.793600.061222.C23640.055671.227200.052280.497660.050570.749160.03973-0.514730.06780-0.682530.099480.630140.060640.345400.03985-0.182300.039860.03013	PARTIAL CORR. COEF. -0.13295 0.32365 0.20311 0.08382 0.12563 -0.08668 -0.11461 0.10591 C.05828 -0.03080 0.00509

DEPENDENT 34 PEERAT 6.71574 0.91763

0.00120

COMPARE CHECK ON FINAL COEFFICIENT

* *	MULTIPLE SHMPLE
INCREMENTS FOR INDEPENDENT VARTABLE * STD. VARIABLE SUMS OF PROP. F VALUE * OF ES NO. NAME SQUARES VAR. EACH TERM * OF 26 RESCA 1.53070 0.03952 4.78166 0. 0. 30 RESPR 3.64675 0.69415 4.78166 0. 0. 25 RESLB 1.18595 0.3062 1.57536 0. 0. 31 RESST 0.79443 0.02051 1.05668 0. 0. 24 RESST 0.39069 0.01009 0.51364 0. 0. 23 RESR 0.22595 0.00583 0.19543 0. 0. 32 RESCN 0.15436 0.00399 0.25174 0. 0. 28 RESDO 0.20273 0.00523 0.14015 0. 0. 29 RESRE 0.02821 0.00073 0.03335 0. 0. <	RRUR MATESUMS_OFPRUP.VAR. PRUP.VAR.VALUE 2 R 9261.53070 0.03952 1.85142 0.19779 -20 330 5.17746 0.13367 3.39436 0.36550 $1/2$ 765 6.36340 0.16428 2.81762 0.41532 $1/9$ 708 7.15783 0.18479 2.32017 0.42928 $1/7$ 708 7.54852 0.19488 1.98481 0.44145 $1/4$ 214 7.54852 0.19488 1.67410 0.44901 708 977 7.77447 0.20071 1.43400 0.45244 0.60 975 7.92883 0.20470 1.26214 0.45518 $1/6$ 740 8.13156 0.20993 1.11209 0.45143 -1^{15} 973 8.24705 0.21291 0.97807 0.462221 0.166224 983 8.27526 0.21366 0.86456 0.46224 -1^{16}

190

dig.

ر. د د مولای از مان

PROPORTION OF VARIANCE SPE-CIFIED TO LIMIT VARIABLES 0.

TABLE XXIX PROBLEM NUMBER G3,5 REPLACEMENT AND DELETION 8

34 DEPENDENT VARIABLE IS NOW NUMBER OF VARIABLES DELETED 5 VARIABLES DELETED... 1 2 3 33 35

ANALYSIS OF VARIANCE FOR REGRESSION

SOURCE OF VARIATION	D.F.	SUM OF SQUARES	MEAN SQUARES 1.00375	F VALUE 1.77276
DUE TO REGRESSION DEVIATION ABOUT REGRESSION TOTAL	29 17 46	29.10873 9.62553 38.73425	0.56621	-

	INTERCEPT (A VALUE) IS	-4.72951	
VARIABLE NO. NAME	MEAN	S TANDARD DEVIATION	REG. COEF. 0.63423	STD• ERROR OF REGECOEF• 0•82043
-20 CLNMAK	18.59574	3.82020	0.07163	0.03929
14 CLNPA	10.17021	2.48755	-0,49559	0.1123
19 CLNMA	15.12766	3.9100	0.23244	0.84020
30 RESPR	6.27660	3.00175	-0.75298	0.05972
12 CINPDK	22.74468	3.09113	0 06282	V. 5353

ULARA	10811022	2 01550	-0.47222	0.1.000	2 10028	0.45544
CLNMA	15.12766	2. 40134	0.23244	0.84.77		-0.21496
RESPR	6.27660	3.00175	-0.75298	0.05972	-0.90751	0 27375
CLNPDK	22.74468	3.69175	0.06282	0.03353	1.1/35/	0 10760
RESES	49.89362	5.31297	0 63175	0.0)274	0.78700	U.10147
CLNDD	15.82979	3.39641	0 14367	0.05807	2.11061	9.45567
DESCT	22 21277	3.36178		0.04 ₈₈₈	2.27910	0.48377
	25 21277	9.56655	0.00000	0.04425	-2.81348	-0.56365
	23.21211	8.45311	-0.12400	0.71176	-0.02274	-0.00552
RESUT	10.14400	5.05493	-0.01017	0.07597	-1.91161	-0.42062
CLNPIK	21.27000	5.26311	-0.14525	0.06763	1.55840	0.35356
RESCA 🐜	8.68085	4,20596	0.10539	0.09054		-0.30723
CLNHY CON	22.51064	2.67358	-0.13250	0.05//4	-1 82506	-0.40475
RESLB	9.93617	3,89929	-0.10304	0 07200	1 41445	0.32289
RESR	15.72340	6 88612	0.10392	0.07388	1.2205/	-0 30711
CLND	19.31915	/ 15728	-0.29814	0.22407	-1.33050	0 33844
CLNSC	9.14894 .	7 (2302	0.12174	0.00210	1.48292	0.26741
RESA	9.42553	- 21162	0.04163	0.03954	1.05281	0.24741
CLNME	29.27660	5.21102	0.17720	0.20130	0.88028	0.20019
CLNSCK	26.44681	5.22040	-0.06897	0.10810	-0.63801	- 1.15292
CLNI	3,25532	1.93894	-0.07130	0.07182	-0.99273	-0.23408
DESCN	25,17021	4.66401	-0.30256	0.76704	-0.39446	-0.09524
CLAY	17,17021	4.50757	0 98332	0.66983	1.46802	: .33542
ULINK GLANIEK	12 25532	3.58419	1.01576	0.70564	-1.43950	-5,32962
CLNHSK	13.23352	3.59257	=1.01970	0.09436	-0.65302	-0.15877
CLNHS	4.40007	2.66144		0.10:09	0 42290	0.10203
RESRE	22.10215	3.00708	0.04402	0 69122	0.16164	0.03917
RESDO	18.14894	7.07231	0.11175	0.09100	0.00716	0.00901
CLNPT	10.06383	2,50217	0.00320	0.00505	0.03/10	
CLNF	3.00000	2.000-				
ENDENT		0 91763				
	CLNMA RESPR CLNPDK RESES CLNPD RESST CLNSI RESDY CLNPTK RESCA CLNHY RESLB RESCA CLNHY RESLB RESR CLND CLNSC RESA CLNMF CLNSCK CLNL RESCN CLNSCK CLNL RESCN CLNSCK CLNL RESCN CLNSCK CLNL RESCN CLNSCK CLNL RESCN CLNSCK CLNHSK CLNHSK CLNHSK CLNHSK CLNHS RESRE RESDO CLNPT CLNF PENDENT	CLNMA 15.12766 RESPR 6.27660 CLNPDK 22.74468 RESES 49.89362 CLNPD 15.82979 RESST 22.21277 CLNSI 25.21277 RESDY 18.74468 CLNPTK 27.27660 RESCA 8.68085 CLNHY 22.51064 RESLB 9.93617 RESR 15.72340 CLND 19.31915 CLNSC 9.14894 RESA 9.42553 CLNMF 29.27660 CLNSCK 26.44681 CLNSCK 25.17021 CLNK 17.17021 CLNK 17.17021 CLNHSK 13.25532 RESRE 22.70213 RESRE 22.70213 RESRE 22.70213 RESDO 18.14894 CLNPT 10.06383 CLNF 3.00000	CLNMA 15.12766 3.91550 RESPR 6.27660 3.68134 CLNPDK 22.74468 3.69175 RESES 49.89362 5.31297 RESES 49.89362 5.31297 CLNPD 15.82979 3.39641 CLNPD 15.82979 3.36178 CLNSI 25.21277 9.56655 CLNSI 25.21277 9.56655 CLNPTK 27.27660 5.05493 CLNPTK 27.27660 5.26311 RESCA 8.68085 5.26311 RESCA 9.93617 2.67358 RESLB 9.93617 2.67358 RESLB 9.931915 4.88612 CLND 19.31915 5.21162 CLND 19.32553 7.43302 RESA 9.27560 5.21162 CLNMF 29.	CLINMA 15.12766 3.91550 0.23244 RESPR 6.27660 3.68134 0.23244 RESPR 6.27660 3.68134 0.23244 RESES 49.89362 5.31297 0.06282 RESES 49.89362 5.31297 0.06282 RESES 49.89362 5.31297 0.06282 RESES 49.89362 5.31297 0.063175 CLNPD 15.82979 3.39641 0.63175 CLNSI 25.21277 9.56655 0.08860 CLNSI 25.21277 9.56655 0.12450 RESDY 18.74468 8.45311 -0.12450 RESDY 18.74468 5.05493 -0.01619 CLNPTK 27.27660 5.05493 -0.01304 RESR 15.72340 4.88612 0.10304 RESR 15.72340 4.88612 0.12174 RESA 9.42553 5.21162 0.04163 CLND 19.31915 4.88612 0.12174 RESA 9.42553 5.21162 0.04637 CLNSCK 26.44681	CLNMA 15.12766 3.91550 -0.4977 0.11020 RESPR 6.27660 3.68134 0.23244 0.81922 CLNPDK 22.74468 3.69175 -0.75298 0.06353 RESES 49.89362 5.31297 0.06282 0.8274 CLNPD 15.82979 3.39641 0.14367 0.02887 RESES 12.221277 9.56655 0.08860 0.04425 REST 22.21277 9.56655 0.08860 0.04425 CLNSI 25.21277 9.56655 0.00860 0.04425 CLNYT 27.7660 5.05493 -0.01619 0.71176 CLNYT 27.27660 5.26311 -0.14523 0.06763 CLNY 22.51064 4.20596 0.10539 0.09954 RESLB 9.93617 2.67358 -0.13250 0.07388 CLNY 22.51064 4.80929 -0.10304 0.07388 CLND 19.31915 4.88612 0.12174 0.08210 CLNSC 9.14894 7.43302 0.12174 0.082407 CLNSC	CLINMA 15.12766 3.91550 -0.75298 0.11020 2.10928 RESPR 6.27660 3.68134 -0.75298 0.63353 1.17357 CLNPDK 22.74468 3.69175 0.06282 0.81274 0.78700 CLNPD 15.82979 3.39641 0.14367 0.06807 2.11061 RESES 49.89362 5.31297 0.06860 0.04888 2.27910 CLNPD 15.82979 3.39641 0.14367 0.02887 2.210161 RESST 22.21277 9.56655 0.08860 0.04425 -2.81348 RESDY 18.74468 8.45311 -0.14523 0.07597 -1.91161 RESCA 8.68085 5.26311 -0.14523 0.07597 -1.91161 RESCA 8.68085 5.26311 -0.14523 0.07597 -1.33111 RESLB 9.93617 2.67358 -0.10304 0.05646 -1.82506 RESLB 9.93617 2.67358 -0.10392 0.07388 1.40665 CLNNY 22.51064 4.20796 0.29814 0.022407 -1.33056

-

The second second

مند مر مر منابع

191

COMPARE CHECK ON FINAL COEFFICIEN

6.71574

0.00320

뿃 77

. .

PEERAT

34

a second contract of INCREMENTS FOR INDEPENDENT VARIABLES

0.91763

CUMULATIVE

COMPUTED

T VALUE

0.79237

0.80226

-0.61853

REGRESSIONS

PARTIAL

CORR. COEF.

0.18873

0.19100

0.45544

-0.14835

١		TABLE XXIX	(Continued)		•	192				9836-58-507 (A 1975) (B 1976)	-
VAI NO. 20 14 19 30 12 24 11 31 21 27 16 26 10 25 23 9 17 22 13 18 4 32 6 8 7 29 28 15 5 9	RIABLE NAME CLNMAK CLNPA CLNPA CLNPA CLNPD RESPR CLNPD RESST CLNPD RESST CLNSI RESDY CLNPTK RESCA CLNHY RESLB RESCA CLNHY RESLB RESCA CLNHY RESLB RESCA CLNHY RESCA CLNC CLNSC RESA CLNMF CLNSCK CLNL RESCN CLNSC	SUMS OF SQUARES 4.34997 2.41804 1.31380 2.99792 1.77812 1.47513 0.73011 0.71448 0.50500 0.60143 1.47536 0.73883 1.66324 1.68760 0.64765 0.87717 0.71104 1.06625 0.87717 0.71104 1.06625 0.85016 0.33449 0.26859 0.48334 0.12661 0.07430 0.90523 0.19486 0.10524 0.01400 0.00078	PROP. VAR. 0.11230 0.06243 0.03392 0.07740 0.04591 0.03808 0.01885 0.01885 0.01885 0.01845 0.01304 0.01553 0.03809 0.01907 0.04294 0.04357 0.01672 0.0248 0.02753 0.02195 0.00864 0.00693 0.01248 0.00272 0.00327 0.00192 0.02337 0.00503 0.00272 0.00036 0.00002	F VALUE EACH TERM 5.69297 3.32832 1.84304 4.55306 2.81736 2.41813 1.20291 1.18267 0.83224 0.99090 2.53437 1.27928 3.05389 3.316C8 1.28391 1.78281 1.46769 2.29952 1.89190 0.73712 0.58237 1.05012 0.26667 0.15071 1.91238 0.39989 0.20741 0.62618 0.00138	**	STD. ERROR DF ESTIMATE 0.87413 0.85235 0.84430 0.81144 0.79444 0.79444 0.79444 0.78105 0.77907 0.77907 0.77725 0.77897 0.77907 0.76298 0.75995 0.73799 0.71338 0.71024 0.70144 0.69603 0.68094 0.67035 0.67364 0.67911 0.67843 0.68904 0.70213 0.68801 0.69805 0.71231 0.73130 0.75247	SUMS OF SQUARES 4.34997 6.76801 8.08182 11.07974 12.85786 14.33299 15.06310 15.77758 16.28258 16.88401 18.35937 19.09820 20.76144 22.44903 23.09668 23.97385 24.68489 25.75113 26.60129 26.93579 27.20437 27.68772 27.81433 27.88862 28.79385 28.98871 29.09395 29.10795 29.10873	PROP.VAR. = R SQ. 0.11230 C.17473 0.20865 J.28604 C.33195 U.37003 U.37003 U.38888 J.40733 0.42037 U.40733 0.42037 U.43589 U.407398 U.407398 U.407398 U.407398 U.407398 U.409306 0.53600 U.57957 C.59629 U.61893 C.63729 U.668676 G.69540 U.68676 G.69540 U.70233 C.71481 U.71808 G.72000 U.74337 C.74840 U.75112 U.75148 U.75150	F VALUE 5.69297 4.65792 3.77913 4.20681 4.07454 3.91592 3.54537 3.26456 2.98149 2.78177 2.86707 2.75572 2.93232 3.15084 3.05247 3.04536 2.99725 3.04536 3.05247 3.04536 2.99725 3.04536 2.99725 3.04536 2.99725 3.04536 2.99725 3.04536 2.99725 3.04536 2.99725 3.04536 2.96789 2.80889 2.73432 2.54712 2.35713 2.43319 2.28812 2.12374 1.94387 1.77276	MULTIN: 111912 11193	SINIPLE R .34 .28 .12 .02 .14 .28 .12 .02 .14 .20 .07 .16 .20 .07 .19 .05 .01 .00 .15 .01 .10 .00 .15 .01 .10 .01 .00 .15 .01 .00 .15 .01 .00 .15 .01 .00 .15 .01 .00 .00 .15 .00 .01 .00 .00 .00 .00 .00 .00
- NUP(MER COC.								U . 33 1 5 4	- 0 -

PROPORTION OF VARIANCE SPE-CIFIED TO LIMIT VARIABLES

0.

.

•.

0.95659

-.03

PROBLEM NUMBER	G3,6		TABLE XXX
REPLACEMENT AND	DELETION	2	

DEPENDENT VARIABLE IS NOW 36 NUMBER OF VARIABLES DELETED 2 VARIABLES DELETED... 35 37

ANALYSIS OF VARIANCE FOR REGRESSION

SOURCE OF VARIATION	D.F.	SUM OF	MEAN	F
DUE TO REGRESSION DEVIATION ABOUT REGRESSION TOTAL	34 12 46	SQUARES 21.37975 17.35450 38.73425	SQUARES C.62882 1.44621	VALUE C.43480

INTERCEPT (A VALUE) IS

-5.34741

193

NO. NAME DEVITION Number of the state of the sta	٧A	RIABLE	MEAN	STANDARD	REC			
34 EXPUN 11.38298 1.5955 0.011 0.25766 T VALUE CGRR.CLEF. 27 EXPSF 23.70213 5.81570 0.25766 1.83465 -0.64813 12 EXPGR 10.34043 2.18967 -0.31063 0.24047 -1.29170 -0.23344 0.06434 12 EXPRR 10.34043 2.18967 -0.31063 0.24047 -1.29170 -0.34563 14 EXPRR 12.73125 0.39795 0.26718 1.48943 C.39502 20 EXPNU 10.55957 2.37996 0.24027 0.27716 -0.21773 6 EXPED 11.55519 3.24244 -0.16431 0.15888 -1.03942 -2.27975 10 EXPEN 12.5519 3.24244 -0.16431 0.15888 -1.0353 -0.23023 11 EXPEN 12.9149 1.86079 -0.13637 -1.48172 -0.3327 12 EXPEN 12.34043 8.05761 -0.20207 0.13637 -1.4817	ND.	NAME		DEVIATION		SID. ERRUR	COMPUTED	PARTIAL
27 EXPSF 23.70213 5.81570 0.171211 0.25766 -1.83465 -0.46433 22 EXPGR 6.27660 3.68134 0.51913 0.59210 0.87676 D.24535 14 EXPGR 10.34043 2.18967 -0.31063 0.24047 -1.24179 -0.34940 1 EXPAC 15.04255 2.17553 -0.22736 0.26952 -0.77016 -5.21735 20 EXPNU 10.59974 4.68884 -0.17028 0.16869 -1.03942 -2.7773 10 EXPDOR 10.65957 2.37996 0.40970 0.34546 1.18596 C.323930 20 EXPDDR 10.65957 2.37996 0.40970 0.34546 1.18596 C.33930 30 EXPAT 13.34043 8.05761 -0.22077 0.13637 -1.61084 -0.239327 28 EXPAT 13.4043 8.05761 -0.20207 0.13637 -1.48172 -0.39327 31 EXPMC 5.7723 3.14114 -0.06762 0.17787 -0.44621 -0.12775 31 EXPMH <td>34</td> <td>EXPUN</td> <td>11.38298</td> <td>1,59555</td> <td></td> <td>UF REGILUEF.</td> <td>T VALUE</td> <td>CORR. COEF.</td>	34	EXPUN	11.38298	1,59555		UF REGILUEF.	T VALUE	CORR. COEF.
22 EXPPR 6.27660 3.6134 0.51313 0.23497 0.22334 0.36434 12 EXPGR 10.34043 2.18967 -0.31063 0.24047 -1.29179 -0.34940 14 EXPRR 12.78723 1.73125 0.39795 0.26718 1.48943 C.39503 20 EXPNU 10.59574 4.6884 -0.17028 0.16869 -1.03942 -2.27375 20 EXPDU 10.559574 2.37996 0.40970 0.34546 1.18599 C.32333 21 EXPED 11.55319 3.24244 -0.16431 0.15898 -1.03053 -0.29029 3 EXPAT 13.34043 8.05761 -0.20207 0.13637 -1.48172 -C.33327 28 EXPSOR 32.40425 4.94606 -0.07937 0.17787 -C.44621 -C.12775 31 EXPEV 27.978723 3.14114 -0.06762 0.15719 -0.440319 -C.12774 28 EXPEV 27.97872 8.39381 0.10089 0.04440 1.06666 C.29479 31 EXPEV <td>27</td> <td>EXPSF</td> <td>23.70213</td> <td>5.81570</td> <td>0 05315</td> <td>0.25766</td> <td>-1.83465</td> <td>-0.46803</td>	27	EXPSF	23.70213	5.81570	0 05315	0.25766	-1.83465	-0.46803
12 EXPGR 10.34043 2.18967 -0.31063 0.3216 0.47676 5.24537 14 EXPHR 12.78723 1.73125 0.39795 0.26718 1.46943 C.39500 20 EXPAC 15.04255 2.17653 -0.22736 0.29522 -C.77016 -0.21703 20 EXPNU 10.59577 4.68884 -0.17028 0.16869 -1.03942 -2.27775 10 EXPED 11.55319 3.24244 -0.16431 0.18984 -1.03353 -0.28593 4 EXPED 11.55319 3.24244 -0.16431 0.18698 -1.05084 -0.29592 28 EXPEN 12.19149 1.86079 -0.20207 0.13637 -1.448172 -C.39327 3 EXPEN 12.37458 5.52708 0.17703 0.14646 1.07379 0.29658 31 EXPEN 10.87234 5.52708 0.17703 0.1486 1.07379 0.29658 31 EXPEN 10.87234 5.52708 0.17703 0.1486 1.07379 0.29658 31 EXPEN	22	EXPPR	6.27660	3.68134	0 51012	0.23797	0.22334	0.06434
14 EXPAR 12.78723 1.73125 0.39795 0.24047 -1.29179 -0.349420 1 EXPAC 15.04255 2.17653 -0.22736 0.29522 -0.77016 -0.21703 20 EXPDU 10.659574 4.66884 -0.17028 0.16669 -1.00942 -2.27375 4 EXPED 11.65519 3.24244 -0.16431 0.15898 -1.05084 -0.23330 4 EXPED 11.55519 3.24244 -0.16431 0.15898 -1.63533 -0.26590 3 EXPAT 13.34043 8.05761 -0.20207 0.13637 -1.48172 -0.39327 28 EXPSDR 32.40425 4.94606 -0.07337 0.17767 -0.44621 -0.12274 31 EXPEM 13.8724 5.52708 0.17762 0.15719 -0.443019 -C.12324 31 EXPEV 27.97872 8.39381 0.10089 0.04440 1.06866 C.29479 32 EXPPV 15.7468 6.53242 0.1122 0.13134 0.85365 0.23927 34 EXPPV <td>12</td> <td>EXPGR</td> <td>10.34043</td> <td>2,18967</td> <td>-0 31063</td> <td>0.59210</td> <td>0.87676</td> <td>0.24536</td>	12	EXPGR	10.34043	2,18967	-0 31063	0.59210	0.87676	0.24536
1 EXPAC 15.04255 2.17653 -0.22736 0.26118 1.48943 C.39500 20 EXPNU 10.59574 4.66884 -0.17028 0.16669 -1.00942 27775 10 EXPED 11.55319 3.24244 -0.16431 0.15984 -1.03942 27775 10 EXPED 11.55319 3.24244 -0.16431 0.15984 -1.03353 -0.23590 3 EXPHSX 12.19149 1.86079 -0.20207 0.13637 -1.48172 -0.39327 28 EXPSDR 32.40425 4.94606 -0.07937 0.17787 -0.44621 -0.121775 9 EXPEM 10.87234 5.52708 0.16719 -0.44621 -0.12324 9 EXPEM 10.87234 5.52708 0.17703 0.16446 1.07379 0.29458 21 EXPSV 27.97872 8.39381 0.10089 0.09440 1.06866 c.29479 32 EXPEM 15.74468 6.53242 0.11212 0.13134 0.85365 0.29925 33 EXPTP 76.61702	14	EXPHR	12.78723	1.73125	0.30705	0.24047	-1.29179	-0.34940
20 EXPNU 10.59574 4.68884 -0.17028 0.16869 -1.0942 -2.27715 6 EXPDUR 10.65957 2.37996 0.40970 0.34546 1.18596 C.32393 10 EXPED 11.55319 3.22424 -0.16431 0.15898 -1.03353 -0.28590 3 EXPAT 13.34043 8.05761 -0.20035 -1.05084 -0.29229 28 EXPSDR 3.240425 4.94606 -0.07937 0.17787 -0.44621 -2.12775 13 EXPEM 13.34043 5.52708 0.17703 -0.16486 1.07374 C.216274 31 EXPEM 13.77872 8.39381 0.10089 0.09440 1.06666 C.29479 23 EXPPV 15.74468 6.53242 0.11212 0.11134 0.85365 2.32927 24 EXPAE 14.80851 2.68359 -0.06029 0.16103 -0.59676 -0.16977 25 EXPAE 14.80851 2.6828 -0.04223 0.17029 -0.28200 -3.5114 28 EXPPD 12.36653 <td>1</td> <td>EXPAC</td> <td>15.04255</td> <td>2.17653</td> <td>-0 22726</td> <td>0.26/18</td> <td>1.48943</td> <td>0.39500</td>	1	EXPAC	15.04255	2.17653	-0 22726	0.26/18	1.48943	0.39500
6 EXPDOR 10.65957 2.37996 0.40970 0.36566 1.18596 -2.27375 10 EXPED 11.55319 3.24244 -0.16431 0.15898 -1.03353 -0.28593 3 EXPHSX 12.19149 1.86079 -0.21053 0.2C035 -1.05084 -0.29229 3 EXPAT 13.34043 8.05761 -0.20207 0.13637 -1.48172 -2.33327 13 EXPAC 5.78723 3.14114 -0.06762 0.17717 -0.44621 -0.12775 9 EXPEM 10.87234 5.52768 0.17703 0.14486 1.07379 0.294592 23 EXPFW 15.74468 6.53242 0.11089 0.04400 1.068666 0.29479 33 EXPTP 76.61702 12.89009 0.38307 0.1654 0.68919 0.165713 2 EXPAE 14.30851 2.68359 -0.04560 0.16171 -0.29626 -0.59746 -0.165713 2 EXPAE 14.30851 2.68359 -0.04562 0.16171 -0.282006 -0.16471 2<	20	EXPNU	10.59574	4.68884	-0 17020	0.29522	-0.77016	-0.21703
10 EXPED 11.55319 3.24244 -0.16431 0.18998 -1.63353 -0.28590 4 EXPHAT 13.34043 8.05761 -0.20207 0.13637 -1.48172 -0.33327 3 EXPAT 13.34043 8.05761 -0.20207 0.13637 -1.48172 -0.33327 13 EXPAT 32.40425 4.94606 -0.07937 0.11787 -0.44621 -0.12775 13 EXPHC 5.78723 3.14114 -0.06762 0.11719 -0.43019 -0.122324 31 EXPEM 10.87734 5.52768 0.11773 0.14886 1.07379 0.29638 23 EXPFV 15.74668 6.53242 0.11212 0.11344 0.865365 0.23927 18 EXPPV 15.7468 6.53242 0.11212 0.11314 0.865365 0.23927 18 EXPTP 76.61702 12.89099 0.98307 0.12654 0.68919 0.156171 24 EXPAE 16.8351 4.19958 -0.04560 0.16171 -0.28200 -0.36114 21 EXPAE <td>6</td> <td>EXPDOR</td> <td>10.65957</td> <td>2.37996</td> <td>0.17020</td> <td>0.16869</td> <td>-1.00942</td> <td>-3.27975</td>	6	EXPDOR	10.65957	2.37996	0.17020	0.16869	-1.00942	-3.27975
4 EXPHSX 12.19149 1.86079 -0.21053 0.19898 -1.03533 -0.28590 3 EXPAT 13.34043 8.05761 -0.20207 0.13637 -1.48172 -0.33327 13 EXPSDR 32.40425 4.94606 -0.07937 0.17787 -0.44621 -0.12776 9 EXPEM 10.87234 5.52708 0.17703 0.16486 1.07379 0.23957 31 EXPSV 27.97872 8.39381 0.10089 0.094400 1.066866 0.29479 33 EXPTP 76.61702 12.89009 0.08307 0.12654 0.66919 0.164713 24 EXPMP 12.80851 2.68359 -0.04560 0.16171 -0.28200 -0.3614 24 EXPRE 14.80851 2.68628 -0.004223 0.17029 -0.24301 -0.07141 24 EXPRE 16.53191 1.94323 0.20822 0.350266 0.68934 0.17517 25 EXPRE 16.63191 1.94323 0.20822 0.35026 0.56278 0.16076 24 EXPRE <td>10</td> <td>EXPEO</td> <td>11.55319</td> <td>3.24244</td> <td>-0 16621</td> <td>0.34546</td> <td>1.18596</td> <td>0.32390</td>	10	EXPEO	11.55319	3.24244	-0 16621	0.34546	1.18596	0.32390
3 EXPAT 13.34043 8.05761 -0.21035 0.22035 -1.05084 -0.29029 28 EXPSOR 32.404225 4.94606 -0.07937 0.17787 -1.48172 -0.33327 13 EXPHC 5.78723 3.14114 -0.06762 0.15719 -0.43019 -C.12324 31 EXPEM 10.87234 5.52708 0.17703 0.14486 1.07379 C.26038 23 EXPEV 15.74468 6.53242 0.11212 0.11134 0.85365 0.23927 33 EXPTP 76.61702 12.89009 0.9807 0.12654 0.68919 C.15513 34 EXPMP 12.80851 4.19558 -0.06029 0.18103 -0.58665 0.23927 35 EXPAE 14.80851 2.68359 -0.04560 0.16171 -0.28200 -0.5114 4 80851 2.68359 -0.04560 0.15171 -0.28200 -0.5114 2 EXPAE 14.80851 2.68359 -0.04560 <th< td=""><td>4</td><td>EXPHSX</td><td>12.19149</td><td>1.86079</td><td>-0.21052</td><td>0.15898</td><td>-1.03353</td><td>-0.28590</td></th<>	4	EXPHSX	12.19149	1.86079	-0.21052	0.15898	-1.03353	-0.28590
28 EXPSOR 32.40425 4.94606 -0.20207 0.13637 -1.46172 -0.33327 13 EXPHC 5.78723 3.14114 -0.06762 0.17787 -0.44621 -0.12775 31 EXPEM 10.87234 5.52708 0.17703 0.16486 1.07379 0.29638 23 EXPEM 15.74468 6.53242 0.11212 0.13134 0.85365 0.23327 18 EXPTP 76.61702 12.89009 0.98307 0.12654 0.68919 0.19513 24 EXPRE 16.53191 1.94323 0.20822 0.35266 0.59676 -0.14977 24 EXPRE 16.53191 1.94323 0.20822 0.35260 0.55171 -0.28200 -0.51141 21 EXPRE 16.53191 1.94323 0.20822 0.35269 0.1613 -0.24801 -0.67378 0.16574 24 EXPRE 16.53191 1.94323 0.20588 0.15269 0.38200 0.574460 0.17517	3	EXPAT	13.34043	8,05761	-0 20207	0.20035	-1.05084	-0.29029
13 EXPHC 5.78723 3.14114 -0.06762 0.17787 -0.44621 -0.12776 9 EXPEM 10.87234 5.52708 0.17703 0.16486 1.07379 0.23658 23 EXPSV 27.97872 8.39381 0.10089 0.04440 1.068866 0.29479 33 EXPSV 27.97872 8.39381 0.10089 0.04440 1.068866 0.29479 33 EXPTP 76.61702 12.89009 0.98307 0.12654 0.68919 U.19513 18 EXPMP 12.80851 4.19958 -0.06029 0.14103 -0.59676 -0.16977 2 EXPAE 14.80851 2.68359 -0.04560 0.14171 -0.28200 -0.01144 21 EXPOR 12.95745 2.86628 -0.04223 0.17029 -0.24861 -0.07141 24 EXPTO 24.12766 3.9832 0.20558 0.15269 0.18182 -0.35601 -0.16273 24 EXPTO 24.12766 3.9832 -0.04592 0.12899 -0.35601 -0.10223 25	28	EXPSOR	32,40425	4.94606	-0.20207	0.13637	-1.48172	-0.39327
9 EXPEM 10.87234 5.52708 0.17703 0.16486 1.07379 0.29638 31 EXPSV 27.97872 8.39381 0.10089 0.09440 1.06666 0.29479 33 EXPPV 15.74468 6.53242 0.11212 0.13134 0.85365 0.23927 33 EXPTP 76.61702 12.89009 0.94507 0.12654 0.68919 0.15133 2 EXPAP 14.80851 2.68359 -0.04560 0.16171 -0.28200 -0.05114 24 EXPRER 16.53191 1.94323 0.20822 0.35066 0.65934 0.10517 32 EXPTO 24.12766 3.39832 0.20822 0.35066 0.65934 0.10517 34 EXPDR 12.95745 2.86628 -0.04223 0.17029 -0.24801 -0.07141 35 EXPTO 24.12766 3.39832 0.32958 0.15269 0.18162 0.52714 36 FXPDY 18.74468 8.45311 0.32958 0.16269 0.18162 0.5274 37 EXPDR 5	13	EXPHC	5.78723	3,14114	-0.06762	0.17787	-0.44621	-0.12775
31 EXPSV 27.97872 8.39381 0.10089 0.16486 1.07379 0.29698 23 EXPPV 15.74468 6.53242 0.11212 0.13134 0.85365 0.29479 33 EXPTP 76.61702 12.89009 0.08307 0.12654 0.68919 0.15513 2 EXPAP 12.80851 4.19958 -0.06029 0.16103 -0.59676 -5.16977 24 EXPAE 14.80851 2.68359 -0.04560 0.16171 -0.28200 -0.0114 21 EXPOR 12.95745 2.86628 -0.04223 0.17029 -0.24861 -0.07141 32 EXPTO 24.12766 3.39832 0.38602 0.63592 0.56278 C.160356 31 EXPES 50.46608 5.38053 -0.04592 0.12899 -0.35601 -C.1223 32 EXPTO 24.12766 3.39850 -0.39328 0.38602 0.63592 0.5269 0.18162 0.39241 34 EXPES 50.46608 5.38053 -0.04592 0.12899 -0.35601 -C.122341	9	EXPEM	10.87234	5.52708		0.15719	-0.43019	-0.12324
23 EXPPV 15.74468 6.53242 0.11212 0.1134 0.85365 0.23927 33 EXPTP 76.61702 12.89009 0.98307 0.12654 0.68919 0.19513 18 EXPMP 12.80851 4.19958 -0.66029 0.10103 -0.59676 -0.16977 24 EXPRE 16.53191 1.94323 0.20822 0.30206 0.669934 0.19517 32 EXPTO 24.12766 3.39832 0.38602 0.63592 0.56278 0.161371 24 EXPTO 24.12766 3.39832 0.38602 0.63592 0.52678 0.162356 31 EXPTO 24.12766 3.39832 0.38602 0.63592 0.52678 0.162356 32 EXPTO 24.12766 3.39832 0.38602 0.63592 0.52678 0.162356 31 EXPES 50.46808 5.38053 -0.04592 0.12899 -0.35601 -0.10223 32 EXPNO 5.74468 3.17235 0.10095 0.28029 0.03908 0.01129 34 EXPRM	31	EXPSV	27.97872	8.39381	0.17703	0.16486	1.07379	0.29608
33 EXPTP 76.61702 12.89009 0.11212 0.113134 0.85365 0.23927 18 EXPMP 12.80851 4.19958 -0.06029 0.12054 0.68919 0.1513 2 EXPAE 14.80851 2.68359 -0.04560 0.16171 -0.28206 -0.16977 24 EXPRER 16.53191 1.94323 0.20822 0.35206 0.56934 0.19517 32 EXPOR 12.95745 2.86628 -0.04223 0.17029 -0.24861 -0.07141 21 EXPDY 18.74468 8.45311 0.022958 0.16269 0.18162 0.5241 7 EXPDY 18.74468 3.17235 0.01095 0.28029 0.03908 0.01123 19 EXPND 5.74468 3.17235 0.01095 0.28029 0.03908 0.01123 25 EXPRGM 5.63830 1.35816 -0.09391 0.39224 -0.23941 -0.06845 29 EXPSP 18.61702 3.38509 -0.	23	EXPPV	15.74468	6.53242	0.10089	0.09440	1.06866	0.29479
18 EXPMP 12.80851 4.19958 -0.06029 0.12654 0.68919 0.19513 2 EXPAE 14.80851 2.68359 -0.06029 0.16103 -0.59676 -5.16977 24 EXPRER 16.53191 1.94323 0.20822 0.35206 0.65934 0.19517 21 EXPOR 12.95745 2.86628 -0.04223 0.17029 -0.24861 -0.07141 7 EXPDY 18.74468 8.45311 0.22558 0.15269 0.18182 0.55241 7 EXPNO 5.74468 3.17235 0.01095 0.28029 0.03908 0.01123 19 EXPRGM 5.63830 1.35816 -0.09321 0.38224 -0.10956 0.28029 0.03908 0.01123 25 EXPRGM 5.63830 1.35816 -0.09321 0.39224 -0.23941 -0.56835 29 EXPSP 18.61702 3.38509 -0.09328 0.28818 -0.32368 -0.09363 29 EXPSTR 12.42553 1.98631 -0.09946 0.25849 -0.38479 -0.16303	33	EXPTP	76.61702	12.89009	$0 \cdot 11212$	0.13134	0.85365	0.23927
2 EXPAE 14.80851 2.68359 -0.04560 0.16103 -0.59676 -0.16977 24 EXPRER 16.53191 1.94323 0.20822 0.36206 0.65934 0.19517 21 EXPOR 12.95745 2.86628 -0.04223 0.17029 -0.24801 -0.07141 32 EXPTO 24.12766 3.39832 0.38602 0.63592 0.56278 0.16236 7 EXPDY 18.74468 8.45311 0.02958 0.16269 0.18182 0.35241 19 EXPNO 5.74468 3.17235 0.01095 0.28029 0.03908 0.0123 25 EXPRGM 5.63830 1.35816 -0.09391 0.39224 -0.23941 -0.06895 29 EXPSP 18.61702 3.38509 -0.09328 0.28818 -0.02368 -0.09303 30 EXPSR 12.42553 1.98631 -0.09946 0.25849 -0.38479 -0.110943 26 EXPRP 21.12766 3.01890 0.02766 0.17230 0.12533 -0.9363 30 EXPSP	18	EXPMP	12.80851	4,19958	-0.06020	0.12054	0.68919	0.19513
24 EXPRER 16.53191 1.94323 0.20822 0.36206 0.65934 0.17517 32 EXPTO 24.12766 3.39832 0.20822 0.36206 0.65934 0.17517 32 EXPTO 24.12766 3.39832 0.38602 0.63592 0.56278 0.16036 7 EXPDY 18.74468 8.45311 0.02958 0.15269 0.18162 0.50241 19 EXPNO 5.74468 3.417235 0.01095 0.28029 0.03908 0.0123 17 EXPLP 36.19149 6.39170 0.05723 0.14934 0.38324 0.10946 25 EXPRGM 5.63830 1.35816 -0.09391 0.39224 -0.23941 -0.08495 26 EXPIM 6.38298 3.01123 0.10077 0.23029 0.43759 0.12533 36 EXPDE 2.14894 1.41369 -0.10669 0.36737 -0.29043 -0.29335 36 EXPRP 21.12766 3.01890 0.02766 0.17230 0.16092 C.04629 37 5.242553	2	EXPAE	14,80851	2.68359	-0.06029	0.10103	-0.59676	-0.16977
21 EXPOR 12.95745 2.86628 -0.04223 0.36206 0.66934 0.19517 32 EXPTO 24.12766 3.39832 0.38602 0.63592 0.56278 0.16036 11 EXPES 50.46808 5.38053 -0.04592 0.12899 -0.35601 -0.10223 19 EXPNO 5.74468 3.17235 0.01095 0.28029 0.03908 0.01233 17 EXPLP 36.19149 6.39170 0.35723 0.14934 0.38324 0.10946 29 EXPSP 18.61702 3.38509 -0.09391 0.39224 -0.23941 -0.56845 29 EXPSP 18.61702 3.38509 -0.09328 0.28818 -0.32368 -0.09303 30 EXPSTR 12.42553 1.98631 -0.09946 0.25849 -0.38479 -0.12533 5 EXPDE 2.14894 1.41369 -0.10669 0.36737 -0.29043 -0.39335 5 EXPDE 2.14894 1.41369 -0.10669 0.36737 -0.29043 -0.35355 5 EXPDE	24	EXPRER	16.53191	1,94323	-0.04000	0.16171	-0.28200	-0.05114
32 EXPTO 24.12766 3.39832 0.38602 0.63592 0.56278 0.16036 7 EXPDY 18.74468 8.45311 0.32958 0.15269 0.18162 0.35241 19 EXPNO 5.74468 3.17235 0.01095 0.28029 0.336601 -0.10223 17 EXPLP 36.19149 6.39170 0.035723 0.14934 0.38324 0.10996 25 EXPRGM 5.63830 1.35816 -0.09391 0.39224 -0.23941 -0.56895 16 EXPIM 6.38298 3.01123 0.10077 0.23029 0.43759 0.12533 30 EXPSTR 12.42553 1.98631 -0.09946 0.25849 -0.38479 -0.11240 26 EXPRP 21.12766 3.01890 0.02766 0.17230 0.12533 5 EXPLE 21.4894 1.41369 -0.10669 0.36737 -0.29043 -0.59335 5 EXPLE 21.12766 3.01890 0.02766 0.17230 0.15052 0.04629 26 EXPRP 21.12766 <t< td=""><td>21</td><td>EXPOR</td><td>12.95745</td><td>2.86628</td><td>-0.0(322</td><td>0.30206</td><td>0.68934</td><td>0.19517</td></t<>	21	EXPOR	12.95745	2.86628	-0.0(322	0.30206	0.68934	0.19517
7 EXPDY 18.74468 8.45311 0.38602 0.63592 0.56278 0.16036 11 EXPES 50.46808 5.38053 -0.04592 0.15269 0.18162 0.35241 19 EXPNO 5.74468 3.17235 0.01095 0.28029 0.03908 0.01123 17 EXPLP 36.19149 6.39170 0.35723 0.14934 0.38324 0.10996 25 EXPRGM 5.63830 1.35816 -0.09391 0.39224 -0.23941 -0.56845 16 EXPIM 6.38298 3.01123 0.10077 0.23029 0.43759 0.12533 30 EXPSTR 12.42553 1.98631 -0.09946 0.25849 -0.38479 -0.11040 26 EXPRP 21.12766 3.01890 0.02766 0.17230 0.15052 0.04629 30 EXPRP 21.12766 3.01890 0.02766 0.17230 0.15052 0.04629 6 EXPRP 21.12766 3.01890 0.02766 0.17230 0.15052 0.04629 8 EXPEC 11.	32	EXPTO	24.12766	3,39832	-0.04223	0.17029	-0.24801	-0.07141
11 EXPES 50.46808 5.38053 -0.04592 0.16269 0.18182 0.05241 19 EXPNO 5.74468 3.17235 0.01095 0.28029 0.03908 0.01123 17 EXPLP 36.19149 6.39170 0.05723 0.14934 0.38324 0.10996 25 EXPRGM 5.63830 1.35816 -0.09391 0.39224 -0.23941 -0.06845 29 EXPSP 18.61702 3.38509 -0.09328 0.28818 -0.32368 -0.09303 30 EXPSTR 12.42553 1.98631 -0.09946 0.25849 -0.38479 -0.11040 26 EXPRP 21.12766 3.01890 0.02766 0.17230 0.15052 0.04629 30 EXPRP 21.12766 3.01890 0.02766 0.17230 0.15052 0.04629 4 EXPRP 21.12766 3.01890 0.02766 0.15738 0.10292 0.02973 35 EXPRE 11.78723 3.77023 -0.00011 0.17922 -0.00059 -0.20177 36 PEERAT	7	EXPDY	18.74468	8.45311	0.38602	0.63592	0.56278	0.16036
19 EXPNO 5.74468 3.17235 0.01095 0.28029 0.03908 0.01123 17 EXPLP 36.19149 6.39170 0.05723 0.14934 0.38324 0.10996 25 EXPRGM 5.63830 1.35816 -0.09391 0.39224 -0.23941 -0.06895 29 EXPSP 18.61702 3.38509 -0.09328 0.28818 -0.32368 -0.09303 30 EXPSTR 12.42553 1.98631 -0.09946 0.25849 -0.38479 -0.11040 26 EXPRP 21.12766 3.01890 0.02766 0.17230 0.15052 0.04629 30 EXPEC 11.78723 3.77023 -0.00011 0.17922 -0.00059 -0.05355 15 EXPIE 32.42553 3.46250 0.01620 0.15738 0.10292 0.02970 8 EXPEC 11.78723 3.77023 -0.00011 0.17922 -0.00059 -0.20177 36 PEERAT 6.71574 0.91763 0.00011 0.17922 -0.00059 -0.20177	11	EXPES	50,46808	5.38053	-0.02958	0.15269	0.18182	0.05241
17EXPLP36.191496.391700.010950.280290.039080.0112325EXPRGM5.638301.35816-0.093910.39224-0.23941-0.0689529EXPSP18.617023.38509-0.093280.28818-0.32368-0.0930316EXPIM6.382983.011230.100770.230290.437590.1253330EXPSTR12.425531.98631-0.099460.25849-0.38479-0.1104026EXPRP21.127663.018900.027660.172300.150520.0462915EXPIE32.425533.462500.016200.157380.102920.029708EXPEC11.787233.77023-0.000110.17922-0.00059-0.0011736PEERAT6.715740.917630.917630.17922-0.00059-0.00117	19	EXPNO	5.74468	3 17235	-0.04592	0.12899	-0.35601	-0.10223
25 EXPRGM 5.63830 1.35816 -0.09391 0.39224 -0.23941 -0.06895 29 EXPSP 18.61702 3.38509 -0.09328 0.28818 -0.32368 -0.09303 16 EXPIM 6.38298 3.01123 0.10077 0.23029 0.43759 0.12533 30 EXPSTR 12.42553 1.98631 -0.09946 0.25849 -0.38479 -0.11040 26 EXPRP 21.12766 3.01890 0.02766 0.17230 0.15052 0.04629 8 EXPEC 11.78723 3.77023 -0.00011 0.17922 -0.00059 -0.2970 DEPENDENT 6.71574 0.91763 0.91763 0.10292 0.00059 -0.00117	17	EXPLP	36,19149	6.39170	0.01095	0.28029	0.03908	0.01123
29 EXPSP 18.61702 3.38509 -0.09328 0.39224 -0.23941 -0.06895 16 EXPIM 6.38298 3.01123 0.10077 0.23029 0.43759 0.12533 30 EXPSTR 12.42553 1.98631 -0.09946 0.25849 -0.38479 -0.11040 5 EXPDE 2.14894 1.41369 -0.10669 0.36737 -0.29043 -0.59355 15 EXPIE 32.42553 3.46250 0.01620 0.15738 0.10292 0.02970 8 EXPEC 11.78723 3.77023 -0.00011 0.17922 -0.00059 -0.00017 36 PEERAT 6.71574 0.91763 0.91763 0.17922 -0.00059 -0.00017	25	EXPRGM	5,63830	1 35816	0.05723	0.14934	0.38324	0.10995
16 EXPIM 6.38298 3.01123 0.10077 0.23029 0.43759 0.12533 30 EXPSTR 12.42553 1.98631 -0.09946 0.25849 -0.38479 -0.11040 5 EXPDE 2.14894 1.41389 -0.10669 0.36737 -0.29043 -0.35335 15 EXPIE 32.42553 3.46250 0.01620 0.15738 0.10292 0.04629 8 EXPEC 11.78723 3.77023 -0.00011 0.17922 -0.00059 -0.30017	29	EXPSP	18,61702	3 38500	-0.09391	0.39224	-0.23941	-0.06895
30 EXPSTR 12.42553 1.98631 -0.09946 0.23029 0.43759 0.12533 5 EXPDE 2.14894 1.41369 -0.09946 0.25849 -0.38479 -0.11040 26 EXPRP 21.12766 3.01890 0.02766 0.17230 0.15052 0.04629 15 EXPEC 11.78723 3.46250 0.01620 0.15738 0.10292 0.02970 8 EXPEC 11.78723 3.77023 -0.00011 0.17922 -0.00059 -0.00017 36 PEERAT 6.71574 0.91763 0.91763 0.17922 -0.00059 -0.00017	16	EXPIM	6.38298	3.01123	-0.09328	0.28818	-0.32368	-0.09303
5 EXPDE 2.14894 1.41369 -0.10669 0.25849 -0.38479 -0.11040 26 EXPRP 21.12766 3.01890 0.02766 0.17230 0.15052 0.04629 15 EXPEC 11.78723 3.46250 0.01620 0.15738 0.10292 0.02970 8 EXPEC 11.78723 3.77023 -0.00011 0.17922 -0.00059 -0.00017 36 PEERAT 6.71574 0.91763 0.91763 0.17922 -0.00059 -0.00017	30	EXPSTR	12,42553	1 09631	0.10077	0.23029	0.43759	0.12533
26 EXPRP 21.12766 3.01890 0.02766 0.17230 0.15052 0.04629 15 EXPIE 32.42553 3.46250 0.01620 0.15738 0.10292 0.02970 8 EXPEC 11.78723 3.77023 -0.00011 0.17922 -0.00059 -0.00017 36 PEERAT 6.71574 0.91763 0.91763 0.17922 -0.00059 -0.00017	5	EXPDE	2,14894	1.41200	-0.09946	0.25849	-0.38479	-0.11040
15 EXPIE 32.42553 3.46250 0.02766 0.17230 0.15052 0.04629 8 EXPEC 11.78723 3.77023 -0.00011 0.17922 -0.00059 -0.00017 36 PEERAT 6.71574 0.91763	26	EXPRP	21,12766	2 01900	-0.10669	0.36737	-0.29043	-0.08335
8 EXPEC 11.78723 3.77023 -0.00011 0.15738 0.10292 0.02970 DEPENDENT 36 PEERAT 6.71574 0.91763 0.00011 0.17922 -0.00059 -0.00017	15	EXPIF	32,42553	3 44250	0.02766	0.17230	0.15052	0.04629
DEPENDENT 36 PEERAT 6.71574 0.91763	8	EXPEC	11,78723	2.4020U	0.01620	0.15738	0.10292	0.02970
36 PEERAT 6.71574 0.91763	DEPE	NDENT	11.10123	5.11025	-0.00011	0.17922	-0.00059	-0.00017
	36	PEERAT	6.71574	0.91763				

COMPARE CHECK ON FINAL COEFFICIENT.....

TABLE XXX (Continued)

CUMULATIVE REGRESSIONS

194

¥

	and the second		DENT VARIA	BLES	¥	· · · · · · · · · · · · · · · · · · ·	an the second				
	INCREMENTS F	OR INDEPEN	DENT VARIA		출 .	TO EODOR	SUMS OF	PROP.VAR.	F	MULTIPLE	SIMPLE
• · ·			nnnD	F VALUE	≉ <u>ડ</u>	ID. ENNUR	SQUARES	= R SQ.	VALUE	R	R
VA	RIABLE	SUMS OF		FACH TERM	* 01-	ESTIMATE	2.54313	0.06824	3.29557	0.25122	-, 26
ND.	NAME	SQUARES	· VAK•	3,29557		0.89990	3,83552	0.09902	2.41789 ~	0.31468	,18
34	EXPLIN	2.54313	0.06824	1,50336		0.89039	8 24629	0.21289	3.87684*	0.45140	.12
27 -		1,19239	0.03078	6 22092		0.84205	10 28906	0.26563	3.79801	0.51540	.02
22		4.41077	0.11387	3 01620		0.82296	11 73664	0.30300	3.56478	0.55046	,10
12	EXPPR	2.04277	0.05274	2 19837		0.8114/	12 17163	0.31423	3.05483*	0.55057	.03
14		1 44758	0.03737	2.1909		0.81490	12.03520	0.33395	2.79342	0.57788	11
` 1	EXPHR	0 43499	0.01123	1 15627		0.81334	12.93520	0.36819	2.76811	0.61579	,06
20	EXPAC	0.74356	0.01971	1.19421		0.80251	14.20104	0 28538	2.57778	(1.57579	- ద్
20	EXPNU	0.10500	0.03424	2.05904		0.80214	14.92748	0.209 77	2.39772	0.63227	. 00
6	EXPDOR	1.32044	0.01719	1.03405		0.80363	15.48482	C 41104	2.22892	0.54123	- 16
10	EXPEO	0.66584	0.01439	0.86305		0.80672	15.95634	C. 411 74	2 25486	0.65196	,08
4	EXPHSX	0.55738	0.01217	0.72441		0.80003	16.97282	0,42017	2 65841	C + 317	.06
3	ΕΧΡΑΤ	0.47148	0.01624	1.58816		0.80509	17.34462	0.44779	1 95459		-06
28	EXPSOR	1.01649	0.02021	0.57361		0.80777	17.85473	0.40090	84808 L	n 60107	0t
13	EXPHC	0.37180	0.00900	0.78179		0.80698	18.54665	0.47882	1 76477	0 602231	-,20
9		0.51011	0.01511	1.06251		0.81556	18.78035	().48482	1.45210		.01
31		0.69192	0.01/00	0.35135		0.82372	19.05744	0.49290	1.002217	0 7077X	10
23	EXPSV	0.23369	0.00005	0.40839		0.82091	19.40293	0.50092	1.00102	0.12(10	05
33	EXPPV	0 27710	0.00/15	0.50041		0.02072	19.52024	0.50653	1.40869		- 00
81	EXPIP	0.24549	0.00892	0.30697		0.07130	19.84729	0.51240	1.3661	U.71582	
2	EXPMP	0.2173]	0.00561	0.31257		0.01210	20.07380	0.51824	1.28064	0.11989	-,,,c
21-	EXPAE	0.2175	0.00586	0 30346		0.00972	20.21922	0.52200	1.19132	0.12249	-,07.
ζή ~	EXPRER	0.22103	0.00585	0.18850	, ÷	0.8/055	20.35160	0.52542	1.10711	1.12455	-,16
<1	EXPOR	0.22651	0.00375	0.16563		0.89401	20,48749	0.52892	1.02923	0.72727	. 15
32 .	EXPTO	0.14542	0.00342	0.1000		0.91071	20-51942	0.53233	0.95614	C.72961	. 02
.7	EXPDY	0.13238	0.00351	0.10502		0.928//	20.84875	Ú.53825	0.89668	J.73366	,05
11	EXPES	0.13589	0 00341	0.15294		0.94566	20 90908	0.53981	0.82545	.0.73472	- 03
19	EXPNO	0.13193	0.00592	0.25044		0.96859	20.0000	54255 J	0.76244	0.73c58	- 03
17	EVALA	0.22933	0.00156	0.06431		0.99216	21.01722	1.54426	C.70006	0.73774	06
25		0.06034	0.00176	0.10782		1.01902	21.00100	0.54722	0.64457	0.73974	.06
29	EXPROM	0.10613	0.00214	0.06371		1.04696	21.19009	0.55096	0.59369	0.74227	12
16	EXPSP	0.06616	0.001/1	0.10465		1.07683	21.34090	0 55153	0.53803	6.74265	. C 5
30	EXPIM	0:11471	0.00290	0.12494		1.11391	21.30301	0.55196	C.48531	0.74294	CC
5	EXPSTR	0.14488	0.003/4	0.01777		1.15541	21.37975	÷ 55196	C.43480	0.74294	.02
ر ۲	EXPDE	0.14400	0.00057	0.01254		1.20258	21.37975				
40 16	EXPRP	0.02200	0.00043	0.00000							
12	EXPIE	0.016/4	0.00000	000		1					
· 8	EXPEC	0.00000	2 -								

·

يغافر والرجاجي أحصاصهم والمرور

PROPORTION OF VARIANCE SPE-CIFIED TO LIMIT VARIABLES • • • • a

متابع بعديا عراجر يترعا با

EXPEC

1.443

١٠,

0.

TABLE XXXI

الم يسركونون المار أحما والاحمد م

PROBLEM NUMBER G3,5 Replacement and deletion 1

. .

DEPENDENT VARIABLE IS NOW 33 NUMBER OF VARIABLES DELETED 16 VARIABLES DELETED... 1 2 3 22 23 24 25 26 27 28 29 30 31 32 34 35

ANALYSIS OF VARIANCE FOR REGRESSION

SOURCE OF VARIATION	D.F.	SUM DF SQUARES	MEAN SQUARES	F VALUE
DUE TO REGRESSION	18 28 46	19.55378 16.33391 35.88770	1.08632 0.58335	1.86220

INTERCEPT (A VALUE) IS 4.26512

RIABLE	MEAN	S T AND AR D D EV I AT I ON	REG. COEF.	STD. ERROR OF REG.COFF.	COMPUTED T VALUE	PARTIAL
RIABLE NAME CLNMAK CLNPA CLNPTK CLNHS CLNMF CLNSI CLNHY CLNHSK CLNHSK CLNPT CLNPT CLNPCK CLNPD CLNPDK CLNF	MEAN 18.59574 10.17021 27.27660 4.46809 29.27660 25.21277 15.12766 22.51064 13.25532 19.31915 10.06383 26.44681 15.82979 22.74468 3.00000 9.14894	STANDARD DEVIATION 3.82020 2.48753 5.05493 3.59257 5.21162 9.56655 3.91550 4.20596 3.58419 4.88612 7.07231 5.22040 3.39641 3.69175 2.50217 6.15728	REG. COEF. -1.16347 -0.18925 -0.28797 -0.72745 0.02936 -0.04733 1.19447 0.08187 0.08187 0.54800 0.04434 0.39104 0.11071 -0.87612 0.86828 -0.01992 -0.07079	STD. ERROR OF REG.COEF. 0.55905 0.05911 0.46472 0.56437 0.02989 0.03151 0.56352 0.05311 0.54711 0.04646 0.47273 0.17085 0.53475 0.54997 0.07208 0.17001	COMPUTED T VALUE -2.08116 -3.20190 -0.61967 -1.28895 0.98219 -1.50236 2.11967 1.54153 1.00163 0.95433 0.82720 0.64802 -1.63837 1.57878 -0.27634 -0.41641	PARTIAL CORR. COEF. -C.36601 -0.51770 -0.11631 -0.23667 0.18250 -0.27313 0.37186 0.27969 0.18599 0.18599 0.15445 0.12156 -0.29577 0.28591 -0.05215 -0.07845
CLNK CLNK CLNL NDENT	17.17021 3.25532	4.50757 1.93894 0.88327	-0.17115 -0.01377	0.66358 0.08617	-0.25791 -0.15976	-0.04868 -0.03018
	RIABLE NAME CLNMAK CLNPA CLNPTK CLNHS CLNMF CLNSI CLNHSK CLNHY CLNHSK CLND CLNPT CLNSCK CLNPD CLNF CLNSC CLNF CLNSC CLNK CLNL	RIABLE MEAN NAME 13.59574 CLNMAK 13.59574 CLNPA 10.17021 CLNPTK 27.27660 CLNHS 4.46809 CLNMF 29.27660 CLNSI 25.21277 CLNMA 15.12766 CLNHS 13.25532 CLNHSK 13.25532 CLND 19.31915 CLNPT 10.06383 CLNPD 15.82979 CLNPDK 22.74468 CLNF 3.00000 CLNSC 9.14894 CLNK 17.17021 CLNK 17.17021 CLNL 3.25532	RIABLE MEAN STANDARD DEVIATION NAME DEVIATION CLNMAK 18.59574 3.82020 CLNPA 10.17021 2.48753 CLNPTK 27.27660 5.05493 CLNHS 4.46809 3.59257 CLNMF 29.27660 5.21162 CLNMF 29.27660 5.21162 CLNMF 29.27660 3.91550 CLNMA 15.12766 3.91550 CLNHY 22.51064 4.20596 CLNHY 22.51064 4.20596 CLNHY 22.51064 5.22040 CLNHY 22.51064 5.22040 CLNHY 22.51064 5.22040 CLND 19.31915 4.88612 CLNPT 10.06383 7.07231 CLNSC 26.44681 5.22040 CLNPD 15.82979 3.39641 CLNPDK 22.74468 3.69175 CLNF 3.00000 2.50217 CLNSC 9.14894 6.15728	RIABLE MEAN STANDARD DEVIATION REG. CODEF. NAME 18.59574 3.82020 -1.16347 CLNPA 10.17021 2.48753 -0.18925 CLNPTK 27.27660 5.05493 -0.28797 CLNPTK 27.27660 5.05493 -0.72745 CLNMF 29.27660 5.21162 0.02936 CLNSI 25.21277 9.56655 -0.04733 CLNHY 22.51064 4.20596 0.08187 CLNHY 22.51064 4.20596 0.08187 CLNHY 22.51064 4.20596 0.08187 CLNHY 22.51064 4.20596 0.08187 CLNHY 22.51064 5.22040 0.04434 CLNHY 22.51064 5.22040 0.11071 CLNHY 22.51064 5.22040 0.11071 CLND 19.31915 4.88612 0.04434 CLNPT 10.06383 7.07231 0.39104 CLNSCK 26.44681 5.22040 0.11071 <td< td=""><td>RIABLE MEAN STANDARD DEVIATION REG. STD. ERROR NAME DEVIATION COEF. OF REG.COEF. CLNMAK 18.59574 3.82020 -1.16347 0.55905 CLNPA 10.17021 2.48753 -0.18925 0.05911 CLNPTK 27.27660 5.05493 -0.28797 0.46472 CLNHS 4.46809 3.59257 -0.72745 0.56437 CLNMF 29.27660 5.21162 0.02936 0.02989 CLNMA 15.12766 3.91550 1.19447 0.56352 CLNHY 22.51064 4.20596 0.08187 0.05311 CLNHY 22.51064 4.20596 0.04434 0.04645 CLNHY 22.51064 4.20596 0.04434 0.04645 CLND 19.31915 4.88612 0.04434 0.04645 CLNPT 10.66383 7.07231 0.39104 0.47273 CLNSCK 26.44681 5.22040 0.11071 0.17085</td><td>RIABLE MEAN STANDARD DEVIATION REG. STD. ERROR CDMPUTED NAME 0EVIATION COEF. OF REG.COEF. T VALUE CLNMAK 18.59574 3.82020 -1.16347 0.55905 -2.08116 CLNPA 10.17021 2.48753 -0.18925 0.05911 -3.20190 CLNPTK 27.27660 5.05493 -0.28797 0.46472 -0.61967 CLNMF 29.27660 5.21162 0.02936 0.02989 0.98219 CLNMF 29.27666 5.21162 0.02936 0.03151 -1.55236 CLNMF 29.27666 5.21162 0.02936 0.03151 -1.55236 CLNMF 29.27666 5.21077 9.56655 -0.04733 0.03151 -1.55236 CLNMF 22.51064 4.20596 0.08187 0.05311 1.54153 CLNHY 22.51064 5.22040 0.04434 0.046466 0.95433 CLNPT 10.06383 7.07231 0.39104</td></td<>	RIABLE MEAN STANDARD DEVIATION REG. STD. ERROR NAME DEVIATION COEF. OF REG.COEF. CLNMAK 18.59574 3.82020 -1.16347 0.55905 CLNPA 10.17021 2.48753 -0.18925 0.05911 CLNPTK 27.27660 5.05493 -0.28797 0.46472 CLNHS 4.46809 3.59257 -0.72745 0.56437 CLNMF 29.27660 5.21162 0.02936 0.02989 CLNMA 15.12766 3.91550 1.19447 0.56352 CLNHY 22.51064 4.20596 0.08187 0.05311 CLNHY 22.51064 4.20596 0.04434 0.04645 CLNHY 22.51064 4.20596 0.04434 0.04645 CLND 19.31915 4.88612 0.04434 0.04645 CLNPT 10.66383 7.07231 0.39104 0.47273 CLNSCK 26.44681 5.22040 0.11071 0.17085	RIABLE MEAN STANDARD DEVIATION REG. STD. ERROR CDMPUTED NAME 0EVIATION COEF. OF REG.COEF. T VALUE CLNMAK 18.59574 3.82020 -1.16347 0.55905 -2.08116 CLNPA 10.17021 2.48753 -0.18925 0.05911 -3.20190 CLNPTK 27.27660 5.05493 -0.28797 0.46472 -0.61967 CLNMF 29.27660 5.21162 0.02936 0.02989 0.98219 CLNMF 29.27666 5.21162 0.02936 0.03151 -1.55236 CLNMF 29.27666 5.21162 0.02936 0.03151 -1.55236 CLNMF 29.27666 5.21077 9.56655 -0.04733 0.03151 -1.55236 CLNMF 22.51064 4.20596 0.08187 0.05311 1.54153 CLNHY 22.51064 5.22040 0.04434 0.046466 0.95433 CLNPT 10.06383 7.07231 0.39104

CUMPARE CHECK ON FINAL COEFFICIENT -0.01377

INCREME	NTS FOR INDEPEND	DENT VARIAB	LES *		CUMULATIVE	REGRESSIO	IN S		
VARIABLE NO. NAME 20 CLNMAK 14 CLNPA 16 CLNPTK 7 CLNHS 13 CLNMF 21 CLNSI 19 CLNMA 10 CLNHY 8 CLNHSK	SUMS OF SQUARES 3.39499 2.89939 1.83670 2.53341 0.52534 1.21762 2.02154 0.98411 0.68044	PROP. VAR. 0.09460 0.08079 0.05118 0.07059 0.01464 0.03393 0.05633 0.05633 0.02742 0.01896	F VALUE * EACH TERM * 4.70182 4.31088 2.84539 4.21847 0.87211 2.07429 3.67404 1.82646 1.27191	STD. ERROR DF ESTIMATE 0.84974 0.82011 0.80343 0.77495 0.77614 0.76616 0.74177 0.73403 0.73142	SUMS OF SQUARES 3.39499 6.29438 8.13109 10.56450 11.18985 12.40746 14.42900 15.41311 16.09355	PROP.VAR. = R SQ. 0.09460 1.17539 0.22657 0.29716 0.31180 0.34573 0.40206 0.42948 0.44844	F VALUE 4.70182 4.67932 4.19884 4.43946 3.71517 3.52281 3.74628 3.57576 3.34252	MULTIPLE R 0.30787 0.41860 0.47594 0.54513 0.55839 0.58799 0.63405 0.65535 0.66965	Simple R -25 11 -20 -25 -11 -20 -07 -30 -09 -30 -04 -28

د میلادی واهنچه میلادی و در این از میلاد در این از میلادی در این

•

195

			_196		a an	میرونسوند میکرد. را بیم و برونی را وی ا
TA 9 CLND 15 CLNPT 18 CLNSCK 11 CLNPD 12 CLNPDK 17 CLNSC 6 CLNK 4 CLNL	ABLE XXXI (Continued) 0.67719 0.01887 0.29022 0.00809 0.35479 0.00989 0.30530 0.00851 1.61748 0.04507 0.08564 0.00239 0.04824 0.00134 0.06648 0.00185 0.01489 0.00041	1.27524 0.53954 0.65304 0.55458 3.12760 0.16127 0.08816 0.11792 0.02552	0.7287216.770740.7334217.060960.7370817.415750.7419617.721060.7191419.338530.7287519.424180.7397119.472420.7508319.538890.7637819.55378	C.46731 O.47540 U.48528 C.49379 G.53886 O.54125 C.54259 U.54445 U.54486	3.15817 2.88339 2.67133 2.47620 2.67097 2.43832 2.22420 2.03875 1.86220	0.68360 .04 0.68949 08 0.69662 .74 0.70270 01 0.73407 03 0.73570 .04 0.73661 .1 0.73661 .1 0.73787 .0 0.73815 .74

PROPORTION OF VARIANCE SPE-CIFIED TO LIMIT VARIABLES 0.

±320 €

والمحصوبة والإرداء والمارية والمحمولة ومحصولات والمحافظ والمعاوي فطوعه والمراجع والمحامون والمحاد

1.20

ا المراجع و التي 2003 و المراجع المراجع المراجع و ا المراجع

المراجع ا المراجع المراجع

ومترجع والمستعمل والأمر وروار ومعارات ورمعان والمرار والمرار والمراري

PROBLEM NUM	BER	G3-,5	· · · · · · · · · · · · · · · · · · ·	TABLE	IIXXXI
REPLACEMENT	AND	DELETION	4		

DEPENDENT	VARIABLE IS NOW	33																	
NUMBER OF	VARIABLES DELETED	23		• 2				a de com		e e ^t er	• • • •								
VARIABLES	DELETED 1 2	3 4	+ .	5 6	7	8	9	10 11	12 13	3 14	15	16	17	18	19	20	21	34	35

· · · · · · · · · · · · · · · · · · ·				an in a star a st
SOURCE OF VARIATION	D.F.	SUM DF	MEAN	F
		SQUARES	SQUARES	VALUE
DUE TO REGRESSION	11	10.66258	0.96933	1.34495
DEVIATION ABOUT REGRESSION	3.5	25.22511	0.72072	and any second second second
TOTAL	46	35.88770		

INTERCEPT (A VALUE) IS -1.03878

				and the second	en 🔸 🛛 e companya da ser de la caractería de la companya de	Contraction and the second	
V/	RIABLE	MEAN	STANDARD	REG.	STD. ERROR	COMPUTED	PARTIAL
NU.	NAME	2000 - 200	DEVIATION	COEF.	OF REG.COEF.	T VALUE	CORR. COEF.
32	RESCN	25.17021	4.66401	-0.02142	0.06171	-0.34710	-0.05857
28	RESDO	18.14894	3.00708	0.15945	0.09053	1.76131	0.28534
30	RESPR	6.27660	3,68134	0.07231	0.05571	1.29786	0.21428
24	RESES	49.89362	5.31297	0.06627	0.04602	1.43988	0.23648
22	RESA	9.42553	7.43302	0.09307	0.05519	1.68652	0.27415
25	RESLB	9.93617 .	2.67358	0.06176	0.05066	1.21924	0.20185
26	RESCA	8.68085	5.26311	-0.05690	0.05163	-1.10201	-0.18312
23	RESR	15.72340	3.89929	-0.02514	0.03616	-0.69518	-0.11670
27	RESDY	18.74468	8.45311	0.01559	0.03628	0.42969	0.07244
29	RESRE	22.70213	2.66144	0.02431	0.08177	0.29727	0.05018
31	RESST	22.21277	3.36178	-0.00770	0.04758	-0.15192	-0.02735
DEPEN	DENT	• • • • • • • • • • • • • • • • • • •	•			•	
33	FACRAT	6.35106	0.88327				

COMPARE CHECK ON FINAL COEFFICIENT...... -0.00770

0.

							e de la companya de l					
	INCRE	MENTS	5 FOR INDEP	ENDENT VARIA	ABLES	*		CUMULATIVE	REGRESSI	D:NS		
. VA	RIABLE		SUMS OF	PROP.	F VALUE	÷ ÷	STD. ERROR	SUMS OF	PROP.VAR.	F	MULTIPLE :	SIN
NO.	NAME		SQUARES	VAR.	EACH TERM	*	OF ESTIMATE	SQUARES	= R SQ.	VALUE	ث	R
32	RESCN		3.7126	9 0.10345	5.19257		0.84558	3.71269	0.10345	5.19257	2.32154	,3 ⁻²
28	RESDO		1.5977	7 0.04452	2.29916	•	0.83363	5.31046	0.14797	3.82082~	0.35457	.21
30	RESPR		0.8096	7 0.02256	1.16959		0.83203	6.12013	C.17054	2.94690	0.41295	,0(
24	RESES		0.89082	2 0.02482	1.29566		0.82918	7.01095	0 .19536	2.54928	0.44149	.15
22	RESA		1.63504	0.04556	2.46080		0.81513	8.64599	0.24092	2.60252	:0.4∍€83	, C
25	RESLB	1 a	0.82163	3 0.02289	1.24394		0.81271	9.46762	0.26381	2.38899	0.51363	. (
26	RESCA		0.63114	0.01759	0.95447		0.81318	- 10.09876	0.28140	- 2.18173	6.53547	
23	RESR		0.28075	0.00782	0.41823		0.81931	10.37951	0.28922	1.93282	0.53779	
27	RESDY		0.20135	0.00561	0.29438		0.82702	10.58085	C.29483	1.71887	0.54298	
9	RESRE		0.06284	0.00175	0.08961		0.83739	10.54369	0.29658	1.51788	0.5445)	-
1	RESST		0.01890	0.00053	0.02622		0.84895	10.66258	0.29711	1.34495	0.54518	

ROPORTION OF VARIANCE SPE-CIFIED TO LIMIT VARIABLES 197

l tai

PROBLEM NUMBER G3,5 TABLE XXXIII REPLACEMENT AND DELETION 7

DEPENDENT VARIABLE IS NOW 33 NUMBER OF VARIABLES DELETED 5 VARIABLES DELETED... 1 2 3 34 35

an da an tanàna dia mandritra dia kaominina dia kaominina dia kaominina dia kaominina dia kaominina dia kaomini

ANALYSIS OF VARIANCE FOR REGRESSION

SOURCE OF VARIATION	D.F.	SUM DF SQUARES	MEAN SQUARES	F VALUE
DUE TO REGRESSION DEVIATION ABOUT REGRESSION	29 17 46	24.60116 11.28653 35.88770	0.84832 0.66391	1.2///2

INTERCEPT (A VALUE) IS -1.71622

FACRAT 6.35106 0.88327 33 COMPARE CHECK ON FINAL COEFFICIENT

0.00470

× 4

CUMULATIVE REGRESSIONS

							199		in an		LALLE T 3 DI Z	SINIFIE
2			TABLE XXX	III (Contin		*	STD. ERROR	SUMS OF	PROP.VAR.		HULFIELL	- 577-17 <u>-</u> R
VA	RIABLE		SUMS OF	PROP.	F VALUE	*	OF ESTIMATE	SQUARES	= R SQ.	VALUE	5 3 3 MA	3.4
ND.	NAME	· .	SQUARES	VAR .	EAUT 10257		0.84558	3.71269	0.10345	5.17221	<u>-</u> 11200	. 20
32	RESCN		3.71269	0.10345	4 54547		0.81411	6.72534	0.18740	5.07350		. 1.4
7	CLNHS		3.01265	0.08395	2 95745		0.79659	8.50199	0.23969	4.51000	· · · · · · · · · · · · · · · · · · ·	-25
18	CLNSCK		1.87665	0.05229	3 58120		0.77370	10.74576	0.29943	- 4.40117 - 6.27317		04
14	CLNPA		2.14377	0.05974	2 69180		0.75858	12.29473	1.34239	4.27511	1 - 5 F	. 11
10	CLNHY		1.54896	0.04310	2 29370		C.74688	13.57424	0.31824	2 00G7U		. 22
16	CINPTK		1.27951	0.03565	2.61770		0.73222	14.97773	0.41130	2 71532		. 24
23	RESR		1.40349	0.03911	1 45858		0.72796	15.75066	0.43889	3 95249		,08
28	RESDO		0.77293	0.02154	2 72127		0.70321	17.59086	U.49JID	2 7093	1.7.334	-14
22	RESA		1.84020	0.05128	1 37011		0.69972	18.26168	0.50886	2 42657	2.7293	- 24
	CLNI		0.67082	0.01869	0 60693		0.70269	18.60581	U-51842	2 27184	0.7-215	.04
29	RESRE		0.34412	0.00959	1 27967		0.69990	19.23266	U 00091	2.08558	1.7L-110	- 01
30	DESDR .		0.62685	0.01/4/	0.03062		0.70061	19.58946	0.24834	2 QAG49	1.75121	, 07
21	CLINST		0.45680	0.01273	1 15089		0.69901	20.25181	C. 53431	2.90049		, D++
12	CLNME		0.56235	0.01567	1.19009		0.69942	20.72279	0.01140	2 61782		.01
	CLND		0.47099	0.01312	0.70217		0.70657	20.91058	0.28257	2.61102	0.75838	, OS
11			0.18779	0.00523	0.51015		0.71195	21.18835	0.59041	2 37987	1.77764	. 55
12	CLNPDK		0.27777	0.00774	0.94000		0.71177	21.70238	0.00415	2 34433		,18
15	CLNPDK		0.51403	0.01432	1.01405		0.70826	22.34369	0.62260	2 · J · · · · ·	70972	.11
31	DESST		0.64131	0.01787	1.27845		0.70644	22.91204	U.63844	2 2468	3 1 - 2L Q	,30
17	CLASC		0.56834	0.01584	1.13802		0.70511	23.45823		2 14130	4	-20
10			0.54620	0.01522	1.09800		0.71041	23.77538	0.00249	2.14190	0.43476	05
17			0.31715	0.00884	0.62841		0.71549	24.11326	0.6/191	1 9696	5.22474	. 31
0			0.33788	0.00942	0.66002		0.72229	24.41039	0.68019	1 01150		-,02
20	RESLD		0.29713	0.00828	0.56954		0 73578	24.51880	0.68321	1 46938		.01
20	CLINMAN		0 10841	0.00302	0.20024		0 75250	24.56270	0.68443	1.600000	0.4-749	. 19
26	RESUA		0.10011	0.00122	0.07752		0.17270	24.58540	0.68507	1.70002	s:797	.0++
6	ULNK		0.0+370 ∩ 02271	0.00063	0.03818		0 70191	24.59947	0.68546	1.40092	2 · 2 2745	04
24	RESES		0.01407	0.00039	0.02244		0.17171	24.50116	0.68550	1.21115	لر 7) يزيد هاي	- /
27	RESDY		0.01401	0.00005	0.00254	•	0.01401					
5	CLNF		0.00103									

PROPORTION OF VARIANCE SPE-CIFIED TO LIMIT VARIABLES

٠

0.

200

PROBLEM NUMBER G3,6 REPLACEMENT AND DELETION 1

DEPENDENT VARIABLE IS NOW 35 NUMBER OF VARIABLES DELETED 2 VARIABLES DELETED... 36 37

ANALYSIS OF VARIANCE FOR REGRESSION

SOURCE OF VARIATION	D.F.	SUM OF SQUARES	MEAN SQUARES	F VALUE 2,29603
DUE TO REGRESSION DEVIATION ABOUT REGRESSION TOTAL	34 12 46	31.10613 4.78157 35.88770	0.39846	

-23.97927 INTERCEPT (A VALUE) IS

		INTERCEPT (A	VALUET IS			COMPLITED	PARTIAL
		-		QEG.	STD. ERROR		CORR. COEF.
		MFAN	STANDARD	COFE	OF REG.COEF.	I VALUE	-0.16072
V A	RIABLE		DEVIATION		0.04955	-0.56408	-0.10072 0.04553
NO.	NAME	27 07972	8.39381	-0.02195	0.06327	-0.15786	-J.J.J.J.J.
31	EXPSV	21.91012	12.89009	-0.00999	0 14712	-0.07210	-0.02001
33	EXPTP	76.61702	2 17235	-0.01061	0.21090	3.70331	0.73930
10	FXPNO	5.74468	> 49134	1.15097	0.31000	-1.25221	-3.33996
22	EYPPR	6.27660	3,001,07	-0.15137	0.12088	_2 27712	-0.54930
<u> </u>	EVDIM	6,38298	3.01125	-0.15417	0.06771	-2.02112	0.16975
10	EAFIN	50,46808	5.38053	0 07454	0.12491	0.02012	0.25672
11	EXPES	23.70213	5.81570	0.06343	0.06894	0.92012	-0-32858
27	EXPSE	15 74468	6.53242	0.0007	0.14025	-1.20514	_0 48992
23	EXPPV	10 70723	1.73125	-0.10902	0.05303	-1.94678	0 45541
14	EXPHR	12.10125	4.19958	-0.10324	0 08855	1.77198	0.43341
18	EXPMP	12.80851	4.68884	0.15690	0.08540	1.16486	
20	EXPNU	10.59574	8.45311	0.09948	0.15855	3.45017	0.70568
7	EXPDY	18.74468	1 94323	0.54703	0.1000	0.59746	0.16996
	EYPRER	16.53191	1.94525	0.05578	0.09337	-1.85701	-3.47247
24		32.40425	4.94000	-0.38233	0.20589	-1 85812	-0.47269
28	ENFOR	5.63830	1.59010	-0.15506	0.08345	0.63860	6.18129
25	EXPROM	11.55319	3.24244	0.05006	C.07839	2 22852	-3.69286
10	EXPED	36, 19149	6.39170	-0 23826	0.07158	$-5 \cdot 5 \cdot 0 \cdot 2$	0.70228
17	EXPLP	13 34043	8.05761	1 23036	0.36004	3.41720	-0.47474
3	EXPAT	26 12766	3.39832	0.19650	0.10516	-1.80002	-0.21788
32	EXPTO	24.12100	1.86079	-0,19000	0.08488	-0.11334	-1 54835
4	EXPHSX	12.19143	2,68359	-0.00004	0.12622	-2.59033	0.45755
2	FXPAE	14.80851	2.18967	-0.32090	0.18133	1.78254	3 13594
12	EXPGR	10.34043	2.37996	0.32323	0 09044	-0.47531	- 0:1233
12	EXPDIR	10.65957	2 01890	-0.04299	0.08261	-0.32142	
6		21.12766	2.46250	-0.02655	0.00201	1.15636	0.31004
26	EXPAR	32.42553	2.40220	0.17919	0.12535	0.33858	0.09728
15	EXPLE	15.04255	2.17000	0.04579	0.13527	1.05779	0.29205
1	EXPAC	11, 38298	1.59555	0.09154	0.08624	-0.89851	-0.25107
34	EXPUN	10 87234	5.52708	-0 13591	0.15126	-1 41568	-ù.37830
9	EXPEM	10.61702	3.38509	0.12654	0.08938	-1.41988 c 72081	3.20886
29	EXPSP	10.01702	2.86628	0.06104	0.08251	0.10001	-0.24173
21	EXPOR	12. 90190	3.14114	0.00101	0.19283	-0.85290	5.16726
12	FXPHC	5.18125	1.41389	-0.10041	0.09407	0.58767	0.10121
1)	EXPDE	2.14894	3.77023	0.05528	0 13568	-0.11128	-0.00211
2	L X D E C	11.78723	1 98631	-0.91510	0.19200		
8	EARLU	12.42553	1.90001				
30	EXPSIN						
DEP	ENDENI	6.35106	0.88321				
35	FACRAI			0.01510	and the second secon		

COMPARE CHECK CN FINAL COEFFICIENT.....

-0.01510

PROBLEM NUMBER G3,6 TABL REPLACEMENT AND DELETION 1

TABLE XXXIV

200

DEPENDENT VARIABLE IS NOW 35 NUMBER OF VARIABLES DELETED 2 VARIABLES DELETED... 36 37

ANALYSIS OF VARIANCE FOR REGRESSION

SOURCE OF VARIATION	D.F.	SUM DF	MEAN	F
DUE TO REGRESSION DEVIATION ABOUT REGRESSION TOTAL	34 12 46	SQUARES 31.10613 4.78157 35.88770	SQUARES 0.91489 0.39846	VALUE 2.29603

INTERCEPT (A VALUE) IS

-23.97927

VA	ARIABLE	MEAN	CTANDADD				
NO.	NAME		DEVIATION	REG.	STD. ERROR	COMPLETED	
31	EXPSV	27.97972	DEVIATION	COEF.	OF REG.COEF.	TVALUE	PARTIAL
33	EXPTP	76 61702	8.39381	-0.02795	0.04955	-O SCLOP	CORR. COEF.
19	EXPNO	5 74449	12.89009	-0.00999	0.06327	0.00408	-0.16072
22	EXPPR	5 77640	3.17235	-0.01061	0.14712	-0.63210	-0.04553
16	EXPIN	6 20200	3.68134	1.15097	0.31080	-0.07210	-0.02081
11	EXPES	50 ((202	3.01123	-0.15137	0.12088	5.70331	0.73030
27	FXPCF	20.46808	5.38053	-0.15417	0.06771	-1.25221	-0.33996
23	EXDDV	23.10213	5.81570	0.07454	0 12/01	-2.27712	-0.54933
14	EYOLD	12.74468	6.53242	0.06343	0.04906	0.59673	0.15975
18	EVANA	12.78723	1.73125	-0.16902		0.92012	0.25672
20		12.80851	4.19958	-9.10324	0.14025	-1.20514	-0.32858
7	EXPNU	10.59574	4.68884	0.15690	0,05303	-1.94678	-0.48992
26 "	EXPDY	18.74468	8.45311	0.09948	0,08855	1.77198	0.45541
27	EXPRER	16.53191	1.94323	0.54703	0,08540	1.16486	0.31873
20	EXPSOR	32.40425	4.94606	0.05578	0,15855	3.45017	0.70560
20	EXPRGM	5.63830	1.35816	-0 38222	0.09337	0.59746	Ŷ•15905 Ĵ 16907
10	EXPEO	11.55319	3.24244	-0 15504	0.20589	-1.85701	-) 470/7
11	EXPLP	36.19149	6.39170	0.15506	0.08345	-1.85812	-6 470/0
3	EXPAT	13.34043	8.05761	-0.02006	0.07839	0.63860	C+47204
32	EXPTO	24.12766	3.39832	-0.23826	9.07158	-3.32852	
4	EXPHSX	12.19149	1.86070	1.23036	0.36004	3.41726	-0.59285
2	EXPAE	14.80851	2 68350	-0.19650	0.10516	-1.86852	0.70228
12	EXPGR	10.34043	2 10073	-0.06564	D.08488	-0.77334	-0.4/474
6	EXPDOR	10.65957	2 2700/	-0.32696	0.12622	-2.59033	-0.21788
26	EXPRP	21. 1-2766	2.01990	0.32323	0.18133	1.78254	
15	EXPIE	32,42553	2.01890	-0.04299	0.09044	-0.47521	0.45755
1	EXPAC	15 04255	2.46250	-0.02655	0.08261	-0 32162	-0.13594
34	EXPUN	11 39209	2.17653	0.17919	0.15496	1 16424	-2.04534
9	EXPEM	10 97224	1.59555	0.04579	0.13525	1.10000	0.31664
29	EXPSP	19 (170)	5.52708	0.09154	0.08654	0.35858	0.09728
21	EXPOR	10.01/02	3.38509	-0.13591	0.15126	1.35779	0.29205
13	EXPHC	12.95/45	2.86628	-0.12654	0 08938	-0.89851	-0.25107
5	EXPDE	2.18123	3.14114	0.06104	0.09251	-1.41568	-0.37830
8	EXPEC	2.14894	1.41389	-0.16641	0.10202	0.73981	J. 20 886
30	EXPETO	11.78723	3.77023	0.05528	0.19203	-0.85296	-0.24172
DEPF	NDENT	12.42553	1.98631	-0.91510	0.09407	0.58767	5.16726
35	EACOAT				0.13568	-0.11128	-(-)-20-20
	FACKAT	6.35106	0.88327				·• · · · · · []

COMPARE CHECK CN FINAL COEFFICIENT.....

TABLE XXXIV (Continued)							CUMULATIVE	REGRESSIONS			
	INCREMENTS FOR INDEPENDENT VARIABLES *				¥ ¥		SUMS OF	PROP.VAR.	F	NET PLE SIMPLE	
	TRONCICIENTS			F VALUE	¥	SIU. LARDA	SQUARES	E R SQ.	VALUE	-	() ()
VAD	TADIE	SUMS OF	PKUP.	FACH TERM	*	OF ESTIMALE	1.46342	0.04078	1.91301		-20
NO	NAME	SOUARES	VAR.	1,91301		0.87405	7.67008	0.21372	5.98001	.46239	- 03
21	NAME	1.46342	0.04078	0 67809		0.80082	9.31957	0.25969	5.02785	. 5. 959	- <i>10</i>
3.2	EXPSV	4 20665	0.17295	2 66967		0.78504	10,81088	0.30124	4.52660	î. ⁵ −-?≎5	
22	EXPTP	1 4/049	0.04596	2.00703		0.77270	13,15073	0.36644	4.74270	J. • D. 534	.07
19	EXPNO	1.04747	0.04155	2.47112		0.74489	14.23442	0.39664	4.38253	2.62979	,17
22	EXPPR	1.49151	0.06520	4.21927		0.73575	15 18066	C.42022	4.03810	î,≂⊶ <u>⇒</u> 24	₩,C ³
16	EXPIM	2.33985	0.03020	2.00105		0.73042	14 76397	0.46712	4.15385	1.27345	- .c9
11	EXPES	1.08369	0 02358	1.58610		0.70941	10.10000	0.50969	4.27361	11.71393	1 C ³⁺⁶
27	EXPSE	0.84624	0.04691	3.34485		0.68962	18.29100	0.52266	3.94182	2.72295	
23	EYDDV	1.68332	0.04072	3.21220		0.68982	18.75712	0.52233 0.52337	3.57893	1,71758	17
14		1.52762	0.0427	0.97830		0.69467	18.99782	0.56102	3.3398/	.7:554	<i>.</i> 0 <i>H</i>
18		0.46552	0.01271	0.49879		0.69603	19.41608	C.J4102	3.17361		.03
20	EXPMP	0.24070	0.00071	0.86336		0.69519	19.93909	0.5000	3.02772	7-5-7	.02
7	EXPNU	0 41825	0.01165	1.08217		0.69458	20.44967	0.00902	3 64098	7.77161	-,04
2	EXPDY	0.52300	0.01457	1.05833		0.68441	21.36675	0.59538	2 00456	2 - 7 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	-18
4 20	EXPRER	0.51058	0.01423	1 95784		0.001.2	22.06933	6.51495	2 00216		.07
28	EXPSOR	0.01709	0.02555	1 52531		0.67000	22.57322	0.62905	2.07214		- 01
25	EXPRGM	0.91707	0.01958	1 09752		0.077507	23.11231	C.64402	2.8142.	2 • 2 • 2 × 2 × 1 2 • 2 • 2 • 2 × 2	
10	EXPEO	0.70250	0.01404	1.0153		0.6/541	24.08815	C.67121	2.90101	. + 2 - 741	- 18
17	FXPLP	0.50389	0.01502	1.10105		0.66107	24.80271	C.69112	2.90875	12.15.2.34	- 16
3	EYDAT	0.53909	0.02719	2.23295		0.65295	25.55378	0.71483	2.98421	2	
32		0.97584	0.01991	1.6/600		0.63981	26.51328	0.74157	3.13040	1.55115	
4	EXPIC	0.71455	0.01771	2.07904		0.62164	20.01020	C.77279	3.40114		* 1.4
2	EXPHSX	0.85107	0.02511	2.48291		0.59542	21.13726	0.78729	3.39270	0.et729	. C 2
12	EXPAE	0.95950	0.02014	3.15980		0.58906		0.79767	3.31161	0.09312	.04
τ <u>ζ</u>	EXPGR	1 12024	0.03122	1.49988		0.58802	20.02047	6.81056	3.29125	n.q.031	3
0	EXPDOR	0 52044	0.01450	1.07740		0.58304	29.08901	r 82258	3.26272	0.41596	,13
<0	EXPRP	0.1201	0.01038	1.36061		0 57888	29.52057	0.022220	3.12017	C.41053	ća –
15	EXPIE	0.31255	0.01289	1 28812		0 58361	29.75681	$(-2)^{10}$	3.03665	0,01553	, .J.C
1	FXPAC	0.46252	0.01203	1 69330		0.58445	30.08078	(.8501)	3.33482	1 1 1 1 1 1 1	14
34	EXPLIN	0.43166	0.00658	0.04843		0.90412	30.52354	6.85000	2 91761		5 05
9	EVDEM	0.23614	0.0903	0.9401-		0.51902	30.78166	0.85112	2.75057	1	5 -14
29		0.32397	0.01234	1.32009		(.503)	30.96281	0.36277	2 • 1 2 9 2 1 5 - 5 5 0 7 1		2 11
21	EXPSP	0.44276	0.0120	0.15025		0.59311	31.10119	5.86663	2.0090	سائ بالا الا ماليان. 1. مريز	19
12	EXPUR	0,25812	0.00111	0.51490		0.60619	31.10613	0.86576	2.29003	1.02223	
- E	EXPHC	0 18115	0.00000	0.37584		0.63124					
<u>с</u>	EXPDE	0.13838	0.00000	0.01238							
8	EXPEC	0.100493	0.00014								

PROPORTION OF VARIANCE SPE-CIFIED TO LIMIT VARIABLES

0.

0.13838 0.00493

EXPSTR

30

يويد كردين مرجع مريونه

201
TABLE XXXV

MINNESOTA MULTIPHASIC PERSONALITY INVENTORY

Intercorrelations of the Clinical and Research Scales of the MAPI, and of the CTMM

MMPI

Christian Theological Seminary Males - Experimental - N = 47

r 3	r at		T	ت		^U S	HsK I) Er	Pd	Pak M	e Pa	Pt	PtK	Sc.	ScK	Ma	MaK	Si	A	R	Es	IÈ	Ca	Dy	no	Re	Pr-	<u> </u>	Cn	FAC	PEER C	PA
		TM - 52 - 71 - 71	L -25 .19 -00 L	19 -19 -01 -01 -04 -7	x -00 .31 .23 .45 .37 K	Hs =12 =14 =13 =13 =24 =32 Hs	Hsk I =12 =0 .05 =2 =02 =1 .14 =0 =00 .14 .31 =2 .80 .14 Hsk .3 D	Br 06 .01, 16 .03 17 .06 127 .11 11 .06 129 .51 131 .73 141 .73 151 .27 By .51	Pd -03 -01 -07 -24 .21 -05 .25 .25 .22 .36 .27 .Pd	PdK M -03 .29 .15 .09 .06 .11 -01 -3 .02 .22 .44 -36 .06 .39 .34 .11 .19 .31 .37 .22 .87 .1	Pa 29 .14 .26 .14 .26 .02 .25 .01 .25 .01 .25 .01 .21 .21 .21 .21 .21 .21 .21 .21 .21	Pt .06 .20 .13 .37 .57 .57 .71 .60 .14 .67 .12 .30	PtK .08 .02 .02 .12 .19 .11 .56 .47 .71 .42 .38	50 50 50 50 50 50 50 50 50 50	Sck .22 .12 .07 .38 .17 .35 .15 .15 .19 .39 .40	Ma .16 .11 .11 .11 .25 .28 .03 .20 .11 .01 .20	MaK .15 .20 .16 .07 .17 .05 .09 .12 .10 .21	Si .06 .38 .27 .49 .49 .49 .44 .04 .55 .14 .14	A • 09- • 20 • 111 • 38 • 60 • 714 • 53 • 05 • 57 • 03 • 35	R ≈16 ≈13 ≈08 .34 .13 .17 ≈05 .06 .49 ≈04 ≈01	Es .18 .34 .15 .49 .49 .49 .49 .49 .49 .45 .49 .52 .49 .52 .49 .52 .49 .52 .52 .52 .52 .52 .52 .52 .52	Ib -OL .OL .OL <	Ca .07 .27 .35 .69 .29 .26 .29 .24	Dy .05 .21 .33 .52 .55 .11 .66 .12 .23	<u>no</u> .26 .34 .305 .53 .43 .53 .43 .17 .501 .22	Re .21 .19 .33 .36 .28 .64 .28 .64 .10 .13 .28 .13 .28	Př. -10 -11 -37 -28 .46 -68 .40 -03 .43 -08 .13 -08 .17	5t .22 .29 .30 .30 .27 .327 .27 .25 .25 .25 .25 .25 .25 .25 .25 .25 .25	Cn .26 .01 .08 .60 .05 .24 .20 .20 .24 .20 .24 .20	FAC .21 .21 .19 . .19 . .19 . .19 . .19 . .01 . .20 . .20 . .20 . .01 . .01 . .01 . .01 .	PEER G 24 .48 10 .29 22 .46 01 .17 03 .03 13 .02 15 .07 .05 .04 13 .15 .07 .05 .09 .113	PA LF NL TM L F K Hs Hs K D Hy Pd
										PdK 70 M	.18 .29 Pa	-08 -50 -29 Pt	.28 .38 .39 .78 PtK	.03 .54 .21 .82 .62 .5c	.42 .36 .23 .38 .69 .68 ScK	.06 .16 .12 .21 .06 .36 .20 Ma	.18 .09 .11 .05 .25 .26 .97 MaK	-19 .49 .03 .76 .51 .78 .38 .07 -20 Si	±05 .26 .28 .92 .64 .80 .32 .05 .72 A	.06 .12 .04 .05 .22 .09 .23 .30 .30 .02	.02 -39 -43 -73 -60 -38 -15 -66 -566 -566 -20	.39 .01 .01 .28 .28 .01 .36 .04 .16 .18 .13	.09 .47 .35 .68 .74 .39 .09 .09 .01 .87 .00	-13 .52 .91 .69 .77 .19 .04 .75 .95 .04 .75 .95	.02 718 709 762 753 755 730 .09 .17 .69 .17 .69 .17 .69 .18 .18 .09 .18 .09 .18 .09 .18 .09 .19 .19 .09 .19 .09 .19 .09 .19 .09 .19 .09 .19 .09 .19 .09 .19 .09 .19 .09 .19 .09 .17 .09 .17 .09 .17 .09 .17 .09 .17 .09 .17 .09 .17 .09 .17 .09 .17 .09 .17 .09 .17 .09 .17 .09 .17 .09 .17 .09 .17 .09 .17 .09 .17 .09 .17 .09 .17 .09 .17 .09 .17 .09 .17 .09 .17 .09 .17 .09 .17 .09 .17 .09 .17 .09 .17 .09 .17 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .0	.07 -14 -04 -34 -57 -39 -455 -455 -15	.19 .23 .05 .72 .41 .77 .30 .17 .03 .72 .67 .06	·20 ·20 ·13 ·14 ·14 ·21 ·14 ·20 ·13 ·14 ·20 ·13 ·14 ·20 ·13 ·14 ·14 ·20 ·13 ·14 ·14 ·20 ·13 ·14 ·14 ·14 ·14 ·14 ·14 ·20 ·14 ·14 ·14 ·14 ·14 ·14 ·20 ·14 ·14 ·20 ·14 ·14 ·20 ·14 ·14 ·20 ·14 ·14 ·14 ·20 ·14 ·14 ·14 ·20 ·14 ·14 ·14 ·20 ·14 ·14 ·20 ·14 ·14 ·14 ·20 ·14 ·14 ·14 ·14 ·14 ·14 ·14 ·14	-04 .30 .51 .24 .07 .24 .07 .24 .27 .52 .27 .52 .22 .27 .52 .22 .22 .22 .22 .22 .22 .22 .22 .22	.03 + .07 - .25 - .08 - .11 . .11 . .11 . .30 . .31 . .08 - .08 - .08 - .22 +	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	PGK Mf Pt PtK Sc ScK Ma MaK Si A R
	· · ·			· ·																	Es	-02 • Lb •	-65 -05 Ca	₽70 -16 .62 Dy	.61 .03 .58 .60 Do	.51 .12 .55 .56 .43 Re	₹59 •01 •65 •65 •63 •66 •Pr	.48 .40 .40 .50 .25 .25 .35 .5t	+04 +08 -49 -47 -08 +53 -30 -09 Cn	.19 .08 .02 = .04 = .24 .04 .06 .18 .32 .0 FAC PE	14 .16 19 .20 20 .04 16 .05 10 .24 01 .13 12 .03 19 .10 06 .22 34 .36 5R .28	Es Lb Ca Dy Do Re Pr St Cn FAC PE ER

MEDPHEORA EULCIPHASIC FERSONALITY INVENTORY

Intercorrelations of the Clinical and Recearch Scales of the MiPI, and of the CIMM

Christian Theological Seminary Males - Experimental - N - 47

MGPI

CTLEM

			e.s.		 	ا سر :	 ぴ でi	i.J.r	D:4	Frit	(Mf	Pa.	PU	PtX	Sc	<u></u>	. Ma	No.1	<u></u>		<u>12</u>	Ra	Lb	<u>0a</u>	<u>tiy</u>	<u> </u>	Re	Pr	St	Cn	FAC	PEER 0	PA	
LP NL LP 29 NL	TM .9? .71 TM	1. -25 -19 	8 -18 -19 -01 :01 :7	x -00 -31 -23 -13 -37 	15 +12 +15 +15 +15 +15 +15 +15 +15 +15 +15 +15	Hall -12 -05 -07 -11, -00 -31 -310 Hall	K D = 06 = 17 = 02 .1.1 = 26 .1.2 K - 31 N	57 .07 .03 .06 .11 .06 .27 .27 .27 .27 .27	Pd -03 -01 -21 -25 -25 -25 -27 -74	For: -15 -03 -15 -07 -15 -15 -15 -15 -15 -15 -15 -15	(Mf) .26 .05 .17 .31 .21 .31 .31 .22 .31 .22 .31 .22 .17 .17 .17 .17	· Pa · 29 · 21 · 202 · 202 · 202 · 21 · 21 · 21 · 21 · 21 · 21 · 21 · 2	₽5 .06 .20 .137 .57 .147 .20 .147 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20	94X .08 .02 .12 .12 .12 .12 .12 .12 .12 .12 .12 .1	503696979986311225	02222273745926374351255634	· · · · · · · · · · · · · · · · · · ·		・コマント・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	· · · · · · · · · · · · · · · · · · ·	8.1.1.00313756951602と529355202	- ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	100121323066191130555.5.4.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	 ・***・**・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	02133227516233261977591595062y	10 ・3.30544450202055455010501055550202000 のる585303761222892355502957133300	······································	Pro177864033579312073276910536m	5.229050735655003614152990950385555	Cn	FAC ・21:11-10:00005:00037553111501093295951115010329595113010329595111301032959511130103295959595111301032959595951113010329595951113010329595951113010329595951113010329595951113010329595951113010329595951113010329595951113010329595951113010329595951113010000000000000000000000000000	FBER 0 ・10221、33555137、992112166月6792月79157月99655127、99212166月6792月797557月99655127、97555137、9755515062125月7996552月1996551255515551555555555555555555555555	LIN理LSI用用の例刊和版理用的公式地域DARETODBARST	
																														t, g € t	-92 FAC E	.06 .22 .31 .36 EAP .28	Ur PA PE	

MINNESOTA MULTEPPACIO SELSOS LELOS ETUS

Intercorrelations of the Auxiliary Scales of Christian Cheological Seminary Males - Experimental - N = 47

 4. 法法法 助心 以 12 4 2 10 2 10 2 1 2 1 2 10 2 10 2 10 2
Un 713 726 713 Un FAC .34 ,36 FAC PEER 0PA GPA