FOUR-LETTER WORDS

JEZEBEL Q. XIXX

We are addicted to using four-letter words.
There are so many of these words that it is impossible to communicate effectively without them. Cryptographic studies show that 31 of the 100 most frequently used words are four-letter ones. A baker's dozen, drawn from the top 60: FROM, HAVE, MORE, SOME, THAN, THEM, THEY, THIS, UPON, WHAT, WHEN, WITH, YOUR. These particular examples are "pure" words, each one using four different letters, and must be distinguished from "contaminated" specimens in which a letter is repeated (THAT, WERE, BEEN and others).

If we take the 26 letters of the alphabet and arrange them in an entirely random linear order, a careful examination of the letter sequence before us will disclose various common words hidden in the sequence: words spelled in correct order, though seldom with consecutive or even nearly consecutive letters of the sequence.

For illustrative purposes, let's consider the most popular of all letter orders, the alphabetic order:

ABCDEFGHIJKLMNOPQRSTUVWXYZ

Interested scrutiny of this particular letter sequence uncovers words such as AHOY, AIRY, BEVY, BLOW, CHIN, CRUX, DEFY, DIRT, EGIS, ERST, FILM, FLUX, GIST, GORY, HINT, HOST, IMPS, KNOT, KNOW, LOPS, LOST, MOPS, MOST, and NOSY. All of these are quite common words. There are some other equally common words that we have failed to point out. How many of them can you spot?

In a typical, random letter arrangement, several dozen common or near-common four-letter words can be discovered. Those of us with a logological passion must inevitably wrestle with two questions: which one of all possible letter sequences will yield the smallest number of four-letter words, and which one the largest such number?

The simple, obvious way of finding out is to test each possible arrangement of the alphabet. Unfortunately, there is an insurmountable roadblock in the way. The 26 letters of the alphabet may be arranged in more than 403 septillion different ways. If we had access to a supercomputer capable of tossing different arrangements to us at the rate of ten million sequences per second, and if we kept this super-computer in continuous operation for one trillion years, the list of possible letter
sequences would still not be complete. Since it may take from one hour to three hours to test even one letter arrangement, the time investment required to solve our two problems is prohibitive. There must be a more practical method!

Before considering ways and means, we must define what we are going to accept as allowable words. The unabridged dictionaries, praiseworthy as they are in many respects, include too many words allen to us both in meaning and in spelling. Since we are interested in reasonably common words, recognizable more or less at sight, let us make The New Merriam-Webster Pocket Dictionary our standard, accepting all regular four-letter words that appear in this dictionary in boldface type in the main alphabetical section (pages 1 through 592). In specifying regular words, we mean to exclude "crippled" words also in the dictionary: hyphenated and apostrophized words, parts only of hyphenated words and of multi-word phrases, multi-word phrases In their entirety, abbreviations, prefixes, suffixes, and acronym-like words. These restrictions will keep out of our lists terms such as CAN' T, CO-ED, SUEY (part of "chop suey") , AFRO (part of "AfroAmerican'"), ASIF, SEMI-, -ENCY, AWOL, and, possibly, XMAS (which may be thought of as an abbreviated form of "Christmas").

The results obtained by using the pocket dictionary should be representative of ordinary English, undistorted by the many strange words included in much larger dictionaries.

The easier of our two problems is minimizing the number of fourletter words in a $26-1$ etter sequence. It ought to be possible to produce an alphabet in which not a single tetragram can be found.

Reflecting on the problem, we realize that all words in which consonants and vowels are mixed can be excluded simply by placing all consonants first and all vowels last. This will prohibit movement back and forth between the two kinds of letters, and will also exclude all words beginning with vowels, because there are no all-vowel words in the pocket dictionary.

Our next task is to exclude words beginning with two or more consecutive consonants. We achieve that goal by placing all consonants that normally appear as second consonants first: H, L, M, N, R, W. Odd words such as TZAR are few and far between, must be considered individually, and can quickly be ellminated. One consonant, the letter S, can be followed by other consonants such as C, K, P, and T. We solve that problem by placing S as the very last consonant.

Remaining to be considered are words spelled with one consonant followed by three vowels. There are only 7 such words in the dictionary: BEAU, BUOY, KAYO, LIEU, MOUE, QUAI, and ROUE. By noting the vowel arrangements in these 7 words, we can easily place the six vowels of the alphabet in such an order that none of the 7 words can be spelled out.

These reflections permit us to construct a letter sequence such as the following:

HLMNRWBCDFGJKPQTVXZSYEIUAO

Study this arrangement diligently. If you can find any four-letter word in it, allowable under our rules, telegraph the editor of Word Ways immediately, requesting a plaque certifying you as a member of the Logological Hall of Fame!

The second problem, that of maximizing the number of four-letter words that may be read in an alphabetic sequence, is much the more difficult one. To begin with, we do not know what word total is to be achieved, except for the vague feeling that there must be some letter sequences permitting "hundreds" of tetragrams to be formed.

One way of attacking the problem would seem to be arranging the letters in order according to the relative frequency with which they appear as first letters of four-letter words. Another way would seem to be arranging them in reverse order according to the relative frequency with which they appear as fourth letters of such words. Using published positional word lists compiled from the pocket dictionary, it is a simple matter to count the number of eligible words that begin or end with each letter of the alphabet. Such counts establish that S, B, and C are far and away the most common initial letters, while E, D, and T are conspicuously the most common terminal letters. This suggests that our letter sequence, should begin with S B C... and end with ... D TE.

These two approaches are both one-sided ones. To close in on our objective, it might be best to combine them, particularly as regards the 20 letters in between our tentative start and finish. Thus, if a letter ranks 7 th on our initial $1 i s t$ and 21 st on our reverse terminal list, perhaps it ought to be assigned the 14 th position on a combined tentative list. The rare letters of the alphabet (J, Q, X, Z, K, V) can be studied as a separate phenomenon, and shunted to the front end or the tall end of the sequence depending on whether there are more words beginning or ending with them.

The results of our combined approach will tend to place most of the vowels (A, I, O, U) near the middle of the sequence. Their relative order is determined by inspecting the common vowel digraphs in English: AI, AU, OA, OI, OU, UX. Each of these occurs with far greater frequency than its reversal. There is only one relative vowel order that incorporates all 6 of these digraphs: O A U I. Accordingly, this particular order must be maintained, irrespective of whether or not any consonants are eventually interspersed among the se vowels.

Some relative letter orders cannot be predicted solely on the basis of a priori considerations. Are there more words with the digraph IM or the digraph MI? The only way is to count the number of each that appear in pocket dictionary four-letter words. In this case, IM gets
the nod.
Very careful analysis of all pertinent considerations bearing on letter order finally produces the following suggested alphabet sequence:

BSFPWCHJQMOAVUIRNGLKTDZEXY

There are many possible switches that can be made in this sequence without affecting the number of four-letter words that it will yield. For instance, the first three letters can be juggled in any of the mathematically possible 6 orders with no effect on the results. Similarly, the four letters $H J Q M$ can be arranged in 24 different ways, and the three letters K T D can be arranged in 6 different ways.

How many eligible words can be read in this sequence? There are 398 given in the list below:

bade	bore	silt	swag	fund	pore	whir	char
bail	born	sing	swan	funk	pork	whit	chat
ait	bout	sink	swat	furl	port	whiz	hid
ake	bulk	sire	sway	fury	pour	wide	hin
ald	bung	site	swig	fuze	pout	wild	h
bale	bunk	size	fade	page	prey	wile	hon
alk	bunt	smog	fail	paid	puke	wilt	chug
and	burn	smug	fain	pail	pule	wily	cite
ane	bury	smut	fair	pain	punk	wind	city
ang	sage	soak	fake	pair	punt	wine	coal
bank	said	soar	fane	pale	puny	wing	coat
ard	sail	soil	fang	pane	pure	wink	oax
are	sake	sold	fare	pang	purl	wire	ode
ark	sale	sole	fate	pant	wade	wiry	coil
arn	salt	song	faun	pard	wage	woad	coin
ate	sand	sore	faze	pare	wail	woke	coke
bide	sane	sort	file	park	wain	wold	cold
bike	sang	soul	find	part	wait	wont	colt
bile	sank	sour	fine	pate	wake	word	one
bilk	sate	span	fire	pave	wale	wore	onk
bind	save	spar	flex	phiz	walk	work	ony
bird	scan	spat	foal	pike	wand	worn	
bite	scar	spay	fogy	pile	wane	wort	core
boar	Scot	spin	foil	pine	want	wove	
boat	scud	spit	fold	ping	ward	cage	
bode	shad	spot	folk	pink	ware	cagy	ote
body	shag	spry	fond	pint	warn	cake	cove
bogy	shin	spud	font	pity	wart	calk	cozy
boil	shod	spun	ford	pixy	wary	cane	ul
bold	shoe	spur	fore	poke	wave	cant	urd
bole	shot	suit	fork	poky	wavy	card	e
bolt	shun	sulk	fort	pole	waxy	care	rl
bond	shut	sung	foul	pond	what	cart	urt
one	side	sunk	four	pone	whey	cave	cute
bony	silk	sure	foxy	pony	Whig	cavy	hail

hair	hazy	hove	July	mane	mind	moly	aide
hake	hide	huge	June	Manx	mine	monk	airy
hale	hike	hulk	junk	many	mink	more	ante
halt	hilt	hung	jury	mare	mint	morn	arty
hand	hind	hunk	jute	mark	minx	mote	auld
hang	hint	hunt	quid	marl	mire	moue	aunt
hank	hire	hurl	quit	mart	miry	move	avid
hard	hoax	hurt	quiz	mate	mite	mule	vide
hare	hold	jade	made	maul	moan	murk	vile
hark	hole	jail	maid	maze	moat	mute	vine
hart	holy	jilt	mail	mazy	mode	ogle	ugly
hate	hone	jinx	main	mike	moil	oily	urge
haul	honk	join	make	mild	mold	only	inky
have	horn	joke	male	mile	mole	orgy	
haze	hour	jolt	malt	milk	molt	adze	

It is interesting to note that not a single word in the list begins with any of the last Il letters in our arrangement, and that 380 of the 398 words begin with one of the first 10 letters in the sequence: the next 5 letters contribute only another 18 words. It is also of interest to note that none of the 398 four-letter words are spelled out by consecutive letters of the sequence; MORN and MAIN, each interrupted by four extraneous letters, are the most compact.

Readers are invited to try altering our letter sequence so as to increase the number of words of four letters it yields.

COMMENT (A. Ross Eckler): Ms. Xixx has done a fine piece of résearch on a problem originally introduced by Dave Silverman in the August 1971 Kickshaws. He reported there that Darryl Francis, using an unspecified word-source (but one larger than the MerriamWebster Pocket Dictionary), had constructed a letter sequence in which only the word LAOS appeared:

UIAOEYSDBPMHTGNLRKCFWVJQXZ

Can a letter sequence by constructed which bars all three-letter words from the Pocket Dictionary? The answer appears to be no, but one can come surprisingly close. The sequence

UAOEYJQXVGMHKTPSZDBFCNRLWI

admits only the word OBI, which appears in the current edition of the Pocket Dictionary, but not in some older editions.

