VONEL SYMMETRY

MAXEY BROOKE

Sweeny, Texas
Arrange the letters of the alphabet in columns of two:

$$
\begin{array}{lllllllllllll}
A & c & E & g & I & k & m & O & q & s & U & W & Y \\
b & d & f & h & j & I & n & p & r & t & v & x & z
\end{array}
$$

All the vowels and quasi-vowels are in the top row; that is, they are all odd-numbered letters.

Now arrange them in columns of three:

$$
\begin{array}{ccccccccc}
A & d & g & j & m & p & s & v & Y \\
b & E & h & k & n & q & t & W & z \\
c & f & I & 1 & O & r & U & x & \&
\end{array}
$$

and we get an interesting symmetry. This symmetry persists when we arrange them boustrophedonically (rook's move in chess):

A	f	g	l	m	r	s	x	Y
b	E	h	k	n	q	t	W	z
c	d	I	j	O	p	U	v	$\&$

Going to the queen's move, we can get another symmetrical arrangement:

A	b	k	l	m	n	$\&$	z	Y
c	d	I	j	O	p	U	v	\mathbf{x}
E	f	g	h	q	r	s	t	W

Using a rook's move on a five-by-five square

A	b	c	d	E
r	q	m	n	f
s	p	O	l	g
t	y	x	k	h
U	v	w	j	I

we can place four of the five vowels at the corners, with the fifth at the center.

