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Anil (WW 41 (2) p223) asks whether there is a theory which explains how the periodic behaviour of 
Fibc~nacci letter-sequences worlts. The answer is yes, there is indeed such a theory, and it has many other 
applications, both mathematical and practical. Though this theory has nothing to do with words, I hope 
that readers will he interested in its results. However, most of the proofs will be beyond the scope of this 
article. 

We start by defining a generalized Fibonacci number-sequence as a doubly infinite sequence A = 
(a,), where n ranges over all integers (negative, zero and positive), such that for all n we have a ,+ l  = 
a, i- a,-1. We regard two such sequences A and B as equal if t,hey differ only in labelling, i.e. thcre is a k 
such that a ,  = b,+i, for all n, aiid we call A and B similar if there are q and k such that a, = q.b,+k. for 
all n. 

If the sequence A consists of integers, then we call it primitive if these integers have no common factor 
greater than 1. It is in fact sufficient that any pair of consecutive terms, say a" and a l ,  are integers with no 
common factor. A sequence of integers with a common factor is called imprimitive, and may be reduced 
to a similar primitive sequence by dividing every term by the highest common factor. If two primitive 
sequences are similar, then either they are equal or one is equal to the negation of the other. 

Two sequences are of great importance: the Fibonacci numbers F = f, = . . . , 2 ,  -1,1,0,1,1;  2 , .  . . 
and the Lucas numbers L = I ,  = . . . , -4,3, -1 ,2 ,1 ,3 ,4 , .  . ., which are named after the French mathe- 
matician Edouard Lucas. Both of these sequences have the property that if reversed only the signs of (some 
of) the terms are changed, and they and their negations are the only primitive sequences with this property. 
It is natural to label these sequences in such a way that the central elements (0 for F and 2 for L) have 
suffix zero, so that f, aiid I ,  are the terms n places after 0 and 2 (if n is positive) or -n places before (if n 
is negative). 

The Fibonacci and Lucas sequences have many interesting arithmetical properties; two that we shall 
use later are FnL, = F2, and L4, = L;, - 2. 

We say that a sequence has an interval of n if it has two equal terms n places apart. Then it can be 
seen that F has intervals of 1, 3 and twice any odd number, while L has intervals of any multiple of 4. For 
every n there is a unique primitive sequence (up to negation) with interval n; for example if n = 5.7 ,9  these 
sequences are . .  . , 5 ,  -2 ,3 ,1 ,4 ,5 , .  . ., . . . ,13, -7,6, -1.5,4,9,13, .  . . a n d . .  . ,17, -10,7. -3.4,1,5,6,11,17, .  . . 
respectively. The repeated number is always a divisor of f,. 

If a is an integer and u is a positive integer; there are unique integers 6 and c such that a = ub i- c and 
c is between 0 and u - 1 inclusive. We call c the remainder obtained by dividing a by u.. 

If we start with a generalized Fibonacci number-sequence, replace each term by the remainder obtained 
by dividing it by a fixed number u, and then encode the possible remainders 0 ,1 ,  . . . , u - 1 into an alphabet 
of u symbols, we get a generalized Fibonacci letter-sequence. We assume that for every u there is a 
standard alphabet of u symbols which we will use unless otherwise stated. If u is not more than 26, the 
symbols we will use are Z for 0 a.nd the first u - 1 letters of the Roman alphabet for 1 , .  . . , u - 1. 

The definition of equality carries over t,o letter-sequences, but the definitions of prilnitivit,~ and similaritmy 
need to be changed: a letter-sequence is primitive unless there is an integer greater than 1 that divides not 
only two consecutive terms of any number-sequence A that gave rise to it, say a0 and a l ,  but also the 
alphabeklength u. The quotient of u by its highest common factor with a0 and a1 we call the reduced 
alpabet-length. For two letter-sequences to be similar, not only must it be possible to choose similar 
number-sequences that  give rise to them, but the reduced alphabet-lengths must be the same. 

Before giving an example to explain this let us note that every generalized Fibonacci letter-sequence is 
periodic. We therefore denote it by its period, so, for example, the sequence . . . ZAAZAAZAA.. .; obtained 
from F by using the standard alphabet of length 2, is denoted by (ZAA). This is the same sequence as 
(AZA) or (AAZ). 

If we take the number-sequences 2 F  = . . . ; 4, -2,2,0,2;  2 ,4 ,6 ,  . . . and 3 F  = . . . : 6, -3; 3 ,0 ,3 ,3 ,6 ,9 , .  . ., 
and convert them to  letter-sequences using the standard alphabets of length u = 3 or 9 respectively, we 
get . . . AABZBBAZ. .  . and . . . F F C Z C C F Z . .  . respectively. In fact the sequences (AABZBBAZ) and 
( F F C Z C C F Z )  are periods. These sequences are similar because the highest common factors of the two 
(a,, a l ,  u)'s, (0,2, 3) and (0,3,9) respectively, are 1 and 3; giving a reduced alphabet-length of 3 in each case. 

4646



This illustrates an important result: if two letter-sequences are similar then they can be obtained from 
each other by a substitution cipher, in this case taking (Z, A, B)  to (Z, F, C). There is also a partial converse 
result: if two letter-sequences are related by a substitution cipher and have the same reduced alphabet- 
length, then either every letter that appears in the period does so at most once, or the two letter-sequences 
are similar. 

If we choose a u ,  we define three period numbers which t,ogether make lip its period pattern: The 
basic period is the number of places separating repeats of letters in the letter-sequence corresponding to the 
Fibonacci number-sequence. Equivalently, if we are using a standard alphabet, it is the number of places 
separating Z's (as every repeated letter is immediately preceded by a 2 ) .  The full and short periods are 
the largest and smallest possible periods for any primitive letter-sequence with alphabet-length u. (Note 
that the last two are the same when all periods have the same length, as is often the case.) 

We now write out all primitive letter-sequences for u between 1 and 8 inclusive using the standard 
alphabets of the relevant lengths. 

u = 1 : (2) 
u = 2 : (ZAA) 
u = 3 : (ZAABZBBA) 
u = 4 : (ZAABCA) (ZCCBAC) 
u = 5 : (ZAABCZCCADZDDCBZBBDA) (ACDB) 
u = 6 : (ZAABCEBACDAEZEEDCADECBEA) 
u = 7 : (ZAABCEAFZFFEDBFA) (ZBBDFCBEZEECADEB) (ZDDAEFDCZCCFBACD) 
u = 8 : (ZAABCEZEEBGA) (ZGGFECZCCFAG) (FGEDAEFCADEA) (BACDGCBEGDCG) 

This gives us a lot of examples to play with. The period-patterns for u = 1 , .  . . ,8 can be seen to be 
(1,1, I ) ,  (3,3,3), (4,8,8),  (5,20,4), (12,24,24), (8,16,16) and (6,12,12) respectively. If u = 4 or 7 then all 
the sequences are similar, but this is not the case for u = 5 (obviolisly, as the two sequences have different, 
periods) or u = 8 (when the first two are similar, as are the last two, but these pairs are not similar to each 
other). The first sequence shown is in each case the Fibonacci sequence; the last is the Lucas sequence. 

The second sequence for u = 5 is special in another way: let's call it of geometric type. This means that 
u divides ao.a2 - a:. We use this name because the above condition is equivalent to one stating that any finite 
part of the letter-sequence can be obtained from a geometric series. In this case the series (1,3,9,27, . . .) 
gives rise to (ACDB) repea.ted indefinitely. 

We are now in a position to state some results about the period-pattern corresponding to any U. 

1. If u = 1, 2 or 5, then the period pattern is as given above. 
2. If u is a prime whose last digit is 3 or 7, then the full period is 2(u + 1) divided by an odd number. If 

u is a prime whose last digit is 1 or 9, then its full period is a divisor of u-  1 (or equivalently and analogously 
with the previous case, 2(u - 1) divided by an even number). 

3. If u is a prime other than 2 or 5, then from the full period P (which is always even) the period-pattern 
can be calculated as follows. If P is divisible by 2 but not 4, then the period-pattern is (P, P, P/2); if P is 
divisible by 4 but not 8, the period pattern is (P/4, P, P ) ;  and if P is divisible by 8, the period pattern is 
(P/2, P, P) .  According to which of these holds we say that u belongs to the first, second and third cases 
respectively. 

4. If u is a prime power, say u = pm, then the period pattern is usually obtained from that for p by 
multiplying each period by pm-l. There is an exception when p = 2 and m is at  least 3, in that the basic 
period is 3.2""2 rather than 3.2m-1. If there are any other exceptions, they must involve primes greater 
than 100,000; for any such primes p all the periods for pm are obtained from those for p by multiplying by 
a power of p less than pm-l. 

5. If u is divisible by more than one prime, then we split it into prime power factors and take the 
period-pattern for each of them. Then each period for u is the least common multiple of the corresponding 
periods for the factors of U. For example when u = 15 we consider the period-patterns for 3 and 5, namely 
(4,8,8) arid (5,20,4), and take the least common multiplies to get (20,40,8) as the period-pattern for 15. To 
take another example, the period-pattern for u = 13 is (7,28,28) (an example of the second case), so taking 
the least common multiple with the period-pattern for u = 2, i.e. (3,3,3),  we get (21,84,84). This, then, 
explains the occurrence of 84 as the period for every primitive letter-sequence using the Roman alphabet. 
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Anil also made some comments on the frequeiicies with which various letters occurred in periods. Before 
wc proceed to this, let us make some remarks on the utility of the above theory. 

Suppose u is a Mersenne prime, i.e. a primc of form 2" - 1. Suppose furthermore that the last digit 
of u is 3 or 7. Then its full period is 2"+' divided by an odd number, which means that it must be 2"+' 
itself. Its basic period is therefore 2". That means that fin is divisible by u but f 2 % - 1  is not, so that 
12,-1 = f in /  f - 2TL-1 is divisible by u. Lucas proved the converse of this, i.e. that if u ends in a 3 or 7 and 
divides 12%-1 then u is prime. This provides the basis for a highly efficient test for the primality of Mersenne 
numbers: start with 3 = 12, apply the operation z H z2 - 2, which doubles the suffix of L2,, n - 2 times, and 
2" - 1 is prime if and only if it divides the resulting number (assuming always that 2" - 1 ends in a 3 or 7) .  

If alternate numbers of the Lucas sequence are taken we get the sequence . . . ,47,18,7,3,2,3,7,18,47, .  . . 
in which each term when multiplied by 3 is the sum of the two terms on either side. A similar sequence 
can be constructed by replacing 3 by any other integer greater than 2; for example if we choose 4 we get 
the sequence . . . ,194,52,14,4,2,4,14,52,194, .  . . - which also obeys the property that its 2nth term can be 
obtained from its nth by squaring and subtracting 2. And here the condition that the Mersenne number 
2" - 1 is prime if and only if it divides the 2"-'th term holds for all n except 2. 

When one reads of the discovery of a new very large prime, it is almost always a Mersenne number, and 
its priniality has been checked by using this test or a variation thereof. 

Finally, primality testing is basic to Internet cryptography, so that the theory behind the periods of 
Fiboilacci sequence has ramifications for our everyday lives. 

Now we return to the subject of the composition of period-sequences. The theory gets very complicated 
when u is non-prime, so we assume that u is prime and therefore rename it p. Then the following facts are 
always true: 

1. All periods for primitive letter-sequences have the same length except for at most one similarity class. 
Any period of this class, if it exists, is always of geometric type. 

2. Periods of geometric type exist exactly when p = 5 or p ends in a 1 or 9. The number of similarity 
classes of such periods is 1 when p = 5, otherwise 2. So, if p is not 5, there is one period of geometric type of 
full length. (More generally, a period for any number u can have geometric type exactly when every prime 
factor of u is 5 or a number ending in 1 or 9; furthermore the factor 5 cannot occur more tlian once. And if - 
the number of different prime factors other than 5 is m, then the number of similarity classes of geometric 
type is 2""l.) 

3. Leaving aside any periods of geometric type, the number of similarity classes is p - 1 divided by the 
short period if p ends in a 1 or 9, and p + 1 divided by the short period if p ends in a 3 or 7. 

4. The Fiboiiacci and Lucas sequences for p are similar when p is of the first or third type, but not 
when p is of the second type. 

5. In any period for any prime p, every letter occurs at most four times. 
6. In any period of geometric type, every letter occurs at most once. 
7. In any period that is neither of Fibonacci nor Lucas type, every letter occurs at most twice. 
8. In any period that is of Fibonacci but not Lucas type, every letter occurs an even number of times. 

(Such a period exists exactly when p belongs to the second case.) 
9. In any period of Lucas type, every letter occurs at most three times if p belongs to the first case; 

otherwise exactly one of the two possible odd occurrence-frequeiicies (1 or 3) happens. 

As we said earlier, it is usually hard to devise any general theories for what happens when u is not 
prime; however for the full Roman alphabet for which u = 26 the theory is much easier because the full 
periods for its prime factors, 3 for tlie prime 2 and 28 for the prime 13, have no common factor. What this 
means is that the occurrence-frequencies can be obtained by multiplying those for u = 2 (1 or 2, since the 
period is (ZAA) by those for u = 13. If u = 13, we either have the Fibonacci type (for which letters can 
occur 0, 2 or 4 times), or the Lucas type (for which letters can occur 0, 2 and 3 times). So, for u = 28, 
the occurrence-frequencies can be 0, 2, 4 or 8 for the Fibonacci sequence and 0, 2, 3, 4 or 6 for the Lucas 
sequence (and any sequence is similar to one of these two). 
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We now turn our attention to a completely different type of sequence, namely that described on page 
170 of the same issue. It can be described as follows. 

We start with a finit,e sequence of posit,ive integers, say (1,1,2,2,1).  We split it into blocks of equal 
numbers, in this case ((1, I ) ,  (2,2), (1)). We then replace a block of a b's by a ,  b, thus in this case getting 
(2 ,1 ,2 ,2 ,1 ,1) .  (In other words, we read our original sequence as "two ones, two twos, one one" and take the 
integers in the above phrase.) Let us call the result the derived sequence of the one we started with. 

We may then start with a random sequence and repeatedly replace it by its derived sequence. Let us 
call the sequence obtained by doing this n times the nth derived sequence of the original. On page 170 we 
were told that it was not Conway who discovered this idea. However he definitely did analyse what happens. 
Roughly speaking, the situation is as follows. For reasons that will become apparent, he called the theory 
%hemistry". 

1. If A and B are sequences, we say that the sequence A B  (i.e. A followed by B)  splits into A and B if 
the nth derived sequence of AB can be obtained by concatenating that of A with that of B. This happens 
whenever the last term of A (which is the same as the last term of any of its derived sequences) never appears 
as a first term in the nth derived sequence of B.  

2. If we take any sequence and split it as far as we can, we call the con~ponents elements. 
3. Most elements can only occur in the first few derivations, whatever sequence we start with. Those 

that can continue to occur indefinitely we call stable. 
4. If the sequence A ends in ( l , n ) ,  where n is an integer greater than 1, then the behaviour of A 

under derivation is not changed if one replaces n by any other integer greater than 1. In particular, if A 
is an element so is any of the replacement sequences. However, it is not true that if A is stable then the 
replacement sequences are necessarily stable. 

5. To be precise, for any n greater than 3, there are exactly two stable elements ending in (1, n) ,  and 
these remain stable whatever n we use (including 2 and 3). All other stable elements, and there are 92 of 
them, only involve the integers 1,  2 and 3. 

6. If we call two elements isotopes if they differ only in the last term as described above, then the 
92 above elements include 20 pairs of isotopes, plus 52 other elements, making a total of 72 elements up to 
isotopy. (The numbers 72, and 92 above, compare with the 81 stable elements in "real" chemistry.) 

7. There is a fixed real number h such that if we start with any sequence other than (2,2) (which 
is its own derivation), and divide the length of its nth derivation by hn, then the result tends to a limit, 
depending on the initial sequence, as n tends to infinity. In other words, all sequences other than (2,2) grow 
exponentially at approximately the same rate. 
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