CORE

JOSEPHUS WORDS

DANA RICHARDS
Fairfax, Virginia

In the articles on "Magic Spells" (Word Ways, Feb and May 2010) it was proposed that tricks could be performed with a deck of n letter cards. The deck would be prearranged, spelling some word u. There would be a "skip sequence" of integers $k_{1}, k_{2}, \ldots, k_{n}$; the more natural the sequence the better. The magician would spell a new word $w=w_{1} w_{2} w_{3} \cdots w_{n}$ as follows: skip k_{1} cards and set the next card aside making it w_{1}, skip k_{2} cards and set the next card aside making it w_{2}, etc. Each skipped card is returned to the bottom of the deck. Note that the skip sequence defines a permutation π of the the original deck order; $w=\pi(u)$. We say w is a fixed-point if $w=\pi(w)$. For any given permutation there exists a skip sequence, though it might be hard for a magician to incorporate.

The logological question is to find pairs of words u and w, and a well-motivated skip sequence relating them, that a magician could use with suitable patter. I am not a magician, however, so in this article I will just give pairs of common words. (Pairs using an uncommon word were found but are not reported.)

The story of Josephus Flavius is well-known in recreational mathematics. Forty men stood in a circle and every third man, still standing, was killed. (The puzzle is to find where Josephus should stand to survive to the end.) In our terminology we would say $k_{i}=2$ for all i. However k_{1} might be different depending on where you want to start. Let J_{a}^{b} be the skip sequence where $k_{1}=a$ and $k_{i}=b$ for $i>1$. Choosing $a=0$ or $a=b$ would be natural in a trick.

We first looked at six letter words. For J_{1}^{1} there is teaset/estate, and veined/endive. For J_{2}^{2} there is mimosa/Maosim. For J_{3}^{3} there is neuter/tenure, settee/testee, and opuses/spouse. For J_{4}^{4} there is ginned/ending, and parsec/escarp. For J_{5}^{5} affair/raffia. Letting $a=0$ we have begird/bridge, and preset/pester for J_{0}^{3}. Also we have Bosnia/bonsai, and stored/strode for J_{0}^{5}. There are also some fixed points for J_{0}^{4} (addend, attest, eggnog, beetle, needle among many others) and for J_{0}^{5} (coffee, yippee, halloo, etc.). The word tattoo is a fixed point for both J_{3}^{3} and J_{0}^{5} !

There are fewer seven letter examples. For J_{4}^{4} there is striate/artiest. For J_{0}^{3} there is Devries/diverse and obtrude/outbred. For J_{0}^{5} there is perusal/pleuras. We found none for eight letter words.

We could also define other skip sequences. An obvious idea is to choose longer and longer skips, which we call "rhopalic". Let R_{a} be the skip sequence with $k_{1}=a$ and $k_{i}=k_{i-1}+1$ for $i>1$. A six letter example, for R_{0} is starer/Sartre. For seven letter words R_{0} has piastre/parties and R_{1} has the fixed points eeriest and oospore. The skip sequence R_{0} for eight letter words yields a large number of fixed points including addendum, announce, assassin and innuendo.

There remains many more skip sequences to explore.

