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Abstract 

Agrochemical contamination in groundwater poses a significant long term threat to water 

quality and is of concern for legislators, water utilities and consumers alike. In the dual 

porosity, dual permeability aquifers such as the Chalk aquifer, movement of pesticides and 

their metabolites through the unsaturated zone to groundwater is generally considered to be 

through one of two pathways; a rapid by-pass flow and a slower ‘piston-flow’ route via the 

rock matrix. However, the dissolved form or ‘colloidal species’ in which pesticides move 

within the water body is poorly understood. Following heavy rainfall, very high peaks in 

pesticide concentration have been observed in shallow Chalk aquifers. These concentrations 

might be well explained by colloidal transport of pesticides. We have sampled a Chalk 

groundwater beneath a deep (30 m) unsaturated zone known to be contaminated with the 

pesticide diuron. Using a tangential flow filtration technique we have produced colloidal 

fractions from 0.45µm to 1kDa. In addition, we have applied agricultural grade diuron to a 

typical chalk soil and created a soil water suspension which was also subsequently 

fractionated using the same filtration system. The deep groundwater sample showed no 

evidence of association between colloidal material and pesticide concentration. In 

comparison, despite some evidence of particle trapping or sorption to the filters, the soil water 

clearly showed an association between the <0.45µm and <0.1µm colloidal fractions which 

displayed significantly higher pesticide concentrations than the unfiltered sample. 

Degradation products were also observed and found to behave in a similar manner to the 

parent compound. Although relatively large colloids can be generated in the Chalk soil zone, 
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it appears transport to depth in a colloidal-bound form does not occur. Comparison with other 

field and monitoring studies suggests that rapid by-pass flow is unlikely to occur beneath 4-

5 m. Therefore, shallow groundwaters are most at risk from rapid transport of high 

concentrations of pesticide-colloidal complexes. The presence of a deep unsaturated zone will 

mean that most of the colloidal-complexes will be filtered by the narrow chalk pores and the 

majority of pesticide transport will occur in a ‘dissolved’ form through the more gradual 

‘piston-flow’ route. 

 

Introduction 

 

Agrochemical contamination of groundwater has been identified as an increasing problem in 

Europe (Skark and Zullei-Seibert, 1995) and the UK (Environment Agency, 2002). Recently 

the occurrence of both pesticides and their metabolites within groundwater have been 

identified (Kolpin et al., 1996, 2004; Gooddy et al., 2002, 2005; Johnson et al., 2001; Postle et 

al., 2004). Pesticides in groundwater have been found to originate from arable land (e.g. 

Gooddy et al., 2001) as well as a number of non-agricultural sources, such as landfills 

(Harrison et al., 1998), railway lines (Schweinsberg et al., 1999) and amenity use (Lapworth 

and Gooddy, 2006). A recent study looking into the impact of climate on pesticide behaviour 

in the environment (Bloomfield et al., 2006) has suggested the types of pesticide and rates of 

application are likely to be altered to reflect significantly modified rainfall seasonality and 

intensity as well as increased temperatures resulting in likely changes in land-use. Therefore a 

process based understanding of pesticide transport must be seen as a priority in the protection 

and maintenance of potable water resources  

 

Along with the dynamic of water flow, pesticide transport from the soil surface to 

groundwater is controlled by several process including plant uptake, sorption to solid phases, 

microbially mediated degradation and ‘dissolved’ and colloidal phase migration (Foster et al., 

1991; Chilton et al., 2005). Colloids have been operationally defined as particles with 

diameters less than 10-5 m (10 m) (Stumm, 1977). Colloids are often generated in the soil 

system by dispersion from soil aggregates in response to rainfall and infiltration (Ryan and 

Elimelech, 1996). Colloids in the subsurface can significantly enhance the mobility and 

transport of contaminants (McCarthy and Zachara, 1989) especially those that are 

comparatively insoluble (Grolimund et al., 1996). Studies suggest that colloids are able to 

move through porous media even when the degree of saturation is very low (Harvey and 
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Garabedian, 1991; Wan and Tokunaga, 1997). Numerous studies have been undertaken that 

show pesticide can sorb to colloids and potentially enhance their transport (e.g. Vinten et al., 

1983; Worrall et al., 1999; Seta and Karathanasis, 1997; Kulikova and Perminova, 2002).  

 

The Chalk, the major UK aquifer, is a soft microporous and fractured calcium carbonate 

aquifer with dual porosity and dual permeability. It is an extremely important resource 

providing 15% of the water supply nationally and up to 35% regionally in the south and east 

of England and is under increasing stress from increased rates of abstraction and from 

contaminant sources. Flow through the Chalk unsaturated zone is often believed to be by a 

combination of two main mechanisms; intergranular seepage through the matrix, sometimes 

termed ‘piston flow’ (e.g. Price et al 1976; Price, 1993); and rapid movement through 

fractures (e.g. Headworth, 1972), often referred to as ‘preferential flow’. The Chalk matrix is 

a very fine grained porous media with median pore-throat sizes of the order of 0.1µm (Price, 

1976). This is narrow and provides a degree of natural filtration of an infiltrating recharge 

water. Indeed, colloidal particles larger than 0.1µm are unlikely to pass through the matrix 

and might therefore be more likely to penentrate the chalk through a preferential flow path. 

 

Shand and Bloomfield (1995) found evidence for the transport of soil particles down to 3m 

along fracture surfaces in the chalk. Iron-rich clays were found to be prominent at shallow 

depths. In a study by Gooddy et al. (2001), high concentrations of the herbicide isoproturon 

were found in shallow chalk groundwater (3-5 m) by using a static sampler system that 

collected recent recharge water arriving at the water table. As concentrations of isoproturon 

increased there was no concomitant rise in nitrate. Although no direct field measurements 

were made, the workers hypothesized that the isoproturon had moved through the soil and 

unsaturated zone by a preferential flow route sorbed to soil colloids. A related study by 

Johnson et al. (2001) found even more compelling evidence for colloidal transport of 

pesticides. In this study high concentrations of the herbicide isoproturon were found in 

pumped shallow Chalk groundwater following intensive rainfall events for three successive 

years after the herbicide was last applied. Both of these herbicide studies strongly suggested a 

colloidal source of pesticides in the shallow groundwater as concentrations of non-sorbing 

solutes such as agriculturally derived nitrate and chloride did not show the same relationship 

with rainfall intensity and soil particles acted as a long term source of the contaminant.  
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Suspended colloidal material can be separated from the dissolved aqueous fraction principally 

in two ways, filtration and centrifugation. Conventional filtration methods such as 

operationally defined 0.45µm filters have been used for countless environmental studies to 

separate the ‘dissolved’ and solid fractions, however colloidal particles span a wide range of 

pore sizes and are therefore difficult to study using these methods. Ultrafiltration (using high 

pressure) has been used to fractionate samples, but this method is plagued with the problem of 

concentration polarisation effects and membrane clogging due to colloid aggregation on the 

surface of the membrane (Heathwaite et al., 2005). The use of  Tangential Flow Fractionation 

(TFF, also called cross-flow filtration) has been investigated as a better method for 

fractionation as the tangential arrangement minimises the clogging at membrane surfaces 

(Morrison and Benoit, 2004). Although this is an improvement on classical methods of 

filtration it does not avoid coagulation altogether. Most systems also generally require a 

relatively large sample volume (i.e. >100 mL) which can be a constraint to some experimental 

procedures. 

 

Tangential-Flow Fractionation has grown in popularity as the fractionation technique to use in 

the field of water research. Li et al. (2004) characterised humic acids which had previously 

been fractionated by TFF. Guéguen et al. (2002) have used this technique to demonstrated 

that TFF can produce reliable fractionations of natural organic colloids in aquatic systems. 

Olivie-Lauquet et al. (2000) have used TFF to characterise groundwaters and surface waters 

for both organic and inorganic colloidal material. Other workers have also recently 

demonstrated this technique to be effective in groundwater systems (Hassellöv et al., 2007).  

 

In this study we have used tangential flow filtration to fractionate natural colloidal material 

from soil and groundwater. We have examined the colloid-pesticide association in calcareous 

soil suspensions where the pre-emergent herbicide, diuron (3,4-dichlorophenyldimethylurea), 

has been recently applied, and in a sample of relatively deep chalk groundwater known to be 

contaminated with diuron. The objectives of this study are to determine whether pesticides 

(and their degradation products) can form stable complexes with colloidal material present in 

the soil zone, and if these complexes also exist in groundwater beneath a relatively deep 

unsaturated zone. By considering our findings in relation to recently published field studies 

(Haria et al., 2003; Ireson et al., 2006) and modelling investigations (Mathias et al., 2005; 

Mathias et al., 2006), we present two conceptual models for pesticide movement from the 

point of agricultural application to the groundwater beneath. 
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Materials and Methods 

 

Soil Sampling 

Chalk soil samples (roughly 50 kg) from southern England were taken from the top 15cm of 

an agricultural soil profile using an auger. Root material and any residual crop from within the 

root zone (approximately the top 5cm) was discarded, as was any gravel-sized material. The 

soil was homogenised and a subsample of 20 kg spread out over area of 1m2, with an 

approximate depth of 1cm. 1000mg of Karmax TM (Dupont agricultural grade diuron) with a 

83% diuron content was dispersed in 2000mL of ultra-pure water and irrigated evenly over 

the soil sample and left to soak into the soil for two hours. This gave an equivalent loading of 

6.7 kg/ha, the same as previously used in a field based degradation trial by Gooddy et al 

(2002). Duplicate soil suspensions with solid solution ratios of 1:5 were prepared using 2.4kg 

of the irrigated soil (equivalent to 41.5mg diuron) and 12L of ultrapure water. The mixtures 

were agitated for 30 minutes and then allowed to settle. One sample was allowed to settle for 

10 hours prior to decanting 10L of the supernatant into brown glass bottles. The suspensions 

were stored in the dark at approximately 20ºC to allow microbial degradation of the diuron to 

take place. The other sample was agitated periodically, settled and decanted after 63 days. 

The decanted samples were stored at 3ºC prior to analysis and fractionation using tangential 

flow fractionation. 

 

Groundwater Sampling 

A site in southeast England where a previous diuron contamination had been reported 

(Lapworth and Gooddy, 2006: site 14) was chosen for the groundwater sample. The borehole 

sampled is cased down to approximately 10 m with the water table at 31 m at the time of 

sampling. The total depth of the borehole is 36 m. The borehole was purged prior to sampling 

to obtain a fresh raw groundwater sample. The sample was taken directly from a stainless 

steel sampling tap on the rising-main of the borehole. Appropriate protocols were followed to 

minimise the risk of artificially creating or mobilising colloids during sampling (Backhus et 

al., 1993). Two sterile 50L stainless steel sample containers, (Ucon Containersysteme AG, 

Germany) with stainless steel plugs and PTFE seals, were used to collect and store the 

groundwater. The samples were placed in a cold store and stored in the dark at 3ºC within 

3hours of taking the sample to minimise microbiological activity.  
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Tangential Flow Filtration 

For any given tangential flow system two fractions are usually generated. The ‘permeate’ 

fraction is that which passes through the TFF membrane, whereas the “retentate” is that which 

is retained by the ultrafiltration membrane. The latter is enriched with colloids, which have 

not passed through the membrane. To concentrate colloidal material, water from the sample 

reservoir is pumped across the ultrafiltration membrane from where the permeate is isolated 

in a separate reservoir whilst the retentate is recycled back into the sample reservoir. The 

concentration of colloids increases with time. A schematic diagram of the system is shown in 

Figure 1. 

 

Tangential flow filtration was carried out on all samples by using a Pelicon 2 ultrafiltration 

unit (Millipore, UK). The whole system comprises a peristaltic pump, an acrylic holder and 

an ultrafiltration cassette. Six cassettes were used in series and in decreasing size. For the 

smaller sizes the filter cassettes are differentiated in terms of kiloDaltons (kDa) since 

fractionation at this scale is carried out on a molecular mass basis. The cassettes used were 

0.45µm, 0.1µm, 1000 kDa, 100 kDa, 10 kDa and 1k Da respectively.  These are all made of  

regenerated cellulose and have a surface areas of 0.50m2. Cleaning of the filters was carried 

out in accordance with the procedure used by Guéguen at al. (2002).  

 

For the chalk/soil suspension samples a flow rate of 37 mL/min for the permeate was 

maintained. This flow rate allowed for reasonable sample processing times without generating 

excessively high pressures which might cause tubing to malfunction or split. Permeate 

volumes for these samples started at about 5L for the 0.45µm filter. For the groundwater 

sample due to the lower colloidal content the permeate flow rate was increased to 50 mL/min 

and a larger initial permeate volume of 75 L was used. Generally the processing of 5L took 

between 2-2½  hours. 

 

Diuron and Metabolite Analysis 

Analysis of diuron and its principal metabolites was accomplished by reversed-phase HPLC 

separation employing isocratic elution in conjunction with UV detection of the separated 

components. The method used is similar to that previously published by Field et al. (1997) 

and as modified in Gooddy et al. (2002) . For the soil suspension samples the limit of  
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detection was ca. 0.002 mg/L. For the groundwater samples it was necessary to initially pre-

concentrate the samples by C18 SPE cartridges (Waters Oasis HLB 60mg). Against standard 

solutions for phenylureas this process gave a 96% recovery for diuron, 93% for primary 

degradation product dichlorophenylmethyl urea (DCPMU), 96% for the secondary 

degradation product dichorophenyl urea (DCPU) and 83% for the tertiary degradation 

dichloroanaline (DCA). The limit of detection was ca. 0.005 µg/L. 

 

Results  

Soil Pesticide-Colloid complexes 

 

Pesticide analysis of the raw soil water suspension and subsequent fractions obtained by 

tangential flow filtration from the initial sample (i.e. 12 hours after application) are shown in 

Figure 2. Data is shown for both the parent compound and any degradation products found. 

The tangential flow fractions are shown in two parts; the retentate, corresponding to material 

which would not pass through a filter of this size, and the permeate, which corresponds to 

material which is small enough to get through the filtration mesh. In all cases the 

concentration in the retentate exceeds that of the permeate, but it is only in the case of the 

>0.45µm and >0.1µm retentate fractions that the concentration exceeds that found in the 

unfiltered water. 

 

The distribution of the relative fractions and the resulting pesticide and metabolite 

concentrations observed after 63 days are shown in Figure 3. Of note is the appearance of two 

additional degradation products, DCPU and DCA. However, compared with previous soil 

degradation studies carried out by Gooddy et al (2002), the concentrations of the degradation 

products relative to the parent compound are low. In a similar manner to the original sample, 

concentrations of diuron only exceed the unfiltered water concentration in the >0.45µm and 

>0.1µm fractions of the retentate. The same is also true for DCPMU, whereas the retentate 

concentration of DCPU only exceeds the unfiltered water concentration in the 0.45µm 

fraction. This may reflect the limits of detection of the method rather than indicate anything 

more significant about the degree of pesticide binding. The same is likely to be true of the 

DCA pesticide data. It is interesting to note that the ratios between the retentate and the 

permeate are remarkably similar between the two samples which gives a significant degree of 

credibility to the method used (see tables 1 and 2). 
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Tables 1 and 2 show the mass balance through the filtration experiment, by multiplying the 

detected concentration of diuron by the volume of water in either the permeate or retentate 

(the degradation products have been omitted from this calculation since the contribution to the 

overall mass balance is small, typically contributing <1% of the total pesticide mass). In both 

cases it is revealed that a significant mass of diuron is lost during the experiment. 

Interestingly, the relative mass losses between the two samples are nearly identical which 

suggests that the same phenomena is responsible for the pesticide removal. One possible 

cause of this concentration reduction is sorption to the filters which is contrary to the findings 

of Guéguen et al. (2002) and Hoffman et al. (2000) who found good recovery for DOC and 

NOM respectively using the same regenerated cellulose filters. Indeed, studies we have 

carried out have shown also shown good recovery for DOC, with the majority concentrated in 

the 1kDa fraction, indicative of fulvic acids (Gooddy et al., 2006). However, evidence of 

sorption of some pharmaceutical chemicals to regenerated cellulose-based membranes has 

been reported by Burba et al. (2005). Significantly the nominal surface area of all the 

ultrafiltration cassettes is 0.5 m2 but the rate of removal is not constant so sorption may not be 

the only process causing the observed concentration drop. Alternatively, the colloidal material 

may be getting entrapped in the filter matrix, however, blank procedures ran between 

fractions showed no desorption or disentrapment of any pesticide material. Another 

possiblility for the mass loss could be due to coagulation and flocculation of colloidal material 

as a result of the change in concentration of charged ions in the permeate solution. This can 

lead to the formation of an insoluble precipitate that would not be captured in the HPLC 

analysis and so ostensibly lost from the mass balance calculations. 

 

Although this is an important observation in terms of the overall TFF method for fractionating 

pesticides, it is considered that the overall finding of greater association with the larger 

colloidal fraction is still valid and of significance in terms of pesticide transport. Additionally 

it should be noted that the concentration of the pesticide in the 0.45µm and 0.1µm retentates 

is much greater than the mass of pesticide lost from these two fractions. 

 

Groundwater Pesticide Colloid Complexes 

 

Three of the phenylurea concentrations (DCPU has been omitted for clarity but follows a very 

similar pattern to DCPMU) for the unfiltered water and 6 retentate fractions taken from the 

groundwater sample are shown in Figure 4. The parent compound, diuron shows a decrease of 
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roughly 20% in concentration from 2.3 µg/L in the raw water to roughly 1.8µg/L in the 

0.45µm fraction. The subsequent four fractions remain at this relatively constant 

concentration before a further slight decrease in concentration in the 1kDa retentate. DCPMU 

shows a more rapid decrease in concentration between the raw water and the 0.1µm retentate 

(nearly 60%) before stabilising at this concentration. DCA shows very rapid initial decline in 

concentration from 2.8 µg/L in the raw water to 1.5 µg/L in the 0.45µm retentate. These 

concentrations remain stable until declining again in the final two fractions. There is no 

evidence for any colloidal-pesticide complexes existing in this sample. 

 

The relatively high concentration of degradation products and the decline in concentrations of 

all the phenyl urea compounds may be indicative of some degradation occurring during the 

experiment since relatively large volumes of water were being processed which require at 

least 24 hours per retentate fraction. However, this rate of removal is considerably in excess 

of degradation rates observed (Gooddy et al., 2002) where 20% of the parent compound had 

been converted to metabolites in the soil matrix after 50 days and it is unlikely to be the 

primary reason for the loss in concentration during the experiment. Some sorption or 

entrapment on to the filtration cartridges along with the formation of insoluble precipitates in 

the permeate are therefore again suspected. Even with these losses it appears that there is no 

relationship between colloidal fraction and pesticide for a groundwater sampled from roughly 

30 metres below ground level. 

 

Discussion 

 

These experiments have demonstrated that pesticides will form an association with colloids 

from a calcareous soil and produce pesticide-colloid complexes which have a size generally in 

excess of 0.1µm. However, in a groundwater sample taken from depth no such association 

with colloids is observed. This is despite the previous observations of Johnson et al. (2001) 

and Gooddy et al (2001) which strongly suggested that pesticide concentrations in the shallow 

groundwater were controlled, at least in part, by the association of pesticides with colloidal 

material. This infers that either our method was too insensitive analytically to detect 

pesticides bound to colloids in the groundwater, or that the pesticide present was in a free (i.e. 

unbound) form and that the colloidal material had been removed during the migration of the 

water through the unsaturated and/or saturated zone prior to sampling. 
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If we consider the first case, and assume that our analytical method is too insensitive, some 

simple calculations can be performed to confirm or refute this.  

 

Assuming an initial total volume of groundwater of 50 litres, and a retentate volume of 

900 ml, this would produce a colloid pre-concentration factor of 55.6 (the ratio of the initial 

volume to the retentate volume). With an initial pesticide concentration of 4µg/L and an 

assumed pesticide-colloid association percentage of, for example 5%, after one full filtration 

cycle the permeate would have a pesticide concentration of 3.8µg/L and the retentate would 

have a pesticide concentration of 14.9µg/L. We can repeat this for a range of  association 

percentages as demonstrated in Figure 5 where the % of pesticide-colloid associated 

compounds ranges from 5% down to 0.1%. 

 

An initial concentration 2.3µg/L has been used for diuron and an analytical error of ± 5% has 

been assumed to reflect the conditions observed in the groundwater fractionation. The graph 

demonstrates how the difference between the retentate increases as the percentage of 

pesticides associated with colloids increases. The graph also demonstrates that there is clear 

divergence between the retentate and permeate concentrations where just 0.3% of the 

pesticide is associated with colloidal material, even with the analytical variation of ± 5%. The 

data presented in Table 1 and 2 for the >0.45 µm and >0.1µm retentate fractions both have 

colloid-pesticide association factors close to 3.5%. Therefore, the method appears to be 

sensitive enough to detect even a small degree of pesticide-colloid association. Hence, we 

suggest that colloidal material and the pesticides associated with it have been removed 

somewhere between the soil zone and the saturated zone from where the sample was taken. 

 

Previously there has been much evidence cited to support the existence of significant bypass 

flow in the Chalk. This includes the observed rapid response of the water table after high 

intensity rainfall events (Headworth, 1972) and the appearance of bacteria in abstraction 

waters (Maclean, 1969). By contrast, a study by Smith et al. (1970) examining the tritium 

content in unsaturated zone pore-waters led to the suggestion that flow through the Chalk 

unsaturated zone was predominately through the matrix at a mean rate of around 0.8 m/year. 

A generation of models got round this by assuming flow to occur exclusively in fractures with 

solute transport being retarded by molecular diffusion into the matrix (Oakes et al., 1981; 

Barker and Foster, 1981). However, through using a transient flow and transport, dual-

permeability model and examining the effects of diffusion in the Chalk unsaturated zone, 
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Mathias et al. (2005, 2006) showed that, at depth, almost all of the flow in the unsaturated 

zone was in the matrix. 

 

In the very shallow unsaturated zone, just below the soil layer, Ireson et al. (2006) found that 

at 0.4 and 1.0 m depth there tends to be a rapid increase in matric potential straight after the 

main rainfall events, which was followed by a more gradual recession, as the profile drained. 

However, below 4 m depth this was completely attenuated and only a long-term rise was 

noticed. A similar feature can also be seen in the matric potential data presented by Hodnett 

and Bell (1990). These higher matric potentials allow more of the fractures to hold and 

transmit water, as was found by Haria et al. (2003). Consequently preferential flow can occur 

in fractures in the top 4-5 m of the Chalk unsaturated zone, but it is unlikely to occur at 

greater depths. 

 

It would appears therefore that the previous observations of Gooddy et al (2001) and Johnson 

et al (2001) pertaining to the likelihood colloidal transport of pesticides were correct. The fact 

that they were found at the study site was a function of the shallow depth from which the 

samples were taken. Preferential flow of colloidally associated pesticides was able to occur 

down to sufficient depth to allow the large particles to reach the water table without being 

filtered out by the small pore-throat size of the Chalk matrix.  

 

We can therefore propose two conceptual models for pesticide transport to chalk 

groundwater; one where the unsaturated zone is shallow and colloidally mediated transport of 

pesticides can be deemed a important and rapid (Figure 6a), and the other where the 

unsaturated zone is deep and the majority of the colloidal material which has been identified 

by this study to form pesticides complexes (i.e. particles >0.1µm) is removed by the narrow 

apertures of the chalk matrix (Figure 6b). In both of these models it is worthy to note that 

pesticides can also move in the ‘dissolved’ phase through both the matrix and the fractures. 

However, the important aspect of the colloidally bound route is that poorly soluble 

compounds (like most pesticides which would be expected to reside in the soil at the point of 

application) are made considerably more mobile and there is the potential for relatively high 

concentrations of pesticides to enter the shallow groundwater system. 

 

Conclusions 
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Through this study we have found that the calcareous soils, typical of those overlying the 

Chalk aquifer in most of southern England, can form pesticide-colloid complexes. These 

complexes contain particles that are mostly larger than 0.1µm. Metabolites, which are subtly 

different in structure, behave in an analogous manner to the parent compound which suggest 

the binding mechanism is the same between the different molecule types. There is evidence 

for some sorption or entrapment of diuron (and metabolites) to the regenerated cellulose 

filters and the possibility that some precipitates have been formed during the filtration 

process.. 

 

No association was found between colloids and pesticides in the deep groundwater. Based on 

data from previous studies we have interpreted this finding in terms on the relative  

importance of the properties of the chalk unsaturated zone as a effective barrier to colloid- 

pesticide complexes. Shallow groundwaters are therefore more vulnerable to contamination 

not just because the potential travel distance is shorter but because they allow colloidally-

complexed pesticides (and by inference, other organic contaminants) to reach the water table 

by a rapid route. Compounds that are relatively insoluble and considered immobile may 

therefore enter a groundwater body. The presence of a deep unsaturated zone will mean that, 

because of their size, most of the colloidal-complexes will be removed by filtration as they 

pass into the narrow chalk pore-throats. In this case the majority of pesticide transport will 

occur in a ‘dissolved’ form through the more gradual ‘piston-flow’ route. 

 

In terms of practical considerations of this finding, it may be important for land-use 

management and manure applications where the depth to water is shallow. On Chalk down-

land this may mean not applying agricultural wastes in the lower parts of the valley, even 

where no surface water body is evident or close-by. Additionally it implies that deeper 

groundwaters are relatively well protected from sudden pulses of pesticide contamination 

following application or a spill. The filtration of pesticides bound to colloids will also 

decrease the net loading to groundwater. Producing pesticides that are strongly  bound to soil 

colloids, and remain  bound, may therefore act as a good groundwater protection measure. 
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