211

SPREADSHEET LOGCLOGY ON THE PC

ANTHONY SEBASTIAN
San Francisco, California

Tapping the Computer’s Power by the Non-Computer-Expert

Logologists who are computer programmers can exploit the comput-
er's power to assist them in wordplay activities. Logologists who
are not computer experts can share in that power by using commer-
cially available, inexpensive, user-friendly spreadsheet programs
designed for personal computers (PCs). Such programs, initially
developed for manipulating numbers (e.g., financial modelling),
have evolved the capability to manipulate non-numeric data--strings
of characters other than integers exclusively--according to string-
specific formulas.

The purpose of this article is to introduce the concept of spread-
sheet logology to non-computer-experts, and to demonstrate the hos-
pitality of the spreadsheet environment for logology by exemplify-
ing a. few specific applications. The article provides just enough
details of both spreadsheet basics and how-to-do-it particulars
{(for the exemplified applications) to enable a motivated novice PC
user to begin experimenting.

Spreadsheet Basics for Wordplay

On activating a spreadsheet, the computer screen displays a
matrix of initially empty 'cells' at the intersection of columns (la-
belled A,B,C,...Z,AA,BB,AC,...AZ,BA,BB,...) and rows (consecutive-
ly numbered 1 to thousands). Each cell's "address" is its unique
column-row coordinates (e.g., Al, B9, AX45, 1V666).

The user determines a cell's display-width and its contents, which
can be a 'string" (a character sequence such as a word) or a
number. To determine a cell's content, the user moves a visible
cell-pointer to the cell (via the keyboard's arrow-keys) and then
types in (a) a string or number, (b) a formula (e.g., +"word"&
"play" displays 'wordplay"), or (c) a socalled @Function, which
performs specialized manipulations (e.g., @LEFT("wordplay",4) dis-
plays "word", the leftmost four characters of "wordplay").

In the following sample spreadsheet, the words or numbers dis-
played in columns A and B were entered as such. Column C dis-
plays the '"values'" resulting from the computation prescribed by
formulas entered into column C's cells. For expository purposes,
those formulas are listed to the right. Careful study of those for-
mulas reveals much about the way spreadsheets work.

Formulas can reference another cell's address, computing string
or numeric values that depend on the referenced cell's value. Al-

212

A B c
1 wordplay <-- +Uyord"&"play"
2 word play wordplay <-- +A2882
3 word <-- ALEFT("wordplay", &)
4 layout out <-- RARIGHT(B4,3)
5| spreadsheet spread <-- GALEFT(A5,6)
6 beer reader <-- BRIGHT(CS,4)&ARIGHT(BS,2)
7 wordplay 8 <-- @ALENGTH(AT)
8 10 5 15 <-- +AB+B8

tering a referenced cell's value initiates recalculation of dependent
cells automatically; the screen immediately updates. The "&'" oper-
ator in string formulas is analogous to the "+" in numeric formulas;
it concatenates strings. Cell formulas always begin with a + or
@ (or similar operator).

Using @REPLACE

@Functions provide many ways to manipulate words. Consider
@REPLACE. @REPLACE("word",0,1,"fj"} yields 'fjord". That is, @RE-
PLACE replaces part of a word with specified letters as follows:
@REPLACE(stringl,numl,num2,string2), where string2 stands for the
string of characters that are to replace a specified number of char-
acters (specified as num2) in stringl beginning with the character
at position numl of stringl. Note that positions in strings are num-
bered left-to-right beginning with =zero; 1i.e., the first position
in a string is position 0.

The following sample spreadsheet illustrates some of @REPLACE's
word-manipulating capabilities:

A 8

38 bore

39 bare <-- BREPLACE(A38,1,1,"a")
40 n born <-- DFREPLACE(A38,3,1,A40)
41 st store <-- QREPLACE(A38,0,1,A41)
42 sta stare <-- @REPLACE(A38,0,2,A42)
43 ingo bingo <-~ SREPLACE(A38,1,3,A43)
44 bingo <-- SREPLACE(A38,0,4,843)
45 n borne <-- GREPLACE(A38,3,0,A45)

The strings displayed in column A were entered as such. The
strings displayed in column B are the values computed by the for-
mulas in column B's cells (listed at right for expository purposes).
The formulas are the cells' contents, yielding the values displayed.
Formula-lengths can exceed the cell's display-width.

213

Note that if num2 is set to 0 in a @REPLACE formula (see cell
B45), no letters of stringl are deleted; string2 is inserted at the
numl-specified position, in effect replacing nothing. That means
@REPLACE formulas can be used also to insert letters into test words
(e.g., converting 'lien" to "linen"). By using "" (the so-called
null-string) as string2, @REPLACE can be used to delete letters
(quantity specified by num2).

@REPLACE Template for Letter-Insertions

The following describes how to use @REPLACE to construct reus-
able spreadsheet templates for generating insertion-networks (lien
to linen) and letter-substitution networks (trope to tripe).

We want to test a word for all 26 possible letter additions at
all possible positions in the test word (including the positions be-
fore the first and after the last letter). To accomplish that, we
create a reusable template such that, each time the user enters
a test word into a reusable test cell, the spreadsheet promptly
displays parallel columns of 26 cells each, one column for every
possible insertion position; the 26 cells of each column will show
each letter of the alphabet inserted into the test word.

The following segment of such a template shows the results when
"lien" 1is entered into the reusable test cell Al4l. Hits (actual
words) are underlined for illustrative purposes.

A B c D E F.

141 lien

142 a alien laien Lliaen Liean liena
143 b blien lbien liben liebn lienb
144 c clien lcien licen Liecn lienc
145 d dlien ldien liden liedn liend
152 k klien lkien Liken Liekn lienk
153 t Llien llien lilen lieln lienl
154 m mlien Imien limen Liemn {ienm
155 n nlien lnien linen lienn Lienn
160 8 slien lsien lisen liesn liens
163 v vlien lvien liven lievn Lieny

Each of the 26 cells of a column contains the appropriate @RE-
PLACE formula that inserts a letter into a given position in the

214

test word. Each position of the test word (0,1,2,3,...) has its own
column (position numbers always begin with 0); each of the 26
insertion letters (a,b,c,d,...) has its own row. The number of

columns in the user's template will depend on the maximal length
of words one wishes to be able to examine.

The first few cell formulas of the template's first two rows are
listed below; the remaining formulas are readily deducible.

B142: @REPLACE(A141,0,0,"a") B143: @REPLACE(A141,0,0,"b")
Cl42: @REPLACE(A141,1,0,"a") C143: @REPLACE(A1l41,1,0,'"b")
D141: @REPLACE(A141,2,0,"a") D143: @REPLACE(A141,2,0,"b")

@REPLACE Template for Letter-Substitutions

A similar spreadsheet template can be constructed for one-on-one
letter replacements in a word, as in constructing word ladders.
Again the template has one row for each letter of the alphabet,
and one column for each letter of the test word, each cell having
the appropriate @REPLACE formula. Stringl is the same for every
cell's formula {specify the cell address of the test word), and num2
is the same for every cell's formula (num2=1, so that one letter
of stringl gets replaced). String2 is the same for every cell's for-
mula in a given row, with a different letter of the alphabet for
each row; numl is the same for every cell's formula in a given
column, with a different letter-position of stringl for each column.

After entering a test word, the legitimate derived wordsare noted,
and each successively entered into the test cell to search for addi-
tional rungs of the ladder. An unused portion of the spreadsheet
can be set aside for recording the results of each pass of a test
word, and the accumulated record subsequently printed for a per-
manent record.

The ladder-building template also facilitates searching for hos-
pitable words--words each of whose letters accepts a replacement
that generates a legitimate word. Hospitable words are readily spot-
ted, since they must generate at least one legitimate word in every
column. Such a template could facilitate searching for the most
hospitable word of a given word-length in a list of words.

Both ladder and insertion templates constructed to test longer
words work for shorter words as well. If you enter, say, a four-
letter word into the test cell of a template constructed for longer
words, ignore the results in the columns beyond the first five (in-
sertion template) or four (ladder template).

Beyond @REPLACE: Spreadsheet Templates for Words-Within-a-Word

There are many ways to use @REPLACE formulas to manipulate
words and phrases in systematic and repetitive ways. In addition,
there are many other string-manipulating @Functions. Furthermore,
more than one ®@Function can be used in a single cell formula,
adding to the manipulative power of spreadsheets for complex logo-
logical studies.

O 0NN W N -

—
o

215

The spreadsheet's @MI1D function can be used to construct a tem-
plate for generating words-within-a-word (pastille: paste, pill,
etc.). A cell containing one @MID function extracts a specific let-
ter or consecutive letter-sequence from a test word, as follows:
@MID(stringl,numl,num2), where num2 specifies how many letters
from stringl to extract beginning at stringl's letter position desig-
nated by numl. As before, the first character in a string is posi-
tion 0. A cell containing @MID('"logological”,4,5) will display the
string "logic".

To extract noncontiguous letters, combine @MIDs, one for each
letter, using '"&" as coupler: @MID("attend",0,1)&@MID("attend",5,1)
extracts "ad" from "attend", for example.

The following sample spreadsheet illustrates ways @MID can be
used. Columns A through C display strings or numbers entered as
such. Column D displays the string values computed by formulas
entered into Column D's cells (listed, for expository purposes, to
the right).

A B [D
play <-- QMID("wordplay",4,4)
word | <-- @aMID("wordplay",0,4)
wordplay play <-- @aMID(C3,4,4)
word <-- aMID(C3,0,4)
4 4 play <-- aMID(C3,AS5,B5)
word <-- @aMID(C3,A6,8B6)
pa <-- QMID(C3,4,1)&MID(C3,6,1)
1 pa <-- BMID(C3,A8,B8)&aMID(C3,A8+2,1)
1 pay <-- BMID(C3,A9,B9)&MID(C3,A9+2,B9+1)
1 pay <-- aMID(C3,A10,B10)8aMID(C3,A10+2,B10)E&MID(C3,A10+3,810)

With that background, we can construct a template that displays
all possible interior same-order letter-sequences of a test word
(i.e., where the letter-sequences are in the same order as those
of the test word). For illustration, we construct a template for
eight-letter test words (see illustration on the next page). The
eight-letter template works also for shorter words.

We will use "pastille" as a sample test word (see Word Ways,
May 1988, page 85), and set cell Hl as the test cell to receive
it. Below Hl, starting at H3 and ending at H247, we will enter
the cell-formulas needed to generate every same-order letter se-
quence within the test word.

Before we can enter the formulas in Column H, we will first com-
pose a separate @MID formula to extract each of the eight letters
of the test word (see below). Stringl is the same for every letter,
and is specified by the address of the cell containing the test word
(viz., Hl). Num2 also is always the same, namely 1, the number
of letters to be extracted from stringl. Numl specifies which letter
to extract, position O for "p", position 1 for "a", etc. To extract

p, use @MID(H1,0,1); to extract a, use @MID(HL,1,1); to extract

216
s, use @MID(H1,2,1); and so on.

Knowing the @MID function for each letter of the test cell's word,

A B c D E F G H
1 pastille | <-- test word
2
3[0] | 2| 3| 4| S| 6|pastill
41 0| 11 2| 3| &4 6| 7|pastile
51 0o 1) 2| 3| 5| 6| 7|pastlle
6 O 1| 21 4| 5| 6| 7|pasille
71 o 1| 3| 4| 5| 6| 7|patille
8| 0 2| 3| 4| 5| 6| 7|pstille
9l ¥ 2] 3| 4| 5| 6| 7]astille
101 O t| 2| 3| 4| 5 pastil
11 of 1) 2] 3| 4| 6 pastil
121 o 1| 2| 3| 4| 7 pastie
400 of 11 2| 3| 6 pastl
41 0 1 2l 3| 7 paste
421 O 1| 2 4| 5 pasil
102 of 1| 3| 7 pate
103| o 1 4| 5 pail
104 Of 1| 4| 6 pail
105 0O 1 4 7 paie
106 0| 1| S| 6 pall
1671 of 1] 5| 7 pale
168 0| 1| 6 pal
195 1| 4| 6 ail
196 1| 4| 7 aie
1971 1] 53| 6 all
198 1] 5| 7 ale
247 6| 7 le

Ho: GMID(H1,A4,1)8IMIDCH1,B4, 1)RIMID(H1,Ch,1)8AMIDCH1,D4, 1)&AMIDCH1,E4, 1)&AMID(H1,F4,1)8aMID(H1,G4,1)
H6: SMID(H1,A6,1)8AMID(H1,B6,1)8AMID(H1,C6, 1)RAMID(H1,D6, 1)RIMID(H1,E6, 1)&AMID(H1, F6, 1)RIMID(H1,G6, 1)
H8: GMID(H1,AB,1)RaMID(H1,B8, 1)&AMID(H1,C8,1)8aMID(HT,D8, 1)&AMID(H1,E8, 1)&AMID(H1,F8, 1)RAMID(H1,G8,1)
H10: @MID(H1,A10,1)&AMID(H1,B10,1)&AMID(H1,C10,1)&AMID(H1,D10,1)&AMID(H1,E10,1)&AMID(H1,F10,1)

H12: EHID(I-I1,A12,1)&&NID(H‘I,MZ,‘I)&EHID(I-H,C12,1)&NID(H1,D12,1/)&MID(H1,E12,1)&NID(H1,F12,1)

mailto:iMID(H1,A12,1)&@MID(H1,B12,1)~ID(Hl.C12,l)&@MID(Hl,D12,{)~ID(Hl,E12,1)~IDCH1,F12,1

217

we can appropriately concatenate them to generate in each cell
of Column H a formula for one of the possible interior letter se-
quences.

To facilitate that one-time-only formula entry process, first list
the sequence of letter position-numbers (numls) needed for a given
cell's formula, listing those numls in separate narrow-width cells
in Columns A through G to the left of the formula cell in Column
H (see spreadsheet on preceding page). Then, in composing and
entering the required formula of concatenated @MID functions for
that cell, the numl values for each @MID function are easily avail-
able, and can be entered as cell addresses.

Working left to right, the first interior same-order letter sequence
in "pastille” is '"pastill”, whose letter positions are 0123456. With
those numls in cells A3 through G3, the required formula in H3
comprises the following seven concatenated @MID functions:

@M1D(H1,A3,1)&@MID(H1,B3,1)&@MID(H1,C3,1)&@M1ID(H1,D3,1)&
@M1D(H1,E3,1)&@MID(H1,F3,1)&@M1D(H1,G3,1)

Note that the coupled @MID functions are identical except for the
num2 values specified as A3, B3, C3, ... A cell formula can exceed
the display width of a cell; typically it can comprise 240 characters.

There are eight possible seven-letter interior same-order letter
sequences for an eight-letter word: 0123456, 0123457, 0123467, 01235-
67, 0124567, 0134567, 0234567, and 1234567. There are 28 possible
six-letter interior same-order sequences. For five-, four-, three-
and two-letter sequences, there are 56, 70, 56 and 28 possible com-
binations, respectively. The cell-formulas for each set require one
fewer @MID function than the previous set requires. The last cell
in column H, H247, displays "le" from '"pastille', representing the
numl sequence 67, and requires only two @MID functions: @MID(HI,
A247,1)&@MI1D(H1,B247,1), where A247 and B247 contain the numbers
6 and 7, respectively.

Sections of the template are shown on the preceding page. Mis-
sing rows, evident from the missing row numbers at the left mar-
gin, are represented by a blank row with a dot in the Column
H cell. Examples of some of the Column H formulas are also shown.
The formulas in the remainder of the cells of Column H are deduc-
ible from the pattern shown.

The template provides an interactive computerized method for
searching for words-within-a-word. To test multiple words per ses-
sion, create multiple parallel columns to the right of Column H,
each with a test cell in Row 1, e.g., at cells 11, J1, KIl,... Repeat
the Column H formulas in those columns, modifying the formulas
to change the stringl cell address from Hl to that of each column's
appropriate test cell (11, Jl, Kl,...). 1f desired, the results ob-
tained after each session can be printed before the template is
reused, and the printouts accumulated for later analysis and per-
manent record-keeping.

218
Limitations and Possibilities of Spreadsheet Logology

The spreadsheet applications described were designed to operate
primarily on single words one at a time in contradistinction to
all words in a list at once. Yet even that limited application can
be useful, in particular to logologists who are not computer experts
and therefore would otherwise not have computer assistance of any
kind. While it is possible, for example, to visualize mentally all
possible words generated by letter-insertion into a single five-letter
word, the spreadsheet template for that activity eliminates the te-
dium, accelerates the process, and ensures against missing any
of the 156 sequences possible with a 26-letter insertion-set.

Clearly, one expects more from a computer, however. How much
of that '"more" the spreadsheet environment can provide remains
to be explored. The virtue of the spreadsheet environment is that
it permits the exploration by the non-computer-expert--the avarage
PC user or motivated novice with minimal computer literacy or ty-
ping skill.

Spreadsheet models can be designed to operate on all words in
a moderate sized list (e.g., up to a few thousand). Most spread-
sheets for the PC enable importation of so-called text-files consist-
ing of a columnar word list, whereupon each word appears in a
cell in one column of the spreadsheet. 1lndeed, many spreadsheets
have built in features for sequentially operating on the entries
of such a list; those features simplify constructing reusable tem-
plates for specific applications.

For example, one can easily construct a template to compute the
sum of the numbers corresponding to the alphabetical position of
the letters in each word in a list arbitrarily of 200 words, enough
to examine the words in a Shakespeare sonnet, for example. Where
"a''=l, "b'"=2, '¢"=3,..., the template computes the sum of the digi-
tized letters of each word in the list (e.g., "bad"=2+1+4=7); call
them Borgmann letter-sums. The results appear in a column adja-
cent to the word list column. In two additional adjacent columns,
the template computes for each word the word's letter-count, and
the ratio of the word's Borgmann letter-sum to its letter-count.

If the digitized letters are viewed as ’'weights", "z' being the
heaviest, '"a'" being the lightest, the ratio of a word's Borgmann
letter-sum to its letter—count gives a kind of letter-density: in
a sea of 'the's (33/3=11), "dizzy" (90/5=18) is a sinker, '"bead"

(12/4=3) is a floater.

For each parameter (Borgmann letter-sum, letter-count, letter-
density), the template could also be designed to compute the aver-
age value of the parameter for all the words in the list, yielding
a unique set of numeric specifications for the word list. One might
use such a template, for example, to analyze the list of words
comprising a Shakespeare sonnet, comparing the values with those
of the author's other sonnets or with those of other authors' son-
nets.

One can imagine any number of other uses for such a template

219

in analyzing word lists of textual origin. One could also include
in the template additional sections that compute other numeric char-
acteristics of the word list, such as frequency of use of each let-
ter of the alphabet, the number of unique words, the number of
words total, and the frequency of use of each word in the text.
Those particular applications of spreadsheet analysis of word lists
are cited only to illustrate that a spreadsheet capability exists
for word list analysis, and to emphasize that the capability is
available to the non-computer-expert.

Whether the spreadsheet environment can accommodate very long
lists of words (tens of thousands)}, such as a dictionary list, re-
mains to be explored. Realization of this capability may be diffi-
cult, owing to current spreadsheet size limitations.

The editor asked whether spreadsheets can have more than two
dimensions, a feature that might facilitate exploring complex word
networks. Several multidimentional spreadsheets are, in fact, avail-
able, but I have had no opportunity to test them (or reason to,
until now). Both are purportedly user-friendly, i.e., accessible
to the non-computer-expert, especially to someone already familiar
with the more common two-dimensional spreadsheet.

Getting Started

Learning to use a PC spreadsheet program for logological studies
requires no more computer literacy than that required to use a
simple word processor and no more skill than that required to use
a typewriter. With their string-manipulative functions, PC spread-
sheets not only provide computer power to the logologist, but also
invite new forms of wordplay specific to the spreadsheet environ-
ment.

An excellent way to learn how to use the electronic spreadsheet
is by experimentation; in a few hours, a motivated novice will
have surpassed the elementary skill required to set up the tem-
plates described above. There are many commercially available
spreadsheet programs, some under $100, and several public-domain
or so-called shareware programs available for minimal cost.

