
angaroos.
~d by many

CH) .

orm a bowl-

tubercu losis,

ale Research
d within 500
nts, fingers,

and humor;
bibliography

s for lively
the following

~d balloons,
j loaves hot
'Pples, giant

in a strong
lump gourds,
rhite grapes,
~-pound flour

dark eyes,
& Ms.

difficult to

a good ham
d concession
~ on an eel,

rifle in the
wall, taking
pearl out of
n a tea bag,
IW, dragging

contact lens
with a por

211

SPREADSHEET LOGOLOGY ON THE PC

ANTHONY SEBASTIAN
San Francisco, California

Tapping the Computer's Power by the Non-Computer-Expert

Logologists who are computer programmers can exploit the comput
er's power to assist them in wordplay activities. Logologists who
are not computer experts can share in that power by using commer
cia lly a va ilable, inexpensive, user-friendly spreadsheet programs
designed for personal computers (PCs). Such programs, initially
developed for manipulating numbers (e.g., financial modelling),
have evolved the capability to manipulate non-numeric data--strings
of characters other than integers exclusively--according to string
specific formulas.

The purpose of this a rticle is to introduce the concept of spread
sheet logology to non-computer-experts, and to demonstrate the hos
pita lity of the spreadsheet environment for logology by exemplify
ing a, few specific applications. The article provides just enough
details of both spreadsheet basics and how-to-do-it particulars
(for the exemplified applications) to enable a motivated novice PC
user to begin experimenting.

Spreadsheet Basics for Wordplay

On activating a spreadsheet, the computer screen displays a
matrix of initially empty "cells" at the intersection of columns (la
belled A,B,C,oo.Z,AA,BB,AC,oo.AZ,BA,BB,oo.) and rows {consecutive
ly numbered I to thousands}. Each cell's "address" is its unique
column-row coordinates (e.g., AI, B9, AX45, IV666).

The user determines a cell's display-width and its contents, which
can be a "string" (a character sequence such as a word) or a
number. To determine a cell's content, the user moves a visible
cell-pointer to the cell (via the keyboard's arrow-keys) and then
types in (a) a string or number, (b) a formula (e. g., +"word"&
"play" displays "wordplay"), or (c) a socalled @Function, which
performs specialized manipula tions (e. g., @LEFT("wordplay", 4) dis
plays "word", the leftmost four characters of "wordplay").

In the following sample spreadsheet, the words or numbers dis
played in columns A and B were entered as such. Column C dis
plays the "values" resulting from the computation prescribed by
formu las entered in to column C's cells. For expository purposes,
those formula s are listed to the right. Careful study of those for
mulas reveals much about the way spreadsheets work.

Formulas can reference another cell's address, computing string
or numeric values that depend on the referenced cell's value. Al

212

CA 8

wordplay

word play wordplay

word

layout out

spreadsheet spread

beer reader

wordplay 8

'0 5 '5

<-- +"word"&"play"

<-- +A2&B2
2

<-- OlLEFT("wordplay",4)
3

<- - OlR1GHTCB4,3)
4

<-- @LEFHA5,6)5
<-- OlRIGHT(C5,4)&@R1GHT(86,2)

6

<_. OlLENGnt(A7)7
<.- +A8+B8

8

tering a referenced cell's value initiates recalculation of dependent
cells automatica lly; the screen immediately updates. The "&" oper
ator in string formulas
it concatenates strings.
@ (or simila r opera tor) ,

is analogous
Cell formu

to
las

the "+" in
always be

numeric
gin with

formulas;
a + or

Using @REPLACE

@Functions provide many ways to manipulate words. Consider
@REPLACE. @REPLACE("word",O,l,"fj") yields "fjord". That is, @RE
PLACE replaces part of a word with specified letters as follows:
@REPLACE(stringl;numl,num2,string2), where string2 stands for the
string of characters that are to replace a specified number of char
acters (specified as num2) in stringl beginning with the character
at position numl of stringl. Note that positions in strings are num
bered left-to-righ t beginning with zero; i. e., the first position
in a string is position 0.

The following sample spreadsheet illustrates some of @REPLACE' s
word-manipulating capabilities:

A 8

38 bore

bare

n born

st store

sta stare

ingo bingo

bingo

n borne

<-- iilIl:EPlACECA38,1,1,la")39

40 <_. OlREPlACECA38,3,1,A40)

<_. OlREPlACECA38,0,1,A4')4'

<-- OlREPlACE(A38,0,2,A42)42

<-- GlREPLACE(A38,1,3,A43)43

44 <-- GlREPLACE(A38,0,4,B43)

<_. QREPlACE(A38,3,0,A45)45

The strings displayed in column A were entered as such. The
strings displayed in column B are the values computed by the for
mulas in column B' s cells (listed at right for expository purposes).
The formulas are the cells' <;:Qntents, yielding the values displayed.
Formula-lengths can exceed the cell's display-width.

Note tha
B45), no
numl-speci
@REPLACE
(e. g., con
null-string
(quantity

@REPLACE

The folle
able sprea
to linen) a

We want
all possibl
fore the f
create a
a test WOl

displays p
possible ir
each letter

The follc
"lien" is
words) are

'41

142

'43

144

'45

152

153

154

'55

160

'63

Each of

PLACE form

",4)

IGHT<B6,2)

dependent
= "&" oper
.c formulas;
i th a + or

s. Consider
at is, @RE
as follows:
Ids for the

213

Note that if num2 is set to 0 in a @REPLACE formula (see cell
B4S), no letters of string1 are deleted; string2 is inserted at the
numl-specified position, in effect replacing nothing. That means
@REPLACE formulas can be used also to insert letters into test words
(e.g., converting "lien" to "linen").
null-string) as string2, @REPLACE can
(quantity specified by num2).

By using
be used

"" (the so-called
to delete letters

@REPLACE Template for Letter-Insertions

The following describes how to use @REPLACE to construct reus
a b Ie sprea dsheet templa tes for generating insertion-networks (lien
to linen) and letter-substitution networks (trope to tripe).

We want to test a word for all 26 possible letter additions at
all possible positions in the test word (including the positions be
fore the first and after the last letter). To accomplish that, we
create a reusable template such that, each time the user enters
a test word into a reusable test cell, the spreadsheet promptly
displays para llel columns of 26 cells each, one column for every
possible insertion position; the 26 cells of each column will show
each letter of the alphabet inserted into the test word.

The following segment of such a temp la te shows the results when
"lien" is entered into the reusable test cell A141. Hits (actual
words) are underlined for illustrative purposes.

A B c o E F.

,er of char 141
e character

142
1S are num,
~st position 143

144

@REPLACE ' s 145

152

153

154

155

160

163

such. The
by the for

I len

a al len laien I iaen I iean I iena

b bl ien Ibien I iben I iebo I ienb

c cl ien lcien I icen I iecn I ienc

d dl len ldien l iden 1iedn liend

· . · · .
· . · ·
k klien Ikien liken I iekn I ienk

I Ilien Ilien I i len I ieln l ienl

m ml ien lmien limen lienn l ienn

n nl ien Inien linen I ienn l ienn

· .
8 sl ien lsien lisen l iesn liens

v vI ien lvien liven I ievn Lienv

· · .
· · ·

purposes) .
displayed. Each of the 26 cells of a column contains the appropriate @RE

PLACE formula that inserts a letter into a given position in the

214

test word.
column
insertion

(p
Each

osition
letters

position of the
numbers always
(a,b,c,d •...)

test
b

has

word
egin

its

(a,
with
own

1,2.3,
a);

row.

...)
each
The

has its o
of the
number

wn
26
of

columns in the user's template will depend on the maximal length
of words one wishes to be able to examine.

The first few cell formulas of the template I s first two rows are
listed below; the remaining formulas are

8142: @REPLACE(A141,a,a,l a ") B143:
C142: @REPLACE(A141,1,a,l a ") C143:
D141: @REPLACE(A141,2,a,l a ") D143:

readily deducible.

@REPLACE(A141,a,a,"b")
@REPLACE(A141,1,a,lb")
@REPLACE(A141,2,a,"b")

@REPLACE Template for Letter-Substitutions

A similar spreadsheet template can be constructed for one-on-one
letter replacements in a word, as in constructing word ladders.
Again the template has one row for each letter of the alphabet,
and one column for each letter of the test word, each cell having
the appropriate @REPLACE formula. String1 is the same for every
cell's formula (specify the cell address of the test word), and num2
is the same for every cell's formula (num2=1, so that one letter
of string1 gets replaced). String2 is the same for every cell's for
mula in a given row, with a different letter of the alphabet for
each row; num1 is the same for every cell's formula in a given
column, with a different letter-position of string1 for each column.

After entering a test word, the legitimate derived words are noted.
and each successively entered into the test cell to search for addi
tiona 1 rungs of the ladder. An unused portion of the spreadsheet
can be set aside for recording the results of each pass of a test
word, and the accumulated record subsequently printed for a per
manent record.

The ladder-building template also facilitates searching for hos
pita b le words--words each of whose letters accepts a replacement
that generates a legitimate word. Hospitable words are readily spot
ted, since they must generate at least one legitimate word in every
column. Such a template could facilitate searching for the most
hospita b le word of a given word-length in a list of words.

Both ladder and insertion templates constructed to test longer
words work for shorter words as well. If you enter, say, a four
letter word into the test cell of a template constructed for longer
words, ignore the results in the columns beyond the first five (in
sertion template) or four (ladder template).

Beyond @REPLACE: Spreadsheet Templates for Words-Within-a-Word

There are many ways to use @REPLACE formulas to manipulate
words and phrases in systematic and repetitive ways. In addition,
there are many other string-ma nipu la ting @Functions. Furthermore,
more than one @Function can be used in a single cell formula,
adding to the manipulative power of spreadsheets for complex logo
logical studies.

The sprE
plate for
etc.). A c
ter or cor
@MID(strin~

from strinf
nated by r
tion a. A
string "10g

To extra
letter, usi
extracts " a

The folll
used. Colu
such. Colu
entered in1
the

A

right).

It(

4 4

0 4

4 1

4 1

4 ,

1

2

3

4

5

6

7

8

9

10

Wi th tha
a 11 possib
{Le., whe
of the tes
eight-letter
eight-letter

We will
May 1988,
it. Below
the cell-fc
q uence wit]

Before w
pose a seI
of the test
and is spe,
(viz., Hi)
of letters
to extract,
p, use @!v

8

has its own
of the 26
number of

ima 1 length

'0 rows are
e.

O,"b")
0, "b")
O,"b")

one-on-one
~d la dders.
~ alphabet,
cell having

for every
, and num2

one letter
cell's for

Iphabet for
in a given
h column.

1

2

3

4

5

sare noted,
1 for addi
spreadsheet
s of a test
for a per

6

7

8

9

10

19 for hos
rep laceme n t
~adily spot
d in every
r the most
s.

test longer
ly, a fou r

for longer
st five (in

.-a-Word

manipulate
.n addition,
~urthermore,
~ll formula,
)mp lex logo

215

The
p la te
etc.).

spr
for
A

eadsheet's @MID
generating

cell containing

function can be
words-with in-a-word

one @MlD function

used to con
(pastille:
extracts a

struct a
paste,
specific

tem
pill,
let

ter or consecutive letter-sequence from a test word, as follows:
@MlD{string1,num1,num2), where num2 specifies how many letters
from string1 to extract beginning at string1 's letter position desig
nated by num 1. As before, the first cha racter in a string is posi
tion 0. A cell containing @MID("10gological",4,5) will display the
string "logic".

To extract noncontiguous letters,. combine @MlDs, one for each
letter, using "&" as coupler: @MlD("attend",0,1)&@MlD("attend",5,l)
extracts "ad" from "attend", for example.

The following sample spreadsheet illustrates ways @MlD can be
used. Columns A through C display strings or numbers entered as
such. Column D displays
entered into Column D's
the right).

A B C o
play

word

wordplay play

word

4 4 play

° 4 word

pa

4 1 pa

4 1 pay

4 1 pay

the string values computed by formulas
cells (listed, for expository purposes, to

<-- Ci»tIDC l wordplay".4,4>

<-- Ci»tID(lwordplaY",O,4>

<-- QMIDCC3,4,4>

<-- QMIDCC3,O,4)

<-- QMIDCC3,A5,B5)

<-- QMJD(C3,A6,B6)

<-- QMID(C3,4, 1)&Ci»tID(C3,6, 1)

<-- QMIDCC3,A8,B8)&QMID(C3,A8+2,1)

<-- QMIDCC3,A9,B9)&Ci»tID(C3,A9+2,B9+1>

<-- QMJD(C3,A10,B10)&QMID(C3,A10+2,B10)&QMID(C3,A10+3,B10)

With that background, we can construct a template tha t displays
all possible interior same-order letter-sequences of a test word
(i.e., where the letter-sequences are in the same order as those
of the test word). For illustration, we construct a template for
eight-letter test words (see illustration on the next page). The
eight-letter template works also for shorter words.

We will use "pastille" as a sample test word (see Word Ways,
May 1988, page 85), and set cell HI as the test cell to receive
it. Below HI, starting at H3 and ending at H247, we will enter
the cell-formulas needed to generate every same-order letter se
quence within the test word.

Before we can enter the formulas in Column H, we will first com
pose a separate @MID formula to extract each of the eight letters
of the test word (see be low). String 1 is the same for every letter,
and is specified by the address of the cell containing the test word
(viz., Hl). Num2 also is
of letters to be extracted°to extract, position for
p, use @MlD(H1,O,l); to

always the same, namely 1, the number
from string 1. Num 1 specifies which letter
"p", position 1 for "a", etc. To extract

extract a, use @MID(Hl,l,l); to extract

216

s, use @MlD(H1,2,l); and so on.

Knowing the @MID function for each letter of the test cell's word,

ABC 0 E F G H

pastille

0 1 2 3 4 5 6 past; II

0 1 2 3 4 6 7 pastile

0 1 2 3 5 6 7 pastlle

0 1 2 4 5 6 7 pasille

0 1 3 4 5 6 7 pati lle

0 2 3 4 5 6 7 pstille

1 2 3 4 5 6 7 astille

0 1 2 3 4 5 pasti l

0 1 2 3 4 6 past; l

0 1 2 3 4 7 pastie

0 1 2 3 6 past!

0 1 2 3 7 paste

0 1 2 4 5 pasil

0 1 3 7 pate

0 1 4 5 pail

0 1 4 6 pail

0 1 4 7 paie

0 1 5 6 pall

0 1 5 7 pale

0 1 6 pal

-
1 4 6 ail

1 4 7 aie

1 5 6 all

1 5 7 ale

.
6 7 Ie

<- - test word

2

3

4

5

6

7

8

9

10

11

12

40

41

42

102

103

104

105

106

107

168

195

196

197

198

247

H4: iMID(H1,A4, 1)~IDCH1,B4, 1)~ID(H1,C4, 1)~ID(H1,D4, 1)~ID(H1,E4, 1)~IDCHlfF4f 1)&iMID(H1,G4. 1)

H6: iMIDCH1,A6. 1)~ID(Hl.B6, 1)~ID(H1.C6. 1)~ID(H1,D6. 1)~ID(H',E6, 1)~ID(H',F6, ')~ID(H1,G6, 1>

H8: iMID(H1,A8, l)~ID(H',B8, 1)~ID(H1,C8, 1)&iMID(Hl,D8, 1)~ID(Hl.E8, 1)~ID(Hl.F8, 1)~IO(H',G8, 1)

H10: iM1D(H1,Al0,1)~IDCH1,B10,1)~ID(H1,C10,1)~ID(H1,D10,1)~1D(H1,E10,1>~ID(H1,Fl0,1)

H12: iMID(H1,A12,1)&@MID(H1,B12,1)~ID(Hl.C12,l)&@MID(Hl,D12,{)~ID(Hl,E12,1)~IDCH1,F12,1)

we can ap
of Column
q uences.

To facilit
the sequenc
cell's forml
in Columns
H (see spr
entering th
that cell, t
able, and c

Workin g lef
in "pastille
those num1 ~

comprises n
@MlD(H1,A2

@MlD(H1,E

Note that t
num2 values
the disp lay \

There an
sequences f(
67, 0124567
six-letter i"
and two-lett
binations, I

fewer @MlD
in column I
num1 sequer
A247, 1) &@MI
6 and 7, re

Sections (
sin grows,
gin, are r,
H cell. Exa
The formula
ible from th

The temp
searching f
sion, crea tl
each with a
the Column
to change tl
a ppropria te
ta ined afte
reused, anc
ma nent reco

mailto:iMID(H1,A12,1)&@MID(H1,B12,1)~ID(Hl.C12,l)&@MID(Hl,D12,{)~ID(Hl,E12,1)~IDCH1,F12,1

test cell's word.

word

, 1)&CilHID(H1 ,G4, 1)

,1)&CilHID(H1,G6,1)

,1)&CilHID(H1,G8,1)

(H1,F10,1)

(H1,F12,1)

217

we can appropriately concatenate them to generate in each cell
of Column H a formula for one of the possible in terior letter se
quences.

To facilitate that one-time-only formula entry process, first list
the sequence of letter position-numbers (numls) needed for a given
cell's formula, listing those numls in separate narrow-width cells
in Columns A th rough G to the left of the formula cell in Column
H (see spreadsheet on preceding page). Then, in composing and
entering the required formula of concatenated @MID functions for
that cell, the num1 values for each @MID function are easily avail
able, and can be entered as cell addresses.

Working left to right, the first interior same-order letter sequence
in "pastille" is "pastill", whose letter positions are 0123456. With
those num1s
comprises the

in cells
following

A3 through G3, the required formula
seven concatenated @MID functions:

in H3

@MlD(Hl,A3, 1)&@MID(Hl, B3, 1)&@MID(Hl,C3, 1)&@MlD(Hl,D3, 1)&
@MlD (H 1, E3, 1) &@M 1D(H 1, F3, 1) &@M 1D(H 1, G3, 1)

Note that the coupled @MID functions are identical except for the
num2 val"ues specified as A3, 83. C3, ... A cell formula can exceed
the display width of a cell; typically it can comprise 240 characters.

There are eight possible seven-letter interior same-order letter
sequences for an eight-letter word: 0123456, 0123457, 0123467, 01235
67, 0124567, 0134567, 0234567, and 1234567. There are 28 possible
six-letter interior same-order sequences. For five-, fou r-, th ree
and two-letter sequences, there are 56, 70, 56 and 28 possible com
binations, respectively. The cell-formulas for each set require one
fewer @MID function than the previous set requires. The last cell
in column H, H247, displays "Ie" from "pastille", representing the
num1 sequence 67, and requires only two @MID function s: @MID (HI,
A247,1)&@MID(Hl,B247,1l, where A247 and B247 contain the numbers
6 and 7, respectively.

Sections of the temp late are shown on the preceding page. Mis
sing rows, evident from the missing row numbers at the left mar
gin, are represented by a blank row with a dot in the Column
H cell. Examples of some of the Column H formulas are also shown.
The formulas in the remainder of the cells of Column H are deduc
ible from the pattern shown.

The template provides an interactive computerized method for
searching for words-within-a-word. To test multiple words per ses
sion, create multiple parallel columns to the right of Column H.
each with a test cell in Row 1, e.g., at cells 11,]1. Kl, ... Repeat
the Column H formulas in those columns, modifying the formulas
to change the stringl cell address from HI to that of each column's
appropriate test cell (11, Jl, Kl, ...). If desired, the results ob
tained after each session can be printed before the template is
reused, and the printouts accumulated for later analysis and per
manent record-keeping.

218

Limitations and Possibilities of Spreadsheet Logology

The sprea dsheet app lica tions described were designed to operate
primarily on single words one at a time in contradistinction to
all words in a list at once. Yet even that limited application can
be useful, in particular to logologists who are not computer experts
and therefore would otherwise not have computer assistance of any
kind. While it is possible. for example. to visualize mentally all
possible words generated by letter-insertion into a single five-letter
word, the spreadsheet template for that activity eliminates the te
dium, accelerates the process, and ensures against missing any
of the 156 sequences possible with a 26-letter insertion-set.

Clearly, one expects more from a computer. however. How much
of that "more" the spreadsheet environ men t can provide remains
to be explored. The virtue of the spreadsheet environment is that
it permits the exploration by the non-computer-expert--the a v:~rage

PC user or motivated novice with minimal computer literacy or ty
ping skill.

Spreadsheet models can be designed to operate on all words in
a moderate sized list (e.g .• up to a few thousand). Most spread
sheets fo;: the PC enable importa tion of so-called text-files consist
ing of a columnar word list, whereupon each word appears in a
cell in one column of the spreadsheet. Indeed, many spreadsheets
have built in features for sequentially operating on the entries
of such a list; those features simplify constructing reusable tem
plates for specific applications.

for example, one can easily construct a template to compute the
sum of the numbers corresponding to the alphabetical position of
the letters in each word in a list arbitrarily of 200 words, enough
to examine the words in a Shakespeare sonnet, for example. Where
"a"=l. "b"=2, "c"=3 •... , the template computes the sum of the digi
tized letters of each word in the list (e. g.. "bad"=2+ 1+4=7); call
them Borgmann letter-sums. The results appear in a column adja
cent to the word list column. In two additional adjacent columns,
the template computes for each word the word's letter-count, and
the ratio of the word's Borgmann letter-sum to its letter-count.
If the digitized letters are viewed as "weights", "z" being the
heaviest, "a" being the lightest, the ratio of a word's Borgmann
letter-sum to its letter-count gives a kind of letter-density: in
a sea of "the" s (33/3=11), "dizzy" (90/5=18) is a sinker, "bead"
(12/4=3) is a floater.

for each pa rameter (Borgmann letter-sum, letter-count, letter
den si ty). the temp la te could a Iso be designed to compute the a ver
age value of the parameter for all the words in the list, yielding
a unique set of numeric specifications for the word list. One might
use such a template, for example. to ana lyze the list of words
comprising a Shakespeare sonnet, comparing the va lues wi th those
of the author I s other sonnets or with those of other authors I son
nets.

One can imagine any number of other uses for such a template

in ana lyzin
in the temp
acteristics c
ter of the
word s total,
Those parti<
a re cited c
for word li
available to

Whether t
lists of WOI

mains to· bE
cu It, owing

The edito
dimensions,
networks. S,
able. but I
until now).
to the non
with the mo

Getting Star

Lea rning
requires no
simp Ie word
a typewrite
sheets not
invite new
ment.

An excell
is by expe
have surpa
plates desc
sprea dsheet
or so-ca lled

~d to opera te
jistinction to
plication can
)uter experts
tance of any
mentally all

Ie five-letter
na tes the te
missin g any

set.

r. How much
vide remain s
\ment is that
--the a v.-=rage
:eracy or ty

all words in
Most spread
files con sist
Lppears in a
spreadsheets
the en tries

'eusable tem-

compute the
1 position of
'ords, enough
ample. Where

of the digi
+1+4=7); call
column adja
:ent columns,
r-count, and
letter-count.

~" being the
i I S Borgmann
~-density: in
nker, "bead"

ount, letter
He the a ver
.ist, yielding
;t. One might
.ist of word s
~s with those
luthors 1 son

219

in analyzing word lists of textual ongln. One could also include
in the template additional sections that compute other numeric char
acteristics of the word list, such as frequency of use of each let
ter of the alphabet, the number of unique words, the number of
words total, and the frequency of use of each word in the text.
Those particular applications of spreadsheet analysis of word lists
are cited only to illustrate that a spreadsheet capability exists
for word list analysis, and to emphasize that the capability is
a va i la b Ie to the non-compu ter-expert.

Whether the spreadsheet environment can accommodate very long
lists of words (tens of thousands), such as a dictionary list, re
mains to be explored. Realization of this capability may be diffi
cult, owing to current spreadsheet size limitations.

The editor asked whether spreadsheets can have more than two
dimensions, a fea tu re that might fac ilita te explorin g complex word
networks. Severa 1 multidimentiona 1 sprea dsheets are, in fact, a vail
able, but I have had no opportunity to test them (or reason to,
until now). Both are purportedly
to the non-computer-expert, especially
with the more common two-dimensional

user-friendly,
to someone

spreadsheet.

i.e.,
already

accessible
familiar

Getting Started

Learning to use a PC spreadsheet program for logological studies
requires no more computer literacy than that required to use a
simple word processor and no more skill than that required to use
a typewriter. With their string-manipulative functions, PC spread
sheets not only provide compu ter power to the logologis t, but a Iso
invite new forms of wordplay specific to the spreadsheet environ
ment.

An excellent way to learn how to use the electronic spreadsheet
is by experimentation; in a few hours, a motivated novice will
have surpassed the elementary skill required to set up the tem
plates described above. There are many commercially available
spreadsheet programs, some under $100, and severa 1 public-domain
or so-called shareware programs avail able for minimal cost.

h a template

