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SECTION 13

Mixtures and mycorrhizas: the manipulation of

nutrient cycling in forestry

A H F Brown and J Dighton

Institute of Terrestrial Ecology, Grange-over-Sands

131

Although, in agriculture, soil fertility is primarily main-
tained by frequent fertilizer applications, this is not
usually the case with-forestry. The nutrients required
by forest trees are normally provided by nutrient cycl-
ing, which is the circulation of nutrients in the forest
ecosystem. It is only where this supply is seriously
inhibited that repeated fertilizer applications are re-
quired. The increasing cost of fertilizers and their
potentially environmentally undesirable effects, de-
scribed by Hornung and Adamson (see page 55), may
make their use in forestry even less attractive in fu-
ture. Thus, it is important to see if we can, where
necessary, boost fertility levels by enhancing nutrient
cycling instead.

Introduction

This paper describes two aspects of research which
are based in Cumbria, at the Merlewood Research Sta-
tion of -the Institute of Terrestrial Ecology (ITE), but
which have a very wide application. Historically, much
of Merlewood's research has centred on the cycling of
nutrients through woodland ecosystems. In the pre-
sent paper, we aim to show the practical relevance of
some of this work, by indicating how the forest mana-
ger may be able to manipulate nutrient cycling to im-
prove plantation production.

A high proportion of the nutrients taken up by trees
end up in the foliage, where they service photosynth-
esis and other physiological activities. Following leaf-
fall, cycling of the nutrients remaining in the leaf litter
depends on two main processes:

i. the release of nutrients by the decomposer activities
of various organisms in the soil and litter (of trees and
other plants): the adjacent planting of two different
species of trees (tree mixtures) appears to enhance
these activities.

ii. the ability of the trees to locate and take up these
nutrients: manipulation of mycorrhizas may enhance
this process. Mycorrhizas are an intimate symbiotic
relationship between plant roots and fungi which are
common on the majority of higher plants throughout
the world.

13.2 Tree mixtures

Although there has been a recent renewal of interest
in the possible benefits of tree mixtures, the idea that
one species benefits from the presence of an admixed
‘nurse’ species is an old one. What sorts of mixtures
lead to these benefits? Do all mixtures have this

effect? What processes and mechanisms are . in-
volved?

The joint ITE/Forestry Commission mixtures and
monocultures experiment at Gisburn (Forestry Com-
mission’s Bowland Forest in north-west England) pro-
vides some answers to these questions. Established
in 1955, it contains four tree species — Scots pine
(Pinus sylvestris), Norway spruce (Picea abies), sessile
oak (Quercus petraea) and alder (Alnus glutinosa) —
planted both as monocultures and as all possible two-
species mixtures. The resulting ten treatments are re-
plicated three times-in 0.2 ha plots (Brown & Harrison
1983). The site has never been fertilized.

Height measurements of each species, repeated at
intervals since planting, show that several different
sorts of mixture effect occur; not all combinations are
beneficial in terms of overall growth of the mixture.
Data for the most recent measurements (age
26 years) are given in Table 1 (see also Lines 1982).

Table 1. Dominant heights (m) of four tree species at 26 years
when grown pure and mixed: Gisburn, 1981. Heights in
italics are for pure stands. Data for a given measured
species (ie within columns) with different suffix letters (a,
b, ¢, d) are significantly different at P <0.001, except for
differences between spruce-with-alder and spruce-with-

pine in which P <0.01

In mixture Measured species

with Spruce Qak Alder Pine
Spruce 8.80° 5.67° 7.678 11.54
Oak 8.76° 6.58° 7722 11.34
Alder 9.84° 7.29° 8.24° 11.12
Pine 10.62¢ 8.82¢ 9.31°¢ 11.12

NOTE: Some of these plot differences, although statistically signi-
ficant as indicated, cannot strictly be ascribed to treatment effects
because of the small number of replicates (blocks). Only differences
associated with the beneficial effect of pine are rigorously referable
to a treatment effect

Admixed pine stimulates height growth of all three
other species without detriment to its own perform-
ance, whilst alder, although enhancing growth of cak
and spruce, does so only at the expense of its own
height growth. When oak and spruce are in mixture
together, each grows worse than when grown separ-
ately.
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Studies at Gisburn into the mechanisms involved in
the mixture effects have- been confined to the
influence of admixed species on spruce. To identify
whether improved height growth of spruce in the
mixed stands was caused by improved nutrition, foliar
analysis of the spruce, in pure and mixed stands, was
carried out for nitrogen (N), phosphorus (P) and potas-
sium (K), the three nutrients most commonly in short
supply in forests. Results correspond with findings
from other sites (O'Carroll 1978; Mcintosh & Tabbush
1981; Taylor 1985), namely that N nutrition is a signi-
ficant factor in the mixture effect. The improved height
growth of spruce, in mixture with pine and alder, was
associated with the highest levels of foliar N; the poor-
er growth of the pure spruce and of spruce admixed
with oak was reflected in lower N concentrations
(Figure 1). In addition, our results indicate that the bet-
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Figure 1. Relationship between tree heights and foliar nit-
rogen {means per plot for each of three blocks): Gisburn,
1981

ter growth is also associated with higher foliar P
(Figure 2). On the other hand, there was no rela-
tionship between foliar K and spruce heights.

In the case of the spruce trees which benefit from the
presence of pine and alder, where does the extra N
and P come from? The fact that the nutritional benefit
appears to be confined to these two elements sug-
gests an organic matter source. As the rate of break-
down of such material is known to limit cycling of
these two nutrients more than any others, an estimate
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Figure 2. Relationships between tree heights and foliar phos-
phorus (means per plot for each of three blocks): Gisburn,
1981. Symbols as Figure 1
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Figure 3. Layout of a mixed plot at Gisburn. Away from the
edge of the plot each species is arranged in alternating
.blocks of three trees by six trees
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was made of whether the biological activity which is
responsible for decomposition was different in the
pure and mixed stands of spruce.

The mixed plots at Gisburn (Figure 3) consist, for the
most part, of groups of 18 trees of one species alter-
nating in each direction with similar groups of the other
species. Hence, it is possible to sample the soil within
a spruce mini-plot, beneath a spruce canopy, both in
the pure and mixed stands. The activity of both earth-
worms and decomposer micro-organisms are impor-
tant in organic matter turnover, and hence in the re-
lease of the nutrients contained within such material.
Both have been studied within the spruce mini-plots of
the mixtures, and in monocultures, and both showed
appreciable (and statistically significant) effects of mix-
tures. Figure 4 indicates the greatly increased pre-
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Figure 4. Mean biomass of earthworms per trap, in pure and
mixed spruce: Gisburn, 1981, Blocks Il and Ilf combined

sence of earthworms within the spruce parts of the
mixed stands. Microbial activity was measured in-
directly by determining the degree of rotting of buried

pieces of a standard cotton cloth; this is an index of
decomposer potential (Latter & Howson 1977). Cotton
is a cellulosic material, and acts as a standardized and
convenient analogue of forest litter. In this method,
the degree of rotting is measured, after retrieval, by
testing for loss in tensile strength. Compared with
pure spruce, the soils of the spruce mini-plots in the
mixed plots had a greater capacity to rot cotton cloth
(Figure 5) (see also Brown & Howson 1988). From
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Figure 5. Changes with time in tensile strength of buried
cotton cloth under spruce (pure and mixed). Gisburn, 1981,
all depths and blocks combined

these results, it may be inferred that the increased
biological activity in mixed stands has broken down the
organic matter more quickly, releasing more N'and P.
In confirmation of this view, preliminary measure-
ments of extractable nitrate-N — again from under the
spruce portions of the mixed stands — showed in-
creased levels where alder is present, and very
marked increases in the pine mixtures. Similarly, use
of a method to assess the availability of P, using
radioactively labelled P, showed a close parallel be-
tween available P and available nitrate (Brown & Harri-
son 1983).

All the evidence, therefore, supports the view that the
presence of the ‘nurse’ species stimulates biological
activity and nutrient availability in a way not yet fully
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understood: in other words, it enhances nutrient re-
cycling, and hence crop growth. That the effect is suf-
ficiently- marked to obviate the need for fertilizer ap-
plications has been shown very clearly by some Fore-
- stry Commission experiments (Taylor 1985), the re-
sults from one of which are presented in Figure 6. At
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Figure 6. Height growth of Sitka spruce planted on deep peat

at Inchnacardoch, Scotland (Taylor 1985)

SS—N Pure Sitka spruce without nitrogen fertilizer

SS+N Pure Sitka spruce with three-yearly nitrogen fertilizer
applications

SS/LP Sitka spruce in mixture with lodgepole pine (no
nitrogen fertilizer)

SS/JL  Sitka spruce in mixture with Japanese larch (no
nitrogen fertilizer)

this site, availability of nitrogen was so low that adequ-
ate growth could only be achieved in pure Sitka spruce
(Picea sitchensis) by repeated (three-yearly) additions
of nitrogenous fertilizer. On the other hand, admixed
lodgepole pine (Pinus contorta) or Japanese larch
(Larix kaempferi) had fully substituted for the fertilizer
additions by years 12—15.

Although not all combinations of mixtures are equally
beneficial, there may often be circumstances where
appropriate mixtures could be beneficial — even on
sites such as Gisburn which are not markedly nutrient
deficient. Judging from the known examples of suc-

cessful mixtures, we should perhaps expect the best
effects when a pioneer tree species provides the
‘nurse’ for a more demanding species.

13.3 Mycorrhizas

Can we also alter the ability of the tree roots to absorb
nutrients by manipulating their mycorrhizas?

We are concerned, chiefly, with the ecto- or sheathing
mycorrhizas of trees. These usually involve the asso-
ciation of a toadstool-forming fungus (Basidiomycoti-
na} and the root, where the fungus forms a layer or
sheath around the fine roots and penetrates between
the cells of the cortex. There are benefits of the asso-
ciation to both partners: the tree provides carbohy-
drates for fungal growth, and the fungus increases the
nutrient capture capabilities of the tree root system. In
many cases, this symbiosis can result in a tree seed-

ling growing faster and having a higher nutrient con-

tent than a similar seedling growing in the absence of
the fungus. If selection of fungi and artificial inocula-
tion of ‘efficient’ strains or species could be increased
to a commercial scale, this increased growth and im-
proved nutritional status could be exhibited in in-
creased forest yield. How can a selection of the fungus
be made? In essence, there are two potential ways in
which this can be done. First, we may set up large-
scale trials, using known host tree species in combina-
tion with as many fungal species and strains as we can
isolate and grow in culture. With thousands of fungal
species and a number of strains per species it would
be an overwhelming task. The second approach would
be to narrow down this choice, already reduced some-
what by those fungi we are not yet capable of growing
in artificial media, by investigating the ecology and
ecophysiology of the more common fungal symbionts
we encounter.

One of the interesting points regarding mycorrhizal de-
velopment on trees is that the populations of fungi
associated with the roots change with increasing age
of the tree (Mason et al. 1982). This change has been
noted for silver birch (Betula pendula), planted on ex-
agricultural land in trial plots, where observation over
ten years has shown that genera such as Hebeloma,
Laccaria and Inocybe are dominant on young trees,
while Cortinarius, Russula and Amanita are dominant
on older trees. Similar changes in population are found
in plantation forests of Sitka spruce and lodgepole pine
where stands of differing age were compared (Dight-
on, Poskitt & Howard 1986). Here again, genera such
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Figure 7. Changes in dominance of mycorrhizal fungal partner with increasing age of silver birch and lodgepole pine stands,
. based on observations of fruitbodies {Mason et al. 1982, Dighton, Poskitt & Howard 1986)

Lr = Lactarius rufus R = Russula emetica © L = Laccaria spp. . . } mycorrhizal

I = Inocybe longicystis C = Cortinarius croceofolius P = Paxillus involutus fungi

Cl = Clitocybe sp.

N = Nolanea cetrata

G = Galerina sp.
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as Laccaria and Lactarius were found in young stands,
a wider spectrum of species of Lactarius, Inocybe and
Cortinarius in stands at canopy closure, and a reduced
flora of Russula and Paxillus in older, mature stands
(Figure 7). The successions we have described are not
unique to the UK; similar trends having been shown in
France and New Zealand, and they suggest that some
common underlying process drives this succession
(Chu-Chou 1979; Chu-Chou & Grace 1981; Mosse,
Stribley & Le Tacom 1981). If the succession is depen-
dent on soil or tree factors which alter during forest
stand growth, then it is important, for potential man-
ipulation of the mycorrhizal flora, to select fungi from

appropriate stages of the succession (ie it may not be

practicable or suitable to use a ‘late-stage’ fungus on a
young transplant tree).

What evidence do we have that there might be
changes in the physiology of mycorrhizal fungi from
different stages in the succession which would affect
their efficacy? Evidence comes to us from a number of
different lines of work looking at different mycorrhizal
species. This evidence is far from complete and does
not encompass the entire range of potential fungi by
any means. One piece of evidence suggests that the
tree’s supply of carbohydrate can influence the fungal
partner with which it can associate (Dighton & Mason
1985). "Early-stage’ fungi are able to grow on media
containing low levels of carbohydrate, as would be ex-
pected to be available from small trees. Later-stage
fungi have a much greater demand for carbohydrates
which, it is assumed, can be supplied from a larger
tree (Table 2). Mycorrhizal fungi also vary in their ability

Table 2. Growth of mycorrhizal fungi at three glucose levels (num-
ber of crosses is arbitrary scale of growth from 1 to 4

based on colony diameter on agar)

Glucose level
01gl™? 1.0gl17? 1091
Early Hebeloma spp. ++++ ++ +
Leccinum spp. + ++ +++
_ Late Amanita muscaria + ++ +++(+)

to supply nutrients to their tree host. In an experiment
with mycorrhizal lodgepole pine seedlings, radioactive-
ly labelled phosphorus was supplied to the peat in
which they were growing. The four different mycor-
rhizal fungi caused different rates of incorporation of
phosphorus into the plant tissues, with two of the

fungi giving lower tissue concentrations than non-
mycorrhizal seedlings and two giving greater tissue
concentrations (Figure 8). Such differences imply con-
siderable variability between fungal symbionts, in ex-
tracting nutrients from soil solution.

P uptake (pg P g~ x 109
il

Paxillus
muscaria involutus

Suillus Hebeloma Amanita

Control
: luteus crustu.

Figure 8. Uptake of phosphorus by lodgepole pine seedlings
from peat inoculated with different mycorrhizas. Open bars
represent shoots, hatched bars roots

Following afforestation, the availability of nutrients in
the soil solution becomies increasingly dependent on
the rate of breakdown of recalcitrant organic matter as
the forest stand matures. Dighton and Mason (1985)
put forward a diagrammatic model of such changes in
their discussion of mycorrhizal dynamics in forest de-
velopment (Figure 9). Where litter accumulation
occurs, it would be advantageous for the tree if both
stages of nutrient cycling (release of nutrients from
organic matter by saprotrophic (decomposing) organ-
isms and-transfer into the tree roots via mycorrhizas)
could be performed by-the same fungal organism. This
idea of “direct cycling’ of nutrients was first proposed
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Resource quality to decomposers

Litter residence time

Figure 9. Diagrammatic representation of forest succession showing changes in ground flora and mycorrhizal fungi related to
changes in resources entering the decomposer community (Dighton & Mason 1985)

by Went and Stark (1968), based on observations in
tropical forests. There is evidence from our work and
in the literature that certain mycorrhizal fungi, particu-
larly under stressed environmental conditions, are able
to act as decomposers. Dighton (1983) compared the
phosphatase and phytase enzyme activity of known
mycorrhizal and saprotrophic fungi, and found that
some of the mycorrhizal species were capable of pro-
ducing larger amounts of these enzymes than the sap-
rotrophic fungi (Table 3). This finding implies a poten-
tial of these fungi to degrade complex organic phos-
phates. Similar studies have been made (Ho & Zak
1979; Alexander & Hardy 1981) to show phosphatase
activity in other mycorrhizal fungi. Similarly, Giltrap
(1982) has shown that polyphenol oxidases are pro-
duced by the mycorrhizal fungus Lactarius spp.; Nor-
krans {1950), Oelbe (1982) and Linkins and Antibus
{1981) have shown cellulase activity of Tricholoma and
willow (Salix spp.) mycorrhizas.

For selection of potentially suitable mycorrhizal spe-
cies/strains to enhance tree crop yield, a number of
factors must be considered, many of which depend on

Table 3. Acid phosphatase production by fungal mycelia in
Hagem'’s medium with 10 ppm orthophosphate-P or in-
ositol hexaphosphate-P after 42 days’ growth at 20°C
(Dighton 1983)

Phosphatasé production
{rg phenol mg~" mycelium)

Inositol

Fungus Orthophosphate-P  hexaphosphate-P
Hebeloma crustuliniforme 29.8 23.9
Lactarius rufus 26.3 22.2
Paxillus involutus 17.1 10.1
Lactarius pubescens 12.8 7.6
Amanita muscaria 5.8 8.8
Suillus luteus 5.0 9.2
Marasmius androsaceus (s) 20.0 1.7
Mycena galopus (s) 0.9 0.2

(s) = saprotrophic fungus, the remainder are mycorrhizal

soil properties. From what stage of the succession
should the fungi be selected? Have they been proven
to enhance growth/nutrient content of the tree species
under consideration? Are they able to compete against
indigenous mycorrhizas or are they rapidly replaced?
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Will the fungus survive in the soil type in which it is to
be placed? If the soil is highly organic, containing recal-
citrant litters, has the fungus the enzyme potential to
act as a decomposer? What is the potential outcome
of competition between the mycorrhizal fungus and
indigenous saprotrophic fungi? Obviously, we are only
just beginning to unravel some of the answers 1o
these complex questions.

Nevertheless, present knowledge of the principles in-
volved has now been applied to field trials near Hex-
ham and near Jedburgh. Forest transplants were in-
oculated with selected mycorrhizal fungi prior to plant-
ing. Although the trials are only three to four years old,
preliminary results for certain of the mycorrhizal selec-
tions look very promising, showing enhanced growth
rates compared with the control transplants. The latter
are likely to have mycorrhizas appropriate to a nutrient-
rich mineral nursery soil, which is unlikely to be found
in most field situations. It is now important for us to
examine the potentially useful fungi to discover their
physiological attributes which make them so success-
ful.

13 4 Conclusnon

Research into both tree mixtures and mycorrhizal in-
oculation is continuing at Merlewood and -other re-
search establishments. In the case of tree mixtures,
the purpose is to understand fully the soil processes
responsible for the success of this existing manage-
ment practice, so that its full potential may be realized.
fn the case of mycorrhizal inoculation, the mechanisms
by:-which it would operate have been defined from the
outset, and research is directed-towards developing a
practical management technique. Both research areas
have_the common aim of enhancing woodland growth
by manipulating nutrient cycles.
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