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Preface

My PhD project is focused on the implementation of new algorithms in the
field of quantum chemistry and the related application in the field of thermo-
electric materials. The project was carried out within the Theoretical Chemistry
Group of University of Turin whose main interest is the maintenance and devel-
opment of the CRYSTAL program.[1]

Regarding the code development, two main algorithms have been implemented
in this work: a basis set optimizer and a tool to perform excited states in solids.

The basis set optimizer is a technique for the optimization of basis set expo-
nents and contraction coefficients, that is based on the Direct Inversion in the
Iterative Subspace (DIIS) technique[2, 3, 4] and actually quite similar to its ge-
ometry optimization variant GDIIS.[5]. The algorithm was implemented in the
CRYSTAL code and a detailed description of the method and some applications
on prototypical solids are presented in this thesis and in the paper “Gaussian
Basis Sets for Crystalline Solids: All Purpose Basis Set Libraries vs System Spe-
cific Optimizations”.[6]

Once the algorithm was fully tested, we decided to apply it to a more extended
set of tests. In 2016 Lejaeghere, Kurt, et al. (Reproducibility in density functional
theory calculations of solids. Science 351,6280)[7] presented a work focused on
density functional theory and the definition of a method to demonstrate the re-
producibility among many of the most widely used DFT codes. In particular, in
this work equations of state (EOS) parameters are used by means of comparison
and they report results of a community-wide effort that compared, 15 solid-state
codes, using 40 different potentials or basis set types, to assess the quality of the
Perdew-Burke-Ernzerhof (PBE) functional for 71 elemental crystals. We tried to
reproduce this work by using CRYSTAL and the gaussian basis sets optimizer.

In the field of the DIIS-methods, we also tried to implement in the CRYS-
TAL code the GDIIS method, thus the geometry-optimization variant. In order
to verify the efficiency of the implementation many tests were performed on both
molecular and crystalline structures. The efficiency of the algorithm is presented
with respect to the regular optimizer commonly used in the CRYSTAL code.
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The second algorithm implemented in the CRYSTAL code regards the study
of excited states in the field of quantum chemical modelling. In fact, while for
ground states calculations a wide variety of methods have been implemented
throughout the years, excited states are still under investigation in many ways. In
this work we present the implementation in the CRYSTAL code of the Maximum
Overlap Method (MOM).[8] The technique is rather simple: orbital occupations
are enforced in a specific configuration against the Aufbau principle. In this way
excited states can be easily studied at the Hartree-Fock or DFT level with the
same computational cost as a ground state. The features and performance of
the method are presented through its application to prototypical solids such as
bulk silicon and diamond. General considerations and results about the method
are reported in this thesis and in the submitted article “Electronic Excitations in
Crystalline Solids through the Maximum Overlap Method” reported in Appendix
12.3.

Besides code developments, during my PhD I had the possibility to study
the thermoelectricity of new generation materials. In fact, thermoelectricity has
become an important aspect for the promotion of the sustainable development,
since the possibility to directly convert waste heat into electricity. Moreover,
simulations play an important role in predicting new materials and in particular
CRYSTAL can perform directly thermoelectric properties without any external
program [9]. Even if the calculation is rather simple to be implemented, the basis
set quality has an important impact on the properties evaluation, above all on
thermoelectrics since strictly dependent on the quality of the electronic structure.
In this regard, a study on a specific family of thermoelectric materials has been
done: Half Heusler (HH) alloys starting from the most known TiNiSn compound
and extending the study to TiPtSn, TiPdSn and Ta based compounds as well.
Results and discussions about Ti based HH and the role of defects in these sys-
tems are summarized in this thesis and can be found in the published paper “Key
Role of Defects in Thermoelectric Performance of TiMSn (M=Ni, Pd, and Pt)
Half-Heusler Alloys”.[10] This paper is the result of a collaboration with Prof.
Antti Karttunen of the Department of Chemistry and Materials Science at the
Aalto University in Helsinki, Finland. In fact, in 2019 I won CSC grants re-
sources for travel-accomodation and 100,000 CPU hours with the HPC-Europa3
Transnational Access programme. Thanks to this project I had the possibility to
visit Finland and I spent around one month abroad at the Aalto University.

Finally, a preliminary overview about a new family of materials that are pre-
dicting to be particularly interesting from the point of view of thermoelectricity is
presented: the ullmannites. In this regard, four compounds are studied: NiSbS,
NiSbSe, PdSbS and PdSbSe. Thermodynamic stability, electronic structures and
thermoelectric properties are presented as well.

In more details, this thesis is characterized by two main parts structured as
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follows:

PART I - Code Development

• Chapter 2: general overview about the CRYSTAL program

• Chapter 3: Basis Set Optimization Implementation

• Chapter 4: Basis Set Optimization Benchmark on Elemental Solids

• Chapter 5: Direct Inversion of the Iterative Subspace for Geometry Opti-
mization

• Chapter 6: Maximum Overlap Method

PART II - Thermoelectrics Materials

• Chapter 7: Half Heusler Alloys

• Chapter 8: Ullmannites

Appendices

• Appendix A: technical and detailed description of the Basis Set Optimiza-
tion algorithm.

• Appendix B: technical details about Maximum Overlap Method algorithm.

• Appendix C: papers published, submitted and in preraration.
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Chapter 1

Introduction

Computational materials science a branch of materials science showing an
increasing success nowadays. In fact, the development of efficient tools and the
enhancement of the computer capacities result in a growing interest about this
field. In particular, the increasing availability of very fast computers and the de-
velopment of efficient algorithms allows for the evolution of in silico simulations
in many research fields. Fast High Performance Computing (HPC) systems allow
for solving complex problems impossible in the past, paving the way to an ex-
ploratory research that in a laboratory and under common physical conditions are
usually not feasible. This rather new approach established an interdisciplinary
research bringing together such diverse fields as physics, mathematics, chemistry,
biology, engineering and medicine. Evidence of this is the increasing number of
scientific publications that testifies the important impact of this approach.

Regarding the computational resources, HPC, performed through supercom-
puters heading towards hexascale, is at the moment the best option for running
quantum-mechanical simulations. It refers to computing systems with extremely
high computational power that are able to solve demanding and hugely complex
problems. Besides HPC, GPU (graphics processing unit) computing is also a
rather new tool for computational materials science. A GPU is usually used as
a co-processor and proved to be an efficient accelerator for CPUs usual perfor-
mance.

Concerning the state-of-art of quantum chemistry and solid-state programs,
many codes have been developed (either open source or commercial), each one
with different features and strong points. The programming language usually
adopted is Fortan or C++, but in more recent years even Python has been
used as well (PySCF[1]). Moreover, one of the main distinguishing characteristic
among these programs is the basis set adopted. For solid-state calculations[2],
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plane waves[3, 4, 5], atom-centered Gaussians[6] (or their combinations[7]), and
numerical basis sets[8, 9], are all popular choices as basis sets. Plane waves and
gaussian functions are the most known ones, and depending on the choice, the
code will have specific strong points and limitations.

In the field of quantum chemical modelling, CRYSTAL is a well-known ab ini-
tio code for solid-state simulations [6]; it is suited to evaluate not only energy and
equilibrium geometry, but also many other essential properties for the material
characterization: vibrational properties, thermal properties, linear and nonlinear
optical properties, strain properties, electron transport properties and X-ray.

During my PhD, carried out within the Theoretical Chemistry Group of Uni-
versity of Turin, I was involved in many projects regarding the development and
improvement of this software along with application on new generation materials
in the thermoelectric field.
The peculiarity of the CRYSTAL program is that Gaussian Type Functions
(GTF) are used as basis sets. Although Gaussian type basis sets are less com-
monly adopted for the quantum chemical treatment of solids, with respect to
plane waves, Gaussian functions have the great advantage of allowing to transfer
to the solid state a large part of the technology and knowledge that is the legacy
of several decades of advances in molecular quantum chemistry and to retain the
chemical intuition when looking at the electronic charge partition of the investi-
gated system. The local nature of gaussian functions and the strict dependence
on the atomic positions, allows an easy chemical interpretation of the results.
Moreover, they are rather suitable to the description of 3D, 2D and 1D systems
as well as an easy and relatively cheap use of hybrid functionals. The price to
pay is the mandatory definition of a basis set for each atomic species, that is
ultimately left in the hands of the end user. Thereafter, when dealing with the
quantum chemical modeling of crystalline solids, the existence of various types of
chemical bonding is clearly evident and this variety reflects the choice of the type
and quality of the basis set adopted in the mathematical form of the wave func-
tion when solving the Schrödinger equation within periodic boundary conditions
(i.e., Bloch functions)[10, 11, 2]. This situation calls for a different approach to
the choice of basis sets, namely a system–specific optimization of the basis set
that requires a practical algorithm that could be used on a routine basis. To this
purpose we developed a technique called BDIIS (Basis Set Direct Inversion of the
Iterative Subspace) to automatize the calibration of exponents and coefficients
in a basis set. This kind of approach is absolutely new and it has never been
attempted before.

Another important aspect that will be discussed in this work of thesis it is the
excitation in solids. Whereas ground state calculations and equilibrium proper-
ties are widespread methods (HF and DFT[12, 13]), the study of excited states
is not a straightforward. Many attempts have been developed: Multi Reference
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Configuration Interaction (MRCI)[14], Multi Reference Møller - Plesset Perturba-
tion theory (MRMP)[15], Configuration Interaction Single-excitation (CIS) and
with perturbative treatment of doubles (CIS(D))[16], Time Dependent DFT (TD-
DFT)[17], many - body Green’s functions methods (GW)[18] and many others.
Nevertheless, the methods available are rather expensive computationally and
their application is usually limited to atoms, molecules or small clusters[17, 15].
Thereafter, very few or even absent implementations on solid-state are nowa-
days available. In this work of thesis we have implemented in the CRYSTAL
code a simple technique to enforce orbital occupations, bypassing the “natural”
occupation dictated by the Aufbau principle. The method is not new in its fun-
damentals and is commonly called called Maximum Overlap Method (MOM); a
recent discussion can be found in Gilbert et al.[19]. However, the application of
the method to periodic systems is scarce in the literature, and we were not able
to find a reference reporting details of its periodic implementation or results on
crystalline solids. From a technical point of view, the algorithm tries to maximize
the overlap between the occupied orbitals with those of the preceding iteration
or of a reference state during the SCF iterations. This procedure leads the SCF
towards excited state solutions instead of ground state ones, or can be useful in
order to stabilize the ground state solution preventing the intrusion of numerical
instabilites in the density matrix. Promoting an electron from an occupied to a
virtual orbital is then a sufficient guess to start an SCF calculation with MOM.
In fact, the algorithm will keep the excited configuration.

The last topic that will be discussed in this work of thesis regards thermoelec-
tricity, thus the direct conversion of heat into electricity. As mentioned above,
ab initio or first principles methods, such as provided by the Density Functional
Theory (DFT), are widely accepted as the best compromise between cost and ac-
curacy above all in materials characterization. Moreover, in silico simulations are
important in designing new and high-performance thermoelectric (TE) materials.
Among the properties that can be simulated[20], obtaining an estimate of conduc-
tivity and thermoelectric power of materials has become of primary interest for
the technological development. In fact, in recent years, thermoelectrics has made
remarkable progress for its potentially broad applications in refrigeration, waste
heat recovery, solar energy conversion, etc [21, 22, 23]. Thermoelectric energy
generation (TEG) might be the alternative way to fight against global warming
as this method does not require fossil-fuels and it is environmental friendly and
extremely reliable. Since the electrical transport properties are directly deter-
mined by the band structures, a proper understanding and description of the
band structure is suggested. In this regard, the quality of the basis sets used for
the simulations is extremely important to optimize and design novel functional
materials, hence the BDIIS algorithm was key to a successful study of these
materials.
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Chapter 2

The CRYSTAL program

CRYSTAL is a program for solid-state quantum-mechanical ab initio simu-
lations. Historically speaking CRYSTAL was one of the first codes devoted to
periodic systems and to be distributed publicly in 1988 through the Quantum
Chemistry Program Exchange. [1, 2]. Since then, other releases have followed
(1992, 1995, 1998, 2003, 2006, 2009, 2014, 2017) till today. It adopts atom-
centered Gaussian-type functions as a basis set, which makes possible all-electron
and pseudopotential calculations. Systems of different periodicity can be stud-
ied: 0D molecules, clusters and nanocrystals, 1D polymers, helices, nanorods, and
nanotubes, 2D monolayers and slab models for surfaces and 3D bulk crystals.[3,
4] Hartree Fock and density functional theory calculations can be performed
with a variety of functionals available: local-density (LDA), generalized-gradient
(GGA), meta-GGA, global hybrid, range-separated hybrid, and self-consistent
system-specific hybrid. The efficient implementation of exact nonlocal Fock ex-
change enables to use hybrid functionals with a modest computational cost.
A rather wide variety of properties can be computed including open-shell sys-
tems: geometry optimization, vibrational properties, thermal properties, linear
and nonlinear optical properties, strain properties, electron transport properties
and X-ray.

2.1 CRYSTAL in the framework of ab initio sim-
ulation: a Gaussian Based Code

While many ab initio solid state codes are based on plane waves, CRYSTAL
uses a Gaussian-Type basis set, thus local functions expressed as linear combina-
tion of a certain number of Gaussian type functions (GTF).
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The CRYSTAL program

In mathematical terms, in the linear combinations of atomic orbitals (LCAO)
framework, the crystalline orbitals ψ are treated as linear combinations of Bloch
functions (BF) φ that are, in turn, defined in terms of local atom-centered func-
tions (AO) ϕ:

ψi (r; k) =
∑

µ

aµ,i (k)φµ (r; k) (2.1)

φµ (r; k) =
∑

g

ϕµ (r−Aµ − g) eik·g (2.2)

in which g is a direct space lattice vector, k is the lattice vector defining a
point in the reciprocal lattice, A are the coordinates of the atom in the reference
cell on which the AO ϕ is centered, a are the variational coefficients. The sum
over µ is limited to the number of basis functions in the unit cell. Thus Aµ

is the centroid of the orbital µ on the atom at position A. The sum over g
is, in principle, extended to all the (infinite) lattice vectors of the direct lattice,
therefore suitable screening techniques have to be adopted.[1, 5, 6]

As usual, the AOs can be defined as a contraction of a number n of primitive
Gaussian–Type Functions (GTF) G centered on the same atom,

ϕµ (r−Aµ − g) =

nG∑

j

djG(αj ; r−Aµ − g) (2.3)

in which dj are the contraction coefficients and αj the exponents of the radial
component of the function. The number, type and contraction scheme of the
Gaussian basis set define its quality. The flexibility of Gaussian functions allows
for an accurate description of the system chemistry and a relatively good speed
of two-electron integral evaluation.[7]

While in molecular quantum chemistry Gaussian Type Fuctions (GTF) are
almost unanimously accepted as the best choice, it is not so for solids. Just
to name a few, Gaussians, plane waves (PW), eventually projector-augmented
(PAW), and numerical basis sets are all more or less popular choices, alongside
their possible combinations. It goes beyond the scopes of this discussion to thor-
oughly address all the pros and cons of each of them, therefore in the following
only the features of GTF used in CRYSTAL and plane waves PW are briefly
compared.

• Local Nature of Gaussian Functions
In CRYSTAL periodic boundary conditions can be easily applied in all
directions (1D, 2D, 3D) and the true dimensionality of the system is al-
ways kept, without any spurious effects. They depend on atomic positions,
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similarity with quantum chemical codes and allow for an easy chemical in-
terpretation of the results. On the other hand, plane waves are intrinsically
periodic in three dimensions. In fact, in any case a 3D box is defined filled
with plane waves uniformly. This implies the mandatory expansion of the
aforementioned box along a specific direction when dealing with lower di-
mensionality than 3D one, creating in this way sufficient void space around
the system.[8] Moreover, although PW permit a less demanding description
to metals (3D) and of delocalized electrons, PW are completely independent
of atomic positions.

• Completeness and Quality of Gaussian Functions
For PW the mathematics is relatively easy, since the overall quality is due
to the definition of a single parameter called cut-off energy: higher is this
parameter, better is the quality. For GTF it is more complicated. Al-
though a wide choice of gaussian basis sets is available for molecules, that
is not true for periodic systems. In fact, a direct transfer of basis set from
molecule to periodic system is not recommended due to the most diffused
functions that can be very critical in systems with high density. In fact,
the Bloch functions constructed from diffuse Gaussians tend to be very
similar, leading to a nearly singular overlap matrix that in turn creates se-
rious numerical problems in the basis functions orthogonalization. To avoid
these linear dependencies, an appropriate definition of the gaussian basis
set is mandatory, but it is not a straightforward and many times requires
experience.[9] Over the years specific basis sets have been implemented for
periodic systems and some of them are available in the CRYSTAL website
(https://www.crystal.unito.it).

• Hybrid Functionals
With GTF it is relatively cheap and easy the use of hybrid functionals
(e.g. B3LYP, PBE0 and HSE06). These functionals are known to improve
the description of electronic properties and usually be much closer to what
should be considered the correct result. PW instead have extremely high
computational cost in this respect.

• Pseudopotentials
Both Gaussians and PW based codes allow for an implicit description of core
electrons by using pseudopotential. This turns out to play a fundamental
role in the description of heavy atoms, because the pseudopotentials include
relativistic effects. A more detailed discussion on these aspects is beyond the
purpose of this comparison and we redirect the reader to more specialized
textbooks.
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2.2 Main Features of the Code

In this section some remarks about the basic structure of the CRYSTAL code
are briefly summarized with some hints to the new features available.

• Symmetry
One of the peculiar aspects of the CRYSTAL code is the use of symmetry
that is exploited in many steps of the calculation. Most importantly, the
construction of Symmetry Adapted Crystalline Orbitals (SACOs) lead to
the factorization of the Fock matrix that consequently reduce the allocation
memory, and only symmetry-irreducible integrals are computed.

• Self-Consistent Field
In the SCF calculation (self-consistent field), Coulomb, exchange and mo-
noelectronic integrals are evaluated in the direct space and once the Fock
or Kohn–Sham matrix is built, it is Fourier transformed to the reciprocal
space and diagonalized. The obtained density matrix is transformed back
to the real space before the next self-consistent field iteration. In particular,
in DFT calculation exchange–correlation contribution to the Fock matrix
is evaluated over the unit cell volume by numerical integration.

• Restricted and Unrestricted Hartree–Fock
Both restricted (RHF) and unrestricted Hartree–Fock (UHF) option were
implemented allowing for a good description of transition metal compounds.

• Gradients
For the geometry optimization analytical gradients with respect to atomic
coordinates and cell parameters are implemented, while for the vibrational
frequencies and second order elastic constants gradients are computed semi
analytically (numerical derivatives of the analytical gradients).

• Vibrational spectroscopy
CRYSTAL can perform harmonic frequencies (numerical Hessian), infrared
intensities (numerical and analytical), Raman Intensities (analytical), phonon
dispersion and since 2017 (CRYSTAL17) phonon density of states and in-
elastic neutron scattering.

• One-electron Properties
Electronic band structure, density of states, electron charge density (2D
maps and 3D plots), X-ray structure factors, X-ray diffraction spectrum and
transport properties like thermoelectrics are some examples. Many of these
properties can also be easily visualized by a new tool called CRYSPLOT.
CRYSPLOT is a web oriented tool (http://crysplot.crystalsolutions.
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eu) to visualize computed properties of periodic systems, along with plot-
ting, it also permits the modification and customization of plots to meet
the standards required for scientific graphics.[10]

• DFT and Dispersion Correction
Density Functional Theory and dispersion correction are implemented in
CRYSTAL. In particular, Local-density (LDA), Generalized-gradient (PBE,
BLYP,...), Meta-GGA (M06,...), Global hybrid (B3LYP, PBE0,...), Range-
separated hybrid (HSE06,...), Grimme’s D2 Correction for Dispersive Inter-
actions are available. Moreover, since CRYSTAL17, Grimme’s D3 Correc-
tion, Self-consistent global hybrids and Composite methods for molecular
crystals (HF-3c, PBEh-3c) are implemented.

Recently in the public CRYSTAL program an extension to g-type basis func-
tions has been implemented for quantum-chemical simulations of n-dimensional
periodic systems (n = 0, 1, 2, 3).[11]. Moreover, the code has been generalized
in many respects to allow for the use of g-type functions for: Hartree–Fock en-
ergy and forces; density functional theory energy and forces (in either a local
density, generalized gradient, meta-GGA or various hybrid approximations); all-
electron and pseudo-potential basis sets; spin-restricted and unrestricted calcu-
lations; coupled-perturbed Hartree–Fock/Kohn–Sham (hyper)-polarizability cal-
culations; projected density-of-states. This extension has an important role in
the description of the electronic structure of heavy elements like lanthanides and
actinides with occupied 4f and 5f bands.

More recently a two-component relativistic DFT calculations with the simul-
taneous self-consistent treatment of spin-orbit coupling (SOC) and non-local Fock
exchange in periodic systems have been implemented in a development version
of the code [12, 13]. In particular, the SOC refers to the coupling of the spin of
an electron with its orbital motion. This coupling not only shifts the electronic
levels of the system but also changes the symmetry of the electronic states. This
means that in heavy element systems, where the SOC is strong, it can be nec-
essary to include it in calculations even for a qualitatively correct description of
the electronic structure.

Among the available features that have been implemented in the code re-
cently, the Direct Inversion of Iterative Subspace (DIIS) convergence accelerator
is strictly correlated with the topic of this thesis. In particular, in the actual
public version of the CRYSTAL code the DIIS has been implemented for the
self-consistent field (SCF) procedure and for first and second-order Coupled-
Perturbed-Hartree-Fock/Kohn-Sham (CPHF/KS) self-consistent procedures[14].
The use of such a scheme is found to drastically reduce the required number of
iterations to get convergence and it is thus activated by default.
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Since part of this Thesis work will be closely related to DIIS, in the following
we present a detailed description of this method.

2.2.1 Direct Inversion of Iterative Subspace Algorithm

The DIIS method was firstly proposed by Pulay in 1980 [15] and even today
it is the most popular algorithm for the acceleration and stabilization of the SCF
iterative procedure.[14]

The aim of this method is to find the minimum of a function of many variables,
through the evaluation of the errors in a number of trial solutions (vectors),
through interpolation/extrapolation. One of the application is in the SCF (Self-
Consistent Field) procedure, thus an iterative method that involves selecting
an approximate Hamiltonian, solving the Hartree-Fock/Kohn Sham equations
iteratively to obtain a more accurate set of orbitals, till the results converge to
predetermined thresholds.[3, 4] A critical point of the DIIS method can be the
storage of error vectors and Fock matrices from previous iterations that could be
demanding in terms of memory and disk space, and a cost for the DIIS-related
linear algebra that grows as the number of iterations grows. But the advantages
in terms of a faster time to solution usually compensate for these issues. Even
though other variants such as the Energy-DIIS (EDIIS)[16] have been claimed to
be able to find more efficiently the lowest energy solution, the original formulation
of DIIS remains the most widely diffused and adopted.

Considering the SCF iterative procedure, at each iterative cycle n (in the
direct space), instead of the Fock matrix Fn, an averaged effective Fock matrix
is defined as a linear combination of the Fock matrices of previous iterations:

F̄n =

n∑

i=1

ciFi (2.4)

The ci coefficients are obtained by minimizing a suitable error functional e,
subject to the constraint that

∑n
i=1 ci = 1. This is obtained by solving the linear

equation system:

(
e 1T

1 0

)(
c
λ

)
=

(
0
1

)
(2.5)

where e is an error matrix having the size of the iterative space up to cycle n
and λ is a Lagrange multiplier. This corresponds to minimising the off-diagonal
elements of the Fock matrix in the basis of crystalline orbitals. To save time,
memory and disk, errors are evaluated by default only in k = 0. In this k point
(Γ) of the Brillouin zone the error matrix is defined through scalar products of
suitable error vectors:
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emn = 〈en(Γ)|em(Γ)〉 (2.6)

Other choices are possible (such as considering all k points, either with equal
weight or weighted by Kerker factors[17], to avoid charge sloshing) but the above
has been identified as the best default choice since it works well in most cases
and minimizes the amount of information to be stored on disk [14]. According
to Pulay’s commutator DIIS (CDIIS) formulation[18], we define the error vector
for the SCF procedure as:

en(k) = Fn(k)Dn(k)S(k)− S(k)Dn(k)Fn(k) (2.7)

where S(k) is the overlap matrix. Such error vector is better evaluated
through a transformation linearly independent basis, i.e. the molecular/crys-
talline orbital basis, in order to avoid linear dependencies.

Figure 2.1: Left: Average self-consistent field (SCF) cycles needed to reach con-
vergence with (green bars) and without (blue bars) DIIS convergence accelerator,
as benchmarked on a test set of 42 periodic systems, grouped in seven categories.
MOF stands for metal-organic frameworks and M/O for metal/oxide interfaces.
The rightmost column reports the global average. For more details see the Ref.
[14].
Right: Average Coupled-Perturbed-Hartree-Fock (CPHF) and CPHF2 cycles
needed to reach convergence with (orange bars) and without (red bars) DIIS
convergence accelerator, as benchmarked on a test set of 25 periodic systems.
White numbers reported on the bars indicate the number of calculations which
reached convergence over the total of 25.[14]

As mentioned above, the DIIS method was implemented in CRYSTAL a few
years ago by L. Maschio.[14] The assessment of its performance was done through
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a comprehensive test set of 42 systems was designed for benchmarking the per-
formance of DIIS. The set comprises 3D, 2D, and 1D periodic systems, with
basis sets ranging from minimal to quadruple zeta, either all electrons or using
pseudopotentials. Seven groups of systems have been chosen: molecular crys-
tals, semiconductors, metals, oxides, nanostructures, magnetic solids and metal-
organic frameworks, and metal-oxide interfaces. HF and five different functionals
were adopted. In Fig 2.1 the effect of the accelerator compared with the old de-
fault is reported. A gain factor of 3 is consistent throughout the test set with the
DIIS method above all in metallic systems, nanostructures and magnetic systems.

As regard the CPHF/KS iterative procedure for the response to an external
electric field E is similar to the SCF one above described, except that a density
matrix perturbed by a field along Cartesian direction t is obtained at each cycle,
DEt
n (k). Even in this case there is a gain factor of 3-4 by using the DIIS method,

as outline in Fig 2.1
In general, the DIIS algorithm shows impressive efficiency in terms of rate of

convergence even in complex chemical systems. For this reason in recent time
the algorithm was implemented in many molecular codes and it is universally
recognized. In the CRYSTAL code it is a default option of the calculation.
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Chapter 3

Basis Set Optimization
Implementation

In the field of quantum chemistry plane waves and atom-centered gaussians
are generally chosen as suitable function for solid state calculations. The local
nature of gaussian functions and the strict dependence on the atomic positions,
allows an easy chemical interpretation of the results. Moreover, they are rather
suitable to the description of 3D, 2D and 1D systems as well as an easy and
relatively cheap use of hybrid functionals. While many ab initio solid state codes
are based on plane waves, CRYSTAL [1] uses a Gaussian-Type basis set local
functions expressed as linear combination of a certain number of Gaussian type
functions (GTF) as shown in Equ.1 and Equ.2 of Ref. [2] and discussed in Section
2.1.

In general it is difficult the calibration-optimization of exponents and con-
traction coefficients. Furthermore, standardized and well-assessed libraries of
basis sets are not available for solids as they are for molecules (different density).
Moreover, while with molecules extended basis sets can be easily used without
linear dependence problems, in periodic systems it is not the case. In fact, the
wide chemical diversity of solids (ionic, covalent, metallic) implies an accurate
definition of the basis set. In this thesis a system specific optimization was im-
plemented in the CRYSTAL code and taking inspiration from the DIIS method
(see Section 2.2.1) a novel method was considered: BDIIS, Basis set Direct In-
version of Iterative Subspace.

A documentation about the technical aspects of the algorithm is reported in
Appendix 10.
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-Published paper: “Gaussian Basis Sets for Crystalline Solids: All-Purpose
Basis Set Libraries vs System-Specific Optimization” [2], reported along with the
supplementary material in Appendix 12.1 of this thesis.

3.1 Basis set Direct Inversion of Iterative Sub-
space Method

The historical background of the Basis set Direct Inversion of Iterative Sub-
space (BDIIS) method goes back to the DIIS (self-consistent field accelerator)
and to the GDIIS (Geometry version of the DIIS), in which the main procedure
is kept, but the parameters involved are exponents and coefficients of the basis
set.

The main procedure of the BDIIS algorithm can be summarized as follows:

• construction of a suitable error vector at each iteration n

Average Error Vector :

r =

n∑

i=1

ciei = ē (3.1)

• n-th step as linear combination of previous trial vectors by solving a simple
system of linear equations

Set of linear equations:




a1,1 . . . a1,n 1
...

. . .
...

...
an,1 . . . an,n 1
1 . . . 1 0







c1
...
cn
λ


 =




0
...
0
1


 (3.2)

where aij = eTi ej , with the constraint
∑n
i=1 ci = 1. In the following, we

will refer to this system of linear equations by using this formalism:

AEr · CEr = ZEr (3.3)

While for DIIS the error vector is related with the SCF parameters (Fock ma-
trix and Density matrix) and previous geometries (Coordinates) for the GDIIS,
in the actual case it is related with previous values of both exponents and coeffi-
cients. In fact, the error vector can be defined through the derivative of the total
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energy (Etot) with respect to changes in exponents (α) or contraction coefficients
(d) in the basis set:

eαi =
∂Etot
∂α

edi =
∂Etot
∂d

(3.4)

Technically, the above derivative is evaluated by means of a double-sided
numerical derivatives, thus two points were used for the gradient evaluation. In
particular, the displacements considered are 1% of the previous exponents and
0.1% of the previous coefficients weighted by the relative exponents. More details
are available in Section 3.1.1.

A graphical representation of the overall procedure is reported in Fig. 3.1.

Figure 3.1: Graphical representation of the basis set optimization procedure.

3.1.1 Algorithm details

In this section few supplementary details about the algorithm will be provided:

• Only exponents, only coefficients or both can be optimized.
Since an energy calculation is usually more sensitive to the choice of the
exponents instead of the coefficients, the exponents optimization is the de-
fault option and the suggested option for the less expert user. Nevertheless,
if the aim is the coefficients optimization, that can be activated by a proper
keyword in input: COEFFONLY. Moreover, it is possible to optimize both
exponents and coefficients with the keyword ALLBDIIS. It is also suggested
to optimized just the valence shells and uncontracted if possible. In fact,
valence shells are known to be more involved in the bonding.

• Condition Number
The minimization procedure involve a suitable functional Ω that corre-
sponds to the system total energy Etot to which we add a penalty function
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including the Overlap matrix condition number:

Ω ({α, d}) = Etot ({α, d}) + γ lnκ ({α, d}) (3.5)

where γ is set at 0.001 as suggested by [3] and κ({α, d}) is the condi-
tion number. The latter is the ratio between the largest and the smallest
eigenvalue of the overlap matrix at the center of the Brillouin zone (Γ-
point). The introduction of such penalty function should prevent the onset
of harmful linear dependence that can give rise to numerical instabilities
and unphysical states. The Ω functional is called Objective Function in the
following.

• Two-Sided Numerical Derivative
Gradients are performed by using a two-sided numerical derivative method.
Which means, for exponents α:

eαi =
Ω(αi + ∆ᾱ)− Ω(αi −∆ᾱ)

2∆ᾱ
(3.6)

and similarly for the coefficients.

The displacement ∆ᾱ is 1% of the exponent value (∆ᾱ = 0.01 · α), while
for coefficients the step is set to 0.1%, weighted by the relative exponents
(∆d̄ = 0.001 · dα ).

This set up was defined by different trials done during the implementation.
In fact, we also tried fixed step (e.g. 0.001 and 0.0005), but proving to be
too rough as approximation.

• Scale factor obtained by a line search method
By default a proper scale factor is applied to the optimization step (see
Equ.12 in [2]). A suitable discrete point grid is used, sampling the scale
factor from 0.05 to 1 (0.05, 0.1, 0.15, 0.2, 0.3, 0.4, 0.6, 0.8, 1.0).

The idea of introducing a scale factor started from the well known imple-
mented “Trust Radius” strategy already applied in the geometry optimiza-
tion in CRYSTAL. The basic idea is to limit the displacement that can be
too large and sometimes catastrophic for the overall calculation. In fact,
many times during the optimization the step obtained from the BDIIS pro-
cedure turns out to be too big for a specific exponent-coefficient involved.
This step may cause a linear dependence problem in the calculation. Tech-
nically for each scale factor fl in the grid, a suitable step (fl ∆ᾱn) is defined,
e.g. for the exponents α:

α̃n = αn−1 + fl ∆ᾱn (3.7)
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Figure 3.2: Objective Function behaviour during a basis set optimization along
with the optimal scale factor adopted at each optimization cycle. On the left
MgO system, pob-DZ basis set, optimization of oxygen p-coefficients. On the
right He bulk, def-QZ basis set, valence exponents and coefficients optimization.

For each point a SCF (self consistent field) calculation is performed, and
the one with the minimum value of Objective Function (Ω) is then retained.

In Figure 3.2 two examples of basis set optimization are reported along
with the optimal scale factor adopted at each cycle. On the left picture it is
reported the optimization of p-oxygen coefficients in MgO system. On the
right picture valence exponents and coefficients optimization of He bulk
is shown. In the first case, the scale factor is rather fundamental to get
the convergence. In fact, cycle 2 and 3 seem to drive the optimization in
the wrong direction (high energy) and the scale factor applied is rather low
(smaller step). While from the fourth cycle the weight on the step increases
due to the minimization of the energy. In the latter case instead, the scale
factor is almost 1 at each cycle, thus the step applied is not limited by the
line search at all. This means that the step length was kept unmodified
till the end of the optimization, that in this case brings to a rather smooth
convergence.

• Matrix Size Reduction
Solving the system of linear equations in 3.2, linear dependencies issues
among vectors may occur. In order to prevent this catastrophic behaviour
and taking inspiration from the GDIIS implemented in the DALTON code
[4, 5] an appropriate size control of the AEr matrix is applied. In particular,
a specific condition number is considered:

∣∣∣∣
m

M

∣∣∣∣ > 10−t (3.8)

where t is set to 4 by default. m and M are minimum and maximum
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value of the eigenvalues of AEr matrix. If this condition is not satisfied
the appropriate size reduction is applied. Further details will be provided
in Section 10.4 and a graphical representation of the strategy adopted is
reported in Fig. 3.3.

Figure 3.3: Graphical representation of the linear dependence removal method
through the matrix size reduction. In the example row-column number 2 are the
ones involved in the removal.

• LBFGS method
An alternative to the BDIIS optimization procedure, a LBFGS method
(Limited-memory BFGS) has been implemented for exponents. The algo-
rithm is described in “On the limited memory BFGS method for large scale
optimization”, by D. Liu and J. Nocedal, Mathematical Programming B 45
(1989) 503-528.[6]
In particular, considering a f(x) function minimization, we can define:

s = xk+1 − xk (3.9)

and

y = ∇f(xk+1)−∇f(xk) (3.10)

While the well known BFGS formula is:

Hk+1 = Hk +
yyT

yT s
− Hkss

THk

sTHks
(3.11)

the LBFGS method uses the inverse BFGS formula in the form:

H−1
k+1 =

(
1− syT

yT s

)
H−1
k

(
1− ysT

yT s

)
+
ssT

yT s
(3.12)
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The LBFGS method can be easily activated in input with the keyword
BFGSBAS, but only exponents optimization can be performed.

3.2 Validation Tests

As demonstrative systems we have considered simple prototypical solids such
as diamond, graphene, sodium chloride, and LiH. In the paper [2] we show how
basis set optimizations have certain advantages also towards the use of large
(quadruple-ζ) basis sets in solids, both at the DFT and Hartree-Fock level.
System-specific optimization of def2-like Gaussian basis sets in solids leads to
a significant improvement over the adoption of more general sets, and yields
significantly different exponents in the valence part when systems of different
chemical bonds are compared. A detailed description of all the results obtained
is available in the abovementioned paper [2] in Appendix 12.1 of this thesis.
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Chapter 4

Basis Set Optimization
Benchmark on Elemental
Solids

In this Chapter an extensive application of the BDIIS Basis Set Optimizer
is reported. In fact, we took inspiration from a paper published in 2016 by Le-
jaeghere et al. [1] where a systematic work to demonstrate DFT reproducibility is
well described. In particular, they calculated equation of states data considering
15 solid state codes, using 40 different potentials or basis set types, to assess the
PBE (Perdew-Burke-Ernzerhof) quality for 71 elemental crystals. In this work
of thesis we tried to reproduce their work for 36 elemental solids, starting from
def2-like basis set and optimizing these basis sets by using the BDIIS method.
The eos parameters have been evaluated by fitting 7 energy points around the
equilibrium volume. Moreover, we extended the PBE calculation to hybrid func-
tional one, specifically using HSE06 functional. This work is still in progress and
it will be part of a paper not yet finished. A draft of the paper and a preliminary
supplementary material is reported in Appendix 12.4.

4.1 Basis Set Optimization and Simulation Set
Up

In order to be competitive with the other codes we preliminary applied the
BDIIS method [2] to all the systems to get the best basis sets possible. The basis
set are derived from def2-TZVP, optimizing valence and polarization functions
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that are the ones relevantly changing in a different chemical environment. In
some cases (e.g. noble gases) more extended basis set have been used like def2-
QZVP. Behind this, the optimized basis sets are named dcm-TZ or dcm-QZ in
the following. As regards geometry and structural parameters they were provided
by the Ref. [1], to which we add the FIXINDEX option of CRYSTAL.[3] In
fact, when the geometrical and/or the basis set parameters of the system are
changed, maintaining the symmetry and the setting, the truncation criteria of
the Coulomb and exchange series, based on overlap can lead to the selection of
different numbers of bi-electronic integrals. This may be the origin of numerical
noise in the optimization curve. When small changes are made on the lattice
parameter or on the Gaussian orbital exponents, the indices of the integrals to
be calculated can be selected for a reference geometry (or basis set), “frozen”,
and used to compute the corresponding integrals with the modified geometry (or
basis set). The reference geometry considered corresponds to the most compact
structure, thus the one with the smallest volume.

Concerning the functional, as mentioned in the introduction, PBE functional
has been used and an extension to hybrid functional is proposed. In particular,
HSE06 functional.

Other more technical details like energy thresholds and k-mesh grid are re-
ported in the Supplementary Material available in Appendix of this thesis.

Moreover, as outlined at the beginning of this Chapter, an extensive test set
was used by taking the ground state crystal structures of elemental solids in their
most common symmetry geometries.

In our work the elemental crystals considered range from Hydrogen to Kryp-
ton. In Fig. 4.1 a schematic periodic table is reported along with space group
and magnetic state for each elemental crystal.

4.2 Equations of States Paramenters as bench-
mark

As mentioned earlier, the benchmark is performed evaluating the equation of
states parameters (EOS in the following).

In this section a brief summary of the mathematical background is reported.
Three are the equations of state (EOS) parameters commonly used for accuracy
assessments:

• Volume (V )

• Bulk Modulus: resistance to volume changes (B0)

• Pressure Derivative of the Bulk Modulus: one order higher effects (B1)
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Figure 4.1: In blue elements involved in the basis set optimization and in the
DFT benchmark. Elemental crystal structures are represented by their space
group number (top) and in the Pearson notation (middle) (with hRx standing
for x atoms in the hexagonal setting of the rhombohedral unit cell). The tag on
the bottom indicates the magnetic state of each elemental crystal: nm stands for
nonmagnetic, fm for ferromagnetic and afm for antiferromagnetic.

The equations of state (EOS) parameters are usually obtained using a common
third-order Birch-Murnaghan relation[4]:

E (V ) = E0 +
9V0B0

16


[(

V0

V

)2/3

− 1

]3
B1 +

[(
V0

V

)2/3

− 1

]2 [
6 − 4

(
V0

V

)2/3
] (4.1)

where E0 represents the energy per atom of the compound under investigation
in its ground state, i.e., at 0 K and without external stress, V is the volume and
V0 represents the equilibrium volume.

The bulk modulus is closely related to the E(V ) behaviour as well. It is
proportional to the curvature of the equation of state at the equilibrium volume:

B0 = −V ∂P

∂V

∣∣∣∣
T

= V
∂2E

∂V 2

∣∣∣∣
T

(4.2)

It represents the resistance of the unloaded material to volume change, and
hence to uniform pressure (P ). Since it is linked to the curvature of the E(V )
relation, B0 is a numerically sensitive quantity. A small deviation at a few data
points is already able to change its value noticeably, especially when the bulk
modulus is small and a narrow volume range is studied.
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Consequently, B1 can be evaluated at the equilibrium volume in the following
way:

B1 =
∂B0

∂P

∣∣∣∣
T

=
∂

∂P

(
V
∂2E

∂V 2

)∣∣∣∣
T

(4.3)

It is a third-order derivative of the energy and hence describes effects that
are one order higher even than the bulk modulus. It is related to the volume
dependence of the E(V ) curvature and it is therefore the most sensitive quantity.
In general, one can extract the equilibrium energy and EOS parameters by fitting
few E(V ) data points to an empirical equation of state. In this specific work 7
data points were used for the fitting procedure (Fig. 4.2).
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Figure 4.2: Graphical representation of the E(V) curve used for the fitting in the
case of Hydrogen Elemental Solid.

In fact, for each elemental solid, 7 different inputs have been prepared, with
distinct volume (0.94 · V , 0.96 · V , 0.98 · V , V , 1.02 · V , 1.04 · V and 1.06 · V ,
where V is the volume obtained with the original geometry). In particular, we
multiplied the starting lattice parameters by the cubic root of the percentage
(e.g. for the 94%, we multiplied the lattice parameters by 3

√
0.94 = 0.9796).

Then we applied the third-order Birch-Murnaghan relation and the fitting
procedure described above to get V0, B0 and B1. In particular, for the fitting we
used a script provided by Ref. [1].
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The comparison between CRYSTAL and the other codes have been performed
in terms of ∆ gauge. It expresses the root-mean-square difference between the
equations of state of two codes a and b, that for each element i is given by the
formula:

∆i(a, b) =

√∫ 1.06V0,i

0.94V0,i

(Eb,i(V )− Ea,i(V ))2

0.12V0,i
dV (4.4)

where V0,i is the equilibrium volume, Eb,i(V ) and Ea,i(V ) are the energies
calculated by performing the 7 equidistant E(V ) data points abovementioned.

Even in this case a script has been provided by Ref. [1].
A comparison of ∆i values allows the expression of EOS differences as a

single number, and a small ∆i automatically implies small deviations between
equilibrium volumes, bulk moduli, or any other EOS-derived observables. The
overall difference ∆ between methods a and b is obtained by averaging ∆i over
all elemental crystals in the benchmark set.

4.3 Results and Considerations

Many tests have been performed and three level of accuracy have been ob-
tained at the PBE level:

• CRYSTAL-TZ
Triple-ζ Basis Sets optimized by the BDIIS algorithm are used for all cases.
EOS parameters and simulation set up in Table 1 of the Supplementary
Material in Appendix.

• CRYSTAL-TZ/acc
Triple-ζ Basis Sets optimized by the BDIIS algorithm for almost all cases
excepting some basis sets that have been handly adjusted. In some particu-
lar cases (Se, Br, Sc) a full geometry optimization was mandatory to define
the reference volume. EOS parameters and simulation set up are reported
in Table 2 of the Supplementary Material in Appendix.

• CRYSTAL/acc
Considering the previous point, we adopted larger basis sets in some critical
cases (noble gases predominantly). EOS parameters and simulation set up
are reported in Table 3 of the Supplementary Material in Appendix.

All the basis sets obtained and used for the calculation are listed in the Supple-
mentary Material in Appendix. Considering the CRYSTAL/acc set our ∆ gauge
values are smaller than 1 with respect to other all electron calculations (see Table
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4 in Supplementary Material in Appendix), demonstrating that CRYSTAL can
reproduce non-gaussian basis sets results if rather good basis sets are used.

In Fig. 4.3 and 4.4 histograms related with our best set up (CRYSTAL/acc)
compared with one of the references reported in the Lejaeghere’s paper[1] are
shown. In particular, the reference is a FP-LAPW code called WIEN2K
(WIEN2K/acc). The error bars reported are related with the whole set of results
available from other codes. Going from V0 to B1 we may note an increasing of
uncertainty because of the wide range of results available. This implied large
error bars (e.g. Fe, Mn) due to the intrinsic formula derivation of the B0 and
B1. Nevertheless, a good agreement is obtained using the CRYSTAL code with
respect with the other code. Special attention has to be taken in the case of noble
gases because the model adopted enforces these elements in a condensed phase
that is not always well described by solid state codes.

We do not enter here in the details of the benchmark set chosen in the work of
Ref. [1]. Some of the systems, such as rare gas crystals, appear to be numerically
well-defined as they are in principle not even bound at the pure PBE level. This
is reflected also in the reference set by a wide spread of values and a strong
dependence on computational parameters in many of the adopted codes, which
we also find in our calculations. Nevertheless, we see that our results, thanks
to the adoption of optimized basis sets, fits reasonably well within the picture.
The optimization of basis sets was key to it, as the POB–type basis sets yielded
results much less conformant to the reference data.

Starting from our best set up (CRYSTAL/acc), we also extended this work
by using Hybrid Functional (HSE06) instead of PBE functional. In fact, with
CRYSTAL and in particular with Gaussian Functions, Hybrid Functionals are
easy and relatively cheap to be implemented. Even if hybrids usually increase
the calculation cost, they improve the chemical accuracy (higher position in the
Jacob’ ladder for DFT). In Fig. 4.5 and 4.6 EOS parameters evaluated by using
CRYSTAL with PBE and HSE06 functional and other codes with PBE functional
are reported graphically for all the elemental solids considered. Relative differ-
ences between PBE and HSE06 are reported as well in the panel (b) of Fig. 4.6.
Looking at the relative differences between functionals, while differences with re-
spect to V0 and B1 are less pronounced, in some cases B0 values deviate more.
Again these problems can be traced back to the absence of a proper description
of noncovalent interactions.
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(a)

(b)

Figure 4.3: Equilibrium Volume (a), Bulk Modulus (b) and relative Error Distri-
bution between CRYSTAL/acc PBE and WIEN2K/acc PBE from [1].
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(a)

Figure 4.4: Bulk Modulus Derivative (a) and relative Error Distribution between
CRYSTAL/acc PBE and WIEN2K/acc PBE from [1].
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Figure 4.5: Equilibrium Volume V0 (a), Bulk Modulus B0 (b) comparison among
CRYSTAL/acc PBE, CRYSTAL/acc HSE06 and other codes with PBE func-
tional from Ref. [1].

42



Basis Set Optimization Benchmark on Elemental Solids

−25

−20

−15

−10

−5

 0

 5

 10

 15

 20

 25

H He Li Be B C N O F Ne NaMg Al Si P S Cl Ar K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn GaGe As Se Br Kr

B
1
 (

a
.u

.)

Elements

Other Codes PBE
CRYSTAL/acc PBE

CRYSTAL/acc HSE06

(a)

−30

−20

−10

 0

 10

 20

 30

 40

 50

 60

 70

H He Li Be B C N O F NeNaMg Al Si P S Cl Ar K CaSc Ti V CrMnFeCo Ni CuZnGaGeAs Se Br Kr
−24

−20

−16

−12

−8

−4

 0

 4

 8

P
B

E
−

H
S

E
0

6
 E

O
S

 p
a

ra
m

e
te

rs
 d

if
fe

re
n

c
e

s

Elements

∆V0 [Å3/at]
∆B0 [GPa]

∆B1 [a.u.]

(b)

Figure 4.6: Bulk Modulus Derivative B1 (a) comparison among CRYSTAL/acc
PBE, CRYSTAL/acc HSE06 and other codes with PBE functional from Ref. [1].
A graphical representation of the relative differences between PBE and HSE06
for the set CRYSTAL/acc is reported in panel (b).
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Chapter 5

Direct Inversion of the
Iterative Subspace for
Geometry Optimization

In the first year of my PhD, I worked for a few months on a topic already
developed during my master thesis: GDIIS, Direct Inversion of the Iterative Sub-
space for Geometry optimization. This method is the application of the DIIS
(Direct Inversion of the Iterative Subspace) method to the geometry optimiza-
tion. This work did not lead to a publication, as the method itself did not prove
to be more effective than the geometry optimizer already in use, and the imple-
mentation did not make it to be included in the Crystal code. Nevertheless, I
think it is worth here to report and document the work and efforts made in this
project.

As mentioned earlier, the DIIS or Commutator-DIIS is a Self-Consistent-
Field (SCF) accelerator and the algorithm itself has been extensively used in
many fields. Beside the application developed in the preceding chapters about
the basis set optimization, another feasible implementation is in the field of the
geometry optimization.

The well known purpose of the geometry optimization is to find an atomic
arrangement and the structure that corresponds to a chemically stable species.
Many methods and procedures were developed and are available to users.

In CRYSTAL a quasi-Newton optimization scheme is implemented. It com-
putes analytical gradients of the energy with respect to both cell parameters
and atom coordinates and the second derivative matrix is updated by means of
the BFGS (Broyden–Fletcher–Goldfarb–Shanno) algorithm. This method will be
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called Regular Optimizer in the following. Nevertheless, geometry optimization
and in particular the search for the absolute minimum is not a straightforward,
above all in some critical cases. For this reason in this thesis we decided to
study the direct inversion in the iterative subspace algorithm (DIIS) for geom-
etry (GDIIS) and to apply it to the geometry optimization of crystals. In fact,
according to available literature, for molecular systems it is quite efficient in
the quadratic vicinity of a minimum and the algorithm leads to a decrease of
optimization steps needed to reach convergence criteria.[1] The main work of im-
plementation has been done during my master thesis, but throughout my PhD I
had the possibility to improve the algorithm.

5.1 GDIIS Method

The DIIS method foresees the construction at each iteration of a suitable
error vector and its minimization implicates the SCF convergence. Basically the
error vector is related to the gradient of the electronic energy with respect to the
SCF parameters. As parameters, it is customary to use the elements of the Fock
matrix [2, 3], that represent the electronic gradients in the space of crystalline
orbitals. Similarly, the GDIIS constructs the error vectors based on the previous
geometries [1]. GDIIS is based on a linear interpolation and extrapolation of the
available structures that minimizes the length of an error vector. In fact, for each
structure we can construct an error vector by using a quadratic approximation
to the potential energy surface. The error vector is the displacement and in a
quadratic approximation it is a linear combination of individual error vectors.
By solving a proper set of equations we can find all the coefficients that define
the new geometry as a linear combination of previous geometries.

In mathematical terms, the method is an interpolation that allows to minimize
the length of the “Average Error Vector”:

r =

n∑

i=1

ciei = ē (5.1)

for a geometry given by:

x̄ =

n∑

i=1

cixi (5.2)

and considering the following constraint:

n∑

i=1

ci = 1 (5.3)
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in which the index n coincides with the iteration number. This means in
specific terms that the coefficients are obtained by the minimization of the term
|r|2.

As for DIIS, also in this case trace is kept of previous iterations: we need to
store previous positions. In fact, we can define the error vector by considering a
step (Raphson Step, SR) given by:

xSRi = xi + H−1fi (5.4)

where H−1 is the inverse of the Hessian and fi are gradients with opposite
sign, in other words the force acting on the position xi. In this way the error
vector can be defined by:

ei = xSRi − xi = H−1fi (5.5)

At this point the problem turns into a simple solution of a set of linear equa-
tions:




a1,1 . . . a1,n 1
...

. . .
...

...
an,1 . . . an,n 1
1 . . . 1 0







c1
...
cn
λ


 =




0
...
0
1


 (5.6)

in which the elements aij are defined as a scalar product eTi ej and λ is the
Lagrangian multiplier.

Once obtained the coefficients, it is easy to construct x̄ and consequently the
new geometry:

xn+1 = x̄ + r =

n∑

i=1

ci(xi + ei) =

n∑

i=1

cix
SR
i (5.7)

Again as in DIIS method the new geometry is the result of the linear com-
bination of previous points. In particular, in our work the information that we
extrapolated from the equation (5.7) is the step, in other words the difference
between the new point and the previous one.

In literature many studies show that the efficiency of GDIIS is similar to, or
sometimes better than Newton Raphson method. Therefore, it seems to be very
suited for flat PESs, thus when one or more Hessian eigenvalues are small. [4]
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5.2 Results and Considerations

In order to verify the efficiency of the implementation many tests were per-
formed on both molecular and crystalline structures. The efficiency of the algo-
rithm was evaluated by using the following criteria:

• Number of steps needed for the minimum identification;

• Identification of the absolute minimum;

• The affinity between the minimum found and the minimum expected.

Concerning the set of Molecular systems we used the Baker’s test [5] that
consists in thirty small to medium molecules covering a wide range of symme-
tries and structural properties. As regards Periodic systems we performed a
systematic set of tests on the dataset proposed by Civalleri et al. [6] composed
by twenty systems (named “C20 set”) with the addition of sodium nitrite and
five periodic systems based on simple molecules (named “Simple solids”): am-
monia, carbon dioxide, urea, benzene and the diamond crystal. In particular,
the “C20 set” is characterized by different periodicity: polymers (1D), slabs (2D)
and crystals (3D). Moreover, in order to be more systematic each periodic system
is characterized by a different structure and symmetry. Finally, three systems of
remarkable complexity were tested: Zeolite Silicalite (MFI), Amorphous Silica
and a slab model (2D) of an organo-silica material (named “Complex solids”).

In all the systems listed above we systematically tried some options of the
GDIIS algorithm and the best operative condition for the algorithm was defined:

• Starting cycle for GDIIS computation: 2nd;

• Number of previous steps stored: 6;

• Hessian update operative;

• Tolerance change in removing linear dependence in GDIIS matrices (Matrix
Size Reduction) with condition number 10−3. (See Section 3.1.1 for details
about the method)

In general, GDIIS showed performances similar to the Regular CRYSTAL
optimizer and high versatility. The test performed demonstrated the high appli-
cability of the method and the possibility to modify the options in order to get
the best results for each chemical system above all in critical cases. In Fig.5.1
is reported a histogram that compares results obtained from different chemical
systems.

In order to improve the algorithm implemented, we decided to resume the
subject. From a technical point of view, we tried to recode the algorithm from

48



Direct Inversion of the Iterative Subspace for Geometry Optimization

Figure 5.1: Total average comparison among different systems analysed by the
regular optimizer and the GDIIS one. The total average is the sum of the over-
all number of cycles divided by the number of chemical structures studied. In
particular, if a chemical system does not converge it is not considered in the
evaluation.

scratch. This procedure was for us essential in order to remove some spurious ef-
fects. In fact, we tried to minimize the code intervention on the regular optimizer
and the last version of the CRYSTAL code was used.

Even if no remarkable enhancement have been found, a better stability of
the algorithm can be seen. In the Fig.5.2, a comparison between the old version
and the new version of the algorithm is reported. Specifically, the energy is
plotted with respect to the number of cycles for a molecular system (ACHTAR10).
The new version displays a good behaviour above all at the beginning of the
calculation.

Although the GDIIS algorithm demonstrates to be rather competitive with
the regular optimizer in CRYSTAL, it does not show better performances except
for few cases. It is possible that further improvements of the algorithm can be
done, but till now no significant acceleration in terms of time and optimization
cycles was observed with respect to the ‘standard’ geometry optimizer.
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(a) (b)

Figure 5.2: Energy behaviour during regular optimization and GDIIS one for the
molecular system ACHTAR10, old (a) and new (b) version.
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Chapter 6

Maximum Overlap Method

Whereas ground state calculations and equilibrium properties are widespread
methods (HF and DFT[1, 2]), the study of excited states is not as straight-
forward, and this is due to many reasons. First of all, the single-determinant
approach is generally not as good as for the ground state, and secondly, a black-
box approach is difficult, work and understanding from the side of the researcher
are required. Many multi-determinantal approaches have been developed: Multi
Reference Configuration Interaction (MRCI)[3], Multi Reference Møller - Ples-
set Perturbation theory (MRMP)[4], Configuration Interaction Single-excitation
(CIS) and with perturbative treatment of doubles (CIS(D))[5], Time Dependent
DFT (TD-DFT)[6], many - body Green’s functions methods (GW)[7] and many
others. The choice can be convoluted and, even if these methods are accurate,
computationally they are notably expensive and applications are restricted to
atoms, molecules and clusters.

In the search for simpler and more applicable methods, direct generalizations
of the ground state method have been developed, such as ∆SCF[8, 9, 10] where,
instead of having all electrons in the lowest orbitals, one or more electrons are
placed in higher lying Kohn-Sham orbitals, and excitation energies are obtained
as the difference between the ground and excited state scf. One of the main draw-
backs of this procedure is the possible numerical instability that usually hinders
the convergence to a specific excited state, also because of the somewhat intrinsic
multideterminantal character of excited states. An attempt to avoid the intrinsic
variational collapse of the minimization procedure has been proposed by Gilbert
et al.[11] that developed a method to keep track of the occupation during the
SCF named Maximum Overlap Method (MOM). The general purpose is to get
solutions of the SCF equation with the highest energy considering excited state
and ground state with almost the same approach.
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In this work of thesis we have implemented in the CRYSTAL code this simple
technique to enforce orbital occupations, bypassing the “natural” occupation dic-
tated by the Aufbau principle. In fact, during the SCF iterations the algorithm
tries to maximize the overlap between the occupied orbitals with those of the
preceding iteration or of a reference state. This procedure leads the SCF towards
excited state solutions instead of ground state ones, or can be useful in order to
stabilize the ground state solution preventing the intrusion of unphysical states
in the density matrix. Promoting an electron from an occupied to a virtual or-
bital is then a sufficient guess to start an SCF calculation with MOM. In fact,
the algorithm will keep the excited configuration. In this way excited states can
be studied at the Hartree-Fock (HF) or DFT level at the cost of a ground–state
calculation and with the same computational scalability.

The development and implementation of the MOM method is fully described
in the attached submitted paper “Electronic Excitations in Crystalline Solids
through the Maximum Overlap Method” (Appendix 12.3). In this chapter the
basics of the method will be presented in a concise form. Some documentation
of the code will be reported along with discussion on the input/output structure
in Appendix 11.

6.1 Maximum Overlap Method Implementation

As mentioned in the introduction, the Maximum Overlap Method can be
useful in different application:

• study excitation energies

• optimize geometry of excited states (luminescence)

• stabilize the ground state solution, preventing the intrusion of unphysical
states (due to numerical issues)

and we tried to implement the algorithm in the CRYSTAL code for solid state
calculation. Although in solids more than in the molecular case, there is a large
variety of possible electronic excitations, we focus on two types of excitation:

• excitation in Γ-point only

• band to band excitation

The initial guess is obtained by performing a preliminary ground state cal-
culation and then pushing electrons from occupied to virtual orbitals. MOM is
used to keep track of a desired state during the SCF procedure.
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6.1.1 Details of the Implementation

The MOM method acts on the definition of the occupation matrix n(k) of
the density matrix in the Hartree-Fock/Kohn Sham equations. Starting from a
reference solution Cref (k), which can be either from the converged ground state,
or an initial guess, firstly the eigenvectors are sorted by energy and the code
overrides the Aufbau principle by forcing a different occupation pattern nref (k).

In subsequent iterations, the overlap between the new coefficients and the
reference ones Cref is evaluated

O(k) = Cref
†
(k)S(k)C(k) (6.1)

The projection of the j-th new orbital onto the old occupied space is the
expressed by:

pj(k) =

n∑

i

Oij(k) =

N∑

ν



N∑

µ

(
n∑

i

Crefiµ (k)

)†
Sµν(k)Cνj(k)


 (6.2)

For each nonzero diagonal element in nref (k) the largest corresponding pro-
jection p(k) locates the position to be filled in the new n(k).

The evaluation of O(k) as in Eq. (6.1) is relatively inexpensive, hence the
additional cost of the MOM procedure is virtually negligible with respect to
that of the corresponding ground-state method (i.e., HF and DFT), even though
convergence can turn out to be more difficult.

Depending on the definition of nref (k) MOM can then be used to converge
the SCF towards solutions different from the ground state. This will be the use
of MOM we will focus on in the following.

Two kinds of excitation have been implemented:

• Excitation from a single k point to another
Since the direct space density matrix must keep the translational invari-
ance in the SCF procedure only excitations that are totally symmetric with
respect to the group of lattice translation vectors are possible within our
approach. Namely, only vertical excitations at the center of the Brillouin
zone (Γ-point only) or by constructing a supercell other excitations are
possible. In particular, by increasing the size of the periodically repeating
unit in the direct space the reciprocal space folds in itself making accessible
other transitions. In Fig. 6.1 the abovementioned excitation in the Γ point
along with the band structure folding is reported for Bulk Silicon.

• Band to band excitation
A portion of the corresponding valence and conduction bands correspond-
ing to a sphere of radius r around Γ can be involved in the excitation.
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Figure 6.1: A graphical representation of some possible electronic excitations –
labeled as EΓ1, EX , EL, in the electronic structure of bulk silicon (PBE func-
tional). Left panel: primitive unit cell. Right panel: 2x2x2 supercell. Upon
folding of the bands in the supercell creation, the excitations EΓ1, EX , EL be-
come all Γ–point only excitations. The lines along which the band structure is
folded are marked by black dashed vertical lines in the left panel.

This process can physically correspond to a light which is not precisely
monochromatic used to induce the excitation.

Such approach is graphically described in Figure 6.2.

As a first step, when defining the initial reference excited state we need to
trace the involved bands across the Brillouin zone, to cope with possible
band crossings and degeneracies. In this regard, we have to evaluate the
overlap Ok,k′ between the band eigenvectors in two neighbouring points k
and k′, expressed as:

Ok,k′ = (C(k′))†S(k)C(k) (6.3)

The largest overlap elements allow to trace the bands between k and k′.
Since we start from a Γ-point excitation, we follow a path in reciprocal
space as depicted in the right panel of Fig. (6.2). Moreover, it is possible
to define a sphere where only a number Nexc

k of k points are involved in the
excitation itself.

The excitation energy in both cases can be evaluated as:
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Figure 6.2: On the left an excitation in Si bulk (PBE functional) in which the
radial-sphere approach is graphically represented. On the right, the path in a 2D
Brillouin zone followed to trace the Γ-point bands and the spheres around Γ are
represented.

Eexc =
Nk

Nexc
k

(
Etot↑ − Etotground

)
(6.4)

where we have denoted as Etot↑ the energy obtained through the excitation,

Etotground the ground state energy, Nk and Nexc
k are the k points sampling the 1st

Brillouin zone and the k points involved in the excitation respectively (Nexc
k = 1

for k to k excitation, Nexc
k 6= 1 for the band to band excitation). A more detailed

description of the theory is available in the paper in Appendix 12.3.

Energy Gradients and Geometry Optimization

The energy gradients must be computed, in the Γ−only excitation scheme,
by summing back the energy of the ground state to the excitation energy of Eq.
(6.4) and then taking the derivative with respect to atomic displacements

∂E↑
∂RAa

=
∂Etot↑
∂RAa

Nk −
∂Etotground
∂RAa

(Nk − 1) (6.5)

where RAa is the coordinate of atom A along a general cartesian direction a.
Analogous equations hold for cell gradients. Moreover, during a geometry opti-
mization procedure, at each geometry the ground and excited state gradients are
required for the evaluation of Eq. (6.5), thus requiring a double SCF procedure.

For a more detailed description of the mathematical approach and the valida-
tion tests performed the reader should refer to the paper reported in Appendix.
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6.2 Results and Considerations

In the paper in Appendix validation tests and results are reported in details.
In fact, the features and performance of the method are presented through its
application to prototypical solids such as bulk silicon, diamond and lithium flu-
oride, and comparing the results to available experimental data. Moreover, two
demonstrative applications to nickel oxide and solid CuI(piperazine) highlight
the promising potential of the MOM method in solid state quantum chemistry.
The first was used as a prototypical system that lends itself well to the validation
of our geometry optimization algorithm. In Figure 6.3 we compare the result of
the optimization with the potential energy curves obtained through single point
calculations, which clearly shows that our MOM algorithm correctly finds the
right minimum of the excited state curve.

Figure 6.3: Energy of the ground and first excited states of bulk ferromagnetic
NiO as a function of lattice parameter. The ground state minimum is taken as
a reference (∆E = 0). B3LYP Functional was used. The full bullets mark the
results of the geometry optimizations using analytical gradients as in Eq. (6.5).

Among the luminescent copper(I) halides, CuI(piperazine) is a peculiar com-
pound that exhibits a dual luminescence, a feature that is of potential relevance
in technological applications. We were able to reproduce this effect applying
our MOM geometry optimizer to this structure. We considered two excitations
around the Fermi level, namely HOMO→LUMO and HOMO-1→LUMO+1, in
Γ-point only (HOMO (highest occupied molecular orbital) and LUMO (lowest

56



Maximum Overlap Method

unoccupied molecular orbital)). In Figure 6.4 energy levels and atomic structure
optimized after electronic excitation are reported.

Figure 6.4: Energy levels and atomic structure of solid CuI-piperazine around the
Fermi level at the ground state geometry (center), and at the geometries opti-
mized after an HOMO→LUMO (right) and HOMO-1→LUMO+1 (left) electronic
excitation.

A more detailed description of the results is available in the paper in Ap-
pendix.
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6.3 Maximum Overlap Method Code Develop-
ment

The MOM method has been imported in the CRYSTAL code exploiting the
current SCF implementation. Due to the wide scattered intervention of the
method in the code, a flowchart regarding the SCF calculation and the files
involved is reported in Fig. 6.5. In fact, beside the common SCF procedure, in
the MOM method two additional steps are present: the eigenvectors storage that
is essential for the O matrix construction (see Equ. 6.1) and the change in the
occupation to actually perform the excitation.

Figure 6.5: Flowchart reporting SCF main steps (blue boxes) and MOM in-
terventions (red boxes) along with the files (green boxes) and routines names
involved (black boxes). Variables and many parameters are saved in the Module

mom module in mom module.f90 file.
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Chapter 7

Defects and Electron
Transport in Half Heusler
Alloys

The modern world sees an ever-increasing demand for energy due to popula-
tion growth and industrial advancements. The majority of our energy still comes
from fossil fuel combustion that is converted to electricity. A secondary product
of any combustion process is the generation of waste heat: finding ways to har-
vest the waste heat has become a major challenge and an answer is found by use
of technologies like thermoelectrics (TE) energy conversion.

TE materials can convert waste heat directly to electricity and pave a way
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to reduce greenhouse gas emissions and promote sustainable development. In
the current scientific discussions about TE materials, the role of defects is a key
aspect in defining their TE efficiency. Defects are present in significant concentra-
tion in real samples; a deep understanding of their role in altering the electronic
properties of a material is fundamental to tailor new and more efficient TE ma-
terials.

Commercial TE devices are currently based on (Bi,Sb)2Te3, skutterudites
(e.g. CoAs3) and silicides. However, all these materials have a major drawback.
(Bi,Sb)2Te3 works in a temperature range 300 - 500 K, which is too low for heat
harvesting in high temperature applications (e.g. automotive, steel plants). The
use of tellurium TE is environmentally critical. Skutterudites and silicides work
at higher temperature with respect to (Bi,Sb)2Te3, but show low resistance to ox-
idation so that they need to be encapsulated in inert atmosphere for long lasting
applications. Thus, one of the most promising TE system is represented by the
Half Heusler (HH) compounds because of their chemical and mechanical stability,
easy processing and tunable transport properties.

In this view, ab initio calculations can play a fundamental role in understand-
ing and decoupling the many effects such diverse types of structure can have on
the underlying physics of the materials, as well as providing a mean for predict-
ing behaviour of new compounds. In particular, thermoelectric properties can be
simulated and nowadays it is a fundamental tool. Of course, obtaining a rather
good description of the thermoelectric properties is obtained if the electronic
structure is good as well. In this regards, the basis set optimization implemented
played a fundamental role.

Our scientific challenges of the problem was to explore TE properties of some
HH alloys (ABX crystal structure , F 4̄3m (No.216)) – TiMSn (M=Ni,Pd,Pt);
TaM’Sn (M’=Co,Rh,Ir) - and the influence of interstitial atoms and vacancies
in the HH structure. In general, the crystal structure can be thought to be
composed as a fusion of rock-salt type and zinc-blende forms (see Figure 7.1).

The TE performance is based on their Seebeck (S) coefficient, electrical con-
ductivity (σ), electrical contribution to the total thermal conductivity (κel) and,
consequently, the power factor (product of electrical conductivity and Seebeck
coefficient squared, PF). Moreover, we considered some examples of point defect
that is expected to enhance the TE performance. In fact, point defects in HH
alloys have a strong impact on the whole band structure and consequently on
transport properties.

Usually the alliance of theoretical modelling and the experimental characteri-
zation is not easy: in fact, experimentally is extremely difficult to fully character-
ize types and amount of defects in real systems, while computationally, realistic
models that integrate defects are difficult to mimic. Thus good reproducibility
is possible only with a realistic model. However, these models imply the in-
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Figure 7.1: Crystal structure of a typical HH alloy as a fusion of rock-salt type
and zinc-blende forms. Blue, purple and grey spheres denote Ti, Sn and Ni atoms
respectively.

troduction of supercell, which required significant amount of CPU-hours, would
was feasible with the use of high performance computing, obtained by the HPC-
Europe project in Finland.

-Published paper: “Key Role of Defects in Thermoelectric Performance of
TiMSn (M=Ni, Pd, and Pt) Half-Heusler Alloys” [1], reported along with the
supplementary material in Appendix 12.2 of this thesis.

7.1 Transport Properties in CRYSTAL

Most existing solid state ab initio codes available today do not possess a com-
prehensive set of tools for the study of TEs, and rely on external programs such
as BoltzTrap[2] and BoltzWann[3]. As a consequence, quantities such as band ve-
locities or third-order force constants (which involve derivatives of electronic and
phonon bands, respectively) can be computed only numerically within that ap-
proach, with high computational costs and evident accuracy-stability problems.
In addition, many studies found in literature not even adopt such approaches,
but just analyze band structures and density of states, to yield qualitative or
semi-quantitative considerations with limited validity. In particular, BoltzTrap[2]
relies on a Fourier expansion of the band energies and differentiates numerically.
BoltzWann[3] exploits a maximally localized Wannier function basis and, after lo-
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calization, the band derivatives are evaluated analytically at each k point. More-
over, hybrid functionals (that contain a fraction of Hartree-Fock exact exchange)
are known to outperform other functionals in the description of band-gap related
quantities, as well as phononic bands. Nevertheless, the use of such functionals
in the most commonly used plane-wave codes is prohibitive, due to the very high
computational costs. The atomic-centered local basis used in CRYSTAL allows
for an easy use of hybrid functionals.

Thus the advantages of our approach are:

• CRYSTAL performs directly the thermoelectric properties
It is possible to perform calculations in a single ab initio code without trans-
ferability issues and without using external programs for properties. The
current benchmark is to use a plane-wave code like VASP/Quantum Espres-
so/etc for electronic structure calculations, BoltzTrap[2]/BoltzWann[3] for
TE properties and Phonopy[4]/Phono3py[5] for computation of force con-
stants.

• Hybrid Functionals
Implementation of hybrid functionals that are free of self-interaction errors
and define the physics of these HH semiconductors better.

considering few drawbacks:

• No spin orbit coupling available
The band gap of some the HH alloys to be investigated might depend on
the spin-orbit coupling (SOC) due to relativistic effects. SOC is still not
implemented in CRYSTAL.

• Frozen Band Approximation and Constant Relaxation Time Approximation
Two are the main approximation for the solution of the Boltzmann Trans-
port Equation: Frozen Band Approximation and Constant Relaxation Time
Approximation (RTA). The first approximation implies no changes or vari-
ation in the band structure in relation to temperature changes. The latter
implies a lifetime τ to be not dependent on k. For a more accurate descrip-
tion of carrier lifetimes, the electron-phonon coupling and phonon-phonon
coupling is necessary. Unfortunately these aspects are still under develop-
ment within the CRYSTAL code.

7.1.1 Transport Properties: semi-classical Boltzmann the-
ory

A meaningful quantity in the thermoelectric field that can be evaluated by
the CRYSTAL code is the Figure of Merit :
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ZT =
σS2T

κ
(7.1)

where T is the Temperature, σ is the electrical conductivity, S is the Seebeck
coefficient (charge average entropy, ∆V = S∆T ), σS2 is commonly named as the
Power Factor (PF) and κ is the thermal conductivity (κp + κel = phononic+
electronic contribution).

When the Power Factor is large there is an efficient conversion of heat into
electricity and a small κ keeps a temperature gradient and reduces conduction
heat losses. A desirable ZT value is at least 1 and ideally ZT > 2. In fact, high
S, high σ but low κ can give an ideal thermoelectric material.

Historically the thermoelectric processes were studied by Onsager and Callen[6,
7] in the first half of the XXth century, in the framework of the thermodynamics
of dissipative system. In their model, current densities can be expressed as

[
JE
JQ

]
=

[
σ σS

TσS κel

] [
−∇V
−∇T

]
(7.2)

where
JE = electrical current density
JQ = heat current density
σ = electrical conductivity
S = Seebeck coefficient
T = Temperature
V = Electric potential
κel= Electronic contribution to the thermal conductivity

in which the first vector is related with the current density, the second matrix
is correlated with the transport coefficients and the last one represents the forces.

This equation can provide the expressions of the three so-called Transport
Coefficients:

Electrical Conductivity

[σ]qr(µ, T ) =

∫
dE

(
−∂ f0

∂E

)
Ξqr(E) (7.3)

Seebeck Coefficient

[σS]qr(µ, T ) =
1

T

∫
dE

(
−∂ f0

∂E

)
(E − µ)Ξqr(E) (7.4)

and Thermal Conductivity
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[κel]qr(µ, T ) =
1

T

∫
dE

(
−∂ f0

∂E

)
(E − µ)2Ξqr(E) (7.5)

considering µ as the chemical potential, E as the energy and f0 as the Fermi-
Dirac distribution. Ξqr(E) is the transport distribution function (TDF), the core
of the transport coefficients and it is defined as

Ξqr(E) = τ
∑

k

1

Nk

∑

i

νi,q(k)νi,r(k)δ(E − Ei(k)) (7.6)

where νi,q is the velocity of the i-th band calculated along the direction q and
τ is the lifetime which is not dependent on k according to the constant relaxation
time approximation.

The expression of the band velocities is

νi,q(k) =
∂Ei(k)

∂kq
(7.7)

and since CRYSTAL uses Gaussian-Type basis set, thus local functions as
linear combination of Gaussian type functions (GTF), it is rather trivial to obtain
the k-vector derivative of both the Fock (F) and overlap (S) matrices:

F(k) =
∑

g

F(g)eik·g,
∂F(k)

∂kq
=
∑

g

igqF(g)eik·g (7.8)

S(k) =
∑

g

S(g)eik·g,
∂S(k)

∂kq
=
∑

g

igqS(g)eik·g (7.9)

where g is the direct lattice vector, k is the reciprocal lattice vector.
With this knowledge it is possible to write the band velocities as

∂Ei(k)

∂kq
=

[
C†(k)

∂F(k)

∂kq
C(k)

]

ii

−
[
C†(k)

∂S(k)

∂kq
C(k)E(k)

]

ii

= νi,q(k) (7.10)

where C is the expansion coefficient matrix.

For a detailed description of the implementation in the CRYSTAL code the
reader is redirected to [8].

In general, a thermoelectric material can be defined as p-type or n-type de-
pending on which are the predominant carriers in the material itself: holes and
electrons respectively. Theoretically speaking, it is just a different sign in the
carrier concentration (“+” if holes, “−” if electrons) and in the Seebeck coeffi-
cient obtained (“+” if p-type predominant, “−” if n-type predominant). In Fig.
7.2 a schematic representation of the transport properties is reported.
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Figure 7.2: The scheme shows the behavior of insulators, metals and semi-
conductors. The carrier concentration, Seebeck coefficient and thermal
conductivity give the characteristic value ZT or figure of merit that de-
scribes the thermoelectric behavior of any material with one value. Ref.
[https://www.linseis.com/en/properties/seebeck-coefficient/.]

7.2 Results and Considerations

Our fist work on thermoelectric materials involves the study of the thermo-
electric properties of TiMSn (M = Ni, Pd, and Pt) alloys with space group F 4̄3m
using the CRYSTAL code[1]. A systematic study of these alloys has never been
attempted using local Gaussian type orbitals (GTOs) and hybrid density func-
tional theory methods within a periodic approach. Our benchmark was TiNiSn
by comparing our data to existing literature values of Seebeck coefficient, power-
factor, and thermoelectric figure of merit. Then, we extended these calculations
to TiPdSn and TiPtSn, for which consistent previous data are limited. TiMSn
(M=Ni,Pd,Pt) alloys are predicted to favor p-type transport. In addition, we aim
to explain the low band gap of TiNiSn by modeling defects in the pure system.
Our defect model proves to have a smaller band-gap, and its power factor is found
to be almost twice of the pure TiNiSn. All the details of this work are reported
in [1].

7.2.1 TiNiSn, a general overview

HH alloys are originated from Full-Heusler alloys (FH) and they have a space
group F 4̄3m (No. 216) instead of Fm3̄m (No. 225) (Figure 7.3). HH are made
up of 4 distinct face-centred cubic (fcc) sub-lattices. The primitive cell has 3
atoms while the conventional cell has 12 atoms. We perform Density Functional
Theory (DFT) for all our computations as implemented in the CRYSTAL code.
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Figure 7.3: Left: Crystal structure of a typical FH (Fm-3m (No. 225)). Right:
Crystal structure of a typical HH alloy (F-43m (No. 216)).

a (Å) Eg(eV)

This work 5.94 0.48

Reference
5.92 [9] 0.45[10]

(0.12[11])

Figure 7.4: Left: Band structure of TiNiSn with PBE functional. Right: Lattice
Parameter (a) and Band Gap (Eg) with references at the PBE level.

HH alloys are generally characterized by an indirect band gap between Γ and
X k point.

In Figure 7.4 the band structure, lattice parameter and band gap data are re-
ported at the PBE level. Although the agreement regarding the lattice parameter
is rather good, the main discrepancy is observed in the band gap. In fact, even if
in agreement with other simulation ([10]), a huge difference is seen with respect
to the experimental result (0.12 eV[11]). Many considerations can be done re-
garding this experimental band gap. In fact, very few information is available on
this sample both on the synthesis and on the measurements. The only assump-
tion is that the sample was particularly rich in defects and unfortunately this is
the reference to which everybody refer.

Considering the thermoelectrics, the defect-free TiNiSn shown a p-type be-
haviour predominant, in good agreement with existing theoretical literature at
specified charge carrier concentration but not with experimental data. Experi-
mentally an n-type material was expected.
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In order to understand this peculiar behaviour, point defects have been intro-
duced in the model: in particular a 2x2x2 supercell 24 atoms was used for the
defect dilution. In fact, defects introduce localized levels in the vicinity of the
Fermi level within the “forbidden region”.

Among all the possible defect we displaced a Ni atom from an Half Heusler
(HH) position to a vacant Full Heusler (FH) site. We preserved in this way the
space group and it was beneficial in terms of computing time. Figure 7.5 shows
a representative model of the defect.

Figure 7.5: Representative model of the crystallographic cell for defect in TiN-
iSn. Blue, purple and grey spheres denote Ti, Sn and Ni atoms respectively.
The yellow spheres (enlarged for better visualization) are Ni positions that were
originally unoccupied in the pure system. The red spheres denote vacant sites.

Moreover, the choice of the defect was driven by the experimental data: no
change in stoichiometry was expected. In particular, two defective systems have
been found: W8c-111 and W8c-333. They differ in the band gap values (0.26 eV
and 0.19 eV respectively - PBE10 level) that are narrow than the pure system
(0.69 eV - PBE10 level) and in the coordination patterns. All the details of these
models are described in [1].

We reached the agreement with experiment with the W8c-111 defect system
that prefers n-type carriers and has an higher Power Factor compared to pure
TiNiSn.

Moreover, Half Heusler alloys are extremely sensitive to the choice of function-
als above all at high temperature. For this reason all the calculation have been
carried out by using hybrid functionals that are known to improve the accuracy
for crystal computations. In fact, band gaps using PBE functional, are predicted
to be conducting in the defect systems, thus hybrid functional are suggested. In
particular, PBE10 - Hybrid Functional with 10% of Hartree Fock (HF) exchange
was used.

In Figure 7.6 we show the band structure and the density of state (DOS)
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for the pure TiNiSn by using PBE10 hybrid functional. Our computed indirect
band gap for TiNiSn is 0.69 eV which is 6 times the experimental value of 0.12
eV. However, we think that the experimental measurements were performed on
a sample with high concentration of defects.

Figure 7.6: Band structure and DOS for TiNiSn with an indirect band gap of
0.69 eV.

Another important aspect to consider while studying HH alloys is the quality
of the basis set. In fact, the influence of the basis set quality in the evaluation of
the electronic structure and consequently in the thermoelectrics is rather high. A
bad quality basis set may describe imprecisely the curvatures of the band struc-
tures affecting the band velocity evaluation and therefore all the thermoelectric
coefficients. A graphical representation of the basis set influence in the band
structure and in the thermoelectric properties is reported in Figure 7.7, where
a significant discrepancy is shown in the evaluation of the PF for the TiPtSn
compound.

7.2.2 Experimental Comparison

Our results have been compared with the experiments run by the Castellero
group in our Chemistry Department. In this regard they shared with us data
about the carrier concentration and the thermoelectrics of their sample TiNiSn.
Regarding the carrier concentration, in Figure 7.8 a general trend is reported. As
shown in the picture the scattering of data is rather huge: the maximum value of
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CC C-type Temp PF ZT
(cm−3) (K) x1011(WK−2m−1s−1)

UNOPT
1E+20 n-type 300

2.25E-01 3.22E-03
OPT 1.10 0.02

Figure 7.7: Top: Influence of the basis set in the band gap structure in TiPtSn.
Bottom: Influence of the basis set in the thermoelectric properties (Power Factor,
PF) at a specific Carrier Concentration (CC) and Temperature (T). Functional:
PBE10. Basis Set Reference: def2-TZVP. UNOPT: unoptimized basis set. OPT:
optimized basis set.

carrier concentration is around 3.650 ·1019cm−3, the minimum is 3.281 ·1018cm−3

and the arithmetic average is 1.473 · 1019cm−3.
Comparing our data with the experimental ones with a carrier concentration

around 1 ·1019cm−3, we may observe a slight divergence, but reducing the carrier
concentration to 3.81 · 1018cm−3 the discrepancies are smaller, above all at high
temperature. All the details are in Table 7.1.

We reach the experimental value of Seebeck (S = -314.324 µV/K) around
∼ 4E18cm−3 at 300K.

In order to give a more general overview of the actual state of art regarding
TiNiSn compound, in Figure 7.9, some results regarding Seebeck coefficient and
electrical resistivity available in literature are reported. As shown in the pictures
we have reported our Seebeck and resistivity data of the defect model W8c-111.
While for the Seebeck we obtained a rather good agreement with respect to the
experimental results of our collaborators, the resistivity shows a slight divergence.
Nevertheless, our value is in line with the other references. This discrepancy can
justify our slight deviation in the Power Factor with respect to the experimental
data reported in Table 7.1.

The overall comparison with the experimental group is still a work in progress,
but general prospects are rather good.
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cc = 1 · 1019cm−3

S(µV/K) σ(Ω−1m−1)
Theo Pure Theo Defect Exp. Theo Pure Theo Defect Exp.

300K
p-type 313.039 346.202 1.436E+04 9.612E+03
n-type -216.714 -249.762 -314.730 2.597E+04 2.328E+04 3.442E+03
700K
p-type 408.499 -78.040 1.369E+04 2.261E+04
n-type -323.125 -241.063 -250.267 2.334E+04 3.763E+04 2.999E+04

ρ(Ωm) PF(mWm−1K−2)
Theo Pure Theo Defect Exp. Theo Pure Theo Defect Exp.

300K
p-type 6.963E-05 1.040E-04 1.407 1.152
n-type 3.851E-05 4.296E-05 2.906E-04 1.219 1.452 0.363
700K
p-type 7.304E-05 4.424E-05 2.285 0.138
n-type 4.285E-05 2.657E-05 3.334E-05 2.436 2.187 1.920

cc = 3.81 · 1018cm−3

S(µV/K) σ(Ω−1m−1)
Theo Pure Theo Defect Exp. Theo Pure Theo Defect Exp.

300K
p-type 390.138 421.084 5.822E+03 3.943E+03
n-type -290.416 -314.324 -314.730 1.052E+04 9.533E+03 3.442E+03
700K
p-type 479.136 -101.012 5.640E+03 2.464E+04
n-type -264.354 -218.766 -250.267 9.631E+03 3.067E+04 2.999E+04

ρ(Ωm) PF (mWm−1K−2)
Theo Pure Theo Defect Exp. Theo Pure Theo Defect Exp.

300K
p-type 1.718E-04 2.536E-04 0.886 0.699
n-type 9.502E-05 1.049E-04 2.906E-04 0.888 0.942 0.363
700K
p-type 1.773E-04 4.059E-05 1.295 0.251
n-type 1.038E-04 3.260E-05 3.334E-05 0.673 1.468 1.920

Table 7.1: Seebeck (S), Electrical Conductivity (σ), Electrical Resistivity (ρ)
and Power Factor (PF) of the theoretical pure system (Theo Pure), theoretical
defect system W8c-111 (Theo Defect) and the experimental results (Exp.) at
300K and 700K. The carrier concentration (cc) p-type and n-type considered are
1 · 1019cm−3 and 3.81 · 1018cm−3.

7.3 Ta-Based half Heusler

Recently, researchers reported some previously unknown Half-Heusler com-
pounds, such as ScPtBi, TiPdSn, ZrNbPb, etc. and TaCoSn [12] was reported
to be a semiconductor with high thermoelectric performance. Bhattacharya et
al. calculated the optimal ZT of TaCoSn by assuming the lattice part of thermal
conductivity κph/τ ∼ 1014W/mKs and found to be 1.73 [13]. While Haque et
al. reported a calculated maximum thermoelectric figure of merit (ZT) of 0.731
at 600 K [14].

Therefore, it was reasonable to study the details of transport properties along
with the electronic nature of TaCoSn.
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Figure 7.8: Carrier concentration measured by the experimental group. The
maximum, the minimum and the arithmetic average are reported in red, blue
and green respectively.

Figure 7.9: General overview of the Seebeck parameter (left) and of the electrical
resistivity (right) of TiNiSn available in literature. The label “This work” regard
the experimental sample studied by our collaborators.

The computational set up is rather similar to the one adopted for the Ti-based
alloys: PBE10 functional and as basis set def2-TZVP like. As regard the basis
set, a BDIIS procedure was performed for the basis set optimization. The basis
sets adopted are reported in Appendix 12.5.
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7.3.1 Defect Free TaCoSn

Crystal Structure and Elastic Properties

As regard the pure system the lattice constant a obtained is 5.9410 Å, com-
parable with the experimental value of 5.94 Å[15].

The equilibrium Bulk modulus B0, elastic constants c11, c12, c44, Poisson ratio
ν, and Young’s modulus Y , are obtained with CRYSTAL by solving the third-
order Birch-Murnaghan isothermal equation of state[16] and riported in Tables
7.2 and 7.3.

B0 GV GR GH Y ν
This work 184.57 95.28 92.94 94.11 241.32 0.282
Ref. 226.2[14] 100.1[14] 98.3[14] 99.2[14] 259.6[14] 0.3[14]

Table 7.2: The calculated elasticity moduli in GPa according to Voigt-Reuss-Hill.
B0 is the bulk modulus, G is the shear modulus, Y is the Young’s modulus and
ν is the Poisson ratio. References are reported when available.

c11 c12 c44
This work 336.791 108.462 82.692
Ref. 382.2[14] 148[14] 88.8[14]

303.78[17] 95.97[17] 75.38[17]

Table 7.3: The calculated elastic constants in GPa according to Voigt-Reuss-Hill.
c11, c12 and c44 are the elastic constants. References are reported when available.

The Poisson ratio and the Young modulus are very close to the references,
while a slight discrepancy is shown for the bulk and the shear moduli.

Looking at the elastic constants we may states that TaCoSn is elastically
stable. Moreover, considering the Pugh ratio as (B/G), we evaluate a value of
1.961, which is greater than 1.75. This result means that our material is ductile
as expected from literature (B/G = 2.2 for Haque et al. [14]).

In order to evaluate the percentage of elastic anisotropy we used the following
expression:

AG =
(GV −GR)

(GV +GR)
(7.11)

which in our case corresponds to 1.243% that is close to the reference (0.9%
for Haque et al.[14]).

The shear elastic anisotropy can be calculated by using the equation:
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A =
2c44

(c11 − c12)
(7.12)

that in our specific case is 0.724 with respect to 0.76 of Haque et al. [14].
This indicates that our compound is anisotropic.

The hardness is calculated by the Vickers empirical formula:

HV = 2

((
G

B

)2

G

)0.585

− 3 (7.13)

which in our case is HV = 9.982 GPa (8.22 GPa for Haque et al. [14]) and it
indicates a hard material.

In order to be as much as possible exhaustive about the description of the bulk
modulus, we listed in Table 7.4 bulk modulus and first order derivative obtained
using different equations of state fitting.

Equation of State V(Å3) E(AU) B0(GPa) B1(a.u.)

Voigt-Reuss-Hill 184.57
Murnaghan 1944 52.4622 -1654.155142 183.72 4.02
Birch-Murnaghan 1947 52.4616 -1654.155144 184.11 4.04
Poirier-Tarantola 1998 52.4612 -1654.155145 184.45 4.05
Vinet 1987 52.4613 -1654.155144 184.28 4.05
Polynomial Fitting V(Å3) E(AU) B0(GPa)

Third Order Polynomial 52.4598 -1654.155153 186.86
Fourth Order Polynomial 52.4608 -1654.155143 184.08
Fifth Order Polynomial 52.4619 -1654.155144 184.08
Ref. 186.2674[17] 4.11[17]

165.4[18] 4.48[18]
226.2[14]

Table 7.4: Bulk moduli (B0) and the first order derivative (B1) of TaCoSn with
the corresponding molar volume (V) and references when available.

Regarding both bulk modulus and the first order derivative a rather good
agreement is shown, even if for the bulk modulus huge discrepancies can be seen
among the references available.

Band Structures and Density of States

In the following, a general overview about the electronic structure is shown.
In Figure 7.10 both band structure and density of states plots are reported.

The calculated energy bands indicate that TaCoSn is an indirect band gap semi-
conductor and the value of gap is 1.4945 eV which in agreement with references
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Figure 7.10: Band Structure (Right) and Density of States (Left) of TaCoSn pure
system (PBE10 level).

(PBE level: 1.107-1.153 eV [14], 1.09 eV [19], 1.04 eV [20]; PBEsol level: 1.148
eV [17]; HSE06 level: 1.3 eV [15]; LDA level: 1.32 eV [13]).

The total atomic and projected density of states demonstrate a predominat
influence of the tantalum orbitals above the Fermi level, while at lower energy
cobalt seems to have the paramount influence. On the other hand, tin does not
have a dominant contributions. Nevertheless, it seems that the cobalt orbitals
have a preponderant behaviour to the density of states at the Fermi level.

The preceding comments and the dense electronic states of this compound at
the vicinity of Fermi level play a significant role in the transport properties of
TaCoSn. Thus, TaCoSn is expected to be a p-type doping predominant and to
possess a large Seebeck coefficient and large power factor.

7.3.2 Point Defects in TaCoSn

As already deeply studied for the TiNiSn alloy, we decided to introduce point
defects in the TaCoSn compound as well. We started by using the same kind of
model W8c-111 and W8c-333, then an extrinsic defect has been introduced.

Band Structures and Density of States

Starting from the well known W8c-111 and W8c-333, in Figure 7.11 the band
structures are reported, in comparison with the pure system as well with the same
supercell adopted.

Even in this case, the inclusion of defects in the system implies the introduc-
tion of levels in the “forbidden region” of the band gap, narrowing in this way
the overall band gap. In fact, while in the pure system we obtain 1.4946 eV, with
W8c-111 we have 0.1859 eV and 0.1606 eV for the W8c-333 model.
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Figure 7.11: From the right Band Structure of TaCoSn pure system, W8c-111
and W8c-333 defect models.

As regard the density of states plots in Figure 7.12 the atom projected density
of states for the defect models are reported. While for the W8c-333 model at high
energy the tantalum still has a predominant behaviour as for the pure system, for
the W8c-111 model the displaced cobalt atom (named Co(24) in the following)
seems to deeply modify the conduction region, and to reverse the original order.
At low energy the W8c-333 shows a huge increasing of the cobalt influence, while
W8c-111 model keeps almost the same relative influence as in the pure system.
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Figure 7.12: Density of States of TaCoSn defect systems. Left: W8c-111. Right
W8c-333.

In Figure 7.13 a comparison of the density of states of the cobalt atom involved
in the defect formation is shown. While in the W8c-111 model the cobalt seems
to contribute equally in the valence and in the conduction region, the W8c-333
keeps the original behaviour of the pure system, with an enhancement in the
valence region.

Neighbours analysis of the defect systems is reported in Table 7.5. In fact,
as the Co atom is displaced from its HH to a FH position, symmetry related
atoms within the 2 × 2 × 2 supercell are no longer equivalent on the basis of
different coordination patterns. Before performing the geometry optimization in
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Figure 7.13: PDOS on the defect TaCoSn alloys on the Co(24), thus the displaced
atom.

W8c-111, Ti(1) and Ti(5) have 3 and 5 Co atoms in the first neighboring shell.
While in W8c-333 Ti(1) and Ti(5), both have four Co as first neighbors. Similar
behaviour is noted for Sn atoms. After the geometry optimization, both the
defect alloys seem to rearrange the atoms to restore its 4-Ti and 4-Sn octahedral
coordination. This can be seen from the stretching in the distances of the fifth
Co neighbour of Ti(5) and Sn(20) inW8c-111 and W8c-333 (2.5837 and 2.5977
Å, respectively).

Regarding the relative stability: W8c-111 is more stable than W8c-333 of
about 0.74 eV. Considering the difference (Edefect − Epure) (3.115 eV for W8c-
111 and 3.852 eV and for W8c-333 ) and dividing this quantity by 3 (24 atoms
in the unit cell and 8 in the asymmetry unit) we get 1.038 eV for the W8c-111
and 1.284 eV for the W8c-333 model.

Thermoelectrics

In this section a brief overview about thermoelectric properties is presented
along with the available literature. In Fig. 7.14 Seebeck coefficient, electrical
conductivity and power factor at room temperature are reported graphically.
From the predominant band in the p-type region of the power factor, we can
state that our material (defective or not) has a p-type behaviour as expected by
other theoretical simulations available in literature.

Below a schematic summary of the result obtained with CRYSTAL and a
comparison with literature when available are presented.
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W8c-333 W8c-111
no opt d opt d no opt d opt d

Ti(1) 4Co 2.5665 3Co 2.5932 3Co 2.5665 3Co 2.5892
1Co 2.6553

Ti(5) 4Co 2.5665 3Co 2.5561 5Co 2.5665 1Co 2.5239
1Co 2.5962 3Co 2.5542

1Co 2.5837
Sn(16) 3Co 2.5665 3Co 2.5877 4Co 2.5665 3Co 2.5983

1Co 2.7032
Sn(20) 5Co 2.5665 1Co 2.5302 4Co 2.5665 3Co 2.5476

3Co 2.5727 1Co 2.6042
1Co 2.5977

Table 7.5: Neighbours of the non-equivalent atoms in the defect model W8c-333
and W8c-111. “no opt” and “opt” labels regard the defect models before and
after geometry optimization respectively. Distances d are in Å.

• Seebeck, S

At 300K plane waves and BoltzTrap predict S = 252µV K−1[17] and S =
243µV K−1[14] that we reproduce at a carrier concentration of almost 5 ·
1019cm−3, in particular:

Pure: S = 250µV K−1

W8c-111 : S = 175µV K−1

W8c-333 : S = 265µV K−1

At 800 K at a carrier concentration around 1.0 · 1019cm−3 Wei et al. ob-
tained S = 680µV K−1 [19] that we reach at a bit lower carrier concentra-
tion (1.0 · 1018cm−3) with S = 700µV K−1 with the pure system.

At 900K we observe an even higher Seebeck coefficient (S = 650µV K−1 at
a carrier concentration of 2.0 · 1018cm−3) and at 1200K a slight decreasing
is shown (S = 520µV K−1 at a carrier concentration 1.0 · 1019cm−3) as
expected from literature.[19]

• Electrical Conductivity

At 300K theoretically the electrical conductivity is expected to be around
σ = 0.728µΩ−1m−1[14] that we reach at 5.0 · 1020cm−3 of carrier concen-
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Figure 7.14: Seebeck (a), electrical conductivity (b) and power factor (c) at
room temperature (300K) of TaCoSn pure system, W8c-111 and W8c-333 defect
models.

tration. The following values of electrical conductivity are obtained:

Pure: σ = 0.78µΩ−1m−1

W8c-111 : σ = 0.52µΩ−1m−1

W8c-333 : σ = 0.25µΩ−1m−1

Instead experimentally σ = 0.031µΩ−1m−1[20] and σ = 0.1µΩ−1m−1[15]
are expected. At 5.0 ·1019cm−3 of carrier concentration the following values
of electrical conductivity are obtained for our models:

Pure: σ = 0.08µΩ−1m−1
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W8c-111 : σ = 0.11µΩ−1m−1

W8c-333 : σ = 0.03µΩ−1m−1

Even at high temperature our results are in good agreement with references
available[19] (at 800K, Pure: σ = 0.15µΩ−1m−1 at 1.0 ·1020cm−3 of carrier
concentration).

• Power Factor

At 300K at 3 · 1019cm−3 of carrier concentration we obtain rather high
power factors that are comparable with references[14]:

p-type doping
Pure: PF = 4 · 1011W/msK2

W8c-111 : PF = 3 · 1011W/msK2

W8c-333 : PF = 1.6 · 1011W/msK2

while for the n-type doping
Pure: PF = −1.4 · 1011W/msK2

W8c-111 : PF = −1 · 1011W/msK2

W8c-333 : PF = −1.4 · 1011W/msK2

For sake of completeness the Power Factor of the pure system at different
temperature is reported in Fig. 7.15.

Although theoretically our results are in good agreement with available litera-
ture at specific carrier concentration, experimentally n-type material is expected
with a very low Seebeck coefficient (S = −4µV K−1[20], S = −5µV K−1[15]).
This discrepancy can be justified by the presence of defects in the samples that
are not exactly reproduced by our models. Moreover, it is well known that the
synthesis of the TaCoSn is itself very complicated, due to the easy tin loss and
the unavoidable porosity of the system.

Considering the preceeding results both defect models adopted (W8c-111 and
W8c-333 ), that were interesting in TiNiSn, are not performant in TaCoSn. In
fact, the pure system seems to keep the highest power factor.

7.3.3 Extension to other defect models: Nb substitution

In order to understand the discrepancy with the experimental data, we tried
to model also other kind of defect, like extrinsic defect in the TaCoSn.

In particular, we substitute a Ta with a Nb in a supercell 2x2x2. The Nb
introduction and Ta substitution in the system is a rather common defect. In
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Figure 7.16: Power Factor comparison among pure system and defect models:
W8c-111, W8c-333 and extrinsic Nb defect.

fact, experimentally Nb is a common impurity in the TaCoSn.
As regards thermoelectricity (see Fig. 7.16), no enhancing in the power factor
is seen in this case, but a rather similar behaviour to the pure system is shown.
This result states that a stoichiometric defect is preferred instead of the antisite
defect in order to enhance the thermoelectric properties of TaCoSn. Of course,
the work is still in process and further investigations are needed. In fact, next
possible defect model to study can be the tin loss and the change in cobalt content
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that are defects rather common in real sample.

7.3.4 Extension to TaRhSn and TaIrSn

We also extended our discussion to other two Ta-based compound: TaRhSn
and TaIrSn in which theoretical and experimental data are rather sparse. Even
in this case the basis sets have been optimized by the BDIIS optimizer (basis sets
in Appendix 12.5). The SCF setup is the same as before: PBE10 functional and
def2-TZVP optimized basis sets.
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Figure 7.17: Band Structure of TaIrSn (Right) and TaRhSn (Left).

As regards the crystalline structure, TaIrSn has a lattice constant a of about
6.210 Å, while TaRhSn of about 6.120 Å. Very few are the reference data: TaIrSn
6.236 Å(PBE level)[18], 6.23 Å[17] (PBEsol level) and 6.175 Å[15] (experimen-
tal); TaRhSn 6.127 Å[17] (PBEsol level) and no experimental data available.

Band Structure and Density of States

As already seen in the previous sections the band structures are characterized
by an indirect band gap between the Γ and the X point. In Figure 7.17 the band
structures are reported. As regard the band gaps, TaIrSn shown a gap of 1.3852
eV, while TaRhSn a gap of 1.3249 eV. From literature we can find: for TaIrSn 1.3
eV[15] (GGA+U) and 1.331 eV[17] (PBEsol), for TaRhSn 1.2 eV[15] (GGA+U)
and 1.160 eV[17] (PBEsol).

As regards the density of states, we decided to compare the atomic projec-
tions of the TaCoSn, TaIrSn and TaRhSn (Figure 7.18). While the Sn and Ta
show a rather similar behaviour in the three compounds, Co, Ir and Rh seems to
modify the valence region. In particular, cobalt orbitals are rather predominant
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Figure 7.18: Computed PDOS on the atomic orbitals of (a) Ta, (b) Co/Ir/Rh,
and (c) Sn, at the PBE10/def2-TZVP level. Dotted line corresponds to the Fermi
energy.

in the vicinity of the Fermi level.

Thermoelectrics

In this section thermoelectric properties of TaCoSn, TaIrSn and TaRhSn are
reported. In all the systems a p-type predominant behaviour is shown, in fact at
almost all the carrier concentration the highest Seebeck value is in the p-type re-
gion (see Fig. 7.19 left). While the Seebeck ranking is TaCoSn>TaIrSn>TaRhSn,
for the electrical conductivity an opposite behaviour is shown. These results fore-
see a power factor ranking like TaCoSn>TaIrSn>TaRhSn.

Of course these results are rather preliminary and further investigations are
needed, such as the introduction of defects in the abovementioned compounds.
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Figure 7.19: Comparison Seebeck and Electrical Conductivity of TaCoSn, TaIrSn
and TaRhSn at 300K.
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Chapter 8

Ullmannites

Ullmannites are natural mineral ternary compounds of different nominal com-
position. They are predicted to be very performant as thermoelectric materials
and the most common alloy is NiSbS. In this last chapter, a recent work started in
collaboration with the experimental group of Prof. Alberto Castellero at the Uni-
versity of Turin is presented. Stability, electronic structure and thermoelectrics
are simulated by using CRYSTAL and compared with the available experimental
data. Four compounds have been selected for the study: NiSbS, NiSbSe, PdSbS
and PdSbSe. These compounds are pretty new in the field of thermoelectrics
and very few literature data are available, predominantly on NiSbS. [1, 2, 3, 4]
In general, the crystal structure of these compounds is similar to the well-known
FeSi-type cubic structure (P213, No. 198, see Fig. 8.1).

Figure 8.1: Graphical representation of NiSbS; P213 space group, No. 198. In
grey, orange and yellow are reported Ni, Sb and S. The structure is the same for
NiSbSe, PdSbS and PdSbSe with the appropriate atoms exchange.

All the CRYSTAL calculations in this chapter have been performed by using
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PBE functional and def2-TZVP like basis set. Even in this case the basis sets
were optimized with the BDIIS method. The basis sets are fully reported in
Appendix 12.6.

8.1 Crystalline Structures and Thermodynamics

We have considered four compounds: NiSbS, NiSbSe, PdSbS and PdSbSe.
Our starting point was the study of relative stability among these compounds

looking at the formation reactions given by the experimental group.
Four reactions have been studied:

1) NiSb2 (Pnnm) + NiS2 (Pa-3) 2 NiSbS (P213)
2) NiSe2 (Pa-3) + NiSb2 (Pnnm) 2 NiSbSe (P213)
3) PdSb2 (Pa-3) + PdSe2 (Pbca) 2 PdSbSe (P213)
4) PdS2 (Pbca) + PdSb2 (Pa-3) 2 PdSbS (P213)

For each compound the space group is reported in parenthesis. As regards
the starting geometries they have been taken from the American Mineralogist
Crystal Structure Database [5, 6, 7, 8, 9, 10, 11].

For these four reactions, we obtain a favourable formation enthalpy for the
ternary compounds and they are comparable with the data obtained by other
theoretical calculations ([12, 13], website: http://oqmd.org/materials/ , label
oqmd in the following). The entity is about −0.1eV/atom for almost all the
compounds:

1)∆H = −0.106eV/atom (oqmd:-0.419eV/atom)
2)∆H = −0.097eV/atom (oqmd:-0.307eV/atom)
3)∆H = −0.126eV/atom (oqmd:-0.421eV/atom)

4)∆H = −0.121eV/atom (oqmd:not stable)

Experimentally the fourth compound is less stable than the others. In this re-
gards, we tried to change the abovementioned formation reaction to the following
one:

2 PdS (P42/m) + 3 PdSb (P63/mmc) + Sb2S3(Pnma) 5 PdSbS (P213)

where the formation enthalpy is about−0.036eV/atom, thus always favourable
but less stable.

The ternary diagrams obtained from the oqmd are reported in Figure 8.2
where it is well shown the instability of the PdSbS compound with respect to the
others.

Nevertheless, the experimental group with a lot of efforts were capable of
synthesizing the PdSbS compound as well.
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Figure 8.2: Ternary diagram of NiSbSb, NiSbSe, PdSbS and PdSbSe performed
by using the oqmd website (http://oqmd.org/materials/). PdSbS is not present
in the diagram because it is predicted to be unstable.

8.2 Band Structures and Density of States

From the point of view of the band structures, all these compounds are con-
ductive and the shape obtained is absolutely comparable with the literature data
available. In our calculation spin orbit coupling is not considered since not yet
available in the CRYSTAL code. In all these band structures, the pudding mold
character is present. The “pudding mold” type, consists of a dispersive portion
and a somewhat flat portion in the band structure for a range of k points. The
important expectation for the pudding mold band is not just the large ther-
mopower, but also a relatively large conductivity and thus a large power factor.
Moreover, this band structure shape is usually matched with hole pockets. The
combination of these two features are predicted to be rather fundamental for en-
hancing the thermoelectric properties, and in particular drive large thermopower
[14, 15] even if the system is metallic [1].

In Figure 8.3 an overlap of all the band structures is reported along with the
density of states.

As regard the density of states, experimental results are available and they
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Figure 8.3: Theoretical band structures (left) and density of states (right).

are reported in Figure 8.4 in which a full range and an enlargement are reported.
Our calculations are in a good agreement with the expected results. Even if
the band structures among the four compounds are rather similar, the density of
states demonstrated slight differences at the Fermi level. In fact, the combination
Ni and S seems to have a predominant influence around the Fermi level.

Figure 8.4: Experimental density of states. Two levels of accuracy have been
used.
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8.3 Thermoelectrics

Thermoelectrics properties of these compounds are very few in literature, but
in this work we tried to compared the results obtained with the experimental
data given by our collaborators.

In this section we report our data compared with experimental data available.
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Figure 8.5: NiSbS and NiSbSe thermoelectric properties. On the left experimen-
tal results, on the right simulation performed by using CRYSTAL.

Looking at the general trend in Figure 8.5 a good agreement in the evaluation
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Figure 8.6: PdSbSe thermoelectric properties. On the left experimental results,
on the right simulation performed by using CRYSTAL.

of the Seebeck coefficient is obtained, a slight difference in the absolute value of
the Power Factor is shown due to an underestimation of the resistivity in the
simulation. Theoretical NiSbS is expected to be a n-type material, while NiSbSe
shows a predominant n-type instead of a p-type as expected from the experiment.
Nevertheless, the calculation on the p carriers is in perfect agreement with the
experiment. For sake of completeness p and n type carriers behaviour is reported
in all the plots. As regards the carrier concentration, in this case we don’t have
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any information from the experiment, but due to their conductive nature, high
carrier concentration is expected. For this reason the abovementioned plots were
performed at a carrier concentration of 6.0 · 1020cm−3 and 5.5 · 1020cm−3 for
NiSbS and NiSbSe respectively.

As regard the PdSbSe, a comparison experiment and simulation is reported
in Figure 8.6. In this case, even if the general trends are rather good among our
data and experimental ones, a slight high Seebeck coefficient and a rather low
electrical resisitivity increase our power factor not allowing a perfect match be-
tween results. Nevertheless, considering that all the calculations were performed
without modeling defects, the simulation can be considered rather good, due to
the fact that real materials may contain defects and they are fundamental in the
evaluation of the thermoelectric properties.
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palladium mineral species from Předbořice, Czech Republic. The Canadian Mineralogist,
43(2):689–694, 2005.

[12] James E Saal, Scott Kirklin, Muratahan Aykol, Bryce Meredig, and Christopher Wolver-
ton. Materials design and discovery with high-throughput density functional theory: the
open quantum materials database (OQMD). Jom, 65(11):1501–1509, 2013.

[13] Scott Kirklin, James E Saal, Bryce Meredig, Alex Thompson, Jeff W Doak, Murata-
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Chapter 9

Conclusions and
Perspectives

In the frame of this PhD thesis work, I had the possibility to investigate
different fields by using new and never used methods in solid-state simulations.
This three years work can be ideally grouped in two different type of activity:
code development and the application of the CRYSTAL code to the study of
thermoelectric materials.

Within code development and applications, I have developed a basis set opti-
mizer based on the DIIS algorithm that minimizes the total energy of the system
constrained to keep the condition number of the overlap matrix as small as pos-
sible in a similar approach as proposed by VandeVondele et al.[1]. The proposed
method is quite effective for solid-state calculations and allows for an easy op-
timization of basis sets with different dimensions. The evidence of the excellent
performance of the BDIIS method paves the way for a careful definition of system-
specific basis sets, as a viable alternative to all-purpose basis sets. Nevertheless,
it could be employed for a more extensive work that would permit the creation
of all-purpose basis set families for a larger set of atomic species. This algorithm
can be a useful alternative to the usual basis set optimization, commonly per-
formed by hand, allowing for the easy creation of new basis sets or system-specific
optimizaton of new ones. A large benchmark on elemental solids demonstrated
that the BDIIS method can be used to obtain basis sets for solids of consistent
quality as for molecules without pruning the original basis sets. A DIIS-based
geometry optimization (GDIIS - Direct Inversion in the Iterative Subspace for the
Geometry Optimization) was also implemented in Crystal, with a performance
in the results that was not entirely convincing.

Afterwards, the Maximum Overlap Method (MOM) was implemented for the
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∆−SCF excited states calculations. Despite being still in a single-particle picture,
the method shows reasonably good ability to describe optical gaps, with the
advantages of 1) allowing for cross-spin excitation and 2) allowing for optimization
of excited states geometry. Both the Hartree-Fock level and DFT calculations
can be performed with the MOM with the same computational cost and in solid
states. The gradients expression for excited states was derived, which showed its
use in the valuation of luminescence spectra.

Finally, the basis set optimizer denmonstrated to be a key tool for the investi-
gation of the geometry, electronic band structure, and TE properties of HH alloys:
starting from TiNiSn, TiPdSn, and TiPtSn to Ta based compounds. P-type dop-
ing was obtained from all of these compounds, but an appropriate description
of the point defects was fundamental to justify the n-type behaviour predicted
experimentally. The ullmannites are the last family of materials that we have
just started to study from a thermodynamic point of view and electronically. Till
now, good agreement with experimental data available are obtained even if fur-
ther studies are needed. In terms of thermoelectricity, in both half heusler and
ullmannites, many aspects require further investigation: introduction of other
kind of defects, increase defect dilution by increasing cell dimension and the ex-
tension to other alloys.
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Chapter 10

Appendix A - Basis Set
Optimizer, Algorithm
Implementation

In this Chapter a brief technical overview about the implementation of the
basis set optimizer and the BDIIS method in the CRYSTAL code is reported,
following the discussion in the previous chapter. In particular, we describe in
detail the code implemented during this thesis and the options available.

It is a rather technical chapter and can be seen as a detailed documentation
of the algorithm. It can be rather complicated for non-users of CRYSTAL due to
the internal language adopted. Nevertheless, it can be useful for people involved
in future CRYSTAL projects. Moreover, it is related with the published paper
“Gaussian Basis Sets for Crystalline Solids: All-Purpose Basis Set Libraries vs
System-Specific Optimization” [1], reported along with the supplementary mate-
rial in Appendix 12.1 of this thesis.

CRYSTAL is written in FORTRAN (77/90/95/03/08) and it consists today
of more than a million lines of code. The program is made up of different sub-
routines and modules. In general, a subroutine is a unit characterized by a
sequence of instructions for a specific task that can be “called” whenever needed.
A module is a unit arranged for the storage of variables and parameters. To
organize all the information needed in the program, there are many files, each
with a specific aim and feasible application and they are controlled by a main
file called crystal.f90. It contains the Subroutine f90main that is the one
in which the basis set optimization is invoked. In particular, the subroutine
involved in this procedure is the Subroutine BASIS_OPT_DRIVER contained in
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the file basis_opt.f. The BDIIS algorithm has been introduced in a specific
module named Module bdiis_module. Other variables, matrices definition are
reported in a separate module called Module basis_opt_module. Both modules
are reported in a single file named basis_opt_module.f90.

10.1 General Structure of the Optimization

A schematic representation of the work flow during the optimization is here
reported in Fig. 10.1 where in black boxes are reported the files involved along
with the routines invoked.

Figure 10.1: Schematic representation of the basis set implementation in CRYS-
TAL. In black boxes file names are reported, while in red and blue ones the
subroutines involved. The Subroutine BASIS OPT DRIVER is the main routine of
the basis set optimization algorithm from which all the others are invoked.

In the following a more detailed description of each section will be provided.

10.2 Basis Opt Driver

File: basis_opt.f

This section can be considered as the skeleton of the overall optimization.
Here a schematic representation of the file is reported:

• Subroutine BASIS_OPT_DRIVER

– Storing of Data and First SCF

– Preliminary Step for two-sided Numerical Derivative

– Gradient Evaluation, two-sided Numerical Derivative
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– BDIIS Algorithm and New Gradients

– Line Search and Step Application

– Ultimate SCF and Convergence Checks

• Subroutine condition_number

10.2.1 Storing of Data and First SCF

Before the actual starting of the optimization some information regarding the
initial basis set must be stored. In particular, two main data are stored:

• Input Basis Set
The exponents are stored in EXXstore matrix, while s, p and d-f-g con-
traction coefficients are stored in the CX1store, CX2store and CX3store

matrices respectively. For sp shells two contraction coefficients must be
specified, for s and p atomic orbitals, respectively. These matrices are
actually vectors of dimension NPRIMG, number of primitives. At each opti-
mization cycle (BASCRYS in the code) these vectors are stored in matrices
named totEXXstore, totCX1store, totCX2store and totCX3store.

• Shells Involved in the Optimization
(in input defined by an asterisk, see Section 10.6.1). In this case a checkers-
like matrix (named dama, dimension
{atomic species x max no. of shells}) is constructed, in which for
each atomic species and each shell one number is assigned: 1 corresponds
to a “to optimize-shell” and 0 to a “not to optimize” one.

This storing is performed in the Subroutine INPBAS where the basis set writ-
ten in input is read by the CRYSTAL code. This latter routine is invoked at the
beginning of any CRYSTAL calculation and it is contained in the both4.f file.

Once the Subroutine BASIS_OPT_DRIVER is invoked by the crystal.f90 a
first SCF is performed. The calculation has to converge rather smoothly at this
stage of the optimization.

The SCF total energy obtained in this first stage of the optimization (PAR0)
will be the one involved in the minimization. In particular, at this energy a
penalty function (numbcon) that include the Overlap matrix condition number is
added as described in Equ. 3.5 of Section 3.1.1.

The penalty function is performed in Subroutine condition_number re-
ported for sake of completeness in Section 10.2.7. This “Objective Function”
is actually the one involved in the minimization procedure and it is saved in the
variable PAR0.

CALL condition_number

PAR0=PAR0+numbcon
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10.2.2 Preliminary Step for two-sided Numerical Deriva-
tive

Three ingredients related with exponents and coefficients will be necessary in
the following:

• Gradients
FORZEbase_exp, FORZEbase_c1, FORZEbase_c2 and
FORZEbase_c3 vectors of dimension NPRIMG number of primitives. At each
optimization cycle (BASCRYS in the code) these vectors are stored in matri-
ces named totforze_exp, totforze_c1, totforze_c2 and totforze_c3

respectively.

• Steps
step_exp , step_c1, step_c2, step_c3 vectors of dimension NPRIMG num-
ber of primitives. The step is 1% of the exponents and 0.1% of the coeffi-
cients weighted by the relative exponents.

• Inverse Steps
INV_step_exp , INV_step_c1, INV_step_c2, INV_step_c3 vectors of di-
mension NPRIMG number of primitives. They are the inverse of the steps
abovementioned.

Browsing inside the dama matrix we can distinguish which atom species and
shells are involved in the optimization and start performing the initial step.

A concatenated series of DO loops are involved in order to screen along the
basis set.

• loop on optimization steps (BASCRYS defines the cycle number)

• loop on atomic species

• loop on shells

• loop on primitives (IPRIMM_att is the loop index).

Then a preliminary step is performed and it corresponds to 1% for the ex-
ponents and 0.1% for the coefficients (step_exp, step_c1, step_c2, step_c3 ).
Moreover, this last step is weighted by the relative exponent. Some other alter-
natives have been used during the implementation (e.g. fixed steps values like
0.001 and 0.0005), but in the end 1% and 0.1% have proved to be effective for the
optimization. Finally, the inverse of these steps are actually used in the following
(INV_step_exp, INV_step_c1, INV_step_c2, INV_step_c3).
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Preliminary step contruction

!!!! for exponents

step_exp(IPRIMM_att)=EXXstore(IPRIMM_att)*0.01_float

step_att_exp=step_exp(IPRIMM_att)

INV_step_exp(IPRIMM_att)=1._float/step_att_exp

!!!! for c1 coefficients

step_c1(IPRIMM_att)=CX1store(IPRIMM_att)*0.001_float

> /EXXstore(IPRIMM_att)

step_att_c1=step_c1(IPRIMM_att)

INV_step_c1(IPRIMM_att)=

>1._float/(step_att_c1*EXXstore(IPRIMM_att))

!!!! for c2 coefficients

step_c2(IPRIMM_att)=CX2store(IPRIMM_att)*0.001_float

> /EXXstore(IPRIMM_att)

step_att_c2=step_c2(IPRIMM_att)

INV_step_c2(IPRIMM_att)=

>1._float/(step_att_c2*EXXstore(IPRIMM_att))

!!!! for c3 coefficients

step_c3(IPRIMM_att)=CX3store(IPRIMM_att)*0.001_float

> /EXXstore(IPRIMM_att)

step_att_c3=step_c3(IPRIMM_att)

INV_step_c3(IPRIMM_att)=

>1._float/(step_att_c3*EXXstore(IPRIMM_att))

The effective step “ahead” (positive step) is applied subsequently in a routine
called EXP_MOVE_1 in the basis_opt_module.f90 file:

Positive Step

DO i=1,NPRIMG

step_att_exp=step_exp(i)

step_att_c1=step_c1(i)

step_att_c2=step_c2(i)

step_att_c3=step_c3(i)

If(what_ami_doing.eq.1)then

CALL EXP_MOVE_1(i,1,step_att_exp)

elseif(what_ami_doing.eq.2)then

CALL EXP_MOVE_1(i,2,step_att_c1)

elseif(what_ami_doing.eq.3)then

CALL EXP_MOVE_1(i,3,step_att_c2)

elseif(what_ami_doing.eq.4)then

CALL EXP_MOVE_1(i,4,step_att_c3)

endif

ENDDO

In which the variable what_ami_doing defines the kind of the optimization
performed (what_ami_doing=1 only exponents, what_ami_doing=2,3,4 for s,p
and d-f-g coefficients). Once done, another SCF is performed and the energy
saved in the variable PAR1.

CALL condition_number

PAR1=PAR1+numbcon

The effective step “backwards” (negative step) is applied subsequently in the
same routine called EXP_MOVE_1 in the basis_opt_module.f90:
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Negative Step

exx=EXXstore

c1 =cx1store

c2 =cx2store

c3 =cx3store

DO i=1,NPRIMG

step_att_exp=-step_exp(i)

step_att_c1=-step_c1(i)

step_att_c2=-step_c2(i)

step_att_c3=-step_c3(i)

If(what_ami_doing.eq.1)then

CALL EXP_MOVE_1(i,1,step_att_exp)

elseif(what_ami_doing.eq.2)then

CALL EXP_MOVE_1(i,2,step_att_c1)

elseif(what_ami_doing.eq.3)then

CALL EXP_MOVE_1(i,3,step_att_c2)

elseif(what_ami_doing.eq.4)then

CALL EXP_MOVE_1(i,4,step_att_c3)

endif

The Subroutine EXP_MOVE_1 is reported in the Section 10.3. Then the third
SCF is performed and the energy saved in the variable PAR2.

CALL condition_number

PAR2=PAR2+numbcon

10.2.3 Gradients Evaluation, two-sided Numerical Deriva-
tive

In this work we compute the derivatives by means of a two-sided numerical
derivative as reported in Equ. 3.6 of Section 3.1.1. Which means the gradients
(FORZEbase_exp and FORZEbase_cx(x=1,2,3)) are evaluated as half of the dif-
ference between PAR2 and PAR1 multiplied by the inverse of the step.

Two-sided Numerical Derivative

DO IPRIMM=1,NPRIMG!.......Gradient definition............

FORZEbase_exp(IPRIMM)=FORZEbase_exp(IPRIMM)-

> (PAR2-PAR1)*INV_step_exp(IPRIMM)*0.5_float

FORZEbase_c1(IPRIMM)=FORZEbase_c1(IPRIMM)-

> (PAR2-PAR1)*INV_step_c1(IPRIMM)*0.5_float

FORZEbase_c2(IPRIMM)=FORZEbase_c2(IPRIMM)-

> (PAR2-PAR1)*INV_step_c2(IPRIMM)*0.5_float

FORZEbase_c3(IPRIMM)=FORZEbase_c3(IPRIMM)-

> (PAR2-PAR1)*INV_step_c3(IPRIMM)*0.5_float

ENDDO

At this stage we also save the maximum value in absolute terms of those
gradients (maxforze_exp and maxforze_cx(x=1,2,3)) that will be involved in
the convergence tests.

Gradients Absolute Maximum Value

maxforze_exp=maxval(abs(forzebase_exp(1:NPRIMG)))

maxforze_c1=maxval(abs(forzebase_c1(1:NPRIMG)))

maxforze_c2=maxval(abs(forzebase_c2(1:NPRIMG)))

maxforze_c3=maxval(abs(forzebase_c3(1:NPRIMG)))

Moreover, for each optimization cycle BASCRYS, gradients, exponents and co-
efficients are stored into totforze_exp, totforze_cx(x=1,2,3), totEXXstore
and totCXMstore(M=1,2,3).
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Gradients, Exponents and Coefficients Storing

totforze_exp(1:NPRIMG,BASCRYS)=FORZEbase_exp(1:NPRIMG)

totforze_c1(1:NPRIMG,BASCRYS)=FORZEbase_c1(1:NPRIMG)

totforze_c2(1:NPRIMG,BASCRYS)=FORZEbase_c2(1:NPRIMG)

totforze_c3(1:NPRIMG,BASCRYS)=FORZEbase_c3(1:NPRIMG)

totEXXstore(1:NPRIMG,BASCRYS)=EXXstore(1:NPRIMG)

totCX1store(1:NPRIMG,BASCRYS)=CX1store(1:NPRIMG)

totCX2store(1:NPRIMG,BASCRYS)=CX2store(1:NPRIMG)

totCX3store(1:NPRIMG,BASCRYS)=CX3store(1:NPRIMG)

These matrices are fundamental for the next section.

10.2.4 BDIIS Algorithm and New Gradients

The BDIIS algorithm and the corresponding gradients are performed in the
routine named “BDIIS_method” available in the file basis_opt_module.f90.
This specific routine is invoked when the optimization cycle BASCRYS is greater
than a variable named STARTIT that is set by default to 1. It can be modified
by the user in input by using the keyword WAITIT. A detailed description of the
Subroutine BDIIS_method will be reported in Section 10.4.

BDIIS call

if(BDIIS.and.(BASCRYS.gt.STARTIT))then

totforze_exp=-totforze_exp

totforze_c1=-totforze_c1

totforze_c2=-totforze_c2

totforze_c3=-totforze_c3

CALL BDIIS_method(totEXXstore,

> totcx1store,totcx2store,totcx3store,

> totforze_exp,totforze_c1,totforze_c2,totforze_c3,

> BASCRYS,NPRIMG,

> forzebase_exp,FORZEbase_c1,FORZEbase_c2,FORZEbase_c3,

> MAX_HISTORY_GDIIS)

totforze_exp=-totforze_exp

totforze_c1=-totforze_c1

totforze_c2=-totforze_c2

totforze_c3=-totforze_c3

endif

From this routine the new gradients (steps to applied) are performed
(FORZEBASE_exp, FORZEbase_c1, FORZEbase_c2 and FORZEbase_c3).

10.2.5 Line Search and Step Application

In order to avoid large steps, a screening of a step multiplier is performed,
scaling it from 0.05 to 1.0. (9 different step name scale_try are considered).
This method is usually known as Line Search Method as described in Equ. 3.7 of
Section 3.1.1. At each point a SCF calculation is performed and the point with
the minimum value of total energy is then retained.
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Line Search Method

step_shorter=(/0.05_float,0.1_float,0.15_float,0.2_float,

& 0.3_float,0.4_float,0.6_float,0.8_float,1.0_float/)

enemin=par0

scale_factor=0.1_float

scale_try_index=0

do scale_try_index=1,9!Scale factor line search

scale_try=step_shorter(scale_try_index)

DO IPRIMM=1,NPRIMG

exponent_try=EXXstore(IPRIMM)-FORZEbase_exp(IPRIMM)*

& scale_try

if(exponent_try.lt.delta_exp)then

exx(IPRIMM)=EXXstore(IPRIMM)*0.5_float!1_float!

else

EXX(IPRIMM)=EXXstore(IPRIMM)-FORZEbase_exp(IPRIMM)*

& scale_try!_exp

endif

C1(IPRIMM)=CX1store(IPRIMM)-FORZEbase_c1(IPRIMM)*

& scale_try!_c1

C2(IPRIMM)=CX2store(IPRIMM)-FORZEbase_c2(IPRIMM)*

& scale_try!_c2

C3(IPRIMM)=CX3store(IPRIMM)-FORZEbase_c3(IPRIMM)*

& scale_try!_c3

exponent_try=0._float

ENDDO

At each step multiplier (scale_try) a SCF is performed and the energy saved
as PAR(6).

CALL condition_number

PAR(6)=PAR(6)+numbcon

If the convergence is not reached or the energy obtained is higher, the previous
step multiplier is taken. If the total SCF energy is lower than the initial total en-
ergy (enemin=PAR0), the relative scale factor is applied (scale_factor=scale_try),
otherwise a scale_factor =0.1 is applied.

Scale Factor Definition

if((INF(35) .eq. 1).or.(ABS(PAR(6)-PAR0).gt.ABS(PAR0))) then!SCF not convergence

if(scale_factor.eq.0.05_float)then

scale_factor=0.01_float

elseif((scale_factor.gt.0.05_float).and.(scale_factor.le.0.2))then

scale_factor=scale_factor-0.05_float

elseif((scale_factor.gt.0.2_float).and.(scale_factor.le.0.4))then

scale_factor=scale_factor-0.1_float

elseif((scale_factor.gt.0.4_float).and.(scale_factor.le.1.0))then

scale_factor=scale_factor-0.2_float

endif

if(par(6).lt.enemin) Then

ii=1

enemin=par(6)

scale_factor=scale_try

else

exit

endif

enddo!Scale factor line search

Once that the optimal step is found, we compute and apply the step and we
create a new EXXstore and CXMstore(M=1,2,3). In other words exponents and
coefficients involved in the optimization are actually moved. An additional check
is performed in the exponent case: since negative exponents cannot be present,
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if the resultant exponent is lower than zero (delta_exp=0._float), half of the
actual exponent is applied.

exponent_low(:)=0

DO IPRIMM=1,NPRIMG

exponent_try=EXXstore(IPRIMM)-FORZEbase_exp(IPRIMM)*

& scale_factor

if(exponent_try.lt.delta_exp)then

EXXstore(IPRIMM)=EXXstore(IPRIMM)*0.5_float!

exponent_low(IPRIMM)=1

else

EXXstore(IPRIMM)=EXXstore(IPRIMM)-FORZEbase_exp(IPRIMM)*

& scale_factor!_exp

endif

CX1store(IPRIMM)=CX1store(IPRIMM)-FORZEbase_c1(IPRIMM)*

& scale_factor!_c1

CX2store(IPRIMM)=CX2store(IPRIMM)-FORZEbase_c2(IPRIMM)*

& scale_factor!_c2

CX3store(IPRIMM)=CX3store(IPRIMM)-FORZEbase_c3(IPRIMM)*

& scale_factor!_c3

FORZEbase_exp(IPRIMM)=0._float

FORZEbase_c1(IPRIMM)=0._float

FORZEbase_c2(IPRIMM)=0._float

FORZEbase_c3(IPRIMM)=0._float

exponent_try=0._float

ENDDO

10.2.6 Ultimate SCF and Convergence Checks

In this last section an ultimate SCF is then performed (total energy named
PAR3=PAR6) and checks on convergence are then evaluated. The convergence of
the iterative optimization procedure is verified by checking the absolute value
of the largest component of both the gradients and the penalty function. The
optimization is complete when the absolute value of the difference in the penalty
function (diff=par(6)-par0) is less than 1.0 · 10−5 (toll_bas_e) and the abso-
lute value of the largest component of gradient converges to 3.0 · 10−3

(toll_bas_grad_exp and toll_bas_grad_cx(x=1,2,3)). To avoid numerical
noise in the optimization curve, if the convergence criteria are satisfied, one last
SCF calculation with a new classification of integrals (call int_screen(1)) is
performed (total energy named PAR(6)). At this stage if par3-par(6) is greater
than toll_bas_e a supplementary optimization cycle is performed (goto 20 op-
tion allows the restarting of the whole optimization).
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CALL condition_number

PAR(6)=PAR(6)+numbcon

diff=par(6)-par0

if ((abs(diff).lt.toll_bas_e).and. &

& (maxforze_exp.lt.toll_bas_grad_exp).and.

& (maxforze_c1.lt.toll_bas_grad_c1).and.

& (maxforze_c2.lt.toll_bas_grad_c2).and.

& (maxforze_c3.lt.toll_bas_grad_c3))then

PAR3=par(6)!fixindex

call int_screen(1)

CALL INT_CALC

IF(ALLOCATED(PG_IRR))DEALLOCATE(PG_IRR)

IF(ALLOCATED(FG_IRR))DEALLOCATE(FG_IRR)

CALL SCF

CALL OUTO3B(IUNIT(20))

CALL FINE2

CALL tidy_memory

CALL condition_number

PAR(6)=PAR(6)+numbcon

if(abs(par3-par(6)).gt.toll_bas_e)then!fixindex

par0=par(6)

goto 20!fixindex

endif!fixindex

exit

With this last section the optimization cycle (ultimate or not) is then accom-
plished.

10.2.7 Condition Number

As mentioned earlier, an additional routine is present in the basis_opt.f file
named condition_number in which the actual condition number is performed.
For sake of completeness is here reported.

As reported in Section 3.1.1 in Eq. 3.5, the minimization involved the system
total energy to which we add a penalty function including the overlap matrix
condition number. In the code below reported, once the overlap matrix (SK) is
constructed (CALL SDIG), through the routine REIGN we evaluated both eigen-
vectors and eigenvalues (SKevec and SKeval respectively). Then the largest and
the smallest eigenvalue of the overlap matrix are evaluated (EMAX and EMIN re-
spectively). Considering a value γ = 0.001 (gammacon) as suggested in [2] and
the base-e logarithm of the ratio between them at the center of the Brillouin zone
(Γ-point), we define numbcon that is our penalty function.

The purpose of such penalty function is to prevent the onset of harmful linear
dependence. Linear dependence issues can give rise to numerical instabilities and,
as a consequence of that, the appearance of unphysical states. Such unphysical
states generally lead to a catastrophic behaviour of the total energy that can drop
to a value that is orders of magnitude larger, in absolute value, than the proper
one.
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Subroutine condition_number

Subroutine condition_number

Call cryalloc(sg_irr,isize_sg_irr,znamz,’sg_irr’)

Call cryalloc(sg_red,isize_sg_red,znamz,’sg_red’)

ndf=inf(7)

Call cryalloc(ex,2,inf(79),znamz,’ex’)

Call cryalloc(exvrs,inf(79),2,znamz,’exvrs’)

CALL CRYALLOC(SK ,ndf*ndf,ZNAMZ,’SK ’)

CALL CRYALLOC(SKevec,ndf,ndf,ZNAMZ,’SKevec’)

SKevec(:,:)=0._float

CALL CRYALLOC(SKeval,ndf,ZNAMZ,’SKeval’)

SKeval(:)=0._float

Call Allocate_jacobi(ndf)

CALL SDIG

Call expt(0,0,0)

CALL TRAFN(SG_RED,SK,IDMCOU)

Call Symheq(sk,ndf)

CALL REIGN(SK,SKevec,SKeval,ndf,0,0)

Call crydealloc(ex,znamz,’ex’)

Call crydealloc(exvrs,znamz,’exvrs’)

Call Free_jacobi

CALL CRYDEALLOC(SK ,ZNAMZ,’SK ’)

Call crydealloc(sg_irr,znamz,’sg_irr’)

Call crydealloc(sg_red,znamz,’sg_red’)

EMIN=100000._float

DO j_numbc=1,ndf

if (abs(SKeval(j_numbc)) .LT. EMIN) then

EMIN = abs(SKeval(j_numbc))

IMIN =j_numbc

end if

ENDDO

EMAX=0._float

DO j_numbc=1,ndf

if (j_numbc.eq.imin) cycle

if (ABS(SKeval(j_numbc)) .GT. EMAX) then

EMAX = ABS(SKeval(j_numbc))

end if

ENDDO

CALL CRYDEALLOC(SKevec,ZNAMZ,’SKevec’)

CALL CRYDEALLOC(SKeval,ZNAMZ,’SKeval’)

numbcon=gammacon*LOG(EMAX/EMIN)

numbcon=numbcon

numbcon_eff=EMAX/EMIN

End Subroutine condition_number

10.3 Basis opt Module

File: basis_opt_module.f90

Many variables, general definitions and the keywords available are included
in the basis_opt_module.f90 file.

Moreover, in this file the aforementioned Subroutine EXP_MOVE_1 is included.
For sake of completeness is here reported.

In this routine the step is effectively applied. This is fundamental to get the
gradients for the optimization.
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Subroutine EXP_MOVE_1

Subroutine EXP_MOVE_1(iprimm,info,step)

use numbers

use memory_use

use PARAL1_MODULE

use basato_module

USE MEMORY_G

implicit none

character(len=10), parameter :: znamz=’EXP_MOVE_1’

integer , intent(in) :: iprimm, info

real(float) , intent(in) :: step

integer::i

NPRIMG=INF(75)

If(info.eq.1) Then

EXX(iprimm)=EXXstore(iprimm) + step

C1(iprimm) =CX1store(iprimm)

C2(iprimm) =CX2store(iprimm)

C3(iprimm) =CX3store(iprimm)

Else if (info.eq.2) Then

EXX(iprimm)=EXXstore(iprimm)

C1(iprimm) =CX1store(iprimm) + step

C2(iprimm) =CX2store(iprimm)

C3(iprimm) =CX3store(iprimm)

Else if (info.eq.3) Then

EXX(iprimm)=EXXstore(iprimm)

C1(iprimm) =CX1store(iprimm)

C2(iprimm) =CX2store(iprimm) + step

C3(iprimm) =CX3store(iprimm)

Else if (info.eq.4) Then

EXX(iprimm)=EXXstore(iprimm)

C1(iprimm) =CX1store(iprimm)

C2(iprimm) =CX2store(iprimm)

C3(iprimm) =CX3store(iprimm) + step

EndIf

1134 FORMAT(’EXX_expmove_1’,40X,1P,4E21.13)

1135 FORMAT(35(’-.-’))

End Subroutine EXP_MOVE_1

The variable info it is related with the kind of optimization performed:
info=1 only exponents, while info=2,3,4 for s, p and d-f-g coefficients.

10.4 BDIIS Module

File: basis_opt_module.f90

The core of the BDIIS algorithm is implemented in this module, in particular
here the Subroutine BDIIS_method is included.

Before starting the actual algorithm, it can be useful to describe the arguments
required for the subroutine calling.

SUBROUTINE BDIIS_method(Posix,Posix1,Posix2,Posix3,Er,Er1,Er2,Er3,NCRYS,NPRIMG,EXPCOO,EXPCOO1,EXPCOO2,EXPCOO3, &

MAX_HISTORY_GDIIS)

• Posix and PosixM(M=1,2,3) correspond to totEXXstore and
totcxMstore(M=1,2,3); they are the matrices that store at each optimiza-
tion cycle BASCRYS exponents and coefficients.
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• Er and ErM(M=1,2,3) correspond to totforze_exp and
totforze_cM(M=1,2,3); they are the matrices that store at each optimiza-
tion cycle BASCRYS exponents and coefficients gradients.

• NCRYS, it is an integer that corresponds to the iteration number (named
BASCRYS elsewhere).

• NPRIMG, it is an integer that corresponds to the number of primitives in the
basis set.

• EXPCOO and EXPCOOM(M=1,2,3) corresponds to FORZEbase_exp and
FORZEbase_cM(M=1,2,3); they are the vectors related with the exponents
and coefficients gradients.

• MAX_HISTORY_GDIIS, number of steps considered in the BDIIS calculation.
By default, MAX_HISTORY_GDIIS=14. It can be modified by the keyword
TAKEONLY in input.

Posix and Er are the main information that comes from the preceding part
of the code. Once each matrix used in this subroutine is allocated and properly
defined, it is possible to build up AEr and ZEr matrices needed for the BDIIS
equations. In fact, as described in the Equ. 3.2 of Section 3.1, we want to solve
a matrix equation simply expressed by:

AEr · CEr = ZEr (10.1)

where

AEr :




a1,1 . . . a1,n 1
...

. . .
...

...
an,1 . . . an,n 1
1 . . . 1 0


 , ZEr :




0
...
0
1


 (10.2)

Care must be taken to the fact that in this context the number of cycles
is called NCRYS, NCRYS1 and NCRYS_SHIFT. NCRYS1 is the same number of cy-
cles added by one to get the real dimensions of AEr and ZEr. NCRYS_SHIFT is
an integer that modifies the dimension of AEr. In fact, the BDIIS method re-
quires the storing of data for a specific number of cycles defined by the variable
MAX_HISTORY_GDIIS. In particular, the keyword TAKEONLY, that reads the vari-
able defined by MAX_HISTORY_GDIIS can modify the abovementioned number in
input. For instance, if in an input file TAKEONLY is set at 5, the algorithm will
take only the last five steps for the evaluation of the new set of exponents or
coefficients. In particular, by default we set TAKEONLY to 14, thus only the last
14 steps are always kept throughout the calculation.
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NCRYS_SHIFT=NCRYS-MIN(NCRYS,MAX_HISTORY_GDIIS)

NCRYS1=NCRYS + 1 - NCRYS_SHIFT

In the section reported below AEr and ZEr matrices are constructed along
with another vector needed for the BDIIS algorithm:

• Order is a vector that stores the index order, important for the size reduc-
tion method.

AEr and ZEr construction

DO k=1,NCRYS-NCRYS_SHIFT

Order(k)=k+NCRYS_SHIFT

ENDDO

DO i= 1,NCRYS1

DO j= 1, NCRYS1

if (i==NCRYS1 .AND. j<=NCRYS-NCRYS_SHIFT) then

aij=1._float

elseif (i==NCRYS1 .AND. j==NCRYS1) then

aij=0._float

elseif (i<=NCRYS-NCRYS_SHIFT .AND. j==NCRYS1) then

aij=1._float

else

aij = 0._float

DO k = 1,NPRIMG

aij=aij + Er(k,i+NCRYS_SHIFT)*Er(k,j+NCRYS_SHIFT)

aij=aij + Er1(k,i+NCRYS_SHIFT)*Er1(k,j+NCRYS_SHIFT)

aij=aij + Er2(k,i+NCRYS_SHIFT)*Er2(k,j+NCRYS_SHIFT)

aij=aij + Er3(k,i+NCRYS_SHIFT)*Er3(k,j+NCRYS_SHIFT)

ENDDO

endif

AEr(i,j)=aij

ENDDO

ENDDO

DO i=1,NCRYS1

if (i==NCRYS1) then

zi=1._float

Else

zi=0._float

endif

ZEr(i)=zi

ENDDO

In the following part a particular kind of cycle is reported. In fact, the first
row is labeled by the number 25 and the full procedure restarts when it reaches
the row goto 25. The strategy used is the following:

• make a copy of the matrices AEr and ZEr called AErBIS and ZErBIS respec-
tively;

• call the Subroutine REIGN in order to find AEr eigenvalues (AErVAL) and
eigenvectors (AErVEC);

• find the minimum (EMIN) and the maximum (EMAX) value of the eigenvalues
in absolute terms;

• if EMIN is lower than EMAX multiplied by a specific number, the index re-
lated with EMIN is saved as LSTZER. In particular, we set a ratio EMIN/EMAX
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(condition number) as a threshold to determine the launching or the sus-
pension of AEr size reduction. In fact, if the “if” statement is not satisfied
the execution exits the loop. As already mentioned the condition number
is set to 10−4, thus tolremuv is set by default as 4;

• find two largest components of the eigenvectors with indexes MAX11 and
MAX22 in the column LSTZER and take only the one which has the lower
value. This index is called REMUV;

• Remove AErBIS column and row with REMUV index just found. The same
also for the ZEr and Order matrices.

The only thing that we have to take care of are the allocations and dealloca-
tions of the matrices involved in this reduction and the information related with
the column-row removal. In fact, for this reason the vector Order was introduced
to have memory of the indexes.

Matrix Size Reduction - Part 1

!! restart from here after reduction of space size

q=0

25 Continue

q=q+1

DO i=1, NCRYS1

DO j=1, NCRYS1

AErBIS(i,j)=AEr(i,j)

ENDDO

ENDDO

DO i=1, NCRYS1

ZErBIS(i)=ZEr(i)

ENDDO

CALL REIGN(AEr, AErEVEC, AErEVAL, NCRYS1, 0,0)

EMIN=100000._float

DO j=1,NCRYS1

if (abs(AErEVAL(j)) .LT. EMIN) then

EMIN = abs(AErEVAL(j))

IMIN =j

end if

ENDDO

EMAX=0._float

DO j=1,NCRYS1

if (j.eq.imin) cycle

if (ABS(AErEVAL(j)) .GT. EMAX) then

EMAX = ABS(AErEVAL(j))

end if

ENDDO

tolremuv=4

If(emin.lt.EMAX*0.1_float**tolremuv) Then

lstzer=imin

izer=1

else

izer=0

endif
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Matrix Size Reduction - Part 2

if((IZER.GT.0).AND.(NCRYS1.GT.3).AND. &

(emin.lt.EMAX*0.1_float**tolremuv))then

CMPMAX=0._float

DO k=1, NCRYS1-1

if (ABS(AErEVEC(k,lstzer)) .GT. CMPMAX) then

CMPMAX=ABS(AErEVEC(k,lstzer))

MAX11=k

endif

ENDDO

CMPMAX2=0._float

DO k=1, NCRYS1-1

if (k .NE. MAX11) then

if (ABS(AErEVEC(k,lstzer)) .GT. CMPMAX2) then

CMPMAX2=ABS(AErEVEC(k,lstzer))

MAX22=k

end if

end if

ENDDO

REMUV=MIN(MAX11, MAX22)

Matrix Size Reduction - Part 3

DO i=REMUV, NCRYS1-1

DO j=1, NCRYS1

AErBIS(i,j)=AErBIS(i+1,j)

ENDDO

ENDDO

DO i=REMUV, NCRYS1-1

DO j=1, NCRYS1

AErBIS(j,i)=AErBIS(j,i+1)

ENDDO

ENDDO

DO i=REMUV, NCRYS1-1

ZErBIS(i)=ZErBIS(i+1)

ENDDO

DO k=REMUV, NCRYS1-2

Order(k)=Order(k+1)

ENDDO

NCRYS1=NCRYS1-1

Call CryDealloc(Aer,znamz,’AEr’)

CALL CRYALLOC(AEr,NCRYS1, NCRYS1,ZNAMZ, ’AEr’ )

Call CryDealloc(Zer,znamz,’ZEr’)

CALL CRYALLOC(ZEr,NCRYS1,ZNAMZ, ’ZEr’ )

DO i=1, NCRYS1

DO j=1, NCRYS1

AEr(i,j)=AErBIS(i,j)

ENDDO

ENDDO

DO i=1, NCRYS1

ZEr(i)=ZErBIS(i)

ENDDO

Call CryDealloc(AerBIS,znamz,’AErBIS’)

Call CryDealloc(ZerBIS,znamz,’ZErBIS’)

Call CryDealloc(AerEVEC,znamz,’AErEVEC’)

CALL CRYALLOC(AErEVEC, NCRYS1, NCRYS1,ZNAMZ, ’AErEVEC’)

AErEVEC=0._float

CALL CRYALLOC (AErBIS, NCRYS1, NCRYS1, ZNAMZ, ’AErBIS’)

AErBIS=0._float

CALL CRYALLOC (ZErBIS, NCRYS1, ZNAMZ, ’ZErBIS’)

ZErBIS=0._float

goto 25

EndIf

Finally, BDIIS equations are solved by calling a subroutine called diis_solve

contained in the file diis_module.f90 in order to obtain the coefficients. In
particular, this calculation overwrites the ZEr vector. Hereafter, ZEr coincides
with CEr, which is our aim.

Some checks have been introduced regarding the values obtained by this rou-
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tine. In fact, the sum of the positive coefficients must be lower than 15, otherwise
an error message will appear.

Subsequently, there are two main DO cycles: one allows the construction of
the step and the other of EXPCOO and EXPCOOM(M=1,2,3). These last corresponds
to the exponents and coefficients gradients FORZEbase_exp and
FORZEbase_cM(M=1,2,3) required.

The real variables pij and pijM(M=1,2,3) contains the new exponents and
coefficients (xn+1) of the system:

xn+1 =

n∑

i=1

ci(xi + ei) (10.3)

in which

• xn+1 corresponds to pij;

• ci corresponds to ZEr(j), thus the coefficients previously related with the
vector CEr;

• xi is related with Posix(i,k) elements;

• ei is related with Er(i,k) elements.

As regards EXPCOO and EXPCOOM(M=1,2,3), they are related with the BDIIS
step and they are given as the difference between the new exponents-coefficients
and the old ones. In mathematical terms:

n∑

i=1

ciei = xn+1 −
n∑

i=1

cixi (10.4)
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Exponents and Coefficients Gradients, Steps

CALL diis_solve(AErBIS, ZErBIS, NCRYS1)

!Check: sum of positive coefficients<15

DO j=1,NCRYS1-1

k=order(j)

if (ZErBIS(j) .gt. 0._float) then

ZERBISpiu(j)=ZERBIS(j)

endif

ENDDO

sumcoeffi=sum(ZErBISpiu(1:NCRYS1-1))

If (sumcoeffi .gt. 15._float) Call errvrs(2,znamz,’Sum of positive coefficients exceed 15’)

!Displacement construction

DO i=1, NPRIMG

pij=0._float

pij1=0._float

pij2=0._float

pij3=0._float

DO j=1, NCRYS1-1!-NCRYS_SHIFT

k=order(j)

pij=pij+ZErBIS(j)*(Posix(i,k) + Er(i,k))

pij1=pij1+ZErBIS(j)*(Posix1(i,k) + Er1(i,k))

pij2=pij2+ZErBIS(j)*(Posix2(i,k) + Er2(i,k))

pij3=pij3+ZErBIS(j)*(Posix3(i,k) + Er3(i,k))

ENDDO

EXPCOO (i) = Posix (i,ncrys) - pij

EXPCOO1(i) = Posix1(i,ncrys) - pij1

EXPCOO2(i) = Posix2(i,ncrys) - pij2

EXPCOO3(i) = Posix3(i,ncrys) - pij3

ENDDO

10.5 LBFGS Method

File: lbfgsbas.f

As regard the LBFGS method an auxiliary file was introduced. The LBFGS
algorithm is described in “On the limited memory BFGS method for large scale
optimization”, by D. Liu and J. Nocedal, Mathematical Programming B 45 (1989)
503-528.[3] The file is named lbfgsbas.f in which a SUBROUTINE LBFGS is re-
ported. The method was implemented for the exponents optimization. It is not
yet available for the coefficients.

This subroutine solves the unconstrained minimization problem

minF (x), x = (x1, x2, ..., xN ), (10.5)

using the Limited Memory BFGS method (LBFGS). The routine is especially
effective on problems involving a large number of variables. In a typical iteration
of this method an approximation Hk to the inverse of the Hessian is obtained by
applying M BFGS updates to a diagonal matrix Hk0, using information from the
previous M steps. The number M has to be specified and it determines the amount
of storage required by the routine. The routine requires to calculate the function
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value F and its gradient G. The step length is determined at each iteration by
means of the line search method.

The calling statement is
CALL LBFGS(N,M,X,F,G,DIAGCO,DIAG,IPRINT,EPS,XTOL,W,IFLAG)

where

• N is an INTEGER variable that must be set to the number of variables. It
is not altered by the routine. The restriction is: N>0. In our case it is the
number of primitives (N=NPRIMG).

• M is an INTEGER variable that must be set to the number of corrections used
in the BFGS update. It is not altered by the routine. Values of M less than
3 are not recommended; large values of M will result in excessive computing
time. 3<= M <=7 is recommended. The restriction is: M>0. In our case M

was set to 5.

• X is a DOUBLE PRECISION array of length N. On initial entry it must be set to
the values of the initial estimate of the solution vector. On exit, it contains
the values of the variables at the best point found (usually a solution). In
our case are the exponents collected in the vector EXXstore.

• F is a DOUBLE PRECISION variable. It must be set by the user to contain the
value of the function F at the point X. In our case F=PAR0, thus the energy.

• G is a DOUBLE PRECISION array of length N. It must contain the components
of the gradient G at the point X. In our case FORZEbase_exp.

• DIAGCO is a LOGICAL variable that must be set to .TRUE. if the user wishes
to provide the diagonal matrix Hk0 at each iteration. Otherwise, it should
be set to .FALSE., in which case LBFGS will use a default value. In our case
DIAGCO= .FALSE. .

• DIAG is a DOUBLE PRECISION array of length N. If DIAGCO=.TRUE., it must
contain the values of the diagonal matrix Hk0. The restriction is: all ele-
ments of DIAG must be positive.

• IPRINT is an INTEGER array of length two. We set them to PRINT(1)= -1.
and IPRINT(2)= 3. These options switch off the default printing option.
In particular, we have used our own printing option (customized).

• EPS is a positive DOUBLE PRECISION variable that determines the accuracy
with which the solution has to be found. In our case EPS_BAS= 1.0D-5.

• XTOL is a positive DOUBLE PRECISION variable that must be set by the user
to an estimate of the machine precision. In our case XTOL= 1.0D-16.
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• W is a DOUBLE PRECISION array of length N(2M+1)+2M used as workspace
for LBFGS. This array must not be altered by the user.

• IFLAG is an INTEGER variable that must be set to 0 on initial entry to the
subroutine. It is related with error detections.

For us these variables are defined in basis_opt.f where the call statement is
also invoked.

The resultant of the Subroutine LBFGS is directly a new set of exponents
exx_bfgs. The difference between the latter and the previous exponents gives
the new step (step_bfgs) to apply, in other words the gradient (FORZEbase_exp).
No line search method is applied (scale_factor=1._float) to this final gradi-
ent because already performed in Subroutine LBFGS internally. IPRIMM in the
following is the loop index on the primitives.

step_bfgs(IPRIMM)=(exx_bfgs(IPRIMM)-EXXstore_red(IPRIMM))

FORZEbase_exp(j_hes)=-step_bfgs(IPRIMM)

10.6 How to Activate the Algorithm in CRYS-
TAL

The activation of the optimization is possible by introducing specific Keywords
in the input, in particular, soon after the geometry section.

In Table 10.1 there are some options available along with their description,
where keywords in bold are always used in input.

The minimal set up to run a basis set optimization for the exponents (default
set up) is:

OPTBASIS

ENDBO

it has to be inserted in the geometry section of the CRYSTAL input.
In this specific block extra options can be inserted as reported in Table 10.1.

In particular, COEFFONLY if the optimization involved only coefficients, ALLBDIIS
if both exponents and coefficients have to be optimized.

If LGFGS method is required, this is the minimal set up:

OPTBASIS

BFGSBAS

ENDBO

In this case only exponents can be involved.
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Some thresholds are needed in order to decide when the optimization is con-
verged. Consequently, the convergence is complete if these conditions are all
satisfied at the same time. All the default values could be modified by suitable
keywords summarized in the Table 10.1. By default, the tolerance on energy is
set to 10−5 (TOLOPTE), while on the gradients is 3 ∗ 10−3 (TOLOPTG). The maxi-
mum number of cycle is set to 500 by default, but even in this case, inserting the
keyword MAXBASCYC it can be modified.

Keyword Description

OPTBASIS Basis optimization active
(Default: Only exponent optimization)

COEFFONLY Only coefficients optimization
ALLBDIIS Exponents and coefficients optimization
WAITIT

Starting BDIIS cycle. Default: 1st cycle
No.
TAKEONLY Number of cycles stored for BDIIS calculations.
No. Default: 14 cycles
TOLOPTE

Tolerance on energy. Default: 5→ 10−5

No.
TOLOPTG Tolerance on gradient.
No. Default: 0.002→ 0.002 ∗ 1.5 = 3 ∗ 10−3

MAXBASCYC Max number of cycles for the basis set optimization.
No. Default: 500 cycles
NUMBC Condition number activated
No. Value of the gamma scalar factor (Default: 0.001)
REFBAS Intscreen at a certain cycle.
No. No. of cycles before INTSCREEN option. Default: 10

Integrals screening based on the new set of basis functions.
BFGSBAS LBFGS method (only exponents)

ENDBO Basis Set Optimization END statement

Table 10.1: Summary of the keywords available for the basis set optimization. In
bold the keywords mandatory for the activation of the method. This section has
to be introduced in the geometry section of the CRYSTAL input.

The shells involved in the optimization must be highlighted by a star * in the
input basis set. e.g.:
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...

0 0 1 0 1 *

1.2429415962 1.0000000

...

Suggestions: since the valence shells are usually the ones involved in the chem-
ical bonding, these are the ones usually to be optimized. For less expert users,
it is recommended to optimize only exponents and if possible it is also suggested
to uncontract the shells if not already. In order to follow the optimization steps,
besides checking the minimization of the Objective Function, it can be useful to
check the stability of the SCF calculations performed in the meanwhile. This
information is available in the SCFOUT.LOG file where a storing of all the SCF
calculations performed are reported.

In the following sections an example of input and output is described in details.
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10.6.1 Input

As mentioned earlier, in order to activate the BDIIS optimization, an auxiliary
block has to be inserted in the geometry input section (filename.d12 ). Moreover,
an asterisk has to be inserted in the line corresponding to the shell involved in
the optimization. An example regarding He bulk (molecular def2-QZVP basis
set from the Basis Set Exchange software [4]) is reported. In red the basis set
options are highlighted.

Input He bulk. Exponent optimization (Default option)

He-crystal

CRYSTAL

0 0 0

194

2.92661 4.77913

1

2 0.333333333333333 -0.333333333333333 0.250000000000000

OPTBASIS

ENDBO

END

2 10

0 0 5 2 1

1144.6470809 0.35861578618E-03

171.64596667 0.27725434466E-02

39.066056254 0.14241892216E-01

11.051401989 0.55457352277E-01

3.5725574473 0.16170511810

0 0 1 0 1 *

1.2429415962 1.0000000

0 0 1 0 1 *

0.44807668730 1.0000000

0 0 1 0 1 *

0.16411579128 1.0000000

0 2 1 0 1 *

5.99400000 1.0000000

0 2 1 0 1 *

1.74500000 1.0000000

0 2 1 0 1 *

0.56000000 1.0000000

0 3 1 0 1 *

4.29900000 1.0000000

0 3 1 0 1 *

1.22300000 1.0000000

0 4 1 0 1 *

2.68000000 1.0000000

99 0

END

DFT

PBE

END

TOLINTEG

8 8 8 8 16

SHRINK

8 8

TOLDEE

8

END

In this specific case all the uncontracted shells and only the exponents are
involved in the optimization. As regard the thresholds, here the default options
are kept.
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10.6.2 Output

Essentially three files are generated from the basis set optimization:

• filename.out : this is the usual output file generated by CRYSTAL in which
the information related with each cycle of optimization is reported.

• filename.out2 : this is usually called SCFOUT.LOG. This is a file where all
the background SCF calculations are printed out.

• filename.f53 : a fort.53 unit where the optimized basis sets at each opti-
mization cycle are printed out.

For sake of clarity parts of a filename.out is below described in details. In
particular, this file is the corresponding output file of the He bulk in Section
10.6.1.

Output He bulk. Basis Set Optimization initial set up.

== SCF ENDED - CONVERGENCE ON ENERGY E(AU) -5.7865023495207E+00 CYCLES 5

ENERGY EXPRESSION=HARTREE+FOCK EXCH*0.00000+(PBE EXCH)*1.00000+PBE CORR

TOTAL ENERGY(DFT)(AU)( 5) -5.7865023495207E+00 DE-1.4E-13 tester 4.1E-14

TTTTTTTTTTTTTTTTTTTTTTTTTTTTTT EDFT TELAPSE 3.31 TCPU 3.22

~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.

~. BASIS SET OPTIMIZATION .~

~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.

Energy function minimized: ENERGY COND

ENERGY COND = TOTAL ENERGY + COND No.

COND No. = GAMMA*ln(EFF)

EFF = MAX/MIN OVERLAP EIGENVALUE RATIO

INITIAL ENERGY COND (AU): -5.7818041648630E+00

GAMMA FACTOR: 1.0000E-03

INITIAL EFF: 1.09748E+02

BDIIS OPERATIVE:

STARTING CYCLE 1

CYCLES STORED 14

TWO-SIDED NUMERICAL DERIVATIVE,1% EXPONENTS STEP

INITIAL SHELLS TO OPTIMIZE, ONLY EXPONENTS:

ATOMIC SPECIES: 2 HE

EXP COEF

S 1.24294159620E+00 1.00000000000E+00

S 4.48076687300E-01 1.00000000000E+00

S 1.64115791280E-01 1.00000000000E+00

P 5.99400000000E+00 1.00000000000E+00

P 1.74500000000E+00 1.00000000000E+00

P 5.60000000000E-01 1.00000000000E+00

D 4.29900000000E+00 1.00000000000E+00

D 1.22300000000E+00 1.00000000000E+00

F 2.68000000000E+00 1.00000000000E+00

Once the first SCF calculation is performed an initial banner define the be-
ginning of the optimization (~. BASIS SET OPTIMIZATION .~). Moreover, the
general set up and the formalism used for the calculation are printed out:
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• ENERGY COND, the Objective Function that corresponds to the suitable func-
tional Ω to be minimized. Here we decide to minimize the system total
energy to which we add a penalty function including the Overlap matrix
condition number, following the proposal of [2]. It is named as Ω in Equ.8
of [1] and in Equ. 3.5 of the Section 3.1.1.

• COND No., it is the actual penalty function. Considering Equ. 3.5 of the
Section 3.1.1, it corresponds to:

γ · lnκ (10.6)

where γ = 0.001 (GAMMA) and κ (EFF) is the condition number, thus the
ratio between the largest and the smallest eigenvalue of the overlap matrix
at the center of the Brillouin zone (Γ-point).

• BDIIS algorithm is active by default starting from the first cycle and storing
the last 14 cycles (BDIIS OPERATIVE in the output).

• The atomic species and the shells to be optimized are also printed out at
the beginning.

Output He bulk. First cycle of the Basis Set Optimization. Gradients.

~.~.~.~.~. OPT CYC 1 MAX OPT CYC 500

AT. SH. No.EXP ENERGY COND (AU) DIFF (AU) STEP

2 2 1 -5.78178249353E+00 2.1671E-05 1.2429E-02

2 2 1 -5.78180706873E+00 -2.9039E-06 -1.2429E-02

2 3 1 -5.78181995595E+00 -1.5791E-05 4.4808E-03

2 3 1 -5.78178094677E+00 2.3218E-05 -4.4808E-03

2 4 1 -5.78178068518E+00 2.3480E-05 1.6412E-03

2 4 1 -5.78182532723E+00 -2.1162E-05 -1.6412E-03

2 5 1 -5.78180412857E+00 3.6293E-08 5.9940E-02

2 5 1 -5.78180420199E+00 -3.7132E-08 -5.9940E-02

2 6 1 -5.78180405405E+00 1.1081E-07 1.7450E-02

2 6 1 -5.78180427928E+00 -1.1442E-07 -1.7450E-02

2 7 1 -5.78180312289E+00 1.0420E-06 5.6000E-03

2 7 1 -5.78180522236E+00 -1.0575E-06 -5.6000E-03

2 8 1 -5.78180421399E+00 -4.9123E-08 4.2990E-02

2 8 1 -5.78180411412E+00 5.0741E-08 -4.2990E-02

2 9 1 -5.78180443937E+00 -2.7451E-07 1.2230E-02

2 9 1 -5.78180387769E+00 2.8717E-07 -1.2230E-02

2 10 1 -5.78180416463E+00 2.3199E-10 2.6800E-02

2 10 1 -5.78180416510E+00 -2.3714E-10 -2.6800E-02

AT. N. SH. GRAD EXP GRAD COEF

2 HE

S 9.8859E-04 0.0000E+00

S -4.3530E-03 0.0000E+00

S 1.3601E-02 0.0000E+00

P 6.1249E-07 0.0000E+00

P 6.4536E-06 0.0000E+00

P 1.8745E-04 0.0000E+00

D -1.1615E-06 0.0000E+00

D -2.2963E-05 0.0000E+00

F 8.7523E-09 0.0000E+00

Then the first optimization cycle can start, printing out the ENERGY COND

(AU) and the difference (DIFF (AU)) with respect to the initial energy at each
SCF calculation.
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We compute the derivatives by means of a two-sided numerical derivative as re-
ported in Equ. 3.6. For this reason forwards and backwards SCF energies and
the step used are reported for each exponent involved (1% of the exponents as
step). Moreover, the respective gradients are printed out.

Output He bulk. First cycle of the Basis Set Optimization. Line Search Method.

LINE SEARCH FOR THE BEST SCALE FACTOR

SCALE FACTOR ENERGY COND (AU) DIFF (AU)

0.50E-01 -5.7818235435181E+00 -1.9379E-05

0.10 -5.7818323857410E+00 -2.8221E-05

0.15 -5.7818406558173E+00 -3.6491E-05

0.20 -5.7818554570949E+00 -5.1292E-05

0.30 -5.7818679022546E+00 -6.3737E-05

0.40 -5.7818855418218E+00 -8.1377E-05

0.60 -5.7818932056888E+00 -8.9041E-05

0.80 -5.7818905189361E+00 -8.6354E-05

OPTIMAL SCALE FACTOR: 0.80 ENERGY COND (AU): -5.7818905189361E+00

The line search method is then applied and for each scale factor trial the re-
spective SCF energy (ENERGY COND (AU)) and the difference (DIFF (AU)) with
respect to the initial one are shown. (See Equ. 3.7).

Of course also the optimal scale factor (0.80 in this case) and the final energy
are printed out at the end of the line search.

Output He bulk. First cycle of the Basis Set Optimization. Convergence Tests.

MAX DIFF ENERGY COND 8.9040825747E-05 THRESHOLD 1.0000E-05 CONVERGED NO

MAX GRAD EXPONENT 1.3600780688E-02 THRESHOLD 3.0000E-03 CONVERGED NO

MAX GRAD S COEF 0.0000000000E+00 THRESHOLD 3.0000E-03 CONVERGED YES

MAX GRAD P COEF 0.0000000000E+00 THRESHOLD 3.0000E-03 CONVERGED YES

MAX GRAD D/F/G COEF 0.0000000000E+00 THRESHOLD 3.0000E-03 CONVERGED YES

TOTAL ENERGY(DFT)(AU)( 4) -5.7865587426803E+00 DE-2.2E-12 DP 5.2E-13

ENERGY COND (AU) -5.7818932056887E+00 COND No. 4.66554E-03 EFF 1.06223E+02

GAMMA FACTOR: 1.0000E-03

*** OPTIMIZED SHELLS AT CYCLE 1 ***

ATOMIC SPECIES: 2 HE

EXP COEF DIFF EXP

S 1.24215072387E+00 1.00000000000E+00 -7.909E-04

S 4.51559054239E-01 1.00000000000E+00 3.482E-03

S 1.53235166729E-01 1.00000000000E+00 -1.088E-02

P 5.99399951001E+00 1.00000000000E+00 -4.900E-07

P 1.74499483709E+00 1.00000000000E+00 -5.163E-06

P 5.59850037827E-01 1.00000000000E+00 -1.500E-04

D 4.29900092918E+00 1.00000000000E+00 9.292E-07

D 1.22301837068E+00 1.00000000000E+00 1.837E-05

F 2.67999999300E+00 1.00000000000E+00 -7.002E-09

Writing optimized basis set to fort.53

~.~.~.~.~. OPT CYC 2 MAX OPT CYC 500

Then the tests for convergence are computed: convergence on both energy
differences and gradients are performed. The total energy (TOTAL ENERGY(AU)),
the “Objective Function” (ENERGY COND (AU)) and the new exponents/coeffi-
cients with the differences with respect to the previous cycle are printed out at
the end of each optimization cycle.
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When the convergence test are all satisfied, the basis set optimization is done
and the final optimized basis set is printed out in the usual out format.

Output He bulk. Last cycle of the Basis Set Optimization. Optimized Basis Set.

MAX DIFF ENERGY COND 7.4338299516E-06 THRESHOLD 1.0000E-05 CONVERGED YES

MAX GRAD EXPONENT 1.9252979798E-03 THRESHOLD 3.0000E-03 CONVERGED YES

MAX GRAD S COEF 0.0000000000E+00 THRESHOLD 3.0000E-03 CONVERGED YES

MAX GRAD P COEF 0.0000000000E+00 THRESHOLD 3.0000E-03 CONVERGED YES

MAX GRAD D/F/G COEF 0.0000000000E+00 THRESHOLD 3.0000E-03 CONVERGED YES

TOTAL ENERGY(DFT)(AU)( 2) -5.7865619212185E+00 DE-4.4E-15 DP 1.1E-15

ENERGY COND (AU) -5.7819107951099E+00 COND No. 4.65113E-03 EFF 1.04703E+02

GAMMA FACTOR: 1.0000E-03

CONVERGENCE TESTS SATISFIED AFTER 3 ENERGY AND GRADIENT CALCULATIONS

CONVERGED ENERGY - E(AU): -5.7819110063857E+00 POINTS 3

*******************************************************************************

LOCAL ATOMIC FUNCTIONS BASIS SET OPTIMIZED

*******************************************************************************

ATOM X(AU) Y(AU) Z(AU) N. TYPE EXPONENT S COEF P COEF D/F/G COEF

*******************************************************************************

1 HE -3.193 0.000 2.258

1 S

1.145E+03 3.586E-04 0.000E+00 0.000E+00

1.716E+02 2.773E-03 0.000E+00 0.000E+00

3.907E+01 1.424E-02 0.000E+00 0.000E+00

1.105E+01 5.546E-02 0.000E+00 0.000E+00

3.573E+00 1.617E-01 0.000E+00 0.000E+00

2 S

1.245E+00 1.000E+00 0.000E+00 0.000E+00

3 S

4.473E-01 1.000E+00 0.000E+00 0.000E+00

4 S

1.499E-01 1.000E+00 0.000E+00 0.000E+00

5- 7 P

5.994E+00 0.000E+00 1.000E+00 0.000E+00

8- 10 P

1.745E+00 0.000E+00 1.000E+00 0.000E+00

11- 13 P

5.597E-01 0.000E+00 1.000E+00 0.000E+00

14- 18 D

4.299E+00 0.000E+00 0.000E+00 1.000E+00

19- 23 D

1.223E+00 0.000E+00 0.000E+00 1.000E+00

24- 30 F

2.680E+00 0.000E+00 0.000E+00 1.000E+00

2 HE -1.597 -2.765 -2.258

*******************************************************************************

WRITING OPTIMIZED BASIS SET TO fort.53

TTTTTTTTTTTTTTTTTTTTTTTTTTTTTT END TELAPSE 195.52 TCPU 195.07
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Moreover, during the optimization all the basis sets at each iteration are
printed in the filename.f53. For sake of completeness we report below the opti-
mized basis set obtained. In this unit the basis sets are printed out by using the
input format that makes easy the transfer to a new input if needed.

fort.53 He bulk. Last cycle of the Basis Set Optimization. Basis Set Optimized.

~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.

LOCAL ATOMIC FUNCTIONS BASIS SET OPTIMIZED

~.~.~.~.~. OPT CYC 3 MAX OPT CYC 500

2 10

0 0 5 2. 1.

1.14464708090E+03 3.58615786180E-04

1.71645966670E+02 2.77254344660E-03

3.90660562540E+01 1.42418922160E-02

1.10514019890E+01 5.54573522770E-02

3.57255744730E+00 1.61705118100E-01

0 0 1 0. 1.

1.24522535919E+00 1.00000000000E+00

0 0 1 0. 1.

4.47284793404E-01 1.00000000000E+00

0 0 1 0. 1.

1.49948526659E-01 1.00000000000E+00

0 2 1 0. 1.

5.99399912883E+00 1.00000000000E+00

0 2 1 0. 1.

1.74499283285E+00 1.00000000000E+00

0 2 1 0. 1.

5.59741098492E-01 1.00000000000E+00

0 3 1 0. 1.

4.29900357838E+00 1.00000000000E+00

0 3 1 0. 1.

1.22307371167E+00 1.00000000000E+00

0 4 1 0. 1.

2.67999999353E+00 1.00000000000E+00
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11.1 How to Use the Algorithm in the CRYSTAL
code

In order to activate the method few options must be introduced in the CRYS-
TAL input. In Table 11.1 a summary of the new keywords introduced is reported.

Keyword Description

MOM Maximum Overlap Method (MOM) active

EUPKTOK Delocalized Excitation (Γ to Γ)
ka kb Initial K point and final K point (only 1 1 implemented)
neup No. excitations
ia sa ib sb Initial orbital and spin (occupied), final orbital and spin (empty)
BTOBTrue Localized Excitation (Band to band)
neup No. excitations
ia sa ib sb Initial orbital and spin (occupied), final orbital and spin (empty)

SYMMREMO is suggested
PMOMPRT Printing Option: Partial Occupation matrix printed
IPARmom, Ja, Jb K points (columns), initial orbital, final orbital (rows)
RADBTOBT BTOBTrue applied in sphere around Γ
No. Radius of the sphere

BTOBTrue must be active
AMOMPRT Printing Option: All Occupation matrix printed

ENDMO Maximum Overlap Method (MOM) END statement

Table 11.1: Summary of the keywords available for the MOM method. In bold
the keywords mandatory for the activation of the method. This section has to
be introduced in the geometry section of the CRYSTAL input.

The input is constructed as a scf input, inserting few keywords in the geom-
etry section. In particular, all the MOM calculations have to be run with the UHF

keyword, thus open shell Hamiltonian must be defined to allow the excitation
to take place. In fact, the constraint of double occupancy must be absent and
α electrons are allowed to populate orbitals other than those occupied by the β
electrons.

Moreover, the MOM method automatically activates NOSYMADA option. The
symmetry adapted functions are not used in the Hamiltonian matrix diagonal-
ization.

An example of delocalized optimization (EUPKTOK) is reported below for the
diamond system.

The excitation involved the 6th (empty) and the 7th (full) orbital, thus a ver-
tical excitation in the Γ point. In particular, the print option is added (PMOMPRT
keyword) and the occupation matrix is partially printed. Specifically, the first 5
k points are printed (columns) from the 2nd to the 11th orbital (rows). In red
the keywords mandatory for the MOM activation.
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Input Gamma to Gamma Excitation

DIAMOND-dcm_TZVP

CRYSTAL

0 0 1

227

3.56679

1

6 0. 0. 0.

MOM

EUPKTOK

1 1

1

6 1 7 1

PMOMPRT

5 2 11

ENDMO

END

6 8

0 0 6 2.0 1.0

13575.349682 0.00022245814352

2035.2333680 0.00172327382520

463.22562359 0.00892557153140

131.20019598 0.03572798450200

42.853015891 0.11076259931000

15.584185766 0.24295627626000

0 0 2 2.0 1.0

6.2067138508 0.41440263448000

2.5764896527 0.23744968655000

0 0 1 0.0 1.0

0.4941102000 1.00000000000000

0 0 1 0.0 1.0

0.1644071000 1.00000000000000

0 2 4 2.0 1.0

34.697232244 0.00533336578050

7.9582622826 0.03586410909200

2.3780826883 0.14215873329000

0.8143320818 0.34270471845000

0 2 1 0.0 1.0

0.5662417100 1.00000000000000

0 2 1 0.0 1.0

0.1973545000 1.00000000000000

0 3 1 0.0 1.0

0.5791584200 1.00000000000000

99 0

END

UHF

DFT

PBE

END

TOLINTEG

10 10 10 20 50

TOLDEE

8

SHRINK

8 8

FMIXING

50

END

The output is very similar to a classical SCF calculation. In the following,
parts of the output related with the diamond input above reported, are shown. As
mentioned in the previous parts, the MOM method is applied at the beginning of
the SCF calculation (cycle 0), then the excited configuration is kept throughout
the whole calculation. Nevertheless, a banner at each cycle is printed reminding
the kind of excitation performed. In the specific case the PMOMPRT keyword is
active, thus an additional printing option is present: the occupation matrix is
printed, where the rows are the orbitals, while the columns are the k-points. In
this example a Γ to Γ excitation is performed, thus in the first column (Γ point)
the electron is moved from the sixth to the seventh orbitals, as decided in input.
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Output Gamma to Gamma Excitation

...

CYC 0 ETOT(AU) -7.681414183991E+01 DETOT -7.68E+01 tst 0.00E+00 PX 1.00E+00

TTTTTTTTTTTTTTTTTTTTTTTTTTTTTT DIIS TELAPSE 5.61 TCPU 5.56

TTTTTTTTTTTTTTTTTTTTTTTTTTTTTT FDIK TELAPSE 5.62 TCPU 5.57

*** MOM *** SHIFT IN THE GROUND OCCUPATION APPLIED

GAMMA to GAMMA EXCITATION

1 EXCITATION FROM 6(SPIN 1) TO 7(SPIN 1)

+++ Occupations +++

************************************************************

2 0.0019531 0.0156250 0.0156250 0.0156250 0.0078125

3 0.0019531 0.0156250 0.0156250 0.0156250 0.0078125

4 0.0019531 0.0156250 0.0156250 0.0156250 0.0078125

5 0.0019531 0.0156250 0.0156250 0.0156250 0.0078125

6 0.0000000 0.0156250 0.0156250 0.0156250 0.0078125

7 0.0019531 0.0000000 0.0000000 0.0000000 0.0000000

8 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000

9 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000

10 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000

11 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000

...

CYC 7 ETOT(AU) -7.615422786698E+01 DETOT 2.88E-11 tst 2.68E-13 PX 2.74E-06

== SCF ENDED - CONVERGENCE ON ENERGY E(AU) -7.6154227866984E+01 CYCLES 7

ENERGY EXPRESSION=HARTREE+FOCK EXCH*0.00000+(PBE EXCH)*1.00000+PBE CORR

TOTAL ENERGY(DFT)(AU)( 7) -7.6154227866984E+01 DE 2.9E-11 tester 2.7E-13

TTTTTTTTTTTTTTTTTTTTTTTTTTTTTT EDFT TELAPSE 42.52 TCPU 42.46

To get the excitation energy as reported in the Equ. 6.4, a ground state
calculation must be performed in addition (single SCF). Once obtained both
total energies, ground state Eground and excited state Eexcited, the excitation
energy is:

Eexcitation = |Eground − Eexcited| · 27.2114 · Nk

Nexc
k

(11.1)

where the factor 27.2114 is for the Hartree to electronvolt conversion and the
Nk are the k point in the cell and Nexc

k are the k point actually involved in the
excitation. In this specific case the SHRINK factor is 8 8, thus in a 3D system
as the diamond, a 8 × 8 × 8 = 512 number of k points are present in the cell
(Nk = 512), while just the Γ point is involved (Nexc

k = 1). In particular in this
specific example:

5.618eV = |76.154631085036− 76.154227867015| · 27.2114 · 512

1
(11.2)

Suggestion: to get a stable convergence in the excitation state, run a not-
excited calculation and use the wavefunction information (fort.9) to start the
excitation calculation with a GUESSP option. Moreover, till now MOM calculation
can be performed only on insulating systems. If conductive states are present, if
possible try to keep the gap at each SCF calculation. For pure conductive system
MOM method is not yet implemented.
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ABSTRACT: It is customary in molecular quantum chemistry to
adopt basis set libraries in which the basis sets are classified according
to either their size (triple-ζ, quadruple-ζ, ...) and the method/property
they are optimal for (correlation-consistent, linear-response, ...) but not
according to the chemistry of the system to be studied. In fact the vast
majority of molecules is quite homogeneous in terms of density (i.e.,
atomic distances) and types of bond involved (covalent or dispersive).
The situation is not the same for solids, in which the same chemical
element can be found having metallic, ionic, covalent, or dispersively
bound character in different crystalline forms or compounds, with
different packings. This situation calls for a different approach to the
choice of basis sets, namely a system-specific optimization of the basis
set that requires a practical algorithm that could be used on a routine
basis. In this work we develop a basis set optimization method based on an algorithm−similar to the direct inversion in the iterative
subspace−that we name BDIIS. The total energy of the system is minimized together with the condition number of the overlap
matrix as proposed by VandeVondele et al. [VandeVondele et al. J. Chem. Phys. 2007, 227, 114105]. The details of the method are
here presented, and its performance in optimizing valence orbitals is shown. As demonstrative systems we consider simple
prototypical solids such as diamond, graphene sodium chloride, and LiH, and we show how basis set optimizations have certain
advantages also toward the use of large (quadruple-ζ) basis sets in solids, both at the DFT and Hartree−Fock level.

1. INTRODUCTION
When dealing with the quantum chemical modeling of
crystalline solids, the existence of various types of chemical
bonding is clearly evident. For instance, the polymorphism of
carbon in the graphite (or graphene) and diamond allotropes is
just one of many examples, in which the profoundly different
chemical behavior is manifested by the same chemical element
in different crystal packings. Another exemplary case is that of
rocksalt NaCl: sodium is by nature metallic as a bulk material,
and chlorine is commonly found in the form of a molecular
crystal Cl2. NaCl is a prototypical ionic salt. The chemical
differences in those materials can be made evident by looking
at their electron density (see Figure 1): the electrons involved
in the metallic bond in Na are quite spread out over the whole
space, while in Cl2 the density is somewhat more localized on
molecules, with empty space between them. Conversely, the
wave function in an ionic system like NaCl is strongly confined
in a vicinity of the ions and features nodes in the planes in
between neighboring atoms. NaCl is also considerably more
densely packed.
This variety of chemical bondings in the solid state then

reflects the choice of the type and quality of the basis set
adopted in the mathematical form of the wave function when
solving the Schrödinger equation within periodic boundary
conditions (i.e., Bloch functions).1−3 The situation in the field

of molecular modeling is somewhat simpler as isolated
molecules or molecular aggregates have nearly comparable
atomic densities, and there are commonly no analogue
extended systems featuring metallic, ionic, or covalent bonds.
Therefore, in molecular calculations, atom-centered basis sets
as Gaussian-type orbitals4 are almost universally adopted,5

although other basis sets can be and are eventually used.
On the other hand, for solid-state calculations,2 plane

waves,6−8 atom-centered Gaussians9 (or their combinations10),
and numerical basis sets11,12 are all popular choices. The plane
wave basis, that is naturally suited for nonlocal wave functions
such as in the uniform electron gas or in a metal, has the
undeniable advantage of a one-knob tuning of accuracy and
cost through the kinetic energy cutoff parameter. However, the
correct description of local orbitals, core states, or the void can
result in a rather high computational cost. Similarly, the
inclusion of exact HF exchange in hybrid HF/DFT
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calculations leads to a steep increase in computational time.
Gaussian-type basis sets are less commonly adopted for the
quantum chemical treatment of solids, with respect to plane
waves. Gaussian functions have the great advantage of allowing
to transfer to the solid state a large part of the technology and
knowledge that is the legacy of several decades of advances in
molecular quantum chemistry and to retain the chemical
intuition when looking at the electronic charge distribution of
the investigated system. The price to pay is the mandatory
definition of a basis set for each atomic species, that is
ultimately left in the hands of the end user.
Nowadays, standardized basis set libraries are not commonly

available for solids as they are for molecules,13,14 despite recent
attempts in that direction being carried out by Bredow and co-
workers.15−17 The reasons are not only to be ascribed to a
lesser effort in a systematic construction of all-purpose basis
sets but also more specifically to the wide difference in
chemical bonding as outlined above. First attempts to
understand the role of basis functions in solids were done by
Hess and co-workers,18 but also more recently Jensen19

compared atomic, molecular, and solid-state basis sets for
carbon and silicon to highlight the differences originating from
the different chemical environments.
Another aspect related to the adoption of Gaussian-type

functions is the basis set incompleteness due to the use of a
finite number of basis functions. Basis set incompleteness is an
issue in all types of calculations, but most of all in calculations
that employ atom-centered basis sets−Gaussians, Slater
functions, or numerical orbitals. This is because the atomic
basis sets can never be made complete enough in polyatomic
systems, as the basis becomes overcomplete−necessitating the
removal of variational degrees of freedom−before becoming
complete. In molecules it is rather common to adopt a
sequence of basis sets of increasing size (e.g., cc-pVXZ (X =
D,T,Q,···)20 and pc-X (X = 1,2,3, ...)21), but this is not yet
routinely applicable for solids. Therefore, reaching the basis set
limit is not trivial−even for such simple systems as lithium
hydride22−26−and is not just a matter of computational efforts:
as basis sets grow larger, exponents tends to become more
diffuse, linear dependency problems arise, and the convergence
of infinite Coulomb and exchange series is jeopardized.
The problem of linear dependencies with an extended basis

set is a matter of active research not only for solids but also for
average-sized molecules.27 While the important role of diffuse
functions in solids has been recently highlighted by Kadek et

al.,28 too diffuse functions are often not needed for ground
state calculations because of the packing of the atoms in the
unit cell. Such very diffuse functions can also be added a
posteriori through dual basis set techniques.29 Seen from
another viewpoint, the main conceptual difference in basis sets
meant for the solid state as opposite to molecular electronic
structure calculations is that the latter have to describe the
asymptotic exponential decay of the electron density in a finite
system, requiring somewhat diffuse functions, whereas diffuse
basis functions are generally thought not to be necessary in
solid-state calculations because the density is much more
uniform throughout the cell. In this work our aim is to (i)
show to what extent the basis sets are different in different
chemical environments, by optimizing bases of the def2-TZVP
quality30−32 and (ii) attempt to use suitably optimized
quadruple-ζ basis sets, also from the def2- family, to verify
whether they can be adopted for solids without significant
pruning, and outline possible strategies for reaching such goal.
To this purpose we present a technique for the optimization

of basis set exponents and contraction coefficients, that is
based on the Direct Inversion in the Iterative Subspace (DIIS)
technique33−35 and actually quite similar to its geometry
optimization variant, GDIIS.36 The algorithm is implemented
in the CRYSTAL code.9 We show how such optimization allows
the retaining of the full number of Gaussians letting the
algorithm decide about the diffuseness of the exponents.

2. THEORETICAL FRAMEWORK
2.1. Background. In the linear combinations of atomic

orbitals (LCAO) framework, the crystalline orbitals ψ are
treated as linear combinations of Bloch functions (BF) ϕ that
are, in turn, defined in terms of local atom-centered functions
(AO) φ

ar k k r k( ; ) ( ) ( ; )i i,∑ψ ϕ=
μ

μ μ
(1)

er k r A g( ; ) ( )
g

ik g∑ϕ φ= − −μμ μ
·

(2)

in which g is a direct space lattice vector, k is the lattice vector
defining a point in the reciprocal lattice, A are the coordinates
of the atom in the reference cell on which the AO φ is
centered, and a are the variational coefficients. The sum over μ
is limited to the number of basis functions in the unit cell. The

Figure 1. Electron difference density maps (with respect to atomic densities) of molecular solid Cl2 (panel a), metallic sodium (panel b), and
rocksalt ionic NaCl (panel c).37
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sum over g is, in principle, extended to all the (infinite) lattice
vectors of the direct lattice; therefore, suitable screening
techniques have to be adopted.1,38,39

As usual, the AOs can be written as a contraction of a
number of primitive Gaussian-Type Functions (GTF) G
centered on the same atom

d Gr A g r A g( ) ( ; )
j

nG

j j∑φ α− − = − −μμ μ
(3)

in which dj are the contraction coefficients, and αj are the
exponents of the radial component of the function. The
number, type, and contraction scheme of the Gaussian basis set
define its quality. Gaussian functions are defined as

G R Yr A g r A g( ; ) ( ) ( , )j l lmα θ ρ− − = − −μ μ (4)

where Rl(r) = Ne−α·r
2

is the radial part−N being a
normalization constant−and Ylm(θ, ρ) is a spherical harmonic.
2.2. The BDIIS Method. Our goal is to devise a suitable

algorithm for a system-specific optimization of the exponents
αj and contraction coefficients dj as in eq 3. Taking inspiration
from the well-known Direct Inversion of Iterative Subspace
(DIIS) algorithm of Pulay,33,34 we describe in the following
our Basis-set DIIS (BDIIS) method.
The idea is that of an iterative procedure in which, at each

step n, exponents and contraction coefficients are obtained as a
linear combination of the trial vectors obtained in previous
iterations

c e( )n
i

n

i i i1
1

∑α α̅ = + α
+

= (5)

d c d e( )n
i

n

i i i
d

1
1

∑̅ = ++
= (6)

In the above, ei
α and ei

d are, respectively, the changes in
exponents and contraction coefficients, as predicted by a
simple Newton−Raphson step. In fact the gradients ei are
defined by

e e
di i

d

α
= ∂Ω

∂ = ∂Ω
∂

α
(7)

where Ω is a suitable functional to be minimized. Here we
decide to minimize the system’s total energy to which we add a
penalty function including the Overlap matrix condition
number, following the proposal of VandeVondele and
Hutter:40

d E d d( , ) ( , ) ln ( , )totα α γ κ αΩ { } = { } + { } (8)

The value γ = 0.001 was adopted as suggested in ref 40. In
eq 8, κ({α, d}) is the condition number, i.e., the ratio between
the largest and the smallest eigenvalue of the overlap matrix at
the center of the Brillouin zone (Γ-point). The purpose of such
penalty function is to prevent the onset of harmful linear
dependence. Linear dependence issues can give rise to
numerical instabilities and, as a consequence of that, the
appearance of unphysical states. Such unphysical states
generally lead to a catastrophic behavior of the total energy
that can drop to a value that is orders of magnitude larger, in
absolute value, than the proper one.
Although the first of derivatives in (7) could be in principle

computed analytically,41,42 in the present work we evaluate

both ei
α and ei

d by means of numerical derivatives (vide inf ra).
The length of the estimated Newton steps represented by the
eα and ed can assume the meaning of an estimated distance
from the minimum of Ω and thus be utilized as a measure of
the “error” at step n.
The DIIS error matrix, that has the size of the iterative space

considered, is built from the scalar products

e e eij i
T

j= (9)

By imposing the constraint c 1i
n

i1∑ == , we can obtain the
linear combination coefficients of the BDIIS method to be
used in (5) and (6) by solving the linear equation system

i

k

jjjjjjjjjjjjjjjjj

y

{

zzzzzzzzzzzzzzzzz

i

k

jjjjjjjjjjjjjjj

y

{

zzzzzzzzzzzzzzz

i

k

jjjjjjjjjjjjjj

y

{

zzzzzzzzzzzzzz

e e

e e

c

c

... 1

... 1

1 ... 1 0

0

0
1

n

n n n n

1,1 1,

,1 ,

1

λ

=∂ ∏ ∂ ∂ ∂ ∂

(10)

where λ is a Lagrange multiplier. Such an approach is, in fact,
similar to geometry-optimization DIIS (GDIIS36) adopting an
identity Hessian.

2.3. Details of the Implementation. The BDIIS
procedure outline above has been implemented in a develop-
ment version of the CRYSTAL17 code.9 As already mentioned, in
this work we compute the derivatives in (7) by means of a two-
sided numerical derivative. Which means, for exponents α

e
( ) ( )

2i
i iα α α α

α
= Ω + Δ ̅ − Ω − Δ ̅

Δ ̅
α

(11)

and similarly for coefficients d.
The displacement is 1% of the exponent value (Δα̅ =

0.01·α), while for coefficients the step is set to 0.1%, weighted
by the relative exponents (Δd̅ = 0.001·d/α).
We have also tried to compute a diagonal Hessian using the

three points αi + Δα̅, αi and αi − Δα̅, so to improve the step
(error) as defined in eqs 5 and 6 at the same computational
cost. However, such a diagonal Hessian seemed not to improve
on the quality of the step, and the overall convergence pattern
turned out to be similar or slower in all cases we tested. We
surmise that the cause can reside in the insufficient accuracy of
a three-point numerical estimate of the second derivative.
Once a suitable step Δα̅n = α̅n − αn−1 is obtained from eq 5,

a line search is performed for tuning the optimal parameter f l

fn n l n1α α α∼ = + Δ ̅− (12)

by sampling f l from 0.1 to 1 in a suitable discrete point grid.
The point with the minimum value of Ω is then retained.
The convergence of the iterative optimization procedure is

verified by checking the absolute value of the largest
component of both the gradients and the penalty function.
The iterative space used in the BDIIS procedure is set at most
to the 14 previous cycles, and the BDIIS step is active since the
second basis set optimization step. The optimization is
complete when the absolute value of the difference in the
penalty function is less than 1.0 · 10−5 au and the absolute
value of the largest component of gradient converges to 3.0 ·
10−4.

3. RESULTS
In this section we first briefly describe the performance of the
BDIIS method in minimizing the Ω energy functional as
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defined in eq 8. Then we focus on the effect of system-specific
basis set optimizations, by showing the differences between
optimized exponents of a typical triple-ζ basis in simple
systems containing the same atoms but in a different chemical
bonding situation. Finally, we analyze how extended basis sets,
such as molecular quadruple-ζ quality, can be optimized for
dense solids without significant pruning. In the Supporting
Information the reader can find full CRYSTAL179 inputs for all
the calculations presented in the following, including the
explicit definition of the atomic basis sets.
All of the optimizations in this work have been carried out

starting from molecular def2-TZVP or def2-QZVP basis
sets.30−32 Although the implemented algorithm is general, as
described in the previous section, in the following we will focus
on the optimization of valence and polarization functions
only−the ones relevantly changing in a different chemical
environment. Since they are usually uncontracted Gaussian
functions, the optimization has been performed solely for the
exponents. As a general strategy, we took as a starting point the
molecular basis sets, upscaled the exponents of all outermost
functions so to avoid small values (<0.1) but without pruning
the basis set, and finally optimized the corresponding values by
minimizing the function Ω.
For all the calculations the convergence for the self-

consistent field (SCF) algorithm is achieved when the energy
difference is 1.0 · 10−8 au (1.0 · 10−10 au for LiH) using a
Monkhorst−Pack (MP) shrinking factor of 8 (64 for
graphene). For triple-ζ basis sets the truncation criteria of
Coulomb and Exchange infinite sums are [8,8,8,12,24] for
diamond, [8,8,8,15,30] for LiH, and [8,8,8,8,16] for the other
systems. Convergence in the case of quadruple-ζ basis sets
requires tighter thresholds, up to [10,10,10,35,175] in the case
of diamond (Hartree−Fock). In the SI we report all CRYSTAL17
inputs that can be used to reproduce our results.
In many cases, we adopted pure GGA functionals such as

PBE43 and PBEsol44 in order to have a faster time to solution.
In other cases we used PBE045 or Hartree−Fock. More
generally, we do not regard our basis set optimizations to be
much dependent on the chosen method,46 since we do not
deal with the reoptimization of the core. As the focus of our
work is on accuracy and numerical stability, we will not present
timings.
3.1. Performance of the BDIIS Method. In Figure 2 we

report the progress of the Ω functional minimization−cf. eq
8−along with the BDIIS iterations, in two exemplary yet
challenging cases for Gaussian-type basis sets: graphene and
bulk metallic sodium. In graphene, the basis set optimizer, run
with the PBEsol functional, leads to a stable result after a few
iterations, which represents a significant energy gain with
respect to the starting point and remains stable for long. If the
optimization is allowed to continue for hundreds of cycles, a
rise in the penalty function γ ln κ({α,d}) is observed, which
evidently prevents the gaussians to become too diffuse. A
corresponding decrease of the electronic energy is observed.
We remark that such changes are however minimal with
respect to the effect of the first iterations, and the optimization
is essentially converged after 50 cycles to all practical purposes.
In the same figure we have also reported the curve obtained
using the Broyden−Fletcher−Goldfarb−Shanno (BFGS)
method. It is seen that such a method reaches the same
value of the Ω functional, more slowly but also more stably.
We will discuss the differences in the solution in the following.

The case of bulk metallic sodium (Figure 2(a)) is different:
the electronic energy varies little (and even increases slightly
with respect to the starting point); but the penalty function is
much more relevant than in other cases, and about 100
iterations are required to reach a plateau. Notably, in this case
the basis set optimization was carried out with a hybrid HF/
DFT functional (i.e., PBE0). This level of theory is usually
expected to be problematic for metallic systems, but the BDIIS
algorithm runs smoothly to convergence.

3.2. Role of the Chemical Environment. We compare
here two sets of systems, composed by the same elements: first
crystalline diamond, graphene, and carbyne chain and then
NaCl with bulk Na and Cl solids. We compare our system-
dependent optimized basis sets with the pob-TZVP15,17 ones.
These were also derived from def2-TZVP but differently from
ours: (i) the valence exponents were optimized for each system
in a comprehensive set of solids with different chemical
environments, (ii) for multiple optimization of the same
atomic species an averaged value of the exponent was
considered, and (iii) most notably, many of the outermost
functions were removed, thus reducing the consistent quality
of the basis.
We will refer to the basis sets optimized in this work as

“dcm-TZVP”. Since different basis sets of the same nominal

Figure 2. Minimization of the Ω functional of eq 8 as a function of
the BDIIS algorithm iteration for two of the systems studied in this
work: panel (a) sodium (PBE0), panel (b) graphene (PBEsol). The
two components of the functional, Etot and κ, are also reported
individually. The dashed line in the bottom panel reports the behavior
of the BFGS algorithm.
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quality are obtained through optimization on different systems,
we will adopt the more detailed notation dcm[···]-TZVP,
specifying in square brackets the system used for the
optimization (e.g., dcm[NaCl]-TZVP).
3.2.1. Diamond, Graphene, and Carbyne Chain. Diamond

and graphene are two allotropes of carbon. Both are covalently
bound systems but differ by hybridization (sp3 and sp2), as well
as crystalline (3D Vs 2D) and electronic (insulator and
conductor) structures. Carbyne is a model system with 1D
periodicity (polymer), two atoms in the unit cell and
alternating bond length.
In Table 1 we compare the exponents of the original def2-

TZVP, the original pob-TZVP, the recently revised pob-rev2
basis set, and our dcm-TZVP basis specifically optimized for
diamond, graphene, and carbyne with the PBE functional. For
brevity, we will refer to the latter two basis sets as dcm[Cdiam]-
TZVP, dcm[Cgraph]-TZVP, and dcm[Ccby]-TZVP, respectively.
Figure 3 shows a corresponding graphical representation of the
radial component of some of the involved gaussians. The first
striking effect observed is the overall contraction of exponents
with respect to the molecular basis. This is not unexpected15,19

and is to be ascribed to the higher density of atoms in the
solid-state phase.
The outermost p-type function shows probably the most

significant difference between diamond and graphene. Such
difference is due both to the different chemical bonding (sp-
hybridization) and atomic density−graphene is a 2D system
surrounded by vacuum in the third dimension. This vacuum
offers more space for the Gaussian functions to expand and at
the same time requires more extended functions to cover that
empty space. Such interpretation is corroborated by the
example of the 1D carbyne chain basis dcm[Ccby]-TZVP, which
features an even more diffuse p-shell. We take the opportunity
here to remind that−conversely to plane-waves−in an atom-
centered Gaussian-based approach the true 2D and 1D
periodicity is possible, hence the vacuum in the nonperiodic
directions is a true vacuum. The effect of the reduced
dimensionality is, however, partly counterbalanced by a
progressively shorter carbon−carbon distance that is 2.92 Å
in diamond, 2.69 Å in graphene, and 2.39/2.46 Å in carbyne
due to the different hybridization of the carbon atom in the
three compounds. The more diffuse p-function is responsible
for the failed convergence when using the graphene dcm-
[Cgraph]-TZVP basis set in diamond (Table 2). Also d- and f-
type functions have a somewhat different spread in the two
systems, showing that quadrupole and octupole interactions
act differently in the two allotropes.
In Table 2 we report some total energies obtained at the

DFT/PBE level: in addition to dcm-TZVP and pob-TZVP

bases, the dcm[Cdiam]-TZVP basis was also tested in graphene
and the dcm[Cgraph]-TZVP in diamond. From Table 2, we see
that the energies relative to the proper dcm bases are lower by
about 0.014 Eh than the pob- ones. On the other hand,
swapping the two dcm-TZVP bases led to an energy similar to
(though still lower than) that of pob-TZVP[G] while the more
diffuse dcm[Cgraph]-TZVP turned out to be unusable in the

Table 1. Uncontracted Gaussian Exponents for Different Carbon TZVP Basis Setsb

def230 pob15 pob-rev217 dcm[Cdiam]
a dcm[Cgraph]

a dcm[Ccby]
a

s 0.5770 0.4941 0.4941 2.7288 1.0961 1.1383
0.2297 0.1644 0.1644 0.7083 0.5911 0.6557
0.0952 0.2754 0.2374 0.2323

p 0.2889 0.5662 0.5662 0.6187 0.3387 0.2857
0.1006 0.2674 0.1973 0.2713 0.1594 0.0906

d 1.0970 0.8792 0.5792 2.0114 1.2502 1.3095
0.3180 0.6265 0.7194 0.6132

f 0.7610 1.0624 0.7067 1.1330
aPresent work. bdcm[Cdiam]-TZVP, dcm[Cgraph]-TZVP, and dcm[Ccby]-TZVP refer to our basis set optimized by BDIIS with the PBE functional in
diamond, graphene, and carbyne, respectively.

Figure 3. Radial part of some Gaussian functions of carbon from def2-
TZVP (def2), pob-TZVP (pob), and two different dcm-TZVP
(dcm[Cdiam] for diamond, dcm[Cgraph] for graphene) basis sets.
Exponents of s-, p-, and d-type functions are reported in panels (a),
(b), and (c), respectively.
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more closely packed diamond lattice, leading to linear
dependencies, numerical instabilities, and no possible SCF
convergence in the end. The same happened when we tried to
use the unmodified original molecular def2-TZVP basis sets,
with the sole exception of carbyne thanks to its one-
dimensional extension. The corresponding energy is
−76.098306 Eh, about 1 mEh higher than our dcm[Ccby]-
TZVP result.
The optimization carried out with the BFGS algorithm leads

to a very similar basis set for graphene, yielding essentially the
same energy. For diamond, a significantly different result is
obtained with respect to the BDIIS one reported in Table 1
with an energy that is 68 μEh higher (exponents are 1.0163;
0.6367; 0.2392 for valence s-functions, 0.5646; 0.2728 for p-
functions, 1.0242; 0.5957 for d-functions, and 0.8239 for the f-
function).
3.2.2. Crystalline NaCl, Na, and Cl2. Let us now compare

the optimal basis set obtained with the PBE0 functional for
three bulk structures with very different chemical bonding,
namely: metallic Na, molecular Cl2, and ionic rocksalt NaCl,
whose electronic charge densities are reported in Figure 1. As
discussed in the Introduction, the significantly different
features in the electronic structure expectedly require a
different support and hence a specific basis set. The geometries
adopted are fully reported in the Supporting Information and
have been obtained from experimental references in the
literature.47−49

In Table 3 we see that for the Cl2 molecular crystal, not
unexpectedly, the original def2 basis set undergoes very little

modifications when optimized in the solid. Actually, it
performs much better than the pob-TZVP basis (see Table
5) with the total energy being 0.1 Ha lower. The removal of
the outermost p-function in the pob basis sets leads to an
overall decrease of the exponents of the remaining functions
that partly compensates the contribution to the total energy of
the missing function. If one includes the outermost p-function
from the dcm basis set, a further energy lowering of 13 and 17
mEh is observed for the pob and pob-rev2 basis set,
respectively. However, this is not enough to reach the final

energy of solid Cl2 as obtained with the optimized dcm basis
set thus showing the crucial role of the outermost p-function.
The dcm[NaCl] basis for Cl, optimized in the rocksalt

structure, features significantly more contracted exponents, as
far as s- and p-functions are concerned, while the d exponent
becomes more diffuse. As reported in Table 4, a stronger

contraction is observed in exponents of the s-type orbitals in
going from the molecular def2 to the bulk metal and then the
ionic NaCl. In this case we had to remove the most diffuse p-
function (0.03 au) in order to ensure convergence, but at
difference with the pob-TZVP case, we were able to keep all
the d-functions in.
As shown in Table 5 it can be seen that in all cases dcm-

energies are significantly lower than pob- ones, and quite
surprisingly the dcm[Cl2]-TZVP and dcm[Na]-TZVP basis
sets seem to perform well also in the ionic case.
Such basis sets effects are also reflected in geometry

optimizations. In Table 6 we report the optimized lattice
parameters obtained with the different basis sets. It is seen that
the dcm-basis sets lead in all cases to an expanded volume with
respect to the pob- ones and in the case of Na and NaCl also
to a better agreement with experiment at the PBE0 level. In the
molecular crystal Cl2, dispersion effects act as a key role, hence
the plain PBE0 leads to an excessively expanded volume when
the dcm[Cl2] basis is used, while the introduction of -D3
dispersion correction restores a more correct description. It is
reasonable to assume that the volume expansion associated
with the dcm[Cl2] basis is related to a mitigation of BSSE
effects−which usually act as spurious dispersion.

3.3. Use of Large, Extended Basis Sets. Solid LiH is a
rather standard benchmark for methods assessment in the solid
state. Recently24,26 lithium hydride has been used as a
benchmark for estimating the Hartree−Fock basis set limit
compared with results from different approaches.23,50,51 The
case of LiH, similarly as NaCl, poses certain difficulties since
standard molecular basis sets are designed for neutral atoms,
not ions, hence inapplicable to bulk ionic crystals without
modification. We optimized the basis set series def2-SVP/def2-
TZVP/def2-QZVP with our BDIIS algorithm, obtaining the

Table 2. Total Energies at the DFT/PBE Level for Diamond and Graphene as Computed with Different Triple-ζ Basis Setsb

ETOT
PBE pob15 pob-rev217 dcm[Cdiam]

a dcm[Cgraph]
a dcm[Ccby]

a

diamond −76.157894 −76.154752 -76.161457
graphene −76.155441 −76.158920 −76.158342 -76.169383
carbyne −76.072706 −76.086918 −76.073559 −76.096273 -76.099140

aThis work. bEnergies in Eh. Energies for the consistently optimized basis sets are reported in bold.

Table 3. Gaussian Exponents for Different Cl TZVP Basis
Setsb

def2 pob15 pob-rev217 dcm[Cl2]
a dcm[NaCl]a

s 0.5023 0.4499 0.4499 0.5075 0.5724
0.1796 0.1364 0.1364 0.1831 0.2312

p 2.9433 2.8015 2.8015 2.8983 2.9386
1.0405 0.7396 0.7896 1.1044 1.1903
0.3846 0.2106 0.2106 0.4092 0.4697
0.1307 0.1365 0.1747

d 0.3390 0.2373 0.2373 0.3326 0.2838
f 0.7060 0.5990 0.6898

aThis work. bThe dcm-variants were optimized with the PBE0
functional.

Table 4. Gaussian Exponents for Different Na TZVP Basis
Setsb

def2 pob15 pob-rev217 dcm[Na]a dcm[NaCl]a

s 0.0500 0.6746 0.4246 0.2127 0.3436
0.0193 0.1006 0.1205 0.0782 0.0828

p 0.4174 0.4009 0.4009 0.4034 0.4023
0.0910 0.1007 0.1207 0.0851 0.0981
0.0300

d 2.6090 1.0463 0.3053 2.6086 2.6074
0.4300 0.4337 0.4040
0.1000 0.1115 0.0985

aThis work. bThe dcm-variants were optimized with the PBE0
functional.
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corresponding dcm[LiH]-SVP/dcm[LiH]-TZVP/dcm[LiH]-
QZVP. The corresponding Hartree−Fock total energy values
are −8.059489, −8.063808, and −8.064618 Eh, respectively. In
Figure 4 we compare such energies with previous data from the

literature also obtained with the CRYSTAL code. It is seen that
with the quadruple basis we reach a value that is very close to
that of ref 26 (i.e., −8.06475 Eh), where a much larger basis set
was used. This last result was already close to the CBS limit
compared to methods employing different basis set types.26 If
the dcm-TZVP and dcm-QZVP total energies are used to
estimate the HF complete basis set (CBS) limit by using a two-
point extrapolation scheme based on an exponential formula, a
value of −8.065089 is attained. Notably, this energy limit is
even lower than the one reached by Usvyat and co-workers26

by 0.3 mEh. When using the CBS energy for the atoms,52 the
cohesive energy is then −3.60 eV in very good agreement with
results from different theoretical approaches.23,50,51

Similarly, we have optimized a quadruple-ζ basis for
diamond and graphene. The original def2-QZVP basis does
not allow convergence in either case, while with the basis sets
as reported in Table 7 the energies of −76.165178 and

−76.174386 Eh are obtained for the two systems at the PBE
level. The latter value we believe to be close to basis set
completeness. Extrapolation to the CBS limit leads to a value
of −76.167396 and −76.177298 Eh, respectively.
In Table 7 we report the reoptimized exponents with respect

to def2-QZVP basis sets−all other functions are the same as in
the molecular basis set. It is worth noting that g-type functions
were also included in the basis set as they were recently made
available in the development version of the CRYSTAL code.53

BSSE effects are reduced much more considerably by the
increasing of the basis set quality, rather than by the
optimization of the exponents, so that BSSE is quite similar
for pob- or dcm- basis sets.
For diamond, we have also calculated the Hartree−Fock

CBS limit by using the dcm-TZVP and dcm-QZVP basis sets.

Table 5. Total Energies at the DFT/PBE0 Level for Na, Cl2, and NaCl as Computed with Different TZVP Basis Setsb

ETOT
PBE0 pob15 pob-rev217 dcm[Na]a dcm[Cl2]

a dcm[NaCl]a

Na −162.202291 −162.198836 -162.210106 −162.209707
Cl2 −1840.065404 −1840.052238 -1840.186164 −1840.175452
NaCl −622.394522 −622.392474 −622.405254 -622.405810

aThis work. bEnergies in Eh. Energies for the consistently optimized basis sets are reported in bold.

Table 6. Experimental47−49 and Calculated Lattice Parameters for Solid Na, Cl2, and NaCl, as Obtained with Different Basis
Setsb

PBE0 pob15 pob-rev217 dcm[Na]a dcm[Cl2]
a dcm[NaCl]a exp

Na a 4.041 (−0.184) 3.957 (−0.268) 4.258 (0.033) 4.225
a 6.211 (0.066) 6.634 (0.489) 6.145

Cl2 b 4.387 (−0.008) 4.683 (0.287) 4.395
c 8.126 (−0.028) 8.549 (0.395) 8.154

NaCl a 5.602(−0.038) 5.609(−0.031) 5.644(0.004) 5.640
PBE0-D3 pob15 pob-rev217 dcm[Na]a dcm[Cl2]

a dcm[NaCl]a exp

Cl2 a 6.011 (−0.134) 6.034 (−0.111) 6.175 (0.030) 6.145
b 4.224 (−0.171) 4.255 (−0.140) 4.307 (−0.088) 4.395
c 8.013 (−0.140) 8.021 (−0.133) 8.239 (0.085) 8.154

aThis work. bThe difference with respect to the experimental reference is reported in round brackets.

Figure 4. Energy of bulk LiH at the HF level: a comparison of our
dcm-XVZP basis set results. Extrapolated CBS limit and literature
data (Civalleri et al.24 and Usvyat et al.26).

Table 7. Exponents Comparison of Gaussian Basis Setsb

def2-QZVP dcm[Cdiam]-QZVP
a dcm[Cgraph]-QZVP

a

s 5.2404 6.2060 5.2404
2.2905 3.3250 2.3278
0.6967 1.0952 1.0461
0.2760 0.6304 0.5218
0.1074 0.3436 0.2004

p 0.4605 0.8740 0.4500
0.1894 0.5426 0.3287
0.0760 0.1832 0.1249

d 1.8480 1.9639 1.9130
0.6490 0.9684 0.8630
0.2280 0.5478 0.4526

f 1.4190 1.5109 1.4143
0.4850 0.7423 0.5982

g 1.0110 1.1825 0.9931
aThis work. bDiamond and graphene cases for quadruple-ζ basis sets.
Optimization carried out at the PBE level.
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Computed total energies are −75.772638 and −75.774752 Eh,
respectively. The adopted extrapolation scheme leads to a HF
CBS limit of −75.775983 Eh that corresponds to a cohesive
energy for diamond52 of −10.58 eV, very close to a previously
reported HF value of −10.56 eV.54 Interestingly, results show
that the basis sets optimized with the PBE functional can also
be used for HF even if a tighter setting of the computational
parameters is required (see the Supporting Information).
In Figure 5 we compare, for graphene, the electronic band

structure computed with Gaussian basis sets with the bands for
the same systems as obtained from a plane wave code55 using a
considerably high cutoff. It is evident that the bands at the
triple-ζ level are different from the reference ones, specially in
the Γ and M points of the Brillouin zone. Nevertheless, the
dcm[Cgraph]-TZVP performs better than the pob-TZVP. A
considerably better agreement is attained by using the
dcm[Cgraph]-QZVP basis (right panel of Figure 5). We believe
this is strong evidence of the possibility of reaching converged
results with Gaussian basis sets and the effectiveness of a
system-specific optimization scheme.

4. CONCLUSIONS

In the present work, we have developed a basis set optimizer
based on the DIIS algorithm that minimizes the total energy of
the system constrained to keep the condition number of the
overlap matrix as small as possible in a similar approach as
proposed by VandeVondele et al.40 The latter constraint acts
as a pivot in the optimization of the basis set and prevents the
lowest exponents of the basis set to decrease too much thus
reducing the risk of linear dependency and numerical
instability. This is particularly important in solid-state
calculations where the use of atom-centered diffuse functions
is more delicate and sometime useless.
We have then shown that the proposed method is quite

effective for solid-state calculations and allows for an easy
optimization of basis sets not only of triple-ζ quality but even
of quadruple-ζ size. Furthermore, we have demonstrated that
the BDIIS method can be used to obtain basis sets for solids of
consistent quality as molecules without pruning the original
basis sets. Results for simple solids as diamond and graphene
for which the definition of an appropriate and system-
consistent basis set is uglily difficult are very promising. Also,
the possibility of employing basis sets specifically calibrated on
a given system allowed us to easily reach the HF complete
basis set limit for LiH which has been a long debated issue and
for diamond.

While reasonable questions can be raised about the
transferability of such optimized basis sets from one method
to another, we have seen that a basis set optimized, say, with
PBE is very close to convergence when inserted in HF or
PBE0. For our diamond test case the energy with such basis
was only a few μEh away from the minimum when transferred
from one method to another.
The evidence of the excellent performance of the BDIIS

method paves the way for a careful definition of system-specific
basis sets, as a viable alternative to all-purpose basis sets.
Nevetheless, it could be employed for a more extensive work
that would permit the creation of all-purpose basis set families
for a larger set of atomic species. Furthermore, the algorithm
here described could be very useful to optimize basis sets for
post-HF correlation methods20,56 as well as for response
properties.57−59
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This document explicitly reports most of the CRYSTAL17 inputs used to obtain the

results reported in the paper. The basis set in the inputs are the dcm-XZVP obtained by

using the BDIIS optimizer. The shells labelled by an asterisk are those that have been

optimized.
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0 0 1 0. 1. *

8.28104267544E-02 9.99700925116E-01

0 2 5 6. 1.

1.38079799890E+02 5.79518919290E-03

3.22327003930E+01 4.16208462510E-02

9.98160753600E+00 1.62819168850E-01

3.48220339280E+00 3.60117846470E-01

1.22991346200E+00 4.48589798890E-01

0 2 1 0. 1. *

4.02257637589E-01 1.00001437874E+00

0 2 1 0. 1. *

9.81092534535E-02 1.00010780928E+00

0 3 1 0. 1. *

2.60738659094E+00 1.00000000000E+00

0 3 1 0. 1. *

4.03951011422E-01 1.00000000000E+00

0 3 1 0. 1. *

9.84682729829E-02 1.00000000000E+00

17 13

13



0 0 7 2. 1.

6.95079909450E+04 5.43148974970E-04

1.04261568800E+04 4.19904639610E-03

2.37323340610E+03 2.15921416790E-02

6.71564200710E+02 8.45988500940E-02

2.18419997900E+02 2.47572497240E-01

7.75722497140E+01 4.70169302280E-01

2.88888152770E+01 3.74363707160E-01

0 0 3 2. 1.

1.27105271850E+02 2.51821666030E-02

3.93395829610E+01 1.07861124560E-01

7.67406799890E+00 -2.74088215740E-01

0 0 2 2. 1.

3.87456276300E+00 1.32138750140E+00

1.83858325730E+00 6.86369553680E-01

0 0 1 0. 1. *

5.72362924707E-01 1.00000000308E+00

0 0 1 0. 1. *

2.31162823985E-01 9.99999997835E-01

0 2 5 6. 1.

6.66504232840E+02 2.36326638360E-03

1.57642416900E+02 1.88793003740E-02

5.02625209780E+01 8.72063412730E-02

1.85360781050E+01 2.52856129700E-01

7.29405327770E+00 4.35071548200E-01

0 2 1 5. 1. *

2.93863280310E+00 1.00000000143E+00

0 2 1 0. 1. *

1.19026410565E+00 1.00000000000E+00

0 2 1 0. 1. *

4.69704038156E-01 1.00000000000E+00

0 2 1 0. 1. *

1.74720163208E-01 1.00000000000E+00

14



0 3 2 0. 1.

4.61000000000E+00 2.00000000000E-01

1.01100000000E+00 1.00000000000E+00

0 3 1 0. 1. *

2.83798017576E-01 1.00000000000E+00

0 4 1 0. 1. *

6.89848600893E-01 1.00000000000E+00

99 0

END

DFT

PBE0

END

TOLINTEG

8 8 8 8 16

TOLDEE

8

SHRINK

8 8

END

7 Na - triple ζ

Na_crystal-TZ-PBE0

CRYSTAL

0 0 0

229

4.2906

1

11 0. 0. 0.

END

11 11

0 0 7 2. 1.

15



2.60411099270E+04 6.18063428110E-04

3.90612685480E+03 4.77486044140E-03

8.88974549930E+02 2.44716848290E-02

2.51454979610E+02 9.47553949770E-02

8.16501435120E+01 2.68674969200E-01

2.89041584010E+01 4.79254754400E-01

1.06257829320E+01 3.32485914690E-01

0 0 3 2. 1.

5.37694101790E+01 1.95277318720E-02

1.63082430250E+01 9.26480107940E-02

2.37303841250E+00 -3.99386701720E-01

0 0 2 1. 1.

9.57307726030E-01 1.64285953910E+00

4.08064609590E-01 5.56925969660E-01

0 0 1 0. 1. *

2.12721167582E-01 9.99992062637E-01

0 0 1 0. 1. *

7.82096876345E-02 9.99700925116E-01

0 2 5 6. 1.

1.38079799890E+02 5.79518919290E-03

3.22327003930E+01 4.16208462510E-02

9.98160753600E+00 1.62819168850E-01

3.48220339280E+00 3.60117846470E-01

1.22991346200E+00 4.48589798890E-01

0 2 1 0. 1. *

4.03415531731E-01 1.00001437874E+00

0 2 1 0. 1. *

8.50539333916E-02 1.00010780928E+00

0 3 1 0. 1. *

2.60862497919E+00 1.00000000000E+00

0 3 1 0. 1. *

4.33739110192E-01 1.00000000000E+00

0 3 1 0. 1. *

16



1.11542851169E-01 1.00000000000E+00

99 0

END

DFT

PBE0

END

TOLINTEG

8 8 8 8 16

TOLDEE

8

SHRINK

8 8

END

8 Cl2 - triple ζ

Cl_crystal-TZ-PBE0

CRYSTAL

0 0 0

64

7.77875 4.34941 9.02754

8

17 0 0.40882 0.89848

17 0 0.09118 0.39848

17 0 0.90882 0.60152

17 0 0.59118 0.10152

17 0.50000 0.90882 0.89848

17 0.50000 0.59118 0.39848

17 0.50000 0.40882 0.60152

17 0.50000 0.09118 0.10152

END

17 13

17



0 0 7 2. 1.

6.95079909450E+04 5.43148974970E-04

1.04261568800E+04 4.19904639610E-03

2.37323340610E+03 2.15921416790E-02

6.71564200710E+02 8.45988500940E-02

2.18419997900E+02 2.47572497240E-01

7.75722497140E+01 4.70169302280E-01

2.88888152770E+01 3.74363707160E-01

0 0 3 2. 1.

1.27105271850E+02 2.51821666030E-02

3.93395829610E+01 1.07861124560E-01

7.67406799890E+00 -2.74088215740E-01

0 0 2 2. 1.

3.87456276300E+00 1.32138750140E+00

1.83858325730E+00 6.86369553680E-01

0 0 1 0. 1.

5.07498154767E-01 1.00000000308E+00

0 0 1 0. 1.

1.83127456586E-01 9.99999997835E-01

0 2 5 6. 1.

6.66504232840E+02 2.36326638360E-03

1.57642416900E+02 1.88793003740E-02

5.02625209780E+01 8.72063412730E-02

1.85360781050E+01 2.52856129700E-01

7.29405327770E+00 4.35071548200E-01

0 2 1 5. 1.

2.89826632488E+00 1.00000000143E+00

0 2 1 0. 1.

1.10442102086E+00 1.00000000000E+00

0 2 1 0. 1.

4.09232170559E-01 1.00000000000E+00

0 2 1 0. 1.

1.36452167048E-01 1.00000000000E+00

18



0 3 2 0. 1.

4.61000000000E+00 2.00000000000E-01

1.01100000000E+00 1.00000000000E+00

0 3 1 0. 1.

3.32581229403E-01 1.00000000000E+00

0 4 1 0. 1.

5.98970631104E-01 1.00000000000E+00

99 0

END

DFT

PBE0

END

TOLDEE

8

TOLINTEG

8 8 8 8 16

SHRINK

8 8

END

9 LiH - SVP

LiH-SVP-HF

CRYSTAL

0 0 0

225

4.084

2

3 0.0 0.0 0.0

1 0.5 0.5 0.5

END

3 5

19



0 0 5 2. 1.

2.66277855160E+02 6.49201503250E-03

4.00697834470E+01 4.77478632150E-02

9.05599443890E+00 2.02687961110E-01

2.45030090510E+00 4.86065748170E-01

7.22095718550E-01 4.36269779550E-01

0 0 1 1. 1. *

9.22176144583E-01 1.00000000000E+00

0 0 1 0. 1. *

3.26710606911E-01 1.00000000000E+00

0 2 2 0. 1.

1.45000000000E+00 2.58600000000E-01

3.00000000000E-01 1.00000000000E+00

0 2 1 0. 1. *

2.44108651001E-01 1.00000000000E+00

1 3

0 0 3 1. 1.

1.30107010000E+01 1.96821580000E-02

1.96225720000E+00 1.37965240000E-01

4.44537960000E-01 4.78319350000E-01

0 0 1 0. 1. *

1.12026126213E-01 1.00000000000E+00

0 2 1 0. 1. *

7.04259338539E-01 1.00000000000E+00

99 0

END

TOLINTEG

8 8 8 15 30

SHRINK

8 8

FMIXING

50

TOLDEE

20



10

END

10 LiH - triple ζ

LiH-TZ-HF

CRYSTAL

0 0 0

225

4.084

2

3 0.0 0.0 0.0

1 0.5 0.5 0.5

END

3 8

0 0 6 2. 1.

6.26926280100E+03 2.05409688260E-04

9.40316124310E+02 1.59165540890E-03

2.14221075280E+02 8.28698297070E-03

6.07598401840E+01 3.38563742490E-02

1.99151520320E+01 1.11032258760E-01

7.31715097970E+00 2.74493833290E-01

0 0 2 1. 1.

2.97246742160E+00 2.37924564110E-01

1.26398523140E+00 3.07654119240E-01

0 0 1 0. 1. *

7.80051836987E-01 1.00000000000E+00

0 0 1 0. 1. *

3.56751423380E-01 1.00000000000E+00

0 0 1 0. 1. *

1.32441081592E-01 1.00000000000E+00

0 2 1 0. 1. *

21



5.32524694781E-01 1.00000000000E+00

0 2 1 0. 1. *

1.24297352468E-01 1.00000000000E+00

0 2 1 0. 1. *

3.32168908872E+00 1.00000000000E+00

1 4

0 0 3 1. 1.

3.40613410000E+01 6.02519780000E-03

5.12357460000E+00 4.50210940000E-02

1.16466260000E+00 2.01897260000E-01

0 0 1 0. 1. *

7.93610197287E-01 1.00000000000E+00

0 0 1 0. 1. *

2.38040797833E-01 1.00000000000E+00

0 2 1 0. 1. *

7.51152930456E-01 1.00000000000E+00

99 0

END

TOLINTEG

10 10 10 15 30

SHRINK

8 8

FMIXING

50

TOLDEE

10

NOBIPOLA

END

11 LiH - quadruple ζ

LiH-QZ-HF

22



CRYSTAL

0 0 0

225

4.084

2

3 0.0 0.0 0.0

1 0.5 0.5 0.5

LATVEC

100000

END

1 10

0 0 4 1. 1.

1.90691690000E+02 7.08151670000E-04

2.86055320000E+01 5.46788270000E-03

6.50959430000E+00 2.79666050000E-02

1.84124550000E+00 1.07645380000E-01

0 0 1 0. 1. *

6.39685855118E-01 1.00000000000E+00

0 0 1 0. 1. *

2.72584652976E-01 1.00000000000E+00

0 0 1 0. 1. *

1.44295727123E-01 1.00000000000E+00

0 2 1 0. 1. *

2.29203807546E+00 1.00000000000E+00

0 2 1 0. 1. *

8.37965510305E-01 1.00000000000E+00

0 2 1 0. 1. *

2.95979305342E-01 1.00000000000E+00

0 3 1 0. 1. *

2.06195543104E+00 1.00000000000E+00

0 3 1 0. 1. *

6.61486854173E-01 1.00000000000E+00

0 4 1 0. 1. *

23



1.39686108048E+00 1.00000000000E+00

3 13

0 0 9 2. 1.

1.48539770850E+04 4.27113888150E-05

2.22522364770E+03 3.32353108000E-04

5.04887390080E+02 1.75184366490E-03

1.42458475480E+02 7.34779958500E-03

4.63155995800E+01 2.58998376830E-02

1.66553354740E+01 7.66706824310E-02

6.43311861990E+00 1.82760757650E-01

2.60270438580E+00 3.26554340380E-01

1.08972454050E+00 3.70004298280E-01

0 0 2 1. 1.

4.42365959710E+00 1.11209879210E-01

1.23563949900E+00 7.99873358620E-01

0 0 1 0. 1. *

1.47258539716E+00 1.00000000000E+00

0 0 1 0. 1. *

9.61687138188E-01 1.00000000000E+00

0 0 1 0. 1. *

5.44705804681E-01 1.00000000000E+00

0 0 1 0. 1. *

2.59775255362E-01 1.00000000000E+00

0 2 3 0. 1.

3.26051092060E+00 8.65047490230E-03

6.50030431150E-01 4.76141237360E-02

1.69416710730E-01 2.10011380000E-01

0 2 1 0. 1. *

3.83906409071E-01 1.00000000000E+00

0 2 1 0. 1. *

1.98706020944E-01 1.00000000000E+00

0 2 1 0. 1. *

3.72683460316E+00 1.00000000000E+00

24



0 3 1 0. 1. *

3.33113752884E-01 1.00000000000E+00

0 3 1 0. 1. *

3.68482801264E-01 1.00000000000E+00

0 4 1 0. 1. *

1.75294244744E-01 1.00000000000E+00

99 0

END

TOLINTEG

10 10 10 40 160

SHRINK

12 12

NOBIPOLA

LDREMO

1

FMIXING

96

THREDIIS

2

TOLDEE

10

ILASIZE

20000

END

25
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ABSTRACT: Half-Heusler alloys are thermoelectric materials that enable
direct conversion of waste heat to electricity. A systematic study of these
alloys has never been attempted using local Gaussian type orbitals (GTOs)
and hybrid density functional theory methods within a periodic approach. In
this work, we study the thermoelectric properties of TiMSn (M = Ni, Pd, and
Pt) alloys with space group F4̅3m using the CRYSTAL code. We, first, set
benchmarks for TiNiSn by comparing our data to existing literature values of
Seebeck coefficient, power-factor, and thermoelectric figure-of-merit. Our
results agree well. We, then, extend these calculations to TiPdSn and TiPtSn,
for which consistent previous data are limited. Our computations show that
all TiMSn (M = Ni, Pd, and Pt) alloys prefer p-type carriers and exhibit a
figure-of-merit of ≈1 at a chosen carrier concentration and temperature. In
addition, we aim to explain the low band-gap of TiNiSn by modeling defects
in the pure system. Our defect model proves to have a smaller band-gap, and
its power-factor is found to be almost twice of the pure TiNiSn.

1. INTRODUCTION

The term thermoelectrics (TEs) has sparked huge interest in
recent years, as the perspective of turning waste heat into
useful electricity grows in the light of renewed attention toward
the environment. From electric cars to wearable devices, and
thereon up to space exploration, the horizon of reducing
energy demands seems to be at hand. Unfortunately, because
of their modest efficiency and relatively high cost, currently
available devices and materials are not able to deliver this
promise.
Compared to other fields of solid-state physics and materials

chemistry, the alliance of theoretical modeling, experimental
characterization, and synthesis is not prevalent in TEs.
Plausible reasons are that for an experimentally synthesized
sample, there is a high density of defects (interstitial,
substitutional, etc.) that provide a high carrier density. Despite
the crystalline nature of the compound, realistic models that
integrate these defects are difficult to mimic. Moreover, grain
boundaries found in real materials are beneficial to TE
properties as they reduce the thermal conductivity of the
sample, but these structural defects are also complicated to
integrate in a model.
As C. J. Humphreys once quoted: “Crystals are like people:

it is the defects in them which tend to make them
interesting!”.1 For TEs, this is indeed the case, as the presence
of interstitial or substitutional defects not only adds flat bands
in the gap but also alters the shape of a large part of the band
structure.

Half-Heusler (HH) alloys, intermetallic compounds of the
composition ABX, are now actively investigated for their TE
performance. These compounds have tunable band gaps which
allow the possibility of tailoring TE efficiency and have
potential applications in spintronics, solar cells, and data
storage.2−4

Experimentally, these materials are synthesized using various
methods: spark plasma sintering, hot pressing, arc-melting, and
microwave-assisted solid-state reactions. These methods are
generally followed by prolonged annealing that is targeted to
densify the material and heal the sample of defects.5−8

On computational side, a recent impetus in the investigation
of these alloys is to use machine learning tools to accelerate the
discovery of new novel materials.9−11 The primary focus,
however, is doping the parent material to maximize the TE
power factor σS2 and in turn the TE figure of merit (ZT =
S2σT/ktotal, where ktotal is the material's total thermal
conductivity). This approach comes from the general idea
that adding impurities (doping or substituting by isoelectronic
elements) alters the band gap of the parent material, which in
turn enhances the TE properties.12−17 The changes in the
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atomic bonding in the proximity of the grain boundaries and
the consequent covalent bond delocalization can also deeply
modify the TEs, thus stimulating the electron transport of the
whole system.18

In this paper, we investigate three TE compounds, TiNiSn,
TiPdSn, and TiPtSn, with the CRYSTAL code,19 using hybrid
density functional methods and basis sets of localized Gaussian
orbitals. Such computational setup, if properly tuned, enables
the inclusion of exact exchange at a relatively cheap
computational cost, allowing for a natural reduction of self-
interaction effects. Moreover, it can be more accurate and
robust with respect to other density functional theory (DFT)
approaches that use Hubbard-U corrected functionals for
defects and HH alloys.20,21 Our work is targeted toward
confirming how, contrary to other materials, point defects in
HH alloys have a strong impact on the whole band structure
and consequently on transport properties. Moreover, we
intend to benefit the community that uses Gaussian type
orbitals in the study of crystalline materials, by establishing a
reliable methodology and providing an integrated tool to
compute TE properties within the CRYSTAL code.22 Among
HH alloys, TiNiSn is heralded as a benchmark material and is
well investigated in the literature. Thus, naturally, we first
compare our data for TiNiSn to the existing literature, validate
both the approach and the computational setting, and then
extend the same machinery to investigate TiPdSn and TiPtSn.
The paper is arranged as follows: in the following section,

the computational setup is described, in particular, the
reasoning for our choice of basis-sets and DFT functionals.
Results are presented in Section 3, where the variance of the
band gap and reproducibility of the band structure depending
on the choice of functionals are studied. Thereafter, a
discussion of TE properties with appropriate comparison to
the existing literature is provided. In the last section, we
present a defect model of TiNiSn that shows improved TE
performance.

2. METHODS
2.1. Functional and Basis Set. Throughout this work, we

apply DFT as implemented in the CRYSTAL code.19

While most studies with TEs employ plane-wave based
packages and the Perdew−Burke−Ernzerhof (PBE) func-
tional,23 the local basis in CRYSTAL allows us to introduce
a proper amount of ‘exact exchange’ which is known to
improve the accuracy of simulated properties that depend on
the extent of electronic delocalization, namely, band gaps,
phonon spectra, and magnetic coupling constants.24

Nevertheless, atomic basis sets, which allow for an easy use
of hybrid functionals, have to be accurately calibrated for
periodic systems, and the correct percentage of exact exchange
has to be determined.
In order to define a reference setup, which predicts the best

compromise of the electronic band gap and lattice parameter
for the family of systems under investigation, we perform a
comprehensive screening in the choice of the basis sets and on
the amount of Hartree−Fock (HF) exchange.
For the basis, we adopt a standard and rather robust

procedure to adapt molecular Karlsruhe split-valence polar-
ization basis (def2-SVP) to periodic calculations.25 A
consistent basis set, referred in the following as P.def 2-SVP,
is obtained by cutting off f functions, when present, and
adjusting the outermost s and p shells for periodic calculations,
also using the BDIIS optimization procedure.26 For each

element included here, the basis set has been used successfully
in previous studies. The basis sets and the literature references
are reported in Supporting Information.
For the functional, we explore PBE with three different

percentages of HF exchange, namely, pure PBE, PBE10 (10%
HF exchange) and PBE0 (25% of exact exchange23,27,28). On
the basis of our results, we resolved to use the hybrid PBE10
for all further computation. It is to be noted here that
calculations with PBE are reported for sake of comparison with
literature results.

2.2. Computational Parameters. The DFT exchange−
correlation contribution is evaluated by numerical integration
over the unit cell volume, using a pruned grid with 75 radial
and 974 angular points. Integration over the reciprocal space is
carried out using Monkhorst−Pack meshes of 8 × 8 × 8. The
Coulomb and exchange series, summed in direct space, are
truncated using overlap criteria thresholds of [8, 8, 8, 8, 16].
Convergence for the self-consistent field algorithm is achieved
up to a threshold of 10−9 hartree on the total energy, per unit
cell.29

Geometry optimization is performed using analytical
gradients with respect to atomic coordinates and unit−cell
parameters, within a quasi-Newtonian scheme combined with
Broyden−Fletcher−Goldfarb−Shanno Hessian updating.30,31

The default convergence criteria are adopted for both gradient
components and nuclear displacements. A full set of vibrational
frequencies in Γ is obtained within the harmonic approx-
imation by diagonalizing the mass-weighted Hessian matrix.
This matrix is built by numerically differencing the analytical
gradient with respect to atomic Cartesian coordinates. The
zero-point energy (ZPE) and the thermal contributions to the
vibrational energy (Evib) and entropy (Svib) are calculated by
considering the vibrational spectrum in Γ and then added to
the SCF energy and the pressure x volume term to get all the
thermodynamic potential, that is, enthalpy and Gibbs free
energy, at any given temperature.
TE properties such as Seebeck coefficient (S) electrical

conductivity (σ) and electron contribution to the thermal
conductivity (kel) are computed by using the semi-classical
Boltzmann transport equation theory and the frozen band
approximation, as recently implemented by Sansone et al. in
CYRSTAL.22 We also assume constant relaxation time
approximation for carriers and fix it at 10 fs (1 × 10−14 s)
for all systems and temperatures. A dense mesh of up to 4000
k-points is used in the first Brillouin zone for the calculation of
TE parameters. Our computations do not include the effect of
spin−orbit coupling as this feature is yet to be implemented in
the CRYSTAL code.
Thus, we do our computations within the regime of the

CRYSTAL code, using carefully screened localized Gaussian
type orbitals and hybrid DFT functionals to describe the
chemistry of the HH alloys. Once a reliable computational
setting is achieved, features of the code which can then be
exploited are (i) calculation of the TE parameters for different
carrier-concentrations, at various temperatures and at low
computational cost; (ii) chemical insight into the electronic
structure because of the atomic nature of the basis set; and (iii)
modeling of low concentration of point defects using a
supercell approach.

3. RESULTS AND DISCUSSION
3.1. Defect-Free Crystal Structure. The HH pure-phase

crystallizes in a MgAgAs-type structure with space group F4̅3m
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(#216). Similar to other ternary HH alloys, Sn, Ni/Pt/Pd, and
Ti atoms occupy fused face-centered cubic sublattices at
Wyckoff positions of 4b [1/4, 1/4, 1/4], 4c [1/2, 1/2, 1/2],
and 4a [0, 0, 0], respectively. A representative model is shown
in Figure 1.

Structural parameters and electron band gap, calculated at
the PBE10/P.def 2-SVP level, are collected in Table 1. The
equilibrium Bulk modulus, B0, elastic constants, c11, c12, c44,
Poisson ratio, ν, and Young’s modulus, Y, are obtained with
CRYSTAL by solving the third-order Birch−Murnaghan
isothermal equation of state.32

For the lattice parameter, a, our finding for TiNiSn deviates
from an experiment value of a negligible 0.2%,33,34 whereas
TiPdSn and TiPtSn values are in accordance to those in refs 9
and 35, respectively. Band gaps will be discussed in the next
section.
In the case of TiNiSn, the elastic properties are reproduced

accurately even though our perfect crystal model is not
completely consistent with realistic experimental samples,
where local and structural defects are always present. Hence,
a good agreement is achieved for Young’s modulus, but
significant discrepancies are observed for B0 and the elastic
constants.
In the absence of experimental data for TiPdSn and TiPtSn

alloys, we compared our calculations with results obtained with
a plane-wave approach reported by Kaur35 and Roy et al.,36

respectively. As shown in Table 1, the agreement for TiPdNi’s
B0 and TiPtSn’s c44 elastic constant is excellent.
3.2. Defect-Free Electronic Band Structure. For a

complete discussion of TE properties of HH compounds, a
correct description of the electronic band structure of the
material is essential. In Figure 2, we show the band structures

of all three ternary compounds computed at the PBE10/
P.def 2-SVP level.
As expected, each compound has an indirect band gap,

between the valence-band maximum at the Γ-point and the
conduction-band minimum at X-point. The percentage of
exact exchange in the functionals does affect the numerical
value of the band gap. For instance, for TiNiSn, the band-gap
varies from 0.48 eV (PBE) to 0.69 eV (PBE10) and finally to
0.98 eV (PBE0). Nevertheless, none of the functionals produce
the band gap as low as the experimentally measured value of
0.12 eV.37 We discuss this anomaly in detail in the following.
For TiPdSn, our computed band gap is 0.76 eV (0.47 eV

with PBE) which matches with previous calculations done
using the range-separated hybrid HSE06 functionals.9 TiPtSn
has the highest band gap of the three alloys at 1.13 eV (0.72,
PBE) which is ≈10% less than the literature value obtained
with the HSE06 functional.9

For the band structure, the primary difference between the
three compounds is at the X-point. Going from Ni−Pd−Pt, the
splitting between the two lowest energy conduction bands
reduces, increasing the band gap. These bands have a pudding
mold-like character, which is more pronounced in the case of
TiNiSn.
The projected density of states (PDOS) on the atomic

orbitals of each element can enlighten more on this important
effect. The lowest virtual states of TiNiSn, panel (a) of Figure
3, result as a combination of Ni−Ti AOs and are slightly closer
to the Fermi level with respect to the analogous Pd/Pt−Ti
states in the other two alloys. This is the primary reason
behind why the electronic band gap increases as we go from
TiNiSn to TiPtSn because the Sn contribution in the Fermi
region is almost negligible for all three compounds.

3.3. Defect-Free TE Properties. We now discuss the
Seebeck coefficient (S), the electrical conductivity (σ), and the
power factor with respect to the relaxation time (PF = S2σ/τ)
for these HH alloys. Because TE materials have high
temperature applications, we also present the dependence of
these parameters at temperatures, from 300 to 1000 K. We first
compute TE properties of TiNiSn and compare it with existing
literature, both from computational and experimental studies,
to establish a benchmark. Later, we extend the same
calculations to TiPdSn and TiPtSn, on which computational
data are sparse.
Figure 4 compares S and power-factor for TiNiSn with

change in charge carrier concentration (nc) for both p and n-
type carriers adopting the PBE and PBE10 functionals. At low
nc, the Seebeck coefficient differs slightly between PBE and
PBE10, but as nc increases, S quickly converges. For higher
temperatures (not shown here) difference between S is almost

Figure 1. HH structure of TiMSn (M = Ni, Pt, and Pd) alloy with
cubic symmetry and space group F4̅3m (#216). Blue spheres are Ti
atoms, grey spheres in polyhedra are Ni, Pd, and Pt (for each case),
and purple spheres are Sn atoms.

Table 1. PBE10/P.def 2-SVP Results for Three HH Alloysa

alloy a gap B0 c11 c12 c44 ν Y

TiNiSn 5.91 0.69 137.94 235.53 89.98 60.97 0.296 169.62
Ref. 5.92b 0.12c 124.90d 214.90d 79.90d 67.50d 0.271d 171.6d

TiPdSn 6.17 0.76 131.21 184.96 105.27 58.97 0.330 134.11
Ref. 6.23e,f 0.74e 135.90f

TiPtSn 6.22 1.13 146.02 206.96 116.85 65.89 0.329 150.42
Ref. 6.25e 1.31e 67.00g

aLattice parameter a in Å. Indirect electronic band gap in eV. Bulk modulus, B0, elastic contants, c11, c12, c44, Young’s modulus, Y, in GPa and
Poisson ratio, ν. Literature date ara reported when available. bRef 34, (EXP). cRef 37, (EXP). dRef 38, (EXP). eRef 9, (THEO). fRef 35, (THEO).
gRef 36, (THEO).
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negligible. On the contrary, PF is lightly more sensitive to HF
percentage at high nc values, but its main features are the same
with the two functionals.
Overall, our computations match the general trend of large

Seebeck values for TiNiSn and provide good agreement with
existing literature at specified charge carrier concentrations.
In particular, the highest reported value of S for TiNiSn

found through computational and experimental studies in
literature is ≈−250 μV/K, which we achieve for nc ∼ 1 × 1019

cm−3.39−41 Scanning at the lower carrier concentration ranges
of nc ∼ 1 × 1018 cm−3, we have S = −400 μV/K, which

corresponds to the work done by Zilber et al.,42 who reported a
value of S = −425 ± 50 μV/K with nc ∼ 7 × 1018 cm−3.
The power-factor dependency on temperature is correctly

reproduced because it increases from ≈2 to ≈7 W/ms K2 ×
1011 as the temperature increases from 300 to 700 K, in
agreement with the results reported by Wang et al.43

At 300 K, the maximum value of PF for p-type carriers is 2.2
W/m K2 × 1011 corresponding to nc ∼ 1 × 1020 cm−3 and S =
+124 μV/K, while for n-type, the highest power-factor is 1.2
W/m K2 × 1011, with S = −103 μV/K, achieved when nc ∼ 5 ×
1019 cm−3.

Figure 2. Computed electronic band structures for (a) TiNiSn, (b) TiPdSn, and (c) TiPtSn at the PBE10/P.def 2-SVP level. Indirect band gaps are
0.69, 0.76, and 1.13 eV (from left to right) between the Γ and X point. Dotted line corresponds to the Fermi energy.

Figure 3. Computed PDOS on the atomic orbitals of (a) Ti, (b) Ni/Pd/Pt, and (c) Sn, at the PBE10/P.def 2-SVP level. Dotted line corresponds to
the Fermi energy.

Figure 4. (left) Seebeck coefficient for TiNiSn obtained with PBE10 (solid line, red) and PBE (dotted line, black) for both p-type and n-type
doping plotted against carrier concentration at 300 K. Inset: Variance of Seebeck coefficient with change in chemical potential (μ), in eV. (right)
Power-factor (PF, S2σ/τ) with respect to relaxation time (τ) of carriers, for p-type and n-type doping with change in nc at T = 300 K (solid line, red:
PBE10 and dotted line, black: PBE) and T = 700 K (solid line, orange: PBE10 and dotted line, blue: PBE). The x-axis for the figure on the right is
extended to 1 × 1017 for ease of comparison between the functionals. S and PF with n-carriers are plotted on the negative axis for clarity.
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Our computations suggest that p-type doping results in
higher TE efficiency in TiNiSn and this is particularly evident
at nc ∼ 1 × 1019 cm−3, where PF for p-type is almost double
than for n-type, right panel of Figure 4. For most experimental
data, TiNiSn is recognized to favor n-type doping. However, as
Zilber et al. propose, the electron donor levels arising from
grain boundaries in polycrystalline TiNiSn samples can be
reduced to single-crystals to attain the p-type TiNiSn TE.42

Convinced that our methodology to compute TE parame-
ters yields satisfactory results for HH compounds, we now
extend the same setup for the study of TiPdSn and TiPtSn. As
mentioned earlier, for these compounds, reliable computa-
tional or experimental studies are limited.
In Figure 5, we plot variation of Seebeck coefficient for

TiPdSn with temperatures at two values of nc ∼ 1 × 1018 and
nc ∼ 1 × 1020 cm−3 (left) and for TiPtSn at nc ∼ 2 × 1017, 1 ×
1018 and 1 × 1020 cm−3 (right).
Maximum power factor in both cases is achieved considering

p-type carriers, see Table 2, at nc ∼ 1 × 1020 cm−3.
However, for TiPdSn at 300 K, our value of S = +116 μV/K

is half of the value suggested by Kaur (S = +320 μV/K).35 We
believe that this discrepancy arises from the different lifetime
adopted in ref 35 that is 30 times larger compared to our
current work. As regards the dependence on temperature of
the Seebeck coefficient, the trend change as a function of the
carrier concentration, that is, for nc ∼ 1 × 1018 cm−3 S, exhibits
an increasing with temperature until 700 K and then a steep
decrease until 1000 K, whereas at higher nc (black curve of the
left panel, Figure 5), S monotonously rises on increasing the
temperature.
In the case of TiPtSn, work reported by Kimura et al.44

determined the alloy to have an n-type behavior. However, our
highest value of the PF graph is for a p-type kind of TE. Thus,
we include both p and n transport while reporting the data.
With change in temperature, the Seebeck coefficient of TiPtSn
shows an increasing trend for p-type and a decreasing trend for
n-type carrier, irrespective of the carrier concentration, right
panel of Figure 5. At ambient conditions and nc ∼ 1 × 1020, S
for p and n carriers is computed to be +140 μV/K and −85
μV/K, respectively, values which are significantly different
from the one reported by Kimura et al.,44 who reported an S =
−500 μV/K at 300 K and presumably at nc ∼ 1 × 1022 cm−3. If
we investigate low carrier concentration, nc ∼ 1 × 1018 cm−3,
we find a n-type Seebeck value of −460 μV/K. Furthermore,

similar to ref 44, we also notice the transition to p-type
behavior at 1200 K (≈1100 K for Kimura et al.) for nc ∼ 2 ×
1017 cm−3. However, this is quite unrealistic as low
concentration corresponds to a chemical potential of 5−6 eV
which is far below the Fermi level of this system.
With our calculated power factors, we can estimate the

dimensionless figure of merit for these family of alloys. The
figure of merit is described as ZT = S2σT/ktotal, where ktotal is
the total thermal conductivity, sum of the electronic (el) and
phononic (ph) contributions and T is temperature in kelvin.
Assuming the phononic thermal conductivity from literature
data and using our own calculations for kel, we calculate ZT in
chosen carrier concentrations, for p and n-type TEs,
respectively, Tables 2 and 3.
The total thermal conductivity of TiNiSn is 4−6 W m−1 K−1

for 300−700 K taken from experimental measurements as in
ref 45. At our peak carrier concentration n ∼ 1 × 1020 cm−3,

Figure 5. Temperature dependence of Seebeck coefficient. (left) TiPdSn, nc = 1 × 1018 (red circles) and nc = 1 × 1020 (black triangles) cm−3 for p-
type doping. (right) TiPtSn, nc = 2 × 1017, nc = 1 × 1018 and nc = 1 × 1020 cm−3 for both p and n-type doping. Calculations performed at the
PBE10/P.def 2-SVP level.

Table 2. p-Type; Dimensionless TE figure of merit, ZT,
Evaluated for TiMSn, (M = Ni , Pd, and Pt) Alloys for
Specified Carrier Concentration and Temperaturea

alloy n (cm−3) T (K) PF/τ (W/m K2 × 1011) ZT

TiNiSn 1 × 1018 300 0.40 0.03
600 0.50 0.05

1 × 1019 300 1.4 0.11
700 2.4 0.28

1 × 1020 300 2.2 0.17
700 6.4 0.75

TiPdSn 1 × 1018 300 0.34 0.02
700 0.45 0.05

1 × 1019 300 1.38 0.06
700 2.20 0.20

1 × 1020 300 2.00 0.08
700 5.80 0.34

TiPtSn 2 × 1017 300 0.11 0.01
800 0.14 0.02

1 × 1018 300 0.34 0.02
900 0.52 0.07

1 × 1020 300 3.00 0.12
1000 9.10 0.52

aThe lattice thermal conductivity kph is 6 W m−1 K−1 from refs 37 and
44 and ref 42 for the three systems, respectively, while kel is from our
computed data. Relaxation time is fixed at τ = 1 × 10−14 s or 10 fs.
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assuming ktotal = 6 W m−1 K−1, we obtain a ZT of 0.75, which
indicates that TiNiSn is likely to be a good p-type TE at 700 K.
Assuming an n-type behavior at the same n concentration and
T, we arrive at a ZT of 0.50, which is in agreement with most
values from literature.14,46,47

For TiPdSn, only p-type transport is reported. The highest
ZT is 0.34 at n ∼ 1 × 1020 cm−3 and T = 700 K. This value is
not in agreement with ref 35 who report the highest ZT value
of 0.74 at 500 K, and discrepancies can possibly be ascribed to
a difference in the value of computed band gap in addition to
the different value of τ, as already mentioned.
For TiPtSn, similar to that reported by Kimura et al.,44 we

have low values of ZT, irrespective of the T, for nc < 1 × 1018

cm−3, and then, as nc rises up to 1 × 1020 cm−3, ZT reaches a
maximum value of 0.71 at 900 K.
Summarizing, our calculations confirm large power factors

for all three compounds. It is well known that using techniques
such as the phonon glass electron crystal, it is possible to
moderate the ktotal and hence increase their ZT and
consequently enhance their TE performance.48,49

3.4. Modeling Defects in TiNiSn. In this section, we
address the disparity in the experimentally measured and
computationally attained band gap for TiNiSn HH alloy. While
the experimental band gap is at 0.12 eV,37 this value was never
reproduced in computational studies, irrespective of the
computational method or DFT functional used.13,43

In our work, we compute a band gap of 0.48 eV with PBE
functional that is still four times larger than the experimental
one. However, there is the possibility that real materials, which
contain defects, may have localized states in the density of
states (DOS) that lead to a significant decrease in the band
gap. This approach, which may explain the discrepancy

between DFT and experimentally measured energy gap, was
proposed and successfully tested by several authors.13−15,17 In
particular, Colinet et al.13 and Jund and Berche14 computed a
sensitive drop of the band gap when an interstitial Ni was
introduced in the pure HH TiNiSn, and in a recent
publication, Kirievsky et al.17 reproduced the same effect
modeling, among the others, composition conserving defects.
We adopted an analogous approach by studying two anti-site

composition conserving Ni defects in a 2 × 2 × 2 super-cell of
the primitive HH cell (24 atoms) at the PBE10/P.def 2-SVP
level. These defects, which preserve the symmetry of the F4̅3m
space group, have the lowest formation energy among those
calculated,17 and it can therefore be assumed that they are
quite widespread in the experimental samples.
Thus, a single Ni atom is removed from its HH position

[−3/8, 1/8, 1/8] and inserted in one of the two vacant
Wyckoff positions 8c with fractional coordinates [3/4, 3/4, 3/
4] and [1/4, 1/4, 1/4], respectively, obtaining two defect
modelsW8c-333 andW8c-111. Both these sites are occupied in
the full-Heusler (FH) TiNi2Sn crystal structure; thus,
essentially, we have only displaced a Ni from its original HH
site to a FH site, as can be seen in Figure 1 of Supporting
Information.
The formation energy of the defects, ΔEf, is evaluated

according to equation

Δ = −E E Ef el
defect

el
perfect

(1)

where Eel is the electronic energy/per atom of the perfect
ordered stoichiometric compound and of the W8c-333/W8c-
111 systems. If the atoms in the supercell are not relaxed, we
obtain ΔEf in the order of 0.6 eV, very close to those computed
by other authors for similar defects in HH alloys. In particular,
Colinet et al.13 calculated a formation enthalpy at a PBE level
(ignoring the much smaller zero-vibration contribution) of
0.77 eV for an interstitial Ni in a 96 atoms supercell of TiNiSn.
However, if all the atoms in the supercell are allowed to relax,
the formation energies drop off and the two defective
structures, W8c-333 and W8c-111, become only 0.081 V and
0.066 eV less stable than the perfect HH.
Formation enthalpies at 0 K, ΔH(0), which take into

account the zero-point vibrational contribution, and Gibbs free
energies of formation at room temperature, ΔG(298),
accounting for the thermal phonon terms, are reported in
Table 4. As already stated by others,13,17 all these contributions
do not change significantly the magnitude of the formation
energies for these defects that remain very low.
Structure relaxation yields to small but significant differences

in the electronic structure and in the atomic coordination
patterns.
In agreement with the already mentioned results, we observe

a narrowing in the band gaps which decrease to 0.187 eV in
W8c-333 and 0.261 eV in W8c-111, see Figure 1 in Supporting

Table 3. n-Type; Dimensionless TE Figure of Merit, ZT,
Evaluated for TiMSn, (M = Ni, Pd, and Pt) Alloys for
Specified Carrier Concentration and Temperaturea

alloy n (cm−3) T (K) PF/τ (W/m K2 × 1011) ZT

TiNiSn 1 × 1018 300 0.45 0.03
600 0.62 0.06

1 × 1019 300 1.2 0.09
700 2.5 0.29

1 × 1020 300 1.0 0.08
700 4.3 0.50

TiPtSn 2 × 1017 300 0.16 0.01
800 0.17 0.02

1 × 1018 300 0.50 0.02
700 0.57 0.06

1 × 1020 300 1.10 0.04
900 7.50 0.71

aThe lattice thermal conductivity kph is 6 W m−1 K−1 from refs 37 and
44 and ref 42 for the three systems, respectively, while kel is from our
computed data. Relaxation time is fixed at τ = 1 × 10−14 s or 10 fs.

Table 4. PBE10/P.def 2-SVP Results for Defect Modelsa

alloy a gap ΔH(0) ΔG(298) B0 c11 c12 c44 ν Y

TiNiSn2×2×2 8.36 0.69 138.02 235.58 90.19 60.67 0.297 169.15
W8c-333 8.35 0.19 0.078 0.070 133.48 194.63 104.83 44.51 0.351 120.67
W8c-111 8.34 0.26 0.064 0.060 133.84 205.21 99.10 59.45 0.315 149.38

aLattice parameter a in Å. Indirect electronic band gap in eV. Δ, evaluated according to eq 1, are in eV per atom. Enthalpy and Gibbs free energy
are defined as follows: H(0) = Eel + ZPE + PV; G(298) = Eel + ZPE + E(T)vib + PV − TSvib. Frequencies are computed at Γ point only. Bulk
modulus, B0, elastic constants, c11, c12, c44, Young’s modulus, Y, in GPa and Poisson ratio, ν.
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Information. The antisite Ni atom leads to a localized level in
the vicinity of the Fermi level. In particular, the PDOS reveal
the presence of Ti−Ni virtual states within the “forbidden
region” of the perfect system, see Figures 6 and 7. The
projections onto the AOs of Ti(1)/Ti(5) and Ni(9)/Ni(15)
present rather similar features in W8c-111 and W8c-333 with a
net drop of the lowest virtual states with respect to HH
TiNiSn. It is worth to mention that the Ni(24) contribution to
the lowest unoccupied bands differentiates the two defect
systems as it is significantly more pronounced in W8c-111 than
in W8c-333, panel (c) of Figure 7. This difference can account

for the different values in some of the TE parameters
calculated for the two defect models, as will be shown and
discussed in the following.
As the Ni atom is displaced from its HH to a FH position,

symmetry related atoms within the 2 × 2 × 2 supercell are no
longer equivalent on the basis of different coordination
patterns. For example, in W8c-111, Ti(1) and Ti(5) have 3
and 5 Ni atoms in the first neighboring shell. while in W8c-333
Ti(1) and Ti(5), both have four Ni as first neighbors (refer to
Tables S1 and S2 of Supporting Information for the adopted
notation). Similar behavior is noted for Sn atoms. Interesting

Figure 6. PDOS on the defect TiNiSn alloys; (a) on Ti(1); (b) on Ti(5).

Figure 7. PDOS on the defect TiNiSn alloys; (a) on Ni(9); (b) on Ni(15); and (c) on Ni(24) the displaced atom.

Figure 8. Seebeck coefficient, S, and power factor, PF, for perfect TiNiSn, W8c-333 and W8c-111 at T = 300 K, as a function of the charge carrier
concentration, nc. PF with n-carriers is plotted on the negative axis for clarity.

The Journal of Physical Chemistry C pubs.acs.org/JPCC Article

https://dx.doi.org/10.1021/acs.jpcc.0c03243
J. Phys. Chem. C 2020, 124, 14997−15006

15003



enough, after the geometry optimization, both the defect alloys
exhibit Ti(1) with three Ni, at a distance of ≈2.57, and the
Ti(5) surrounded by five Ni atoms, including the displaced
Ni(24). It seems that atomic rearrangement within the super-
cell is driven by the defective Ni which tends to restore its 4-Ti
⊕ 4-Sn octahedral coordination.
Hirshfield charges, collected in Table S2 of Supporting

Information, confirm the loss of chemical equivalence among
the atoms in the 2 × 2 × 2 defective supercells and sensitive
differences among the two models. For W8c-111, the increase
in Ti(1) atomic charge is particularly evident and is partially
compensated by the charge lost by the displaced Ni(24).
Finally, we compare the Seebeck coefficients of the defect

models with respect to the pure HH, Figure 8 right panel. At nc
= 1 × 1019 cm−3, the absolute value of S for W8c-333 is
considerably lower than the pure HH or W8c-111. When
considering only p-type carriers, between nc = 1 × 1019 and nc
= 1 × 1020 cm−3, the Seebeck coefficient for both defect
systems becomes slightly higher than that of the perfect HH.
For n-type carriers, W8c-111 has the highest S in the
aforementioned range and converges to the same value as
the pure HH only at high nc values of 1 × 1021 cm−3.
In the right panel of Figure 8, we compare the PF of the

perfect TiNiSn and the defect systems. W8c-111 has a power
factor almost twice that of the pure system at nc ∼ 5 × 1019

cm−3, for n-type carriers. The electronic contribution to
thermal conductivity for this defect system at 300 K is 0.10 W
m−1 K−1, which is slightly lower than that of the pure TiNiSn
(0.15 W m−1 K−1). This could explain the enhanced TE
properties ofW8c-111 when n-type carriers are considered, and
it is consistent with the peculiar antivacant Ni states calculated
for this model, see Figure 7.
Hence, by modeling composition conserving Ni defects in

TiNiSn, we are able to reproduce rather accurately the
expected electronic and TE properties of TiNiSn.

4. CONCLUSIONS
In this work, we used the CRYSTAL code to perform a
thorough investigation of the geometry, electronic band
structure, and TE properties of three HH alloys: TiNiSn,
TiPdSn, and TiPtSn. We described each of these compounds
using localized Gaussians and the global hybrid DFT
functional PBE10 with 10% HF exchange. Lattice parameters
and electronic band structures are correctly reproduced with
agreeable band gaps. Next, we computed TE properties
Seebeck coefficient, electrical conductivity, and electronic
contribution to the total thermal conductivity within
CRYSTAL using a set of basis adapted from the def 2-SVP
and calibrated for periodic calculations.
In TiNiSn, p-type doping shows higher ZT as often noticed

in computational studies and in contrast to experimental
evidence. Moreover, considering the experimental trend of n-
type behavior, we were able to reproduce recognized values of
the TE figure of merit. For TiPdSn and TiPtSn, we predicted
both alloys to favor p-type transport in their pure single-crystal
form and have high room temperature values of power factor at
carrier concentrations cn ∼ 1 × 1019 and cn ∼ 1 × 1020 cm−3,
respectively. Thus, if the lattice thermal conductivity is
carefully controlled, the figure of- merit is expected to be
high. Last, we presented two defect TiNiSn models which we
believe are a better description of the real material. These
defect models feature a Ni atom displaced from its original HH
crystallographic site to a vacant FH site. Differences in the

system response to Ni occupying different interstitial sites were
found, which were not expected from pure symmetry
considerations. Such differences are seen in the band gap,
defect formation free energy, and Seebeck coefficients. The
power factor of the defect model W8c-111 prefers n-type
carriers and displays almost twice the value for the same
without defects. Thus, we were able to systematically reduce
the band gap and increase the power-factor for TiNiSn using a
more realistic model. The presence of defects is usually not an
undesired feature in TEs because it leads to increased phonon
scatteringswhich in turn lowers the thermal conductivity of
the materialthus increasing the ZT value.
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Modeling Defects in TiNiSn

Geometrical Structure

Neighbors analysis of the defect systems is reported in Table S1.

Table S1: Neighbors of the non-equivalent atoms. Distances d are in Å.

W8c-333 W8c-111
no opt d opt d no opt d opt d

Ti(1) 4Ni 2.5665 3Ni 2.5676 3Ni 2.566 3Ni 2.588
Ti(5) 4Ni 2.5665 1Ni 2.6427 5Ni 2.566 1Ni 2.521

3Ni 2.559 3Ni 2.535
1Ni 2.602 1Ni 2.585

Sn(16) 3Ni 2.5665 3Ni 2.5921 4Ni 2.566 3Ni 2.586
1Ni 2.719

Sn(20) 5Ni 2.5665 1Ni 2.5594 4Ni 2.566 3Ni 2.576
3Ni 2.4895 1Ni 2.577
1Ni 2.621
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Electronic Structure

In Fig. S2 are reported the band structure of the defect models, compared with the perfect

system. Fig. S3 shows the density of state projected onto the AOs of Sn(16) and Sn(20) for

TiMSn (M=Ni, Pd, Pt). As already stated, Sn contributions show pretty low intensities in

the region close to Fermi level.

In Table S2 the Hirshfeld atomic charges in the pure and defective models are collected.

Table S2: Hirshfeld charges for the irreducible atoms in 24-atoms 2x2x2 supercell. In paren-
thesis, the multiplicity of each atom.

Pure W8c-333 W8c-111
Ti-1 -0.004 (8) -0.061 (4) -0.127 (4)
Ti-5 -0.015 (4) 0.036 (4)
Ni-9 -0.628 (8) -0.578 (6) -0.574 (6)
Ni-15 -0.668 (1) -0.618 (1)
Ni-24 -0.391 (1) -0.338 (1)
Sn-16 0.632 (8) 0.527 (4) 0.562 (4)
Sn-20 0.681 (4) 0.629 (4)

Basis set P.def2-SVP

The hierarchy of atomic orbitals of the P.def2-SVP basis-set, adopted in the calculations

and obtained by manipulating the molecular def2-SVP basis set1 is listed in Table S3. The

Ti,2 Ni,3 Pd,4 Pt,4 and Sn5 basis sets adapted for periodic calculations have been described

in previous literature. For Sn, Pt and Pd, in order to reduce the computational efforts and

to take scalar relativistic effects into account, core electrons are treated with Effective Core

Potentials (ECP).

For Titanium, the molecular def2-SVP is juxtaposed to show in details the procedure

adopted in the manipulation of the basis.

The most diffuse s shell and the outermost f shell are deleted. Then, the exponents of the

4th s and 3rd p shells are doubled, to prevent linear dependency phenomena.

S2



Table S3: 1 D. Andrae, U. Haeussermann, M. Dolg, H. Stoll, H. Preuss, Theor. Chim. Acta
77, 123 (1990). 2 B. Metz, H. Stoll, M. Dolg, J. Chem. Phys. 113, 2563 (2000).

Ti Ni Pd Pt Sn
P.def2-SVP s(6331) s(6331) ECP1-s(3111) ECP1-s(2111) ECP2-s(621)

sp(1) sp(1) sp(1) sp(1) sp(1)
p(53) p(53) p(4) p(4) p(411)
d(41) d(41 d(41) d(41) d(51)

In the following, we list the basis-sets in the CRYSTAL standard input format.

f functions

In order to check the accuracy of our P.def2-SVP basis set, we performed a full geometry

optimization of the TiPtSn alloy with a basis set for Pt containing an f function, P.def2-SVP-

f. The adopted exponent (0.6681300) is original of the def2SVP basis set, as reported in the

EMSL exchange database (www.basissetexchange.org). The results, collected in Table S4,

and the two band structures, compared in Fig. S4, show that the addition of an f exponent

does not change significantly the description of the system.
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Titanium P.def2-SVP def2-SVP

22 9 22 9

0 0 6 2.0 1.0 0 0 6 2.0 1.0

42961.512185 .39127635355E-02 42961.512185 .39127635355E-02

6450.9759169 .29969820489E-01 6450.9759169 .29969820489E-01

1467.7210915 .14836352707 1467.7210915 .14836352707

414.20997355 .51347285324 414.20997355 .51347285324

134.48715840 1.0335365483 134.48715840 1.0335365483

46.122209796 .77854233930 46.122209796 .77854233930

0 0 3 2.0 1.0 0 0 3 2.0 1.0

89.447762543 -.28385401259 89.447762543 -.28385401259

10.223346060 1.6772785333 10.223346060 1.6772785333

4.1353774271 1.2411928456 4.1353774271 1.2411928456

0 0 3 2.0 1.0 0 0 3 2.0 1.0

6.7896181452 -.78399994518E-02 6.7896181452 -.78399994518E-02

1.1106730691 .25495493019E-01 1.1106730691 .25495493019E-01

0.47565975578 .16061172892E-01 0.47565975578 .16061172892E-01

0 0 1 2.0 1.0 0 0 1 2.0 1.0

0.24 1.0000000000 0.065986956934 1.0000000

0 0 1 0.0 1.0

0.025210342250 1.0000000

0 2 5 6.0 1.0 0 2 5 6.0 1.0

522.03684782 .19754179642E-01 522.03684782 .19754179642E-01

122.68649489 .14460677619 122.68649489 .14460677619

38.572903611 .54669004165 38.572903611 .54669004165

13.672169319 1.0531647540 13.672169319 1.0531647540

5.0118529359 .69111213363 5.0118529359 .69111213363

0 2 3 6.0 1.0 0 2 3 6.0 1.0

2.4131928282 .75803437136 2.4131928282 .75803437136

0.93252270050 1.3036241399 0.93252270050 1.3036241399

0.35429058390 .53638653300 0.35429058390 .53638653300

0 1 1 0.0 1.0 0 2 1 0.0 1.0

0.12 0.1015610 1.0000000

0 3 4 2.0 1.0 0 3 4 2.0 1.0

23.465125957 .26536380115E-01 23.465125957 .26536380115E-01

6.3332593832 .13796453963 6.3332593832 .13796453963

2.0766489946 .35312644228 .0766489946 .35312644228

0.69027361954 .48647124166 0.69027361954 .48647124166

0 3 1 0.0 1.0 0 3 1 0.0 1.0

0.21088738554 .33026314258 0.21088738554 .33026314258

0 4 1 0.0 1.0

0.5620000 1.0000000
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Nichel P.def2-SVP

28 9

0 0 6 2.0 1.0

71074.803211 .14260386729E-02

10672.020941 .10928236994E-01

2428.1389007 .54212626938E-01

685.53595148 .18874768902

223.10072863 .38324616985

76.842014042 .29550637144

0 0 3 2.0 1.0

148.71122016 -.11014443059

17.459154987 .64521426988

7.1625280665 .44797838103

0 0 3 2.0 1.0

12.556137125 -.22645403224

2.0735740488 .72320959286

.85382640602 .44868026476

0 0 1 1.0 1.0

0.35 1.0000000000

0 1 1 0.0 1.0

0.14 1.0 1.0

0 2 5 6.0 1.0

916.73608662 .93439635610E-02

216.06139913 .69737374902E-01

68.383914817 .27073495012

24.593843952 .53078301549

9.1392960204 .34410229438

0 2 3 6.0 1.0

4.7193371746 .34076082016

1.8161849234 .56580169611

0.6784075072 .23616717361

0 3 4 9.0 1.0

47.093832108 .28982316948E-01

13.146463975 .15494995950

4.4170548925 .37633115111

1.4771565078 .47365096014

0 3 1 0.0 1.0

0.4373592179 .31247837833
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Palladium P.def2-SVP

246 8

INPUT

18. 0 2 2 2 2 0

12.430000 240.229040 0

6.170759 35.171943 0

11.080000 170.417276 0

5.829554 28.472133 0

9.510000 69.013845 0

4.139781 11.750862 0

13.270000 -31.929554 0

6.630000 -5.398217 0

0 0 3 2.0 1.0

8.4756400000 1.2392391076

7.1657170000 -1.6563109970

3.1821100000 -.13178619060

0 0 1 0.0 1.0

1.3973644196 1.0000000000

0 0 1 0.0 1.0

0.60532955868 1.0000000000

0 0 1 0.0 1.0

0.29 1.0000000000

0 1 1 0.0 1.0

0.14 1.0 1.0

0 2 4 6.0 1.0

4.2460970000 -0.82324104973

3.3925940000 0.87084659933

1.1975891264 0.63512225791

0.52673750585 0.27225338752

0 3 4 10.0 1.0

7.3613290985 -.17199885828E-01

2.6291037258 .23313745275

1.1292744634 .44536385867

0.44471659896 .39293650406

0 3 1 0.0 1.0

0.22 1.0
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Platinum P.def2-SVP

278 8

INPUT

18. 0 2 2 2 1 1

13.428651 579.223861 0

6.714326 29.669491 0

10.365944 280.860774 0

5.182972 26.745382 0

7.600479 120.396444 0

3.800240 15.810921 0

3.309569 24.314376 0

5.277289 -24.218675 0

0 0 2 2.0 1.0

16.559563000 -.53808800717

13.892440000 .91402161377

0 0 1 0.0 1.0

5.8531044732 1.0000000000

0 0 1 0.0 1.0

1.2498640609 1.0000000000

0 0 1 0.0 1.0

0.55606439459 1.0000000000

0 1 1 0.0 1.0

0.13 1.0 1.0

0 2 4 6.0 1.0

8.1000000000 .72955608128

7.2000000000 -.95441807252

1.5588402917 .57140490320

0.73230402180 .49508234268

0 3 4 10.0 1.0

4.6299536825 -.87774450596E-01

2.1980241252 .21158360681

0.93629991261 .46533857641

0.37160028160 .41129165525

0 3 1 0.0 1.0

0.1858001408 1.0
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Tin P.def2-SVP

250 9

INPUT

22 0 2 4 4 2 0

17.4204140000000 279.988682000000 0

7.63115500000000 62.3778100000000 0

16.1310240000000 66.1625230000000 0

15.6280770000000 132.174396000000 0

7.32560800000000 16.3394170000000 0

6.94251900000000 32.4889590000000 0

15.5149760000000 36.3874410000000 0

15.1881600000000 54.5078410000000 0

5.45602400000000 8.69682300000000 0

5.36310500000000 12.8402080000000 0

12.2823480000000 -12.5763330000000 0

12.2721500000000 -16.5959440000000 0

0 0 6 2.0 1.0

375.95156177 0.15224884228E-02

23.661818008 -0.16776065030

19.946281315 0.33989090393

6.8240270454 -0.84441791529

1.8771488722 0.92646952846

0.82033199226 0.53091094490

0 0 2 2.0 1.0

10.272082089 -0.90331119154E-02

1.3573201180 0.22980877714

0 0 1 0.0 1.0

0.21345004117 1.0000000000

0 1 1 0.0 1.0

0.09 1.0 1.0

0 2 4 6.0 1.0

21.293597748 0.37103218279E-01

8.8171842499 -0.32351709661

1.2347028371 0.83846760898

0.57869142617 0.23294977050

0 2 1 2.0 1.0

2.5077059216 1.0000000000

0 2 1 0.0 1.0

0.26647309693 1.0000000000

0 3 5 10.0 1.0

39.693023177 0.39185734275E-02

20.852179275 -0.68210073667E-02

3.6907832774 0.27938420495

1.5849404530 0.52607409874

0.62772693365 0.36149465348

0 3 1 0.0 1.0

0.20500000000 1.0000000000

Table S4: Results for TiPtSn with two different basis set at the PBE0 level.

basis set Mulliken atomic charge lattice parameter band gap
(a.u.) (Å) (eV)

P.def2-SVP 0.512 6.22 1.13
P.def2-SVP-f 0.527 6.22 1.10
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Figure S1: Representative models of the crystallographic cell for W8c-333 system and W8c-
111 (24 atoms in the unit cell). Blue, grey and purple spheres denote Ti, Ni and Sn atoms
respectively. The yellow spheres are Ni(24) positions that were originally unoccupied in the
pure system. Light blue are Ti(1) and dark blue are Ti(5).
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Figure S2: Computed electronic band structures at PBE10/P.def2-SVP level. Dotted line
corresponds to Fermi level. (a) Pure system (Band gap: 0.689 eV), (b) W8c-333 (Band gap:
0.187 eV) and (c) W8c-111 (Band gap: 0.261 eV).
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Figure S3: Density of States of: (a) Sn(16), (b) Sn(20).
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12.3 Electronic Excitations in Crystalline Solids
through the Maximum Overlap Method-Paper
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Abstract

The Maximum Overlap Method (MOM) emerged in molecular quantum chemistry

as a convenient practical procedure for studying excited states. Unlike the Aufbau

principle, during the SCF iterations MOM forces orbital occupation to be maximally

similar to a reference state. Although still within a single-particle framework, this

approach allows for the evaluation of excitation energies (∆-SCF) and geometry opti-

mization of electronic configurations other than the ground state.

In this work we present an extension of the MOM treatment to periodic crystalline

solids, within the framework of an atom-centred Gaussian basis set. Periodic SCF

solution techniques involve iterating between direct and reciprocal space. It follows

that, in order to preserve translational symmetry, only totalsymmetric excitations are

allowed in our treatment: vertical Γ–point excitations or collective excitations in a

sphere around Γ. Other types of excitation are accessible through folding of the Bril-

louin zone subsequent to the creation of a supercell.

The features and performance of the method are presented through its application

to prototypical solids such as bulk silicon, diamond and lithium fluoride, and comparing

the results to available experimental data. Demonstrative application to nickel oxide
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and solid CuI(piperazine) – a luminescent copper halide compound – highlight the

promising potential of the MOM method in solid state quantum chemistry.

1 Introduction

Excited states are notoriously much more challenging and costly to be studied through

ab initio methods than ground states. The most commonly used approaches for this task

are many-body methods such as Time-Dependent Density Functional Theory (TD-DFT)1,2

Configuration-Interaction Singles (CIS),3,4 and the Green’s function Bethe-Salpeter,5 even

though a variety of other methods is available.6

Such Post-SCF and/or multiconfigurational methods are however generally demanding,

both in terms of computational resources and efforts required for their implementation, and

often do not offer many useful tools such as a geometry optimizer or vibrational frequency

calculation. Thus, the idea of a simple single-particle approach able to satisfactorily describe

excited states by the same methods and tools used for the ground state has a great appeal

for routine applications.7

In this view, the Maximum Overlap Method (MOM)8,9 has seen some success despite

its simplicity. Given a reference state, the MOM procedure carries out a standard iterative

self-consistent procedure, except that instead of setting orbital occupations according to

lowest energy ranking, it occupies those orbitals with the largest overlap with respect to a

reference configuration. In this way the aufbau principle is overridden, and the SCF iterations

provide the orbitals of the desired electronic configuration much in the same way as for the

ground state, thus allowing for the use of all of the standard algorithms such as atomic

gradient calculation. The excitation (or de-excitation) energy can be evaluated simply as

the difference between the total energies of the two configurations. (∆–SCF10–12).

The interest toward MOM-related approaches – and beyond – appears to be alive if not

rising in recent years and many works have been published on the topic.13–16
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In this work we present an extension of the MOM method to the case of crystalline solids,

treated within periodic boundary conditions using a local atom-centered Gaussian basis set.

While such extension might seem trivial at first sight, it poses some conceptual challenges

that have to be tackled, which are due to the periodic nature of the crystal and the features

of electronic bands. In particular: i) since the unit cell is periodically repeated, performing

the excitation in direct space would lead to an unrealistically high density of excitations, thus

requiring costly supercell calculations as in Ref. 17; ii) working in reciprocal space allows

for a single electron to be excited within the periodic boundary conditions, but how can

one tune the concentration of excitations?; iii) evaluation of excitation energies and atomic

forces and gradients must properly take into account such concentration. Moreover, if the

iterative SCF procedure - as is the case here - involves going back and forth from reciprocal

to direct space through the build of a density matrix, only totalsymmetric excitations are

allowed in order to preserve the translational symmetry.

In the following we present the simple formalism we developed and discuss its implications

in connection to the points listed above through example calculations on simple crystalline

systems. We also present demonstrative applications on solid NiO17 and CuI(piperazine)18

crystals.

2 Theory

In this section, starting from the basics of the SCF procedure in periodic systems, we will

present the details of the periodic MOM method and discuss the consequences of its appli-

cation to electronic bands. The method has been developed within a local atom-centered

(Gaussian) basis set framework19 but is more generally applicable.
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2.1 SCF in Periodic Systems

For a crystalline system, Hartree-Fock/Kohn Sham equations are commonly carried out in

reciprocal space, in a number Nk of discrete k-points constituting a uniform sampling of the

first Brillouin zone:

F (k)C(k) = S(k)C(k)ε(k) (1)

where, as usual, in each k point F (k) is the Fock matrix, S(k) is the overlap matrix, C(k)

are the coefficients of the crystalline orbitals and ε(k) are the corresponding eigenvalues. The

Fock matrix build is, in turn, carried out in direct space, hence at each iteration a direct-space

representation of the density matrix P is built from eigenvectors such that

P g =
1

Nk

∑

k

eik·gC†(k)n(k)C(k) (2)

where g is the vector locating a lattice point (cell) in direct space and n(k) is the occupation

matrix, a diagonal matrix with non-null elements in correspondence of the occupied orbitals.

In the case of a zero-kelvin nonconducting system, which we will assume in this work, such

elements are either 1 or 0, and for the ground state occupations are assigned following the

Aufbau principle filling in each k the orbitals having the lowest eigenvalues ε(k). From Eq.

(2) it follows that Nk defines the direct space Periodic Boundary Conditions (PBC), that is,

the size of the portion of direct space after which the charge density replicates itself: this is

called Super Wigner-Seitz Cell (SWSC) and is - to a good approximation - constituted by a

number of unit cells equal to Nk (which is strictly true in one-dimensional systems). Hence

the definition of the reciprocal space sampling, which is usually in the hands of the user,

directly reflects on the characteristics of the periodic boundaries adopted.

2.2 The MOM method for Periodic Systems

The MOM method acts on the definition of the n(k) occupation matrix of Eq. (2). Let

us start from a reference solution Cref (k) – which can be either from the converged ground
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state, or an initial guess. Once the eigenvectors are sorted by energy, the code overrides the

Aufbau principle by forcing a different occupation pattern nref (k). Technically this can be

done in any one – or even more than one – k-points of the Brillouin zone, and in the next

subsection we will discuss which choices are physically meaningful.

In subsequent iterations, the overlap between the new coefficients C and Cref ones is

evaluated

O(k) = Cref †(k)S(k)C(k) (3)

The projection of the j-th new orbital onto the old occupied space is the expressed by:

pj(k) =
n∑

i

Oij(k) =
N∑

ν




N∑

µ




n∑

i

Cref
iµ (k)



†

Sµν(k)Cνj(k)


 (4)

For each nonzero diagonal element in nref (k) the largest corresponding projection p(k)

locates the position to be filled in the new n(k).

The evaluation of O(k) as in Eq. (3) is relatively inexpensive, hence the additional cost of

the MOM procedure is virtually negligible with respect to that of the corresponding ground-

state method (i.e., HF and DFT), even though convergence can turn out to be more difficult.

Convergence accelerators such as DIIS20,21 can normally be used within this framework.

Depending on the definition of nref (k) MOM can then be used to converge the SCF

towards solutions different from the ground state. This will be the use of MOM we will

focus on in the following of this work. A further possibility that we do not explore here is to

use the method to stabilize the ground state solution, avoiding the intrusion of unphysical

states arising from numerical inaccuracies. We also note that the reference state Cref could

be kept constant through the SCF, or changed at each iteration shifting the reference to the

previous cycle. The latter is the choice we adopted.
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2.3 Excitations in Solids through MOM

2.3.1 Excitation from a single k-point to another

It follows from Eq. (2) that the translational invariance of the direct space density matrix

has to be granted in the SCF procedure. Subsequently, only excitations that are totally

symmetric with respect to the group of lattice translation vectors are possible within our

approach. In fact, this property is granted by vertical excitations at the center of the

Brillouin zone ( Γ-point only excitations ), but not by vertical excitation in other k- points

nor by diagonal excitations. Such excitation can however be accessed through creation of

a supercell – as by increasing the size of the periodically repeating unit in the direct space

the reciprocal space folds itself into Γ. In Figure 1 the band structure folding is reported

for Bulk Silicon, for which we report numeric results in the Results section: excitations EL

and EX, not accessible through our MOM approach in the primitive unit cell, both become

Γ-point excitations in the 2×2×2 supercell (right panel).

Vertical Γ-point excitations result in a new nref (Γ) and hence in a small variation of

the density matrix of Eq. (2) leading to a new P g
↑ . Physically, this is equivalent to having

only one single excitation within the periodic boundaries (SWSC). Hence, the excitation is

diluted in the whole PBC and since the unit cell total energy is computed, the excitation

energy per cell must be evaluated as:

Eexc = Nk

(
Etot
↑ − Etot

ground

)
(5)

where we have denoted as Etot
↑ the unit cell energy obtained through P g

↑ . In fact, our

reciprocal space MOM approach allows for a diluted excitation using just the small primitive

unit cell – hence with a computationally cheap calculation – as opposite to direct-space ∆-

SCF as in Ref. 17 that require a more costly supercell calculation also for Γ- point excitations.
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Figure 1: A graphical representation of some possible electronic excitations – labeled as
EΓ1, EX , EL, as computed in Table ref – in the electronic structure of bulk silicon (PBE
functional). Left panel: primitive unit cell. Right panel: 2x2x2 supercell. Upon folding of
the bands in the supercell creation, the excitations EΓ1, EX , EL become all Γ–point only
excitations. The lines along which the band structure is folded are marked by dashed vertical
lines in the left panel.

2.3.2 Tuning the Concentration of Excited Electrons

It follows from the above discussion, that changing the k-point sampling also impacts on

the concentration of excited electrons in direct space. It is also possible within our approach

to consider an excitation involving not only the Γ-point electron, but a portion of the cor-

responding valence and conduction bands corresponding to a sphere of radius r around Γ.

This corresponds to a physical process in which a light that is not precisely monochromatic

– hence with some frequency broadening – is used to induce the excitation.

As a first thing, when defining the initial reference excited state we need to trace the

involved bands across the Brillouin zone, to cope with possible band crossings and degen-

eracies. Such approach is graphically described in Figure (2): once defined the Γ-point

excitation, we evaluate the overlap Ok,k′ between the band eigenvectors in two neighboring

points k and k′, expressed as:
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Ok,k′ = [C(k′)]†S(k)C(k) (6)

The largest overlap elements allow to trace the bands between k and k′. Since the space

we deal with is – in the general case – a three-dimensional one (although all of our approach

works for 2D and 1D periodic systems as well), we follow a path in reciprocal space as depicted

in the right panel of Fig. (2), following subsequent rows starting from Γ until completing

the whole grid. Once the tracing is completed, a sphere is defined around Γ and only a

number of the n(k) corresponding to a number of N exc
k k-points within this sphere. The

excitation defined in Γ is then performed also in these points according to the band tracing

information. Since the excitation zone is spherical around Γ, the totalsymmetric character

of the density P bfg
↑ is preserved and then it can be effectively represented in direct space.

Experimentally, increasing the radius of such sphere corresponds to 1) a broadened (non

exactly monochromatic) light triggering the excitation, and 2) a higher density of excited

electrons, which are now Nk/N
exc
k within the PBC.

The energy of the excitation is then evaluated as:

Eexc =
Nk

N exc
k

(
Etot
↑ − Etot

ground

)
(7)

2.4 Energy Gradients and Geometry Optimization

The energy gradients must be computed, in the Γ−only excitation scheme, by summing back

the energy of the ground state to the excitation energy of Eq. (5) ( or, eventually, Eq. (7) )

and then taking the derivative with respect to atomic displacements

∂E↑
∂RA

a

=
∂Etot
↑

∂RA
a

Nk −
∂Etot

ground

∂RA
a

(Nk − 1) (8)

where RA
a is the coordinate of atom A along a general cartesian direction a. Analogous
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Figure 2: On the left an excitation in Si bulk (PBE functional) in which the radial-sphere
approach is graphically represented. On the right the right, the path in a 2D Brillouin zone
followed to trace the Γ-point bands and the spheres around Γ are represented.

equations hold for cell gradients, which can always be expressed in form of atomic gradi-

ents.22 Note the distinction between Etot
↑ , the energy that comes as an output to our MOM

calculation, and E↑, the actual total energy of a unit cell in the excited system.

During a geometry optimization procedure, at each geometry the ground and excited state

gradients are required for the evaluation of Eq. (8), thus requiring two SCF procedures.

3 Results

In this section we present some demonstrative calculations using our MOM method, with

the purpose to validate the approach and show its capabilities. To this aim we have tested

a small group of simple solids (Si, C, LiF) and two cases with more applicative potential,

namely NiO and solid CuI-piperazine. All calculations were performed with a development

version of the CRYSTAL program.19

We have adopted triple-ζ electron basis sets from Peintinger et al.23 for Si, C, and LiF. We

applied the same basis sets for the CuI-piperazine while in the NiO application a dcm-tzvp24

basis has been used.

In order to validate the method, we begin by considering lowest electronic excitations in

a small set of prototypical solids including LiF (ionic crystal), Si (covalent semiconductor),
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diamond (covalent insulator). This will allow to compare the MOM excitation energies with

experiments, and explore the role of computational parameters.

3.1 Excitation Energies

In Table 1 we report Γ-point excitations as computed with the MOM approach and compare

the results with experimental measurements available from the literature. As it is more than

well known25,26 the main impact of the functional choice on the electronic structure is on its

band gap, and the amount of exact exchange plays a major role in that. As already reported

in literature for the fundamental band gap27,28 the range-separated HSE06 functional proved

to provide a successful balance in that, and this is observed also in our results for covalent

crystals, where it consistently leads to excitation energies within 0.1 eV from experimental

references for silicon, and diamond. However, for LiF PBE0 seems to represent a better

approximation. The difference between the triplet and singlet excited states is always in

favor of the latter, which lays in all three cases at a lower energy. The difference is strongly

dependent from the amount of exact exchange included, thus suggesting a role of excitonic

effects.

The first two columns of Table 1 can be obtained with a primitive cell or a supercell,

yielding exactly the same results. The EX and EL columns, however, were obtained adopting

a 2x2x2 supercell, that allows the bands in X and L points to fold in Γ, as shown in Figures

1 and 3. The reciprocal space grid was reduced to 4x4x4 for consistency.

As discussed in the theory section, the density of excited electrons can be tuned either

by changing the k-points sampling of the Brillouin zone or by exciting N exc
k k-points within

a sphere of radius rs around the Γ point (see Figure 2) The tuning of the number of Nk

points and the radius rs allows to assess any desired exciton density.

In Table 2 we show the combined effect of the two parameters in the case of bulk Silicon:

• Increasing the radius rs rapidly increases the number of points enclosed in the sphere.
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Table 1: Excitation energies (in eV) for simple solids as computed with the MOM approach
with different functionals. A primitive cell (no supercell) is used for Γ-point excitations (Esing

Γ ,
Etrip

Γ ). A 2x2x2 supercell has been adopted for Esing
X and Esing

L . Available experimental values
from the literature are reported for each system.

Method Esing
Γ Etrip

Γ Esing
X Esing

L

Silicon

Exp. 3.429–31 1.230 2.030

3.4532

PBE 2.691 2.688 0.988 1.743
HSE06 3.422 3.416 1.577 2.440
PBE0 4.048 3.993 2.162 3.416

Diamond

Exp. 6.033,34 5.46-5.630

7.7531

PBE 5.619 5.618 4.795
HSE06 7.000 6.988 5.942
PBE0 7.677 7.598 6.552

LiF

Exp. 12.635,36

PBE 8.993 8.992
HSE06 11.300 11.289
PBE0 12.089 11.859
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As a consequence the excitation energy becomes higher due to the increased concen-

tration of excited electrons

• In the second series of data in Table 2 we show that, by changing both parameters

simultaneously, we can keep constant N exc
k while increasing the size of the SWSC. The

excitation energy decreases until a dilution comparable to the [ Nk = 512; rs = 0.01 ]

case is reached.

Table 2: Singlet excitation energies (in eV) for bulk Silicon (PBE functional) as a function of
the number of points sampling the Brillouin zone (Nk) and the radius of the k-point sphere
around Γ (rs). N

exc
k indicates the number of points enclosed in the sphere having radius rs.

Nk rs N exc
k Eexc

512 0.01 1 2.691
512 0.018 9 4.566
512 0.025 15 4.893
512 0.05 21 5.648
512 0.08 47 5.587
512 0.1 53 6.110
512 0.3 247 9.227

512 0.025 15 4.893
1728 0.015 15 2.972
4096 0.010 15 2.794
5832 0.008 15 2.744
13824 0.005 15 2.621

By progressively increasing rs we can reach a point in which the whole valence band is

excited to the whole conduction band, that is, one electron per unit cell is excited. Such a

situation is barely physical, specially in covalently bonded semiconductors. The excitation

energy becomes, in fact, extremely high. In the case of LiF (not shown here) excitations

are localized, and then the penalty due to a high density of excitons is smaller because they

interact little one with another.
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Figure 3: Diamond Band Structure primitive PBE functional

3.2 Geometry Optimization and Luminescence

3.2.1 Nickel Oxide

Even if Nickel Oxide is quite a simple and well known material, its magnetic end electronic

properties make it a very interesting system. In a recent work17 its excited states structure

has been studied extensively through ∆-SCF methods within the Crystal code, but with

an approach different from MOM. In short, the approach in Ref. 17 consists of forcing an

excited state through atomic orbital occupations in the initial guess and eigenvalue shifting.

This is in practice a direct space approach, that leads to excitation of entire bands (across

the whole BZ) – hence a supercell calculation is mandatory in order to reach a realistic

dilution of excitation. Ref. 17 testifies how a detailed analysis of the excitations in NiO

must be carried out with great care, given the magnetic phases possible, the number of

relevant excited states as well as the delicate role of functional and basis set choice.

Such detailed study goes well beyond the scope of this work. Our aim here is to validate

our method on a system that is somewhat more complex than those in Table 1, and to test

our excited state optimization algorithm. NiO, in fact, possesses excited states that live long
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enough to give rise to observable Stokes shifts. We considered here only the ferromagnetic

(FM) phase of NiO, which lends itself well to our purpose because due to its simple structure

there are no internal degrees of freedom, so that only the lattice parameter is subject to

optimization.

In Figure 4 we present our results. We have considered the three lowest excited states in

Γ point – note that NiO has an indirect band gap, so these excitations do not correspond to

the band gap - supercells would be needed to reach other parts of the Brillouin zone. Two of

such excitations are labeled α → α and β → β, that is α and β HOMO-LUMO transitions

(in our Ferromagnetic phase there are 19 electrons in α bands, and 17 in β ones). The third

is the spin-flip excitation from α-HOMO to β-LUMO. These correspond in Figure 4 to green,

yellow and red curves, respectively.

For each of the above listed states we have run both a geometry optimization with

analytical gradients and a series of single-point calculations. The results clearly shows that

our MOM gradients correctly find the right minimum of the excited state curves in all cases,

located at 4.45 Å, 4.47 Å and 4.56 Å. The Stokes shifts of 0.44, 0.5 and 1.51 eV reasonably

fall within the range of experimental evidences. As said earlier though, out purpose here is

mainly of checking internal numerical consistence. As a final note we remark that only a

calculation on the primitive unit cell was needed using our MOM approach, while a reciprocal

space grid of 8×8×8 points was used, hence describing the excitation of a one electron every

512 unit cells.

3.2.2 Solid CuI(Piperazine)

Among the luminescent copper(I) halides, [CuI(piperazine)0.5]∞ is a peculiar compound that

exhibits a dual luminescence, a feature that is of potential relevance in technological applica-

tions. In recent years, within the framework of a synergic theoretical-experimental study,18

we have characterized its excitations through ab initio post-SCF methods.37 At that time

we were not able to investigate the actual luminescence properties, as we had no tools for
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Figure 4: Energy of the ground and first excited states of bulk ferromagnetic NiO as a
function of lattice parameter. The ground state minimum is taken as a reference (∆E=0).
B3LYP Functional was used. The full bullets mark the results of the geometry optimizations
using analytical gradients as in Eq. (8).

optimizing geometries in the excited state, as we have developed in this work.

We here apply our MOM geometry optimizer to this structure so to analize the structural

and electronic changes of the long-lived excited state. As in previous work,18 we considered

two excitations around the Fermi level, namely HOMO→LUMO and HOMO-1→LUMO+1,

in Γ-point only. A pob-TZVP basis set was used, along with a hybrid PBE functional with

10% of HF exchange.

The main results of our MOM calculations are reported in Figure 5 and Table 3. From

the figures it is seen that the structural relaxation of the excited states leads to mild but

significant modifications, mostly seen in the rotation of the organic ring. From Table 3 we

also see that the Cu-Cu distance is reduced up to 4% in the highest excitation, and most
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notably that the cell parameters undergo quite a change, specially in the HOMO→LUMO

excitation which results in a volume expansion. In the HOMO–1→LUMO+1 case the volume

does not change so significantly, but a cell distorsion is observed, with an elongation along

the c axis.

The effects of the geometry relaxation on the luminescence energies are more pronounced

on the highest excitation than on the lowest, with the results of the two corresponding

emissions being 3.0 eV and 3.1 eV, respectively. This result is in qualitative agreement

with the results of Figure S3 in the supplementary information of Ref. 18, which shows

that two excitations exist with markedly different excitation energy but similar emission.

Quantitatively, our excitation energies are in reasonable agreement while emission energy

are evidently still too large with respect to the experiment. A more detailed study would be

needed to clarify this, with a careful analysis of the role of basis sets and functional, which

goes beyond the purpose of this paper.

Table 3: Cu-Cu distance and cell parameters (all in Å) for the structures of solid CuI
piperazine optimized for the ground and excited states.

Ground State HOMO→LUMO HOMO−1 → LUMO+1
Cu-Cu distance 3.517 3.483 3.384
a,b cell parameters 9.499 9.650 9.503
c cell parameter 6.774 6.805 7.158

4 Conclusions

In this work we have presented a periodic implementation of the Maximum Overlap Method

(MOM). It allows to select electronic excitations and optimize geometries of excited states,

while keeping a computationally cheap SCF approach as used for the ground state. Due

to the iterative transitions from direct to reciprocal space and back, our approach works

with excitations that preserve the totalsymmetric nature of the electron density, namely

Γ-point excitations or collective excitations in a sphere of k-points around Γ. A calculation
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Figure 5: Energy levels and atomic structure of solid CuI-piperazine around the Fermi
level at the ground state geometry (center), and at the geometries optimized after an
HOMO→LUMO (right) and HOMO-1→LUMO+1 (left) electronic excitation.

using the primitive unit cell allows to describe the excitation of only one electron within the

periodic boundary conditions, avoiding costly supercell calculations. Such supercell approach

is however needed to access excitations far from the center of the Brillouin Zone.

Through demonstrative applications we have shown how the MOM approach can be

easily applied to a variety of crystalline solids, from prototypical simple crystals to complex

organic-inorganic frameworks, with full control on the electronic occupations and spins.

As a future perspective we plan to implement vibrational frequencies and representation

of electronic densities, which would significantly extend the usefulness and applicability of

the approach.
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Appendix C

12.4 Basis Set Optimization Benchmark on Ele-
mental Solids-Paper Draft

In the following drafts of a paper and the relative supplementary material are
reported.
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Abstract

In this work we attempt to apply a BDIIS basis set optimization algorithm devel-

oped in a previous work1 to an extended test set based on elementary solids using

the CRYSTAL code.2 In fact, we took inspiration from a paper published in 2016 by

Lejaeghere et al.3 where a systematic work to demonstrate DFT reproducibility is well

described. In particular, they calculated equation of states data considering 15 solid

state codes, using 40 different potentials or basis set types, to assess the PBE (Perdew-

Burke-Ernzerhof) quality for 71 elemental crystals. We tried to reproduce their work

for 36 elemental solids, starting from def2-like basis set and optimizing these basis

sets by using the BDIIS method. The EOS parameters have been evaluated by fit-

ting 7 energy points around the equilibrium volume. Moreover, we extended the PBE

calculation to hybrid functional one, specifically using HSE06 functional.

In quantum mechanical simulations, when dealing with gaussian basis set, the appropriate

choice of exponents and coefficients is not a straightforward. The most critical aspect is the

sparse availability of basis set database above all for solid states calculations that makes

mandatory a proper definition of basis set in this sense. Moreover, molecular basis sets can

1



not be directly transferred because of their diffuse nature that many times is incompatible

with the density of bulk systems and the definition of the basis sets is left to the hands

of the user. For this reason, in a previous work we developed a basis set optimizer based

on the Direct Inversion of the Iterative Subspace (DIIS)4,5 to automatically perform the

exponents and coefficients optimization in a basis set.1 We implemented the algorithm in

CRYSTAL, which is an ab initio code for quantum mechanical simulation based on gaussian

basis functions. In this work we attempt to apply this algorithm to an extended test set

based on elementary solids. Taking inspiration from a paper published in 2016 by Lejaeghere

et al.3 where a systematic work to demonstrate DFT reproducibility is well described, we

considered 36 elemental solids and starting from def2-like basis set,6 we optimized these

basis sets by using the BDIIS method. The eos parameters have been evaluated as criterion

for comparison. Regarding the basis set, they are derived by def2-TZVP, optimizing valence

and polarization functions that are the ones relevantly changing in a different chemical

environment. In some cases (e.g. noble gases) more extended basis set have been used

like def2-QZVP. Behind this, the optimized basis sets are named dcm-TZ or dcm-QZ in

the following. As regards geometry and structural parameters they were provided by the

Ref.,3 to which we add the FIXINDEX option of CRYSTAL.7 In fact, when the geometrical

and/or the basis set parameters of the system are changed, maintaining the symmetry and

the setting, the truncation criteria of the Coulomb and exchange series, based on overlap can

lead to the selection of different numbers of bi-electronic integrals. This may be the origin

of numerical noise in the optimization curve. When small changes are made on the lattice

parameter or on the Gaussian orbital exponents, the indices of the integrals to be calculated

can be selected for a reference geometry (or basis set), “frozen”, and used to compute the

corresponding integrals with the modified geometry (or basis set). The reference geometry

considered corresponds to the most compact structure, thus the one with the smallest volume.

Concerning the functional, as mentioned earlier, PBE functional has been used and an

extension to hybrid functional is proposed. In particular, HSE06 functional was adopted.

2



Other more technical details like energy thresholds and k-mesh grid are reported in the

Supplementary Material available in Appendix.

Moreover, as outlined at the beginning, an extensive test set range from Hydrogen to

Krypton was used by taking the ground state crystal structures of elemental solids in their

most common symmetry geometries.

As mentioned earlier, the benchmark is performed evaluating the equation of states pa-

rameters (EOS).

Three are the equations of state (EOS) parameters commonly used for accuracy assess-

ments:

• Volume (V ) and the equilibrium volume (V0)

• Bulk Modulus: resistance to volume changes (B0). The bulk modulus is closely related

to the energy curve E(V ) and it is proportional to the curvature of the equation of

state at the equilibrium volume. It represents the resistance of the unloaded material to

volume change, and hence to uniform pressure (P ). Since it is linked to the curvature

of the E(V ) relation, B0 is a numerically sensitive quantity. A small deviation at a

few data points is already able to change its value noticeably, especially when the bulk

modulus is small and a narrow volume range is studied.

• Pressure Derivative of the Bulk Modulus: one order higher effects (B1). It is a third-

order derivative of the energy and hence describes effects that are one order higher even

than the bulk modulus. It is related to the volume dependence of the E(V ) curvature

and it is therefore the most sensitive quantity.

The equations of state (EOS) parameters are usually obtained using a common third-

order Birch-Murnaghan relation.8

In general, one can extract the equilibrium energy and EOS parameters by fitting few

E(V ) data points to an empirical equation of state. In this specific work 7 data points were

used for the fitting procedure.
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In fact, for each elemental solid, 7 different inputs have been prepared, with distinct

volume (0.94 · V , 0.96 · V , 0.98 · V , V , 1.02 · V , 1.04 · V and 1.06 · V , where V is the

volume obtained with the original geometry). In particular, we multiplied the starting

lattice parameters by the cubic root of the percentage (e.g. for the 94%, we multiplied the

lattice parameters by 3
√

0.94 = 0.9796).

Then we applied the third-order Birch-Murnaghan relation and the fitting procedure

described above to get V0, B0 and B1. In particular, for the fitting we used a script provided

by Ref.3

The comparison between CRYSTAL and the other codes have been performed in terms

of ∆ gauge. It expresses the root-mean-square difference between the equations of state of

two codes a and b, that for each element i is given by the formula:

∆i(a, b) =

√∫ 1.06V0,i

0.94V0,i

(Eb,i(V )− Ea,i(V ))2

0.12V0,i
dV (1)

where V0,i is the equilibrium volume, Eb,i(V ) and Ea,i(V ) are the energies calculated by

performing the 7 equidistant E(V ) data points abovementioned.

Even in this case a script has been provided by Ref.3

A comparison of ∆i values allows the expression of EOS differences as a single number,

and a small ∆i automatically implies small deviations between equilibrium volumes, bulk

moduli, or any other EOS-derived observables. The overall difference ∆ between methods a

and b is obtained by averaging ∆i over all elemental crystals in the benchmark set.

Many tests have been performed and three levels of accuracy have been obtained at the

PBE level (see Fig. 1 for EOS comparison):

• CRYSTAL-TZ

Triple-ζ Basis Sets optimized by the BDIIS algorithm are used for all cases. EOS

parameters and simulation set up in Table 1 of the Supplementary Material. Comparing

our data with WIEN2K results (Ref.3), we may observe in the volume comparison a
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pretty large divergence in the noble gases (He, Ne, Ar, Kr) which has repercussions

above all in the bulk modulus derivative.

• CRYSTAL-TZ/acc

Triple-ζ Basis Sets optimized by the BDIIS algorithm for almost all cases excepting

some basis sets that have been handly adjusted. In fact, some diffused functions

removed before the basis set optimization, were added a posteriori (e.g. Mg, Si, P, Ga)

and in some cases a check on the consistency of the valence exponents with respect

to core ones have been performed (e.g. Ca, Cr, Fe, Ge). In two specific cases (Ni,

Zn) we resorted to the introduction of sp shells that shown improved results. The

Cu case was particularly difficult, so we optimized a different kind of basis set (86-

4111(41D) from9). In some particular cases (Se, Br, Sc) a full geometry optimization

was mandatory to define the reference volume. EOS parameters and simulation set up

are reported in Table 2 of the Supplementary Material.

• CRYSTAL/acc

Considering the previous point, we adopted larger basis sets in some critical cases (He,

Ne, Na, Al, Ar, Ti, V, Mn, Co, Zn, Ge, As, Kr). EOS parameters and simulation

set up are reported in Table 3 of the Supplementary Material. The improvement in

this set is rather effective: looking at the Fig. 1 the largest discrepancy in noble gases

and some transition metals is reduced, demonstrating that this set can average the

oscillations previously seen.

All the basis sets obtained and used for the calculation are listed in the Supplementary

Material.

In general, going from V0 to B1 we may note an increasing of uncertainty because of

the wide range of results available. This implied large error bars (e.g. Fe, Mn) due to the

intrinsic formula derivation of the B0 and B1. Nevertheless, a good agreement is obtained

using the CRYSTAL code with respect with the other code. Special attention has to be
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(a) (b)

(c)

Figure 1: Difference between this work and WIEN2K/acc set reported by Ref.3 CRYSTAL-
TZ, CRYSTAL-TZ/acc and CRYSTAL/acc are shown by blue dotted, yellow and red lines for
the EOS parameters: equilibrium volume (a), bulk modulus (b) and bulk modulus derivatives
(c).

taken in the case of noble gases because the model adopted enforces these elements in a

condensed phase that is not always well described by solid state codes.

Considering the CRYSTAL/acc set our ∆ gauge values are smaller than 1 with respect

to other all electron calculations (see Table 1). This demonstrates that CRYSTAL can

reproduce the plane waves results if rather good basis sets are used. An extended comparison

with others codes is reported in Table 4 of the Supplementary Material.

Starting from our best set up (CRYSTAL/acc), we also extended this work by using

Hybrid Functional (HSE06) instead of PBE functional. In fact, with CRYSTAL and in

particular with Gaussian Functions, Hybrid Functionals are easy and relatively cheap to

be implemented. Moreover, it is well known that hybrids improve accuracy for crystal

computations. In Fig. 1 and 2 of the supplementary information EOS parameters evaluated
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by using CRYSTAL with PBE and HSE06 functional and other codes with PBE functional

are reported graphically for all the elemental solids considered. Relative differences between

PBE and HSE06 are reported as well.

Despite of the huge variety of data in particular in the case of the bulk modulus derivative,

CRYSTAL can interpolate pretty well the data. In particular, the hybrid functional seems to

be a good compromise in some cases, averaging the data dispersion (e.g. Cr, Mn). Looking

at the relative differences between functionals, while differences with respect to V0 and B1

are less pronounced, in some cases B0 values deviate more. These problems can be due to

the absence of a proper description of noncovalent interactions. This description requires

the inclusion of long range electron correlation effects that are missing in DFT methods. In

particular, the treatment of the weak London forces can be crucial in some elemental solids

(e.g. Cl) because of their attractive and ubiquitous nature.

Table 1: ∆ values for comparison between all-electron (AE) DFT methods considered in the
Ref. 3 with CRYSTAL code (this work). In green, blue and yellow three different accuracy
levels adopted in this work.
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E1k 0.3 0.3 0.6 1.0 0.9 0.3 2.4 1.5 1.0
exciting 0.3 0.1 0.5 0.9 0.8 0.2 2.3 1.4 0.9
FHI-aims/tier2 0.3 0.1 0.5 0.9 0.8 0.2 2.3 1.3 0.9
FLEUR 0.6 0.5 0.5 0.8 0.6 0.4 2.3 1.5 0.9
FPLO/T+F+s 1.0 0.9 0.9 0.8 0.9 0.9 2.6 1.7 1.2
RSPt 0.9 0.8 0.8 0.6 0.9 0.8 2.6 1.8 1.3
WIEN2k/acc 0.3 0.2 0.2 0.4 0.9 0.8 2.4 1.5 0.9
CRYSTAL-TZ 2.4 2.3 2.3 2.3 2.6 2.6 2.4
CRYSTAL-TZ/acc 1.5 1.4 1.3 1.5 1.7 1.8 1.5

A
E

CRYSTAL/acc 1.0 0.9 0.9 0.9 1.2 1.3 0.9

In conclusion, we may state that with gaussian basis functions it is possible to reach the

planewaves accuracy, if an appropriate choice of exponents and coefficients is considered. In
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particular, the basis set optimizer was a fundamental tool to automatize a calibration that

usually is handly performed. Next development will be to enhance even more the overall

quality by using different kind of basis sets instead of the def2-like ones and trying to optimize

the set up as much as possible.
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1 CRYSTAL calculation settings and results per ele-

ment

Table 1: Triple-ζ Basis Sets (CRYSTAL-TZ): Equilibrium volume per atom V0, bulk
modulus B0, pressure derivative of the bulk modulus B1 per atom are reported. Triple-ζ
Basis Sets optimized by the BDIIS algoritm are used for all cases. Bottom: general settings
adopted. Functional: PBE.

Settings V0[Å3/atom] B0[GPa] B1[-]

H d 17.44986 10.447010 2.7070
He d 17.19820 0.7362300 0.5920
Li d 20.26302 14.138050 3.2490
Be d 7.911840 125.54068 3.1350
B d 7.263740 239.13867 3.4300
C d 11.60751 211.52700 3.5560
N d 28.76965 54.362750 3.6960
O d 18.44028 51.762370 3.8430
F d 19.04538 34.484400 4.0200
Ne d 22.68457 2.1821900 6.1120
Na d 37.03582 8.0842500 3.4280
Mg d 22.74905 37.360660 4.9520
Al d 16.15990 94.296210 4.0390
Si d 20.39044 91.083380 4.1920
P d 21.36948 69.588750 4.3400
S d 17.23478 83.297990 4.4510
Cl d 38.72609 19.048840 4.3650
Ar d 48.85259 1.0365100 6.1500
K d 73.75765 3.7363800 3.7580
Ca d 42.78248 18.115170 3.3250
Sc nd 24.53525 56.432050 3.3400
Ti d 17.42277 118.82425 3.2890
V d 13.48150 194.13447 3.2340
Cr d 11.96955 174.14310 9.6540
Mn d 11.58163 140.70827 -2.101
Fe d 11.51764 197.02481 3.7440
Co d 10.69924 260.62293 4.5960
Ni d’ 11.09556 197.75067 5.0430
Cu d 12.28056 136.29997 4.9050
Zn d” 15.57550 75.138260 4.7750
Ga nd 20.23426 61.376780 4.7250
Ge d 23.56844 73.010710 4.1740
As d 22.54166 72.200820 4.3500
Se d 29.85513 47.794520 4.5030
Br d 39.76136 22.394070 4.9250
Kr d 62.60814 0.8459800 7.9120

SCF Monkhorst Pack (MP) Coulomb and Exchange
convergence shrinking factor truncation criteria

d 8 8 8 8 8 8 8 16
nd 8 12 24 12 12 12 12 12
d’ 10 12 24 10 10 10 20 50
d” 8 24 24 10 10 10 15 20
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Table 2: Triple-ζ Basis Sets - enhancement (CRYSTAL-TZ/acc): Equilibrium vol-
ume per atom V0, bulk modulus B0, pressure derivative of the bulk modulus B1 per atom are
reported. Triple-ζ Basis Sets optimized by the BDIIS algoritm and handly adjusted (mod)
are used for all cases. Bottom: general settings adopted. In some cases a full geometry
optimization was mandatory to define the reference volume (geom). Functional: PBE.

Settings V0[Å3/atom] B0[GPa] B1[-]

H d 17.44986 10.447010 2.7070
He d 17.19820 0.7362300 0.5920
Li d 20.26302 14.138050 3.2490
Be d 7.911840 125.54068 3.1350
B d 7.263740 239.13867 3.4300
C d 11.60751 211.52700 3.5560
N d 28.76965 54.362750 3.6960
O d 18.44028 51.762370 3.8430
F d 19.04538 34.484400 4.0200
Ne d 22.68457 2.1821900 6.1120
Na d 37.03582 8.0842500 3.4280
Mg d-mod 22.75141 37.290830 4.9580
Al d 16.15990 94.296210 4.0390
Si d-mod 20.39408 91.015100 4.1930
P d-mod 21.38203 69.541080 4.3370
S d 17.23478 83.297990 4.4510
Cl d 38.72609 19.048840 4.3650
Ar d 48.85259 1.0365100 6.1500
K d 73.75765 3.7363800 3.7580
Ca d-mod 42.56499 18.207790 3.2360
Sc nd-geom 24.52808 56.359960 3.3370
Ti d 17.42277 118.82425 3.2890
V d 13.48150 194.13447 3.2340
Cr d-mod 11.75456 197.29529 8.8910
Mn d 11.58163 140.70827 -2.101
Fe d-mod 11.35441 199.51433 3.4800
Co d 10.69924 260.62293 4.5960
Ni d’-mod 10.95258 213.37568 4.8840
Cu d-mod 11.99283 153.98757 4.6460
Zn d”-mod 15.49599 74.611400 4.9800
Ga d-mod 20.24136 60.234630 4.7760
Ge d-mod 23.73880 68.901330 4.2060
As d 22.54166 72.200820 4.3500
Se d-geom 29.75445 47.980380 4.4970
Br d-geom 39.24538 22.580770 4.8370
Kr d 62.60814 0.8459800 7.9120

SCF Monkhorst Pack (MP) Coulomb and Exchange
convergence shrinking factor truncation criteria

d 8 8 8 8 8 8 8 16
nd 8 12 24 12 12 12 12 12
d’ 10 12 24 10 10 10 20 50
d” 8 24 24 10 10 10 15 20
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Table 3: Triple-ζ Basis Sets and larger Basis Sets - enhancement (CRYSTAL/acc):
Equilibrium volume per atom V0, bulk modulus B0, pressure derivative of the bulk modulus
B1 per atom are reported. Triple-ζ Basis Sets and larger basis sets optimized by the BDIIS
algoritm and handly adjusted (mod) basis sets are used for all cases. Bottom: general
settings adopted. In some cases a full geometry optimization was mandatory to define the
reference volume (geom). Functional: PBE.

Settings V0[Å3/atom] B0[GPa] B1[-]

H d 17.44986 10.447010 2.7070
He d-QZ 17.83233 0.8479900 1.2520
Li d 20.26302 14.138050 3.2490
Be d 7.911850 125.53709 3.1350
B d 7.263740 239.13867 3.4300
C d 11.60751 211.52700 3.5560
N d 28.76965 54.362750 3.6960
O d 18.44028 51.762370 3.8430
F d 19.04538 34.484400 4.0200
Ne d-ccpV5z 23.89798 1.6825500 9.1970
Na d-QZ 37.20596 8.1014900 3.4680
Mg d-mod 22.75141 37.290830 4.9580
Al nd-QZ 16.42948 80.505540 5.0330
Si d-mod 20.39408 91.015100 4.1930
P d-mod 21.38203 69.541080 4.3370
S d 17.23478 83.297990 4.4510
Cl d 38.72609 19.048840 4.3650
Ar d-QZ 52.42994 0.8346000 6.8180
K d 73.75765 3.7363800 3.7580
Ca d-mod 42.56499 18.207790 3.2360
Sc nd-geom 24.52808 56.359960 3.3370
Ti d-QZ 17.39161 111.52881 3.3930
V nd-QZ 13.47247 187.68420 3.7610
Cr d-mod 11.75456 197.29529 8.8910
Mn nd-QZ 11.60862 139.61945 0.7240
Fe d-mod 11.35441 199.51433 3.4800
Co nd-geom-QZ 10.93250 205.69750 4.0500
Ni d’-mod 10.95258 213.37568 4.8840
Cu d-mod 11.99283 153.98757 4.6460
Zn d”-geom-QZ 15.37220 78.232000 4.8260
Ga nd-mod 20.24136 60.234630 4.7760
Ge d-QZ 23.80755 64.708580 5.0520
As d-QZ 22.54166 72.200820 4.3500
Se d-geom 29.75445 47.980380 4.4970
Br d-geom 39.24538 22.580770 4.8370
Kr d-QZ 66.39630 0.7651800 8.7190

SCF Monkhorst Pack (MP) Coulomb and Exchange
convergence shrinking factor truncation criteria

d 8 8 8 8 8 8 8 16
nd 8 12 24 12 12 12 12 12
d’ 10 12 24 10 10 10 20 50
d” 8 24 24 10 10 10 15 20
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Table 4: ∆ values for comparison between the DFT methods considered in the Ref. 1 with
CRYSTAL code (this work). In green, blue and yellow three different accuracy levels adopted
in this work.
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R
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S
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Z
/a

cc

C
R
Y
S
T
A
L
/a

cc

E1k 0.3 0.3 0.6 1.0 0.9 0.3 2.4 1.5 1.0
exciting 0.3 0.1 0.5 0.9 0.8 0.2 2.3 1.4 0.9
FHI-aims/tier2 0.3 0.1 0.5 0.9 0.8 0.2 2.3 1.3 0.9
FLEUR 0.6 0.5 0.5 0.8 0.6 0.4 2.3 1.5 0.9
FPLO/T+F+s 1.0 0.9 0.9 0.8 0.9 0.9 2.6 1.7 1.2
RSPt 0.9 0.8 0.8 0.6 0.9 0.8 2.6 1.8 1.3
WIEN2k/acc 0.3 0.2 0.2 0.4 0.9 0.8 2.4 1.5 0.9
CRYSTAL-TZ 2.4 2.3 2.3 2.3 2.6 2.6 2.4
CRYSTAL-TZ/acc 1.5 1.4 1.3 1.5 1.7 1.8 1.5

A
E

CRYSTAL/acc 1.0 0.9 0.9 0.9 1.2 1.3 0.9

GBRV12/ABINIT 0.9 0.8 0.8 0.9 1.3 1.1 0.8 2.9 2.2 1.7
GPAW09/ABINIT 1.3 1.3 1.3 1.3 1.7 1.5 1.3 2.1 1.9 1.3
GPAW09/GPAW 1.5 1.5 1.5 1.5 1.8 1.7 1.5 2.2 2.0 1.4
JTH02/ABINIT 0.6 0.6 0.6 0.6 0.9 0.7 0.5 2.5 1.5 1.0
PSlib100/QE 0.9 0.8 0.8 0.8 1.3 1.1 0.8 2.8 1.9 1.6

P
A
W

VASPGW2015/VASP 0.4 0.4 0.4 0.6 1.0 0.8 0.3 2.4 1.5 1.0

GBRV14/CASTEP 1.1 1.1 1.0 1.0 1.4 1.3 1.0 2.9 2.3 1.8
GBRV14/QE 1.0 1.0 0.9 1.0 1.4 1.3 1.0 2.8 2.3 1.8
OTFG9/CASTEP 0.4 0.5 0.5 0.7 1.0 1.0 0.5 2.4 1.5 1.0
SSSP/QE 0.4 0.3 0.3 0.5 0.9 0.8 0.3 2.6 1.8 1.3U

S
P
P

Vdb2/DACAPO 6.3 6.3 6.3 6.3 6.4 6.5 6.2 6.5 6.8 3.9

FHI98pp/ABINIT 13.5 13.4 13.4 13.2 13.0 13.2 13.4 9.5 10.8 10.0
HGH/ABINIT 2.2 2.2 2.2 2.0 2.3 2.2 2.1 2.8 2.6 1.6
HGH-NLCC/BigDFT 1.1 1.1 1.1 1.0 1.2 1.1 1.0 2.7 2.0 1.6
MBK2013/OpenMX 2.1 2.1 2.1 1.9 1.8 1.8 2.0 2.9 2.6 2.0
ONCVPSP(PD0.1)/ABINIT 0.7 0.7 0.7 0.6 1.0 0.8 0.6 2.3 1.5 1.0
ONCVPSP(SG15)1/QE 1.4 1.3 1.3 1.3 1.6 1.5 1.3 2.9 2.8 2.0

N
C
P
P

ONCVPSP(SG15)2/CASTEP 1.4 1.4 1.4 1.3 1.6 1.5 1.4 2.9 2.8 2.0
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2 Hybrid Funcional

In the following a comparison between CRYSTAL/acc with PBE functional and HSE06

hybrid functional.

Table 5: Triple-ζ Basis Sets and larger Basis Sets - enhancement HSE06 (CRYS-
TAL/acc HSE06): Equilibrium volume per atom V0, bulk modulus B0, pressure derivative
of the bulk modulus B1 per atom are reported. Triple-ζ Basis Sets and larger basis sets
optimized by the BDIIS algoritm are used for all cases. Bottom: general settings adopted.
Functional: HSE06.

Settings V0[Å3/atom] B0[GPa] B1[-]

H d 17.07598 10.933980 2.6330
He d 18.14868 0.7175000 0.6620
Li nd 20.52171 13.915170 3.2930
Be d’ 7.889280 126.36884 3.2240
B nd 7.172230 250.67233 3.3740
C d 11.37922 226.86298 3.4870
N d 27.75615 61.100070 3.6080
O d 17.56863 63.823460 3.8200
F d 17.67763 42.495510 4.0120
Ne d 24.13954 1.2869400 10.338
Na d 37.83911 7.9564800 3.3910
Mg d 22.66114 38.771100 4.8360
Al d 16.39101 82.843060 3.4960
Si d 20.07636 100.22423 4.0710
P d 20.79507 79.994870 4.2840
S d 16.50503 98.126070 4.2790
Cl d 37.45049 21.621890 4.3380
Ar d 52.50612 0.6937900 7.2140
K d 75.80466 3.6033600 3.7340
Ca d 43.90674 17.767720 3.8670
Sc d 25.23948 61.103850 2.9440
Ti d 17.21577 129.22367 3.5370
V d 13.16732 211.95973 2.9210
Cr d 13.77314 134.91149 3.6970
Mn d” 15.92248 87.102850 3.5120
Fe d 12.07484 218.82747 2.2700
Co nd 10.84894 204.08614 4.6270
Ni d 10.67155 221.05390 5.4990
Cu d 12.01562 141.05028 4.8290
Zn d 15.24572 75.760530 5.2720
Ga nd 19.72027 70.036730 4.5240
Ge d 23.07030 76.871350 4.6590
As d 21.76057 82.098560 4.4760
Se d 28.71663 55.147710 4.4960
Br d 37.89302 25.820960 4.8470
Kr d 88.31656 0.6582000 9.2890
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SCF Monkhorst Pack (MP) Coulomb and Exchange
convergence shrinking factor truncation criteria

d 8 8 8 8 8 8 12 24
nd 8 12 24 8 8 8 12 24
d’ 8 12 24 8 8 8 12 36
d” 8 12 24 10 10 10 20 50

Table 6: Equilibrium volume per atom V0, bulk modulus B0, pressure derivative of the
bulk modulus B1 per atom is reported for CRYSTAL/acc PBE and CRYSTAL/acc HSE06.
Functional: PBE and HSE06. Differences are reported in the last three columns.

CRYSTAL/acc PBE CRYSTAL/acc HSE06 ∆ PBE-HSE06
V0[Å3/atom] B0[GPa] B1[-] V0[Å3/atom] B0[GPa] B1[-] V0[Å3/atom] B0[GPa] B1[-]

H 17.44986 10.447010 2.7070 17.07598 10.933980 2.6330 0.37 -0.49 0.07
He 17.83233 0.8479900 1.2520 18.14868 0.7175000 0.6620 -0.32 0.13 0.59
Li 20.26302 14.138050 3.2490 20.52171 13.915170 3.2930 -0.26 0.22 -0.04
Be 7.911850 125.53709 3.1350 7.889280 126.36884 3.2240 0.02 -0.83 -0.09
B 7.263740 239.13867 3.4300 7.172230 250.67233 3.3740 0.09 -11.53 0.06
C 11.60751 211.52700 3.5560 11.37922 226.86298 3.4870 0.23 -15.34 0.07
N 28.76965 54.362750 3.6960 27.75615 61.100070 3.6080 1.01 -6.74 0.09
O 18.44028 51.762370 3.8430 17.56863 63.823460 3.8200 0.87 -12.06 0.02
F 19.04538 34.484400 4.0200 17.67763 42.495510 4.0120 1.37 -8.01 0.01
Ne 23.89798 1.6825500 9.1970 24.13954 1.2869400 10.338 -0.24 0.40 -1.14
Na 37.20596 8.1014900 3.4680 37.83911 7.9564800 3.3910 -0.63 0.15 0.08
Mg 22.75141 37.290830 4.9580 22.66114 38.771100 4.8360 0.09 -1.48 0.12
Al 16.42948 80.505540 5.0330 16.39101 82.843060 3.4960 0.04 -2.34 1.54
Si 20.39408 91.015100 4.1930 20.07636 100.22423 4.0710 0.32 -9.21 0.12
P 21.38203 69.541080 4.3370 20.79507 79.994870 4.2840 0.59 -10.45 0.05
S 17.23478 83.297990 4.4510 16.50503 98.126070 4.2790 0.73 -14.83 0.17
Cl 38.72609 19.048840 4.3650 37.45049 21.621890 4.3380 1.28 -2.57 0.03
Ar 52.42994 0.8346000 6.8180 52.50612 0.6937900 7.2140 -0.08 0.14 -0.40
K 73.75765 3.7363800 3.7580 75.80466 3.6033600 3.7340 -2.05 0.13 0.02
Ca 42.56499 18.207790 3.2360 43.90674 17.767720 3.8670 -1.34 0.44 -0.63
Sc 24.52808 56.359960 3.3370 25.23948 61.103850 2.9440 -0.71 -4.74 0.39
Ti 17.39161 111.52881 3.3930 17.21577 129.22367 3.5370 0.18 -17.69 -0.14
V 13.47247 187.68420 3.7610 13.16732 211.95973 2.9210 0.31 -24.28 0.84
Cr 11.75456 197.29529 8.8910 13.77314 134.91149 3.6970 -2.02 62.38 5.19
Mn 11.60862 139.61945 0.7240 15.92248 87.102850 3.5120 -4.31 52.52 -2.79
Fe 11.35441 199.51433 3.4800 12.07484 218.82747 2.2700 -0.72 -19.31 1.21
Co 10.93250 205.6975 4.0500 10.84894 204.08614 4.6270 0.08 1.61 -0.58
Ni 10.95258 213.37568 4.8840 10.67155 221.05390 5.4990 0.28 -7.68 -0.61
Cu 11.99283 153.98757 4.6460 12.01562 141.05028 4.8290 -0.02 12.94 -0.18
Zn 15.37220 78.23200 4.8260 15.24572 75.760530 5.2720 0.13 2.47 -0.45
Ga 20.24136 60.234630 4.7760 19.72027 70.036730 4.5240 0.52 -9.80 0.25
Ge 23.80755 64.708580 5.0520 23.07030 76.871350 4.6590 0.74 -12.16 0.39
As 22.54166 72.200820 4.3500 21.76057 82.098560 4.4760 0.78 -9.90 -0.13
Se 29.75445 47.980380 4.4970 28.71663 55.147710 4.4960 1.04 -7.17 0.00
Br 39.24538 22.580770 4.8370 37.89302 25.820960 4.8470 1.35 -3.24 -0.01
Kr 66.39630 0.765180 8.7190 88.31656 0.6582000 9.2890 -21.92 0.11 -0.57
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Figure 1: Equilibium volumes (left) and bulk moduli (right) per atoms with the CRYS-
TAL code/acc (PBE and HSE06 functional) and the DFT methods of other codes (PBE
functional).
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Figure 2: (Left) First order bulk modulus derivatives per atoms with the CRYSTAL code/acc
(PBE and HSE06 functional) and the DFT methods of other codes (PBE functional). (Right)
EOS parameters differences between CRYSTAL/acc PBE and CRYSTAL/acc HSE06.
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The basis sets reported below are the ones obtained by using the optimizer BDIIS and

adopted in this work. The shells involved in the optimization are labelled by a star. For

more details about the optimization procedure refer to Ref. 2. The mod abbreviation is

related with the same basis set handly modified.

H - triple ζ

1 4

0 0 3 1. 1.

3.40613410000E+01 6.02519780000E-03

5.12357460000E+00 4.50210940000E-02

1.16466260000E+00 2.01897260000E-01

0 0 1 0. 1. *

3.65113151366E-01 1.00000000000E+00

0 0 1 0. 1. *

1.28206219779E-01 1.00000000000E+00

0 2 1 0. 1. *

9.69135593351E-01 1.00000000000E+00

He - triple ζ

2 4

0 0 3 2. 1.

9.80783216160E+01 7.58030649670E-03

1.47644042470E+01 5.48486209370E-02

3.31858314730E+00 2.20743821860E-01

0 0 1 0. 1. *

8.57313220271E-01 1.00000000000E+00

0 0 1 0. 1. *

2.23325230196E-01 1.00000000000E+00

0 2 1 0. 1. *

9.98010024562E-01 1.00000000000E+00

He - quadruple ζ

2 10

0 0 5 2. 1.

1.14464708090E+03 3.58615786180E-04

1.71645966670E+02 2.77254344660E-03

3.90660562540E+01 1.42418922160E-02

1.10514019890E+01 5.54573522770E-02

3.57255744730E+00 1.61705118100E-01

0 0 1 0. 1. *

1.24962646520E+00 1.00000000000E+00

0 0 1 0. 1. *

4.37747220044E-01 1.00000000000E+00

0 0 1 0. 1. *

1.42711405402E-01 1.00000000000E+00

0 2 1 0. 1. *

5.99399783875E+00 1.00000000000E+00

0 2 1 0. 1. *

1.74498900870E+00 1.00000000000E+00
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0 2 1 0. 1. *

5.59365043421E-01 1.00000000000E+00

0 3 1 0. 1. *

4.29901931448E+00 1.00000000000E+00

0 3 1 0. 1. *

1.22340109576E+00 1.00000000000E+00

0 4 1 0. 1. *

2.67999999968E+00 1.00000000000E+00

Li - triple ζ

3 8

0 0 6 2. 1.

6.26926280100E+03 2.05409688260E-04

9.40316124310E+02 1.59165540890E-03

2.14221075280E+02 8.28698297070E-03

6.07598401840E+01 3.38563742490E-02

1.99151520320E+01 1.11032258760E-01

7.31715097970E+00 2.74493833290E-01

0 0 2 1. 1.

2.97246742160E+00 2.37924564110E-01

1.26398523140E+00 3.07654119240E-01

0 0 1 0. 1. *

5.85479751111E-01 1.00000000000E+00

0 0 1 0. 1. *

2.45524518689E-01 1.00000000000E+00

0 0 1 0. 1. *

8.45783348222E-02 1.00000000000E+00

0 2 1 0. 1. *

5.51558376316E-01 1.00000000000E+00

0 2 1 0. 1. *

1.00554327699E-01 1.00000000000E+00

0 2 1 0. 1. *

3.31046385234E+00 1.00000000000E+00

Be - triple ζ

4 9

0 0 6 2. 1.

4.70023656260E+03 2.35843893160E-04

7.04828456220E+02 1.82437910190E-03

1.60431104780E+02 9.39661482240E-03

4.54253473360E+01 3.69089241590E-02

1.47983341250E+01 1.08975612810E-01

5.35124525370E+00 2.16942845510E-01

0 0 2 2. 1.

2.15420448190E+00 4.46954088570E-01

9.33637444000E-01 2.08669857710E-01

0 0 1 0. 1. *

9.20293384616E-01 1.00000000000E+00

0 0 1 0. 1. *

4.89677295049E-01 1.00000000000E+00

0 0 1 0. 1. *

1.45906555367E-01 1.00000000000E+00

0 2 2 0. 1.

7.16956943660E-01 -1.68778540320E-01

10



1.95419328600E-01 -5.14034196280E-01

0 2 1 0. 1. *

3.61410611054E+00 1.00000000000E+00

0 2 1 0. 1. *

2.01881274143E-01 1.00000000000E+00

0 3 1 0. 1. *

3.45632242486E-01 1.00000000000E+00

B - triple ζ

5 10

0 0 6 2. 1.

8.56486606870E+03 2.28371981550E-04

1.28415162630E+03 1.76825764470E-03

2.92278716040E+02 9.14070805160E-03

8.27754691760E+01 3.63426389890E-02

2.70179392690E+01 1.10634584410E-01

9.81496196600E+00 2.33673443210E-01

0 0 2 2. 1.

3.93185590590E+00 4.18187779780E-01

1.65955997120E+00 2.23254737980E-01

0 0 1 0. 1. *

8.12384664516E-01 1.00000000000E+00

0 0 1 0. 1. *

5.31944111634E-01 1.00000000000E+00

0 0 1 0. 1. *

1.70250253491E-01 1.00000000000E+00

0 2 4 1. 1.

2.24538758030E+01 5.02655751790E-03

5.10450583300E+00 3.28017389650E-02

1.49860813440E+00 1.31512307680E-01

5.09278313150E-01 3.31971677690E-01

0 2 1 0. 1. *

9.75537780008E-01 1.00000000000E+00

0 2 1 0. 1. *

1.74196956398E-01 1.00000000000E+00

0 3 1 0. 1. *

6.90313868442E-01 1.00000000000E+00

0 4 1 0. 1. *

4.29387241461E-01 1.00000000000E+00

C - triple ζ

6 11

0 0 6 2. 1.

1.35753496820E+04 2.22458143520E-04

2.03523336800E+03 1.72327382520E-03

4.63225623590E+02 8.92557153140E-03

1.31200195980E+02 3.57279845020E-02

4.28530158910E+01 1.10762599310E-01

1.55841857660E+01 2.42956276260E-01

0 0 2 2. 1.

6.20671385080E+00 4.14402634480E-01

2.57648965270E+00 2.37449686550E-01

0 0 1 0. 1. *

9.96164942002E-01 1.00000000000E+00

11



0 0 1 0. 1. *

6.38373126590E-01 1.00000000000E+00

0 0 1 0. 1. *

2.31166652661E-01 1.00000000000E+00

0 2 4 2. 1.

3.46972322440E+01 5.33336578050E-03

7.95826228260E+00 3.58641090920E-02

2.37808268830E+00 1.42158733290E-01

8.14332081830E-01 3.42704718450E-01

0 2 1 0. 1. *

3.84832397891E-01 1.00000000000E+00

0 2 1 0. 1. *

1.87899705316E-01 1.00000000000E+00

0 3 1 0. 1. *

1.01061584864E+00 1.00000000000E+00

0 3 1 0. 1. *

6.14506968465E-01 1.00000000000E+00

0 4 1 0. 1. *

7.55573159273E-01 1.00000000000E+00

N - triple ζ

7 11

0 0 6 2. 1.

1.97308006470E+04 2.18879849910E-04

2.95789587450E+03 1.69607088030E-03

6.73221335950E+02 8.79546035380E-03

1.90682494940E+02 3.53593826050E-02

6.22954418980E+01 1.10957892170E-01

2.26541611820E+01 2.49829725520E-01

0 0 2 2. 1.

8.97914774280E+00 4.06238961480E-01

3.68630023700E+00 2.43382171760E-01

0 0 1 0. 1. *

9.84742186051E-01 1.00000000000E+00

0 0 1 0. 1. *

4.40633028847E-01 1.00000000000E+00

0 0 1 0. 1. *

1.43374486891E-01 1.00000000000E+00

0 2 4 3. 1.

4.92003805100E+01 5.55524167510E-03

1.13467905370E+01 3.80523797230E-02

3.42739724110E+00 1.49536710290E-01

1.17855251340E+00 3.49493052300E-01

0 2 1 0. 1. *

4.05553959640E-01 1.00000000000E+00

0 2 1 0. 1. *

1.37203509080E-01 1.00000000000E+00

0 3 1 0. 1. *

1.72557905350E+00 1.00000000000E+00

0 3 1 0. 1. *

5.60733159589E-01 1.00000000000E+00

0 4 1 0. 1. *

1.39702995210E+00 1.00000000000E+00

O - triple ζ

12



8 11

0 0 6 2. 1.

2.70323826310E+04 2.17263024650E-04

4.05238713920E+03 1.68386621990E-03

9.22327227100E+02 8.73956162650E-03

2.61240709890E+02 3.52399688080E-02

8.53546413510E+01 1.11535191150E-01

3.10350352450E+01 2.55889539610E-01

0 0 2 2. 1.

1.22608607280E+01 3.97687309010E-01

4.99870760050E+00 2.46278494300E-01

0 0 1 0. 1. *

1.34152779331E+00 1.00000000000E+00

0 0 1 0. 1. *

5.74786277552E-01 1.00000000000E+00

0 0 1 0. 1. *

1.94610904831E-01 1.00000000000E+00

0 2 4 4. 1.

6.32749548010E+01 6.06851034180E-03

1.46270493790E+01 4.19125758240E-02

4.45012234560E+00 1.61538410880E-01

1.52757996470E+00 3.57069513110E-01

0 2 1 0. 1. *

5.30270515260E-01 1.00000000000E+00

0 2 1 0. 1. *

1.80510713838E-01 1.00000000000E+00

0 3 1 0. 1. *

2.24203061685E+00 1.00000000000E+00

0 3 1 0. 1. *

6.83126234914E-01 1.00000000000E+00

0 4 1 0. 1. *

1.50936556890E+00 1.00000000000E+00

F - triple ζ

9 11

0 0 6 2. 1.

3.54791004410E+04 2.15450148880E-04

5.31847289830E+03 1.67006865270E-03

1.21048109750E+03 8.67332114760E-03

3.42855181400E+02 3.50499331750E-02

1.12019431810E+02 1.11653201330E-01

4.07147402480E+01 2.59885066470E-01

0 0 2 2. 1.

1.60396781110E+01 3.94229668800E-01

6.50381867400E+00 2.49982385510E-01

0 0 1 0. 1. *

1.66612728857E+00 1.00000000000E+00

0 0 1 0. 1. *

6.83506515681E-01 1.00000000000E+00

0 0 1 0. 1. *

2.45202177665E-01 1.00000000000E+00

0 2 4 5. 1.

8.02339004830E+01 6.36859991340E-03

1.85940107430E+01 4.43031435300E-02
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5.68679026530E+00 1.68672487080E-01

1.95110062940E+00 3.61663462550E-01

0 2 1 0. 1. *

6.50003554984E-01 1.00000000000E+00

0 2 1 0. 1. *

2.04092308648E-01 1.00000000000E+00

0 3 1 0. 1. *

3.09940461539E+00 1.00000000000E+00

0 3 1 0. 1. *

7.91701663415E-01 1.00000000000E+00

0 4 1 0. 1. *

1.58659608364E+00 1.00000000000E+00

Ne - triple ζ

10 11

0 0 6 2. 1.

4.50694640220E+04 2.16871551820E-04

6.75597686560E+03 1.68127367570E-03

1.53765028640E+03 8.73560627820E-03

4.35516976670E+02 3.53612669220E-02

1.42286556380E+02 1.13215214540E-01

5.16921538040E+01 2.66546531040E-01

0 0 2 2. 1.

2.03158704900E+01 3.96319599510E-01

8.20219426460E+00 2.55828112510E-01

0 0 1 0. 1. *

1.99148453462E+00 1.00000000000E+00

0 0 1 0. 1. *

7.17861639090E-01 1.00000000000E+00

0 0 1 0. 1. *

2.30862346114E-01 1.00000000000E+00

0 2 4 6. 1.

9.97829960320E+01 6.55692341630E-03

2.31761241010E+01 4.58880091380E-02

7.11639458720E+00 1.73312878120E-01

2.44187114350E+00 3.64752675120E-01

0 2 1 0. 1. *

8.06898037129E-01 1.00000000000E+00

0 2 1 0. 1. *

2.43088088921E-01 1.00000000000E+00

0 3 1 0. 1. *

4.01393991301E+00 1.00000000000E+00

0 3 1 0. 1. *

1.09174509672E+00 1.00000000000E+00

0 4 1 0. 1. *

2.54397846871E+00 1.00000000000E+00

Ne - quintuple ζ

10 20

0 0 10 2. 1.

2.62700000000E+05 2.60000000000E-05

3.93500000000E+04 2.00000000000E-04

8.95500000000E+03 1.05000000000E-03

2.53800000000E+03 4.40000000000E-03
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8.29900000000E+02 1.56490000000E-02

3.01500000000E+02 4.77580000000E-02

1.19000000000E+02 1.22943000000E-01

5.00000000000E+01 2.52483000000E-01

2.19800000000E+01 3.66314000000E-01

9.89100000000E+00 2.79617000000E-01

0 0 10 2. 1.

2.62700000000E+05 -6.00000000000E-06

3.93500000000E+04 -4.70000000000E-05

8.95500000000E+03 -2.47000000000E-04

2.53800000000E+03 -1.03800000000E-03

8.29900000000E+02 -3.71100000000E-03

3.01500000000E+02 -1.15930000000E-02

1.19000000000E+02 -3.10860000000E-02

5.00000000000E+01 -7.09720000000E-02

2.19800000000E+01 -1.27266000000E-01

9.89100000000E+00 -1.51231000000E-01

0 0 1 0. 1.

4.32700000000E+00 1.00000000000E+00

0 0 1 0. 1.

1.80400000000E+00 1.00000000000E+00

0 0 1 0. 1. *

7.02052559180E-01 1.00000000000E+00

0 0 1 0. 1. *

2.62163031170E-01 1.00000000000E+00

0 2 4 6. 1.

2.99100000000E+02 1.03800000000E-03

7.07300000000E+01 8.37500000000E-03

2.24800000000E+01 3.96930000000E-02

8.24600000000E+00 1.28056000000E-01

0 2 1 0. 1.

3.26900000000E+00 1.00000000000E+00

0 2 1 0. 1.

1.31500000000E+00 1.00000000000E+00

0 2 1 0. 1. *

5.00282036595E-01 1.00000000000E+00

0 2 1 0. 1. *

1.74006598663E-01 1.00000000000E+00

0 3 1 0. 1. *

9.83699917449E+00 1.00000000000E+00

0 3 1 0. 1. *

3.84398728908E+00 1.00000000000E+00

0 3 1 0. 1. *

1.50191462911E+00 1.00000000000E+00

0 3 1 0. 1. *

5.85635726905E-01 1.00000000000E+00

0 4 1 0. 1. *

7.08999976256E+00 1.00000000000E+00

0 4 1 0. 1. *

2.73799711219E+00 1.00000000000E+00

0 4 1 0. 1. *

1.05696751482E+00 1.00000000000E+00

0 5 1 0. 1. *

5.45999998377E+00 1.00000000000E+00

0 5 1 0. 1. *

1.87999969218E+00 1.00000000000E+00
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Na - triple ζ

11 11

0 0 7 2. 1.

2.60411099270E+04 6.18063428110E-04

3.90612685480E+03 4.77486044140E-03

8.88974549930E+02 2.44716848290E-02

2.51454979610E+02 9.47553949770E-02

8.16501435120E+01 2.68674969200E-01

2.89041584010E+01 4.79254754400E-01

1.06257829320E+01 3.32485914690E-01

0 0 3 2. 1.

5.37694101790E+01 1.95277318720E-02

1.63082430250E+01 9.26480107940E-02

2.37303841250E+00 -3.99386701720E-01

0 0 2 1. 1.

9.57307726030E-01 1.64285953910E+00

4.08064609590E-01 5.56925969660E-01

0 0 1 0. 1. *

2.12721167582E-01 9.99992062637E-01

0 0 1 0. 1. *

7.82096876345E-02 9.99700925116E-01

0 2 5 6. 1.

1.38079799890E+02 5.79518919290E-03

3.22327003930E+01 4.16208462510E-02

9.98160753600E+00 1.62819168850E-01

3.48220339280E+00 3.60117846470E-01

1.22991346200E+00 4.48589798890E-01

0 2 1 0. 1. *

4.03415531731E-01 1.00001437874E+00

0 2 1 0. 1. *

8.50539333916E-02 1.00010780928E+00

0 3 1 0. 1. *

2.60862497919E+00 1.00000000000E+00

0 3 1 0. 1. *

4.33739110192E-01 1.00000000000E+00

0 3 1 0. 1. *

1.11542851169E-01 1.00000000000E+00

Na - quadruple ζ

11 17

0 0 10 2. 1.

379852.2008100 0.20671384468D-04

56886.0063780 0.16070466617D-03

12942.7018380 0.84462905848D-03

3664.3017904 0.35519026029D-02

1194.7417499 0.12754034468D-01

430.98192917 0.39895462742D-01

167.83169424 0.10720154498

69.306669040 0.23339516913

29.951170886 0.36333077287

13.380791097 0.30544770974

0 0 3 2. 1.

121.74011283 0.36142427284D-01
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37.044143387 0.28820961687

13.995422624 0.79337384869

0 0 1 1. 1.

5.9827797428 1.0000000

0 0 1 0. 1.

2.4830455118 1.0000000

0 0 1 0. 1.

1.0452506187 1.0000000

0 0 1 0. 1. *

4.94104920953E-01 1.00000000000E+00

0 0 1 0. 1. *

2.20851632190E-01 1.00000000000E+00

0 0 1 0. 1. *

8.23456214209E-02 1.00000000000E+00

0 2 8 6. 1.

690.77627017 0.37478518415D-03

163.82806121 0.31775441030D-02

52.876460769 0.16333581338D-01

19.812270493 0.59754902585D-01

8.1320378784 0.15879328812

3.4969068377 0.29049363260

1.5117244146 0.36368131139

0.64479294912 0.28195867334

0 2 1 0. 1. *

8.91735359156E-01 1.00000000000E+00

0 2 1 0. 1. *

6.36553900328E-01 1.00000000000E+00

0 2 1 0. 1. *

1.94947306854E-01 1.00000000000E+00

0 2 1 0. 1. *

9.44419920071E-02 1.00000000000E+00

0 3 1 0. 1.

2.9000000 1.0000000

0 3 1 0. 1. *

3.73037855991E-01 1.00000000000E+00

0 3 1 0. 1. *

1.29784306785E-01 1.00000000000E+00

0 4 1 0. 1. *

2.40808263966E-01 1.00000000000E+00

Mg - triple ζ Mg - triple ζ - mod

12 12 12 13

0 0 7 2. 1. 0 0 7 2. 1.

3.14383495550E+04 6.09123113260E-04 3.14383495550E+04 6.09123113260E-04

4.71551533540E+03 4.70661964650E-03 4.71551533540E+03 4.70661964650E-03

1.07316292470E+03 2.41358206570E-02 1.07316292470E+03 2.41358206570E-02

3.03572387680E+02 9.36289598340E-02 3.03572387680E+02 9.36289598340E-02

9.86262510420E+01 2.66467420930E-01 9.86262510420E+01 2.66467420930E-01

3.49438084170E+01 4.78909299170E-01 3.49438084170E+01 4.78909299170E-01

1.28597851990E+01 3.36984902860E-01 1.28597851990E+01 3.36984902860E-01

0 0 3 2. 1. 0 0 3 2. 1.

6.48769130040E+01 1.91808893070E-02 6.48769130040E+01 1.91808893070E-02

1.97255207770E+01 9.09137043920E-02 1.97255207770E+01 9.09137043920E-02

2.89518043390E+00 -3.95637561250E-01 2.89518043390E+00 -3.95637561250E-01

0 0 2 2. 1. 0 0 2 2. 1.

17



1.19604547100E+00 1.68276033730E+00 1.19604547100E+00 1.68276033730E+00

5.43294511560E-01 5.21410919540E-01 5.43294511560E-01 5.21410919540E-01

0 0 1 0. 1. * 0 0 1 0. 1.

4.09879874002E-01 1.00000000000E+00 4.09879874002E-01 1.00000000000E+00

0 0 1 0. 1.

0.2 1.

0 0 1 0. 1. * 0 0 1 0. 1.

9.77945365001E-02 1.00000000000E+00 9.77945365001E-02 1.00000000000E+00

0 2 5 6. 1. 0 2 5 6. 1.

1.79871896120E+02 5.37995490180E-03 1.79871896120E+02 5.37995490180E-03

4.21200693760E+01 3.93180140980E-02 4.21200693760E+01 3.93180140980E-02

1.31205030320E+01 1.57401294760E-01 1.31205030320E+01 1.57401294760E-01

4.62575036090E+00 3.59190941280E-01 4.62575036090E+00 3.59190941280E-01

1.66952110160E+00 4.55333793100E-01 1.66952110160E+00 4.55333793100E-01

0 2 1 0. 1. * 0 2 1 0. 1.

5.17378832249E-01 1.00000000000E+00 5.17378832249E-01 1.00000000000E+00

0 2 1 0. 1. * 0 2 1 0. 1.

3.61467900791E-01 1.00000000000E+00 3.61467900791E-01 1.00000000000E+00

0 2 1 0. 1. * 0 2 1 0. 1.

1.21249626127E-01 1.00000000000E+00 1.21249626127E-01 1.00000000000E+00

0 3 1 0. 1. * 0 3 1 0. 1.

3.43299411825E+00 1.00000000000E+00 3.43299411825E+00 1.00000000000E+00

0 3 1 0. 1. * 0 3 1 0. 1.

5.37566209974E-01 1.00000000000E+00 5.37566209974E-01 1.00000000000E+00

0 3 1 0. 1. * 0 3 1 0. 1.

1.57830699502E-01 1.00000000000E+00 1.57830699502E-01 1.00000000000E+00

Al - triple ζ

13 12

0 0 7 2. 1.

3.77925507720E+04 5.70478887090E-04

5.66806821650E+03 4.40930165380E-03

1.28985828410E+03 2.26309674110E-02

3.64865960280E+02 8.80256442950E-02

1.18576315150E+02 2.52237016120E-01

4.20248676050E+01 4.59605471690E-01

1.54995016290E+01 3.32778860140E-01

0 0 3 2. 1.

7.52080265980E+01 1.92505601900E-02

2.30314089720E+01 8.79067439520E-02

3.63487976490E+00 -3.42467045350E-01

0 0 2 2. 1.

1.60650499570E+00 1.51062660580E+00

7.61033945810E-01 5.80710164700E-01

0 0 1 0. 1. *

6.11416028302E-01 1.00000000000E+00

0 0 1 0. 1. *

1.73483869838E-01 1.00000000000E+00

0 2 5 6. 1.

4.52523031920E+02 2.31108124660E-03

1.07081950490E+02 1.85686418230E-02

3.41310212550E+01 8.72162370350E-02

1.25870374280E+01 2.69021015230E-01

4.98119197040E+00 5.21283242720E-01

0 2 1 1. 1. *

18



1.95606775738E+00 1.00000000000E+00

0 2 1 0. 1. *

7.52775780417E-01 1.00000000000E+00

0 2 1 0. 1. *

1.68684476735E-01 1.00000000000E+00

0 3 2 0. 1.

1.57000000000E+00 2.00000000000E-01

3.33000000000E-01 1.00000000000E+00

0 3 1 0. 1. *

6.74524566202E-01 1.00000000000E+00

0 4 1 0. 1. *

2.70290295211E-01 1.00000000000E+00

Al - quadruple ζ(one p added **)

13 21

0 0 10 2. 1.

754550.7826500 0.13421335886D-04

112999.3892200 0.10433210786D-03

25715.8317590 0.54841772080D-03

7283.6030283 0.23089081391D-02

2376.0008796 0.83309974593D-02

857.65468087 0.26417963653D-01

334.38922598 0.73443646426D-01

138.48504731 0.17184039139

60.150368808 0.31041980030

27.127610860 0.35669190596

0 0 3 2. 1.

225.36500065 0.21522039783D-01

69.341968124 0.18531780493

26.619335712 0.63533181245

0 0 1 2. 1.

12.349420671 1.0000000

0 0 1 0. 1.

4.5878785994 1.0000000

0 0 1 0. 1.

2.0571338103 1.0000000

0 0 1 0. 1. *

1.02384436277E+00 1.00000000000E+00

0 0 1 0. 1. *

3.43681311834E-01 1.00000000000E+00

0 0 1 0. 1. *

1.93489065577E-01 1.00000000000E+00

0 2 8 6. 1.

1489.6119522 0.20177122443D-03

353.01399267 0.17508109203D-02

114.40764069 0.94424704664D-02

43.312186111 0.36868004006D-01

18.027322216 0.10892874007

7.9675432403 0.23265901004

3.6090399541 0.34643587076

1.6456081630 0.33440809866

0 2 2 1. 1.

34.731187489 0.17823073020D-01

1.2553083630 -0.59991263926

0 2 1 0. 1. *
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9.06401118275E-01 1.00000000000E+00

0 2 1 0. 1. *

4.18778479410E-01 1.00000000000E+00

0 2 1 0. 1. *

1.91427399866E-01 1.00000000000E+00

0 2 1 0. 1. **

0.09 1

0 3 1 0. 1.

1.9700000000 1.0000000

0 3 1 0. 1. *

9.85958623476E-01 1.00000000000E+00

0 3 1 0. 1. *

5.74185389508E-01 1.00000000000E+00

0 3 1 0. 1. *

1.92766506272E-01 1.00000000000E+00

0 4 1 0. 1. *

1.59524931679E+00 1.00000000000E+00

0 4 1 0. 1. *

7.26266401604E-01 1.00000000000E+00

0 5 1 0. 1. *

1.25485470091E+00 1.00000000000E+00

Si - triple ζ Si - triple ζ - mod

14 13 14 14

0 0 7 2. 1. 0 0 7 2. 1.

4.47733580780E+04 5.59147658680E-04 4.47733580780E+04 5.59147658680E-04

6.71719921040E+03 4.32060401890E-03 6.71719921040E+03 4.32060401890E-03

1.52889603250E+03 2.21870964600E-02 1.52889603250E+03 2.21870964600E-02

4.32547465850E+02 8.64892491160E-02 4.32547465850E+02 8.64892491160E-02

1.40615052260E+02 2.49398897160E-01 1.40615052260E+02 2.49398897160E-01

4.98576367240E+01 4.60171973660E-01 4.98576367240E+01 4.60171973660E-01

1.84349748850E+01 3.42502365750E-01 1.84349748850E+01 3.42502365750E-01

0 0 3 2. 1. 0 0 3 2. 1.

8.65338861110E+01 2.13000630070E-02 8.65338861110E+01 2.13000630070E-02

2.66246068460E+01 9.46761393180E-02 2.66246068460E+01 9.46761393180E-02

4.49530571590E+00 -3.26162648590E-01 4.49530571590E+00 -3.26162648590E-01

0 0 2 2. 1. 0 0 2 2. 1.

2.10350457100E+00 1.39808038500E+00 2.10350457100E+00 1.39808038500E+00

1.01060949220E+00 6.38657866990E-01 1.01060949220E+00 6.38657866990E-01

0 0 1 0. 1.

0.9 1.

0 0 1 0. 1. * 0 0 1 0. 1.

7.55014937995E-01 1.00000000000E+00 7.55014937995E-01 1.00000000000E+00

0 0 1 0. 1. * 0 0 1 0. 1.

1.98542015743E-01 1.00000000000E+00 1.98542015743E-01 1.00000000000E+00

0 2 5 6. 1. 0 2 5 6. 1.

3.94475036280E+02 2.62856939590E-03 3.94475036280E+02 2.62856939590E-03

9.31376831040E+01 2.05562577490E-02 9.31376831040E+01 2.05562577490E-02

2.95196087420E+01 9.20702628010E-02 2.95196087420E+01 9.20702628010E-02

1.07816637910E+01 2.55658897390E-01 1.07816637910E+01 2.55658897390E-01

4.16265747780E+00 4.21117071850E-01 4.16265747780E+00 4.21117071850E-01

0 2 1 2. 1. * 0 2 1 2. 1.

1.60593926612E+00 1.00000000000E+00 1.60593926612E+00 1.00000000000E+00

0 2 1 0. 1. * 0 2 1 0. 1.

6.34982274128E-01 1.00000000000E+00 6.34982274128E-01 1.00000000000E+00
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0 2 1 0. 1. * 0 2 1 0. 1.

2.95336224842E-01 1.00000000000E+00 2.95336224842E-01 1.00000000000E+00

0 2 1 0. 1. * 0 2 1 0. 1.

1.01085545700E-01 1.00000000000E+00 1.01085545700E-01 1.00000000000E+00

0 3 2 0. 1. 0 3 2 0. 1.

2.30300000000E+00 2.00000000000E-01 2.30300000000E+00 2.00000000000E-01

4.76000000000E-01 1.00000000000E+00 4.76000000000E-01 1.00000000000E+00

0 3 1 0. 1. * 0 3 1 0. 1.

2.62241055556E-01 1.00000000000E+00 2.62241055556E-01 1.00000000000E+00

0 4 1 0. 1. * 0 4 1 0. 1.

3.61111716854E-01 1.00000000000E+00 3.61111716854E-01 1.00000000000E+00

P - triple ζ P - triple ζ - mod

15 13 15 14

0 0 7 2. 1. 0 0 7 2. 1.

5.24269992330E+04 5.52071641000E-04 5.24269992330E+04 5.52071641000E-04

7.86326605520E+03 4.26785953080E-03 7.86326605520E+03 4.26785953080E-03

1.78952273330E+03 2.19315291860E-02 1.78952273330E+03 2.19315291860E-02

5.06273001650E+02 8.56671683730E-02 5.06273001650E+02 8.56671683730E-02

1.64606985460E+02 2.48406866050E-01 1.64606985460E+02 2.48406866050E-01

5.83919187220E+01 4.63367539710E-01 5.83919187220E+01 4.63367539710E-01

2.16436632010E+01 3.53505581560E-01 2.16436632010E+01 3.53505581560E-01

0 0 3 2. 1. 0 0 3 2. 1.

9.90138376200E+01 2.18956799580E-02 9.90138376200E+01 2.18956799580E-02

3.05504398170E+01 9.56504702950E-02 3.05504398170E+01 9.56504702950E-02

5.45370876610E+00 -2.94542701860E-01 5.45370876610E+00 -2.94542701860E-01

0 0 2 2. 1. 0 0 2 2. 1.

2.65033625630E+00 1.32943812000E+00 2.65033625630E+00 1.32943812000E+00

1.27266888670E+00 6.61093964730E-01 1.27266888670E+00 6.61093964730E-01

0 0 1 0. 1.

0.7 1.

0 0 1 0. 1. * 0 0 1 0. 1.

3.31966459013E-01 1.00000000000E+00 3.31966459013E-01 1.00000000000E+00

0 0 1 0. 1. * 0 0 1 0. 1.

1.36421807855E-01 1.00000000000E+00 1.36421807855E-01 1.00000000000E+00

0 2 5 6. 1. 0 2 5 6. 1.

4.72272192480E+02 2.57106230520E-03 4.72272192480E+02 2.57106230520E-03

1.11588827560E+02 2.02502979990E-02 1.11588827560E+02 2.02502979990E-02

3.54459364180E+01 9.15807167870E-02 3.54459364180E+01 9.15807167870E-02

1.29907768750E+01 2.57494540140E-01 1.29907768750E+01 2.57494540140E-01

5.04862216580E+00 4.28628997580E-01 5.04862216580E+00 4.28628997580E-01

0 2 1 3. 1. * 0 2 1 3. 1.

1.97270668835E+00 1.00000000000E+00 1.97270668835E+00 1.00000000000E+00

0 2 1 0. 1. * 0 2 1 0. 1.

7.81937693603E-01 1.00000000000E+00 7.81937693603E-01 1.00000000000E+00

0 2 1 0. 1. * 0 2 1 0. 1.

3.37354535997E-01 1.00000000000E+00 3.37354535997E-01 1.00000000000E+00

0 2 1 0. 1. * 0 2 1 0. 1.

1.27287325416E-01 1.00000000000E+00 1.27287325416E-01 1.00000000000E+00

0 3 2 0. 1. 0 3 2 0. 1.

3.12000000000E+00 2.00000000000E-01 3.12000000000E+00 2.00000000000E-01

6.48000000000E-01 1.00000000000E+00 6.48000000000E-01 1.00000000000E+00

0 3 1 0. 1. * 0 3 1 0. 1.

2.27496494415E-01 1.00000000000E+00 2.27496494415E-01 1.00000000000E+00

0 4 1 0. 1. * 0 4 1 0. 1.
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4.55790298326E-01 1.00000000000E+00 4.55790298326E-01 1.00000000000E+00

S - triple ζ

16 13

0 0 7 2. 1.

6.07009281040E+04 5.46959442250E-04

9.10261068540E+03 4.22972245570E-03

2.07141660090E+03 2.17478241590E-02

5.86024768210E+02 8.51000535890E-02

1.90553950210E+02 2.47991284590E-01

6.76303842600E+01 4.67036404060E-01

2.51273069050E+01 3.64345875500E-01

0 0 3 2. 1.

1.12574630100E+02 2.16700402400E-02

3.47955542170E+01 9.36023017600E-02

6.51155562150E+00 -2.60680014220E-01

0 0 2 2. 1.

3.23990322610E+00 1.28420894350E+00

1.54771608810E+00 6.60364165840E-01

0 0 1 0. 1. *

4.79267087636E-01 1.00000000000E+00

0 0 1 0. 1. *

2.10561167562E-01 1.00000000000E+00

0 2 5 6. 1.

5.64367160270E+02 2.47967963170E-03

1.33426243790E+02 1.96779302500E-02

4.24682711890E+01 8.99800082580E-02

1.56165275800E+01 2.57058805750E-01

6.10939884690E+00 4.35151672920E-01

0 2 1 4. 1. *

2.43785034818E+00 1.00000000000E+00

0 2 1 0. 1. *

1.09182124384E+00 1.00000000000E+00

0 2 1 0. 1. *

4.31410869933E-01 1.00000000000E+00

0 2 1 0. 1. *

1.57376926419E-01 1.00000000000E+00

0 3 2 0. 1.

3.75600000000E+00 2.00000000000E-01

8.12000000000E-01 1.00000000000E+00

0 3 1 0. 1. *

2.44218244587E-01 1.00000000000E+00

0 4 1 0. 1. *

5.38814682974E-01 1.00000000000E+00

Cl - triple ζ

17 13

0 0 7 2. 1.

6.95079909450E+04 5.43148974970E-04

1.04261568800E+04 4.19904639610E-03

2.37323340610E+03 2.15921416790E-02

6.71564200710E+02 8.45988500940E-02

2.18419997900E+02 2.47572497240E-01

7.75722497140E+01 4.70169302280E-01
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2.88888152770E+01 3.74363707160E-01

0 0 3 2. 1.

1.27105271850E+02 2.51821666030E-02

3.93395829610E+01 1.07861124560E-01

7.67406799890E+00 -2.74088215740E-01

0 0 2 2. 1.

3.87456276300E+00 1.32138750140E+00

1.83858325730E+00 6.86369553680E-01

0 0 1 0. 1. *

5.07498154767E-01 1.00000000308E+00

0 0 1 0. 1. *

1.83127456586E-01 9.99999997835E-01

0 2 5 6. 1.

6.66504232840E+02 2.36326638360E-03

1.57642416900E+02 1.88793003740E-02

5.02625209780E+01 8.72063412730E-02

1.85360781050E+01 2.52856129700E-01

7.29405327770E+00 4.35071548200E-01

0 2 1 5. 1. *

2.89826632488E+00 1.00000000143E+00

0 2 1 0. 1. *

1.10442102086E+00 1.00000000000E+00

0 2 1 0. 1. *

4.09232170559E-01 1.00000000000E+00

0 2 1 0. 1. *

1.36452167048E-01 1.00000000000E+00

0 3 2 0. 1.

4.61000000000E+00 2.00000000000E-01

1.01100000000E+00 1.00000000000E+00

0 3 1 0. 1. *

3.32581229403E-01 1.00000000000E+00

0 4 1 0. 1. *

5.98970631104E-01 1.00000000000E+00

Ar - triple ζ

18 13

0 0 7 2. 1.

7.91114229980E+04 5.10293250020E-04

1.18647460090E+04 3.94630369810E-03

2.70016429730E+03 2.03070739100E-02

7.63959434850E+02 7.96918252140E-02

2.48451505610E+02 2.34206238360E-01

8.82835810000E+01 4.48338494810E-01

3.29486070690E+01 3.64081674000E-01

0 0 3 2. 1.

1.42553580000E+02 2.63874070010E-02

4.41636880090E+01 1.12264339990E-01

8.95249950000E+00 -2.61789220010E-01

0 0 2 2. 1.

4.55469209410E+00 1.30024849980E+00

2.14440790010E+00 6.71972370090E-01

0 0 1 0. 1. *

6.14874634212E-01 1.00000000000E+00

0 0 1 0. 1. *

2.17873501799E-01 1.00000000000E+00
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0 2 5 6. 1.

7.76775419980E+02 2.20280050030E-03

1.83801070180E+02 1.76941800080E-02

5.86940031750E+01 8.24312937170E-02

2.17015916950E+01 2.42072788630E-01

8.58214896350E+00 4.22635582510E-01

0 2 1 6. 1. *

3.43108948168E+00 1.00000000000E+00

0 2 1 0. 1. *

1.29586219954E+00 1.00000000000E+00

0 2 1 0. 1. *

4.73667526469E-01 1.00000000000E+00

0 2 1 0. 1. *

1.52964634435E-01 1.00000000000E+00

0 3 2 0. 1.

5.55100000000E+00 2.00000000000E-01

1.23500000000E+00 1.00000000000E+00

0 3 1 0. 1. *

3.68156163751E-01 1.00000000000E+00

0 4 1 0. 1. *

8.89285192225E-01 1.00000000000E+00

Ar - quadruple ζ

18 22

0 0 10 2. 1.

1.67342194940E+06 1.12459904130E-05

2.50601753730E+05 8.74281157980E-05

5.70309121200E+04 4.59616412750E-04

1.61533039150E+04 1.93638907420E-03

5.26941092880E+03 6.99940464970E-03

1.90203155410E+03 2.23120681960E-02

7.41576771590E+02 6.28080776970E-02

3.07209019060E+02 1.51011409970E-01

1.33527862030E+02 2.87136611770E-01

6.02533812910E+01 3.63854901070E-01

0 0 3 2. 1.

5.22024262060E+02 1.80713231160E-02

1.61512904690E+02 1.64492198840E-01

6.21263694330E+01 6.38973348990E-01

0 0 1 2. 1. *

2.75924919039E+01 1.00000000000E+00

0 0 1 0. 1. *

1.11770673532E+01 1.00000000000E+00

0 0 1 0. 1. *

5.31160209177E+00 1.00000000000E+00

0 0 1 0. 1. *

2.42316978774E+00 1.00000000000E+00

0 0 1 0. 1. *

8.67723534175E-01 1.00000000000E+00

0 0 1 0. 1. *

3.65554120129E-01 1.00000000000E+00

0 0 1 0. 1. *

1.38659166519E-01 1.00000000000E+00

0 2 8 6. 1.

2.86845045810E+03 2.40104351210E-04
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6.79718695900E+02 2.09047886650E-03

2.20367588240E+02 1.13693168390E-02

8.36204397340E+01 4.49019773980E-02

3.49643226570E+01 1.32371567700E-01

1.55251317840E+01 2.77092776000E-01

7.09929798060E+00 3.86139796460E-01

3.30213366020E+00 2.84929253720E-01

0 2 2 6. 1.

1.28787656670E+02 -3.05094577510E-02

8.43578679770E+00 6.41016210700E-01

0 2 1 0. 1. *

1.47872194454E+00 1.00000000000E+00

0 2 1 0. 1. *

6.10896364502E-01 1.00000000000E+00

0 2 1 0. 1. *

2.52858406408E-01 1.00000000000E+00

0 2 1 0. 1. *

9.88483432873E-02 1.00000000000E+00

0 3 1 0. 1. *

6.31499988581E+00 1.00000000000E+00

0 3 1 0. 1. *

1.56194566793E+00 1.00000000000E+00

0 3 1 0. 1. *

7.15288895286E-01 1.00000000000E+00

0 3 1 0. 1. *

2.89708330278E-01 1.00000000000E+00

0 4 1 0. 1. *

5.43075106879E-01 1.00000000000E+00

0 4 1 0. 1. *

1.32501728189E+00 1.00000000000E+00

0 5 1 0. 1. *

1.00696894667E+00 1.00000000000E+00

K - triple ζ

19 13

0 0 8 2. 1.

1.53976183250E+05 2.36626361070E-04

2.30824976720E+04 1.83429291370E-03

5.25323447450E+03 9.53105277690E-03

1.48695501330E+03 3.86384069800E-02

4.84063337260E+02 1.24807685020E-01

1.73566539800E+02 2.92788610090E-01

6.71163814640E+01 4.06334258600E-01

2.63395020540E+01 2.00772158600E-01

0 0 4 2. 1.

1.72876935670E+02 -2.42009609360E-02

5.30586490630E+01 -1.15530950400E-01

7.92127539640E+00 5.74555451750E-01

3.21088804720E+00 5.70231851070E-01

0 0 2 2. 1.

4.56620708950E+00 -2.26157634660E-01

7.02099072820E-01 7.55283920450E-01

0 0 1 1. 1. *

3.40388622730E-01 1.00000000000E+00

0 0 1 0. 1. *

25



1.27244490119E-01 1.00000000000E+00

0 0 1 0. 1. *

5.62288102535E-02 1.00000000000E+00

0 2 6 6. 1.

7.28184498730E+02 2.61506897920E-03

1.72132650610E+02 2.06736308350E-02

5.48298470750E+01 9.32056038700E-02

2.01662664940E+01 2.54365182100E-01

7.86107288060E+00 3.91311328100E-01

3.11052131320E+00 2.24813459430E-01

0 2 3 6. 1.

1.17573374920E+01 -2.57772892170E-02

1.51396174110E+00 5.73594286040E-01

5.83285917950E-01 1.07983200020E+00

0 2 1 0. 1. *

2.10909849443E-01 1.00000000000E+00

0 2 1 0. 1. *

4.78203320068E-02 1.00000000000E+00

0 3 1 0. 1. *

9.33669696334E-01 1.00000000000E+00

0 3 1 0. 1. *

2.04046005967E-01 1.00000000000E+00

0 3 1 0. 1. *

5.25533133715E-02 1.00000000000E+00

Ca - triple ζ Ca - triple ζ - mod

20 14 20 14

0 0 8 2. 1. 0 0 8 2. 1.

1.72517326850E+05 2.33175025460E-04 1.72517326850E+05 2.33175025460E-04

2.58615192750E+04 1.80765219800E-03 2.58615192750E+04 1.80765219800E-03

5.88566186680E+03 9.39438442550E-03 5.88566186680E+03 9.39438442550E-03

1.66597300310E+03 3.81084090090E-02 1.66597300310E+03 3.81084090090E-02

5.42367181480E+02 1.23312038530E-01 5.42367181480E+02 1.23312038530E-01

1.94578034920E+02 2.90044709540E-01 1.94578034920E+02 2.90044709540E-01

7.53035976360E+01 4.05871511570E-01 7.53035976360E+01 4.05871511570E-01

2.95740625890E+01 2.03984107430E-01 2.95740625890E+01 2.03984107430E-01

0 0 4 2. 1. 0 0 4 2. 1.

1.91200746600E+02 -2.44197597590E-02 1.91200746600E+02 -2.44197597590E-02

5.88402998830E+01 -1.15470274480E-01 5.88402998830E+01 -1.15470274480E-01

8.96425408450E+00 5.63566367170E-01 8.96425408450E+00 5.63566367170E-01

3.68569605410E+00 5.67096827040E-01 3.68569605410E+00 5.67096827040E-01

0 0 2 2. 1. 0 0 2 2. 1.

5.24642897260E+00 -2.28253343250E-01 5.24642897260E+00 -2.28253343250E-01

8.48626215280E-01 7.26252191720E-01 8.48626215280E-01 7.26252191720E-01

0 0 1 2. 1. * 0 0 1 2. 1.

4.29267926012E-01 1.00000000000E+00 4.29267926012E-01 1.00000000000E+00

0 0 1 0. 1. * 0 0 1 0. 1.

1.58099111851E-01 1.00000000000E+00 1.58099111851E-01 1.00000000000E+00

0 0 1 0. 1. * 0 0 1 0. 1.

6.64111683554E-02 1.00000000000E+00 6.64111683554E-02 1.00000000000E+00

0 2 6 6. 1. 0 2 6 6. 1.

8.36972620580E+02 2.52583460920E-03 8.36972620580E+02 2.52583460920E-03

1.97930401420E+02 2.00765066860E-02 1.97930401420E+02 2.00765066860E-02

6.31355580540E+01 9.13029873660E-02 6.31355580540E+01 9.13029873660E-02

2.32826871700E+01 2.52470299150E-01 2.32826871700E+01 2.52470299150E-01
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9.11764449320E+00 3.94263263440E-01 9.11764449320E+00 3.94263263440E-01

3.63361201390E+00 2.30115594920E-01 3.63361201390E+00 2.30115594920E-01

0 2 3 6. 1. 0 2 3 6. 1.

1.34941631200E+01 -2.64950219510E-02 1.34941631200E+01 -2.64950219510E-02

1.81392597900E+00 5.50881082100E-01 1.81392597900E+00 5.50881082100E-01

7.19818260060E-01 1.02806166200E+00 7.19818260060E-01 1.02806166200E+00

0 2 1 0. 1. * 0 2 1 0. 1.

5.20419757641E-01 1.00000000000E+00 0.4 1.

0 2 1 0. 1. * 0 2 1 0. 1.

3.08703105774E-01 1.00000000000E+00 0.2 1.

0 2 1 0. 1. * 0 2 1 0. 1.

9.25827750185E-02 1.00000000000E+00 9.25827750185E-02 1.00000000000E+00

0 3 2 0. 1. * 0 3 2 0. 1.

5.51680904545E+00 7.37700114330E-02 5.51680904545E+00 7.37700114330E-02

1.42468064601E+00 2.60528531690E-01 1.42468064601E+00 2.60528531690E-01

0 3 1 0. 1. * 0 3 1 0. 1.

4.03702125099E-01 1.00000000000E+00 4.03702125099E-01 1.00000000000E+00

0 3 1 0. 1. * 0 3 1 0. 1.

9.71059836854E-02 1.00000000000E+00 9.71059836854E-02 1.00000000000E+00

Sc - triple ζ

21 15

0 0 8 2. 1.

1.91612918740E+05 2.30764759420E-04

2.87238503630E+04 1.78903299460E-03

6.53701164900E+03 9.29904011400E-03

1.85030971710E+03 3.77394380110E-02

6.02388551560E+02 1.22271483590E-01

2.16173247660E+02 2.88148214700E-01

8.37125178800E+01 4.05175430990E-01

3.29087071890E+01 2.05660196230E-01

0 0 4 2. 1.

2.11343932340E+02 -2.45279914620E-02

6.51289201390E+01 -1.15701581420E-01

1.00343115350E+01 5.59952833170E-01

4.15968845970E+00 5.60877650730E-01

0 0 2 2. 1.

6.00090416130E+00 -2.28404943250E-01

9.82557841500E-01 7.19489703780E-01

0 0 1 2. 1. *

1.66257260981E+00 1.00000000000E+00

0 0 1 0. 1. *

4.28283484375E-01 1.00000000000E+00

0 0 1 0. 1. *

9.11100496971E-02 1.00000000000E+00

0 2 6 6. 1.

9.47341228230E+02 2.47372087440E-03

2.24096997320E+02 1.97429670600E-02

7.15603348820E+01 9.03571475490E-02

2.64448244900E+01 2.52016025030E-01

1.03937982850E+01 3.96755359290E-01

4.16063045590E+00 2.32086245170E-01

0 2 3 6. 1.

1.55657371350E+01 -2.71294239740E-02

2.11215448650E+00 5.51092566290E-01
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8.41847090210E-01 1.00906358060E+00

0 2 1 0. 1. *

2.99009751549E-01 1.00000000000E+00

0 2 1 0. 1. *

1.25650387472E-01 1.00000000000E+00

0 3 4 1. 1.

3.09893909930E+01 1.19028374310E-02

8.69054650690E+00 6.76558568500E-02

2.95202563370E+00 2.13325397220E-01

1.07619107450E+00 3.83910755780E-01

0 3 1 0. 1. *

1.13800590800E+00 1.00000000000E+00

0 3 1 0. 1. *

4.15328813342E-01 1.00000000000E+00

0 3 1 0. 1. *

1.37715918867E-01 1.00000000000E+00

0 4 1 0. 1. *

4.02932397647E-01 1.00000000000E+00

Ti - triple ζ

22 15

0 0 8 2. 1.

2.11575690250E+05 2.33181510110E-04

3.17149450580E+04 1.80796908510E-03

7.21754765430E+03 9.39843113520E-03

2.04293942470E+03 3.81568536180E-02

6.65128962080E+02 1.23747571970E-01

2.38749422640E+02 2.92085511430E-01

9.25086910010E+01 4.12268008550E-01

3.64039192090E+01 2.10905340610E-01

0 0 4 2. 1.

2.32726246070E+02 -2.49201407380E-02

7.17912097110E+01 -1.17464900870E-01

1.11585346150E+01 5.65033423180E-01

4.65481354160E+00 5.62111018120E-01

0 0 2 2. 1.

6.80346291740E+00 -2.30114255030E-01

1.12010764030E+00 7.21031867350E-01

0 0 1 2. 1. *

6.42286938433E-01 1.00000000000E+00

0 0 1 0. 1. *

3.26579294446E-01 1.00000000000E+00

0 0 1 0. 1. *

1.61264842584E-01 1.00000000000E+00

0 2 6 6. 1.

1.06314747320E+03 2.46908393200E-03

2.51565070610E+02 1.97733455230E-02

8.04085548540E+01 9.09879766720E-02

2.97681932690E+01 2.55599004130E-01

1.17368305560E+01 4.04893867640E-01

4.71423752300E+00 2.36934025580E-01

0 2 3 6. 1.

1.77968037040E+01 -2.78786396150E-02

2.42726986800E+00 5.56729146680E-01

9.68234455370E-01 1.00554473500E+00
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0 2 1 0. 1. *

3.25975499934E-01 1.00000000000E+00

0 2 1 0. 1. *

1.81651058532E-01 1.00000000000E+00

0 3 4 2. 1.

3.77133847230E+01 1.15138350920E-02

1.06929311840E+01 6.72463439960E-02

3.67284469900E+00 2.14842077750E-01

1.35885903030E+00 3.88908927790E-01

0 3 1 0. 1. *

7.51072904232E-01 1.00000000000E+00

0 3 1 0. 1. *

6.21135941037E-01 1.00000000000E+00

0 3 1 0. 1. *

1.79483221200E-01 1.00000000000E+00

0 4 1 0. 1. *

5.20291162284E-01 1.00000000000E+00

Ti - quadruple ζ(one s added**)

22 25

0 0 11 2 1

3070548.8651000 0.86954016630D-05

460777.8864300 0.67452737727D-04

104901.2288900 0.35477293028D-03

29695.8611990 0.14977525588D-02

9678.8892688 0.54309912055D-02

3490.1877912 0.17439360524D-01

1359.2217621 0.49835634640D-01

562.42721208 0.12379633943

244.22296250 0.25057490943

110.16668710 0.35934609007

50.881903357 0.27594242664

0 0 4 2 1

965.95430789 0.41773927781D-02

299.27072059 0.40277148567D-01

114.83772939 0.17898686817

49.477578954 0.31783043543

0 0 1 2 1

22.982839977 1.0000000

0 0 1 2 1

10.518305037 1.0000000

0 0 1 0 1

4.9774390567 1.0000000

0 0 1 0 1

2.1339846838 1.0000000

0 0 1 0 1 *

1.12707580031E+00 1.00000000000E+00

0 0 1 0 1 *

4.72980107853E-01 1.00000000000E+00

0 0 1 0 1 *

1.70870580664E-01 1.00000000000E+00

0 0 1 0 1 **

0.10 1.0000000

0 2 9 6 1

5169.6755427 0.18802523596D-03
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1225.0961638 0.16473458826D-02

397.60051934 0.91104554321D-02

151.36154684 0.36987450926D-01

63.613321773 0.11376329624

28.514560307 0.25345208574

13.248003298 0.38019402704

6.3048807760 0.30989136346

2.9493525821 0.87418944007D-01

0 2 5 6 1

40.738772213 -0.73233793267D-02

14.062358461 -0.34282591082D-01

2.7460680961 0.35655009250

1.2713688141 0.76112035427

0.57610015545 0.62716743237

0 2 1 0 1 *

1.14638020999E+00 1.00000000000E+00

0 2 1 0 1 *

7.34850618789E-01 1.00000000000E+00

0 2 1 0 1 *

3.56527148967E-01 1.00000000000E+00

0 2 1 0 1 *

1.65950553993E-01 1.00000000000E+00

0 3 5 2 1

89.589880075 0.21223030030D-02

26.591412960 0.15911819913D-01

9.7739715702 0.62875243121D-01

3.9625083655 0.17144170807

1.6890532654 0.30565506624

0 3 1 0 1 *

1.91682758338E+00 1.00000000000E+00

0 3 1 0 1 *

9.02577453752E-01 1.00000000000E+00

0 3 1 0 1 *

4.89592270056E-01 1.00000000000E+00

0 3 1 0 1 *

1.63162726346E-01 1.00000000000E+00

0 4 1 0 1

2.0930000 1.0000000

0 4 1 0 1 *

1.56017293955E+00 1.00000000000E+00

0 4 1 0 1 *

6.98424123530E-01 1.00000000000E+00

0 5 1 0 1 *

7.72661233773E-01 1.00000000000E+00

V - triple ζ

23 15

0 0 8 2. 1.

2.32340650582E+05 2.30724100916E-04

3.48288411698E+04 1.78881789621E-03

7.92654486906E+03 9.29924901324E-03

2.24377330458E+03 3.77614633471E-02

7.30593229434E+02 1.22559096620E-01

2.62322196310E+02 2.89635088109E-01

1.01704038050E+02 4.10047029549E-01
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4.00647846167E+01 2.11136108581E-01

0 0 4 2. 1.

2.55240149682E+02 -2.44581163379E-02

7.88046469614E+01 -1.15272053659E-01

1.23405989460E+01 5.51747494530E-01

5.17420192185E+00 5.45045284889E-01

0 0 2 2. 1.

7.65138944692E+00 -2.29676382862E-01

1.26397598979E+00 7.16837690764E-01

0 0 1 2. 1. *

6.59290296565E-01 1.00000000000E+00

0 0 1 0. 1. *

4.16364704888E-01 1.00000000000E+00

0 0 1 0. 1. *

2.10943638090E-01 1.00000000000E+00

0 2 6 6. 1.

1.18423691510E+03 2.44498267287E-03

2.80230751921E+02 1.96434544660E-02

8.96436271379E+01 9.07969491900E-02

3.32424112531E+01 2.56507682219E-01

1.31445144521E+01 4.08153937500E-01

5.29485341394E+00 2.38603782680E-01

0 2 3 6. 1.

2.01755868511E+01 -2.82414890230E-02

2.76058651973E+00 5.55746356193E-01

1.10089009019E+00 9.93199192700E-01

0 2 1 0. 1. *

3.74879550513E-01 1.00000000000E+00

0 2 1 0. 1. *

1.97530908408E-01 1.00000000000E+00

0 3 4 3. 1.

4.38611348639E+01 1.14871742381E-02

1.25160218909E+01 6.82471539757E-02

4.33138549566E+00 2.18377841950E-01

1.61388557730E+00 3.92452122964E-01

0 3 1 0. 1. *

6.33418272611E-01 4.26344667860E-01

0 3 1 0. 1. *

4.58713471836E-01 2.26465626007E-01

0 3 1 0. 1. *

2.41097777446E-01 1.00000000000E+00

0 4 1 0. 1. *

8.28001703778E-01 1.00000000000E+00

V - quadruple ζ

23 25

0 0 11 2 1

3360380.0382000 0.87027840678D-05

502646.7317800 0.67786024965D-04

114247.2286700 0.35699229090D-03

32321.9726300 0.15075507352D-02

10532.9472710 0.54664377528D-02

3798.3004439 0.17547310839D-01

1479.6094715 0.50106594778D-01

612.57405507 0.12431296066
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266.22103326 0.25117026883

120.21980126 0.35926015903

55.591180848 0.27505075685

0 0 4 2 1

1082.4768635 0.39326847695D-02

334.94462061 0.38298477998D-01

128.31559026 0.17259908827

55.311589616 0.31287423870

0 0 1 2 1

25.108383036 1.0000000

0 0 1 2 1

11.667553242 1.0000000

0 0 1 0 1

5.5372073270 1.0000000

0 0 1 0 1

2.3781007618 1.0000000

0 0 1 0 1

1.1506947329 1.0000000

0 0 1 0 1

6.10303786899E-01 1.00000000000E+00

0 0 1 0 1

3.68604809888E-01 1.00000000000E+00

0 0 1 0 1

2.20252730219E-01 1.00000000000E+00

0 2 9 6 1

5782.8035005 0.18344743045D-03

1369.9392282 0.16095217453D-02

444.53147129 0.89242268749D-02

169.25617556 0.36375182379D-01

71.168730031 0.11246803294

31.933358374 0.25226107794

14.865336779 0.38039695005

7.0921740091 0.31068797325

3.3281157846 0.88141200458D-01

0 2 5 6 1

45.842906017 -0.56661391945D-02

15.940339016 -0.26718979445D-01

3.1257155025 0.27354632707

1.4485867558 0.57972883053

0.65577902825 0.47601110515

0 2 1 0 1

1.03431288484E+00 1.00000000000E+00

0 2 1 0 1

7.24363408911E-01 1.00000000000E+00

0 2 1 0 1

4.04767039950E-01 1.00000000000E+00

0 2 1 0 1

2.32435177489E-01 1.00000000000E+00

0 3 5 3 1

103.95047414 0.21007158819D-02

30.901688665 0.16015244877D-01

11.420321145 0.64127456940D-01

4.6573272292 0.17488905695

1.9963682623 0.31003778048

0 3 1 0 1

1.64033944306E+00 1.00000000000E+00
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0 3 1 0 1

8.13028040667E-01 1.00000000000E+00

0 3 1 0 1

5.64424921068E-01 1.00000000000E+00

0 3 1 0 1

2.44138615380E-01 1.00000000000E+00

0 4 1 0 1

2.9330000 1.0000000

0 4 1 0 1

1.42603160593E+00 1.00000000000E+00

0 4 1 0 1

7.70965202560E-01 1.00000000000E+00

0 5 1 0 1

1.18383811217E+00 1.00000000000E+00

Cr - triple ζ Cr - triple ζ - mod

24 15 24 15

0 0 8 2. 1. 0 0 8 2. 1.

2.54477807040E+05 2.33869456930E-04 2.54477807040E+05 2.33869456930E-04

3.81317970540E+04 1.81426018000E-03 3.81317970540E+04 1.81426018000E-03

8.67529306070E+03 9.43639257210E-03 8.67529306070E+03 9.43639257210E-03

2.45500998480E+03 3.83436393670E-02 2.45500998480E+03 3.83436393670E-02

7.99162177870E+02 1.24591948370E-01 7.99162177870E+02 1.24591948370E-01

2.86900214890E+02 2.94896960290E-01 2.86900214890E+02 2.94896960290E-01

1.11254132320E+02 4.18461496070E-01 1.11254132320E+02 4.18461496070E-01

4.38641526360E+01 2.16337634200E-01 4.38641526360E+01 2.16337634200E-01

0 0 4 2. 1. 0 0 4 2. 1.

2.79326691730E+02 -2.34509081110E-02 2.79326691730E+02 -2.34509081110E-02

8.62747323760E+01 -1.10803700270E-01 8.62747323760E+01 -1.10803700270E-01

1.35557561130E+01 5.30289658420E-01 1.35557561130E+01 5.30289658420E-01

5.69781127510E+00 5.16035169470E-01 5.69781127510E+00 5.16035169470E-01

0 0 2 2. 1. 0 0 2 2. 1.

8.56365826150E+00 -3.81095456750E-01 8.56365826150E+00 -3.81095456750E-01

1.39882967680E+00 1.19915914360E+00 1.39882967680E+00 1.19915914360E+00

0 0 1 1. 1. * 0 0 1 1. 1.

8.18694544353E-01 1.00000000000E+00 1.20 1.

0 0 1 0. 1. * 0 0 1 0. 1.

3.56144750597E-01 1.00000000000E+00 3.56144750597E-01 1.00000000000E+00

0 0 1 0. 1. * 0 0 1 0. 1.

1.88287334487E-01 1.00000000000E+00 1.88287334487E-01 1.00000000000E+00

0 2 6 6. 1. 0 2 6 6. 1.

1.30643988640E+03 2.42773261850E-03 1.30643988640E+03 2.42773261850E-03

3.09253114410E+02 1.95440410170E-02 3.09253114410E+02 1.95440410170E-02

9.89962739630E+01 9.06517945530E-02 9.89962739630E+01 9.06517945530E-02

3.67569164510E+01 2.56992791540E-01 3.67569164510E+01 2.56992791540E-01

1.45666570770E+01 4.09355048910E-01 1.45666570770E+01 4.09355048910E-01

5.87399374320E+00 2.37293888490E-01 5.87399374320E+00 2.37293888490E-01

0 2 3 6. 1. 0 2 3 6. 1.

2.28909996950E+01 -2.81660266130E-02 2.28909996950E+01 -2.81660266130E-02

3.08550018220E+00 5.60341201480E-01 3.08550018220E+00 5.60341201480E-01

1.21323291180E+00 9.81190196500E-01 1.21323291180E+00 9.81190196500E-01

0 2 1 0. 1. * 0 2 1 0. 1.

3.89583038656E-01 1.00000000000E+00 3.89583038656E-01 1.00000000000E+00

0 2 1 0. 1. * 0 2 1 0. 1.

1.92457015188E-01 1.00000000000E+00 1.92457015188E-01 1.00000000000E+00
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0 3 4 5. 1. 0 3 4 5. 1.

4.37200744760E+01 1.36229640260E-02 4.37200744760E+01 1.36229640260E-02

1.23912426520E+01 7.89351801330E-02 1.23912426520E+01 7.89351801330E-02

4.26394420060E+00 2.38338400000E-01 4.26394420060E+00 2.38338400000E-01

1.55252217900E+00 3.95268511220E-01 1.55252217900E+00 3.95268511220E-01

0 3 1 0. 1. * 0 3 1 0. 1.

9.08965624952E-01 1.00000000000E+00 9.08965624952E-01 1.00000000000E+00

0 3 1 0. 1. * 0 3 1 0. 1.

7.28690080851E-01 1.00000000000E+00 0.5 1.

0 3 1 0. 1. * 0 3 1 0. 1.

2.31872337500E-01 1.00000000000E+00 2.31872337500E-01 1.00000000000E+00

0 4 1 0. 1. * 0 4 1 0. 1.

1.10945553242E+00 1.00000000000E+00 1.10945553242E+00 1.00000000000E+00

Mn - triple ζ

25 15

0 0 8 2. 1.

2.77185001530E+05 2.28383851330E-04

4.15507698900E+04 1.77076503750E-03

9.45597001520E+03 9.20772099940E-03

2.67652064820E+03 3.74159718250E-02

8.71466875300E+02 1.21648614260E-01

3.12983064200E+02 2.88243924990E-01

1.21444540510E+02 4.10416008470E-01

4.79225988290E+01 2.13723751450E-01

0 0 4 2. 1.

3.03667231630E+02 -2.45899261400E-02

9.38814031870E+01 -1.16026080380E-01

1.48794212140E+01 5.51120596770E-01

6.28652007450E+00 5.37075607560E-01

0 0 2 2. 1.

9.48585913370E+00 -2.28892626950E-01

1.56987061580E+00 7.11961695870E-01

0 0 1 2. 1. *

7.35427311231E-01 1.00000000000E+00

0 0 1 0. 1. *

3.85155147737E-01 1.00000000000E+00

0 0 1 0. 1. *

2.24416300571E-01 1.00000000000E+00

0 2 6 6. 1.

1.44479781820E+03 2.39941364550E-03

3.42065511970E+02 1.93692868640E-02

1.09584008910E+02 9.02361089880E-02

4.07479881730E+01 2.57454678510E-01

1.61886265660E+01 4.12723519580E-01

6.54845059640E+00 2.40877000070E-01

0 2 3 6. 1.

2.53570864370E+01 -2.87071740580E-02

3.48301687820E+00 5.52081007120E-01

1.38588009060E+00 9.72269013790E-01

0 2 1 0. 1. *

4.79170174794E-01 1.00000000000E+00

0 2 1 0. 1. *

2.18219223980E-01 1.00000000000E+00

0 3 4 5. 1.
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5.65631891190E+01 1.15432452945E-02

1.62787347110E+01 7.02998459872E-02

5.69642739140E+00 2.24507708213E-01

2.14111479420E+00 3.97030654342E-01

0 3 1 0. 1. *

7.24252926030E-01 4.19410391654E-01

0 3 1 0. 1. *

5.00606640609E-01 2.18872616727E-01

0 3 1 0. 1. *

2.73760230337E-01 1.00000000000E+00

0 4 1 0. 1. *

1.29947345344E+00 1.00000000000E+00

Mn - quadruple ζ

25 24

0 0 11 2 1

4289357.6441000 0.79360554972D-05

636361.0028500 0.62542986761D-04

143637.2756900 0.33226388724D-03

40406.3454320 0.14130009568D-02

13104.3634170 0.51560918319D-02

4705.0664255 0.16659574919D-01

1825.7125432 0.47908083403D-01

753.33816229 0.11994903752

326.47253285 0.24550296959

147.10300670 0.35822739571

67.987226869 0.28295764442

0 0 4 2 1

1300.7266717 0.76025154141D-02

402.72027544 0.74365109808D-01

154.38971348 0.33780474819

66.443384613 0.62779331746

0 0 1 2 1

30.975316006 1.0000000

0 0 1 2 1

14.222980890 1.0000000

0 0 1 0 1

6.7598265074 1.0000000

0 0 1 0 1

2.9087083287 1.0000000

0 0 1 0 1 *

1.37120483174E+00 1.00000000000E+00

0 0 1 0 1 *

4.77660656030E-01 1.00000000000E+00

0 0 1 0 1 *

2.30145155128E-01 1.00000000000E+00

0 2 9 6 1

6483.2629658 0.20479778890D-03

1556.7134859 0.17525750185D-02

509.73925460 0.95798802458D-02

195.28408089 0.38681362983D-01

82.542547525 0.11832401588

37.212076731 0.26168459627

17.425804462 0.38400628821

8.3691376962 0.29704166759
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3.9409000444 0.78263290323D-01

0 2 5 6 1

57.202741010 -0.47749099800D-02

20.090935947 -0.22989729915D-01

3.9357553763 0.23197065881

1.8181984012 0.48435204043

0.81881535281 0.39159479004

0 2 1 0 1 *

1.36815980903E+00 1.00000000000E+00

0 2 1 0 1 *

8.95778742822E-01 1.00000000000E+00

0 2 1 0 1 *

4.73529149363E-01 1.00000000000E+00

0 2 1 0 1 *

2.51002092777E-01 1.00000000000E+00

0 3 6 5 1

200.40254535 0.89549560240D-03

59.898225773 0.76257630942D-02

22.810570167 0.34523224226D-01

9.5874142097 0.10552676975

4.2933710910 0.22575377683

1.9537618373 0.32766533667

0 3 1 0 1 *

1.50805880472E+00 1.00000000000E+00

0 3 1 0 1 *

9.96546435407E-01 1.00000000000E+00

0 3 1 0 1 *

4.65264229785E-01 1.00000000000E+00

0 3 1 0 1 *

2.61516158539E-01 1.00000000000E+00

0 4 1 0 1

4.3530000 1.0000000

0 4 1 0 1 *

1.32367190727E+00 1.00000000000E+00

0 4 1 0 1 *

3.82840001610E-01 1.00000000000E+00

0 5 1 0 1 *

1.74914727246E+00 1.00000000000E+00

Fe - triple ζ Fe - triple ζ - mod

26 15 26 15

0 0 8 2. 1. 0 0 8 2. 1.

3.00784846370E+05 2.28062730960E-04 3.00784846370E+05 2.28062730960E-04

4.50889705570E+04 1.76817887610E-03 4.50889705570E+04 1.76817887610E-03

1.02625163170E+04 9.19270834900E-03 1.02625163170E+04 9.19270834900E-03

2.90528972930E+03 3.73554958070E-02 2.90528972930E+03 3.73554958070E-02

9.46114871370E+02 1.21511084260E-01 9.46114871370E+02 1.21511084260E-01

3.39878328940E+02 2.88188814680E-01 3.39878328940E+02 2.88188814680E-01

1.31944255880E+02 4.11266126770E-01 1.31944255880E+02 4.11266126770E-01

5.21114940770E+01 2.15185835730E-01 5.21114940770E+01 2.15185835730E-01

0 0 4 2. 1. 0 0 4 2. 1.

3.29488392670E+02 -2.47452164770E-02 3.29488392670E+02 -2.47452164770E-02

1.01923327390E+02 -1.16830890500E-01 1.01923327390E+02 -1.16830890500E-01

1.62404627450E+01 5.52936211360E-01 1.62404627450E+01 5.52936211360E-01

6.88406758010E+00 5.36016401820E-01 6.88406758010E+00 5.36016401820E-01

36



0 0 2 2. 1. 0 0 2 2. 1.

1.04706937820E+01 -2.29127085770E-01 1.04706937820E+01 -2.29127085770E-01

1.73600396480E+00 7.11593199840E-01 1.73600396480E+00 7.11593199840E-01

0 0 1 2. 1. * 0 0 1 2. 1.

8.20350892376E-01 1.00000000000E+00 1.70 1.

0 0 1 0. 1. * 0 0 1 0. 1.

4.05524877387E-01 1.00000000000E+00 4.05524877387E-01 1.00000000000E+00

0 0 1 0. 1. * 0 0 1 0. 1.

2.21093686651E-01 1.00000000000E+00 2.21093686651E-01 1.00000000000E+00

0 2 6 6. 1. 0 2 6 6. 1.

1.58539599700E+03 2.37939601790E-03 1.58539599700E+03 2.37939601790E-03

3.75380064990E+02 1.92531547550E-02 3.75380064990E+02 1.92531547550E-02

1.20318165010E+02 9.00218365360E-02 1.20318165010E+02 9.00218365360E-02

4.47887490310E+01 2.57981723560E-01 4.47887490310E+01 2.57981723560E-01

1.78292785840E+01 4.14926497440E-01 1.78292785840E+01 4.14926497440E-01

7.22471537860E+00 2.42074747840E-01 7.22471537860E+00 2.42074747840E-01

0 2 3 6. 1. 0 2 3 6. 1.

2.81432197560E+01 -2.90417551520E-02 2.81432197560E+01 -2.90417551520E-02

3.87432414120E+00 5.53122603430E-01 3.87432414120E+00 5.53122603430E-01

1.54107522810E+00 9.67711368420E-01 1.54107522810E+00 9.67711368420E-01

0 2 1 0. 1. * 0 2 1 0. 1.

5.47919702750E-01 1.00000000000E+00 5.47919702750E-01 1.00000000000E+00

0 2 1 0. 1. * 0 2 1 0. 1.

1.91780686138E-01 1.00000000000E+00 1.91780686138E-01 1.00000000000E+00

0 3 4 6. 1. 0 3 4 6. 1.

6.19966750340E+01 1.19719722550E-02 6.19966750340E+01 1.19719722550E-02

1.78737325520E+01 7.32101354100E-02 1.78737325520E+01 7.32101354100E-02

6.27447829340E+00 2.31030943140E-01 6.27447829340E+00 2.31030943140E-01

2.35523371750E+00 3.99107064940E-01 2.35523371750E+00 3.99107064940E-01

0 3 1 0. 1. * 0 3 1 0. 1.

8.29342770495E-01 1.00000000000E+00 8.29342770495E-01 4.13915897650E-01

0 3 1 0. 1. * 0 3 1 0. 1.

5.58837167875E-01 1.00000000000E+00 2.80713827067E-01 1.00000000000E+00

0 3 1 0. 1. * 0 3 1 0. 1.

2.80713827067E-01 1.00000000000E+00 0.25 1.

0 4 1 0. 1. * 0 4 1 0. 1.

1.55480311474E+00 1.00000000000E+00 1.55480311474E+00 1.00000000000E+00

Co - triple ζ

27 15

0 0 8 2. 1.

3.25817015530E+05 2.25684624840E-04

4.88396364530E+04 1.74993975330E-03

1.11149373070E+04 9.10031340970E-03

3.14616036420E+03 3.69962568370E-02

1.02443784650E+03 1.20442696210E-01

3.68025088160E+02 2.85987316490E-01

1.42912292050E+02 4.09083120040E-01

5.64826492090E+01 2.15001457390E-01

0 0 4 2. 1.

3.56402983180E+02 -2.47670596780E-02

1.10311652150E+02 -1.17021391340E-01

1.76596348340E+01 5.52155222000E-01

7.50590304790E+00 5.32468770600E-01

0 0 2 2. 1.
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1.15018071760E+01 -2.29424700770E-01

1.90819946060E+00 7.11809335140E-01

0 0 1 2. 1. *

2.72235165909E+00 1.00000000000E+00

0 0 1 0. 1. *

7.61625798315E-01 1.00000000000E+00

0 0 1 0. 1. *

9.03326995733E-02 1.00000000000E+00

0 2 6 6. 1.

1.73113691440E+03 2.39057676850E-03

4.09917504380E+02 1.93829999670E-02

1.31456485780E+02 9.09054485090E-02

4.89874397140E+01 2.61466815770E-01

1.95370789920E+01 4.21572645700E-01

7.92872816340E+00 2.45718135570E-01

0 2 3 6. 1.

3.10760175840E+01 -2.94380699730E-02

4.28351806970E+00 5.56155681680E-01

1.70229215630E+00 9.67721950640E-01

0 2 1 0. 1. *

7.06469692018E-01 1.00000000000E+00

0 2 1 0. 1. *

5.68350508120E-01 1.00000000000E+00

0 3 4 7. 1.

6.81407452390E+01 1.19838453600E-02

1.96852410190E+01 7.36885404750E-02

6.93221288250E+00 2.30854967790E-01

2.60251256940E+00 3.92810592250E-01

0 3 1 0. 1. *

9.03734406634E-01 1.00000000000E+00

0 3 1 0. 1. *

4.25767161884E-01 1.00000000000E+00

0 3 1 0. 1. *

2.75045857572E-01 1.00000000000E+00

0 4 1 0. 1. *

1.87029415727E+00 1.00000000000E+00

Co - quadruple ζ

27 24

0 0 11 2 1

4658206.5032000 0.86609506454D-05

697560.8745300 0.67336300186D-04

158759.8712400 0.35399044899D-03

44969.0993790 0.14926384309D-02

14670.7142470 0.54053095095D-02

5295.8947250 0.17335233605D-01

2065.0581167 0.49486641301D-01

855.90627750 0.12289351961

372.48747255 0.24903230028

168.50576608 0.35838320259

78.128761566 0.27777974150

0 0 4 2 1

1534.5149885 0.74464372833D-02

475.52976096 0.72993601986D-01

182.54836839 0.33243104986
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78.916467177 0.61900490005

0 0 1 2 1

35.500865522 1.0000000

0 0 1 2 1

16.790414486 1.0000000

0 0 1 0 1

8.0240232510 1.0000000

0 0 1 0 1

3.4571682964 1.0000000

0 0 1 0 1

1.6599835391 1.0000000

0 0 1 0 1

0.75380022453 1.0000000

0 0 1 0 1 *

4.28798523787E-01 1.00000000000E+00

0 0 1 0 1 *

1.59998028373E-01 1.00000000000E+00

0 2 9 6 1

8425.4331352 0.17491775490D-03

1995.8758452 0.15378901702D-02

647.76765681 0.85752453448D-02

246.88261214 0.35295266911D-01

104.00952246 0.11050007672

46.827478138 0.25160924538

21.934444535 0.38209003019

10.540499528 0.30947119879

4.9820419385 0.87436873012D-01

0 2 5 6 1

69.270787130 -0.61172424428D-02

24.583977935 -0.29655043898D-01

4.8562258878 0.29163333190

2.2480916102 0.60629408335

1.0114285977 0.49057440018

0 2 1 0 1 *

8.31203945073E-01 1.00000000000E+00

0 2 1 0 1 *

6.56155471369E-01 1.00000000000E+00

0 2 1 0 1 *

2.14050754160E-01 1.00000000000E+00

0 3 6 7 1

237.58450966 0.97593282671D-03

71.086896302 0.83432571945D-02

27.119080683 0.37958471100D-01

11.448239054 0.11522936171

5.1391806672 0.23843467913

2.3323492099 0.33205699955

0 3 1 0 1

1.0338662062 1.

0 3 1 0 1 *

7.55474382938E-01 1.00000000000E+00

0 3 1 0 1 *

3.82471277591E-01 1.00000000000E+00

0 3 1 0 1 *

2.86571541093E-01 1.00000000000E+00

0 4 1 0 1

5.9750000 1.0000000
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0 4 1 0 1

1.9030000 1.0000000

0 4 1 0 1 *

6.17282432138E-01 1.00000000000E+00

0 5 1 0 1 *

2.49891040037E+00 1.00000000000E+00

Ni - triple ζ Ni - triple ζ - mod

28 15 28 13

0 0 8 2. 1. 0 0 8 2. 1.

3.51535729350E+05 2.25293868840E-04 3.51535729350E+05 2.25293868840E-04

5.26958092830E+04 1.74686162230E-03 5.26958092830E+04 1.74686162230E-03

1.19924682930E+04 9.08499921360E-03 1.19924682930E+04 9.08499921360E-03

3.39457766890E+03 3.69407484470E-02 3.39457766890E+03 3.69407484470E-02

1.10535945850E+03 1.20328199500E-01 1.10535945850E+03 1.20328199500E-01

3.97146777690E+02 2.85967150570E-01 3.97146777690E+02 2.85967150570E-01

1.54275429740E+02 4.09830201960E-01 1.54275429740E+02 4.09830201960E-01

6.10187237800E+01 2.16206428510E-01 6.10187237800E+01 2.16206428510E-01

0 0 4 2. 1. 0 0 4 2. 1.

3.84455597390E+02 -2.46512792680E-02 3.84455597390E+02 -2.46512792680E-02

1.19048791990E+02 -1.16585052770E-01 1.19048791990E+02 -1.16585052770E-01

1.91370122230E+01 5.48641266760E-01 1.91370122230E+01 5.48641266760E-01

8.15267185620E+00 5.26400511220E-01 8.15267185620E+00 5.26400511220E-01

0 0 2 2. 1. 0 0 2 2. 1.

1.25794086420E+01 -2.27978842930E-01 1.25794086420E+01 -2.27978842930E-01

2.08708660810E+00 7.07037382150E-01 2.08708660810E+00 7.07037382150E-01

0 0 1 2. 1. * 0 1 1 2. 1.

4.13070286139E+00 1.00000000000E+00 1.9 1. 1.

0 0 1 0. 1. * 0 1 1 0. 1.

8.57355806521E-01 1.00000000000E+00 8.57355806521E-01 1. 1.

0 0 1 0. 1. * 0 1 1 0. 1.

1.92795025905E-01 1.00000000000E+00 1.92795025905E-01 1. 1.

0 2 6 6. 1. 0 2 6 6. 1.

1.88309074860E+03 2.37482584430E-03 1.88309074860E+03 2.37482584430E-03

4.45951553200E+02 1.92894571720E-02 4.45951553200E+02 1.92894571720E-02

1.43084308150E+02 9.07182115070E-02 1.43084308150E+02 9.07182115070E-02

5.33729207220E+01 2.61814141170E-01 5.33729207220E+01 2.61814141170E-01

2.13219193570E+01 4.23091498320E-01 2.13219193570E+01 4.23091498320E-01

8.66435619940E+00 2.46416860150E-01 8.66435619940E+00 2.46416860150E-01

0 2 3 6. 1. 0 2 3 6. 1.

3.41442552110E+01 -2.96771291630E-02 3.41442552110E+01 -2.96771291630E-02

4.71224559210E+00 5.56168240960E-01 4.71224559210E+00 5.56168240960E-01

1.87092318450E+00 9.63577664600E-01 1.87092318450E+00 9.63577664600E-01

0 2 1 0. 1. *

6.79923475521E-01 1.00000000000E+00

0 2 1 0. 1. *

1.56834370548E-01 1.00000000000E+00

0 3 4 8. 1. 0 3 4 8. 1.

7.45916034650E+01 1.20774546720E-02 7.45916034650E+01 1.20774546720E-02

2.15906327520E+01 7.46372621540E-02 2.15906327520E+01 7.46372621540E-02

7.62461425800E+00 2.32367755020E-01 7.62461425800E+00 2.32367755020E-01

2.86322067620E+00 3.90426516800E-01 2.86322067620E+00 3.90426516800E-01

0 3 1 0. 1. * 0 3 1 0. 1.

1.00790128764E+00 1.00000000000E+00 1.00790128764E+00 1.00000000000E+00

0 3 1 0. 1. * 0 3 1 0. 1.
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6.39433655247E-01 1.00000000000E+00 6.39433655247E-01 1.00000000000E+00

0 3 1 0. 1. * 0 3 1 0. 1.

3.00360431319E-01 1.00000000000E+00 3.00360431319E-01 1.00000000000E+00

0 4 1 0. 1. * 0 4 1 0. 1.

2.16004241173E+00 1.00000000000E+00 2.16004241173E+00 1.00000000000E+00

Cu - triple ζ Cu - triple ζ - mod

29 15 29 8

0 0 8 2. 1. 0 0 8 2. 1.

3.77518799230E+05 2.28117661280E-04 3.98000000000E+05 2.27000000000E-04

5.65899843110E+04 1.76880359310E-03 5.66700000000E+04 1.92900000000E-03

1.28787117060E+04 9.19934602270E-03 1.20100000000E+04 1.11400000000E-02

3.64537521430E+03 3.74110164340E-02 3.13900000000E+03 5.01300000000E-02

1.18700729450E+03 1.21898737370E-01 9.47200000000E+02 1.70310000000E-01

4.26464219020E+02 2.89839007140E-01 3.27680000000E+02 3.69300000000E-01

1.65706601640E+02 4.15318721740E-01 1.28390000000E+02 4.03000000000E-01

6.55989427070E+01 2.19057992870E-01 5.36300000000E+01 1.43700000000E-01

0 0 4 2. 1. 0 1 6 8. 1.

4.14412658110E+02 -2.46825250530E-02 1.02200000000E+03 -4.870E-03 8.500E-03

1.28320560390E+02 -1.17168274060E-01 2.38900000000E+02 -6.740E-02 6.063E-02

2.06220897500E+01 5.53013159410E-01 8.00000000000E+01 -1.242E-01 2.118E-01

8.78212260450E+00 5.22427186090E-01 3.18600000000E+01 2.466E-01 3.907E-01

0 0 2 2. 1. 1.33300000000E+01 6.720E-01 3.964E-01

1.37413720060E+01 -2.27360618210E-01 4.44200000000E+00 2.890E-01 2.610E-01

2.24312468330E+00 7.17612108730E-01 0 1 4 8. 1.

0 0 1 1. 1. * 5.47000000000E+01 1.190E-02 -2.880E-02

9.62573851032E-01 1.00000000000E+00 2.32600000000E+01 -1.460E-01 -7.410E-02

0 0 1 0. 1. * 9.92000000000E+00 -7.500E-01 1.820E-01

5.02580555763E-01 1.00000000000E+00 4.01300000000E+00 1.031E+00 1.280E+00

0 0 1 0. 1. * 0 1 1 1. 1. *

1.71670424002E-01 1.00000000000E+00 1.61549411866E+00 1. 1.

0 2 6 6. 1. 0 1 1 0. 1. *

2.03475966920E+03 2.35248222980E-03 6.50276993901E-01 1. 1.

4.81904681060E+02 1.91340707510E-02 0 1 1 0. 1. *

1.54674829630E+02 9.01711052780E-02 1.61119802401E-01 1. 1.

5.77405769690E+01 2.60632847350E-01 0 3 4 10. 1.

2.30990528110E+01 4.20934857700E-01 4.85400000000E+01 3.10000000000E-02

9.38824785910E+00 2.43446151210E-01 1.35500000000E+01 1.62000000000E-01

0 2 3 6. 1. 4.52000000000E+00 3.78000000000E-01

3.75961712100E+01 -2.89910945300E-02 1.47000000000E+00 4.59000000000E-01

5.12406908100E+00 5.49190838310E-01 0 3 1 0. 1. *

2.01199960850E+00 9.37933304880E-01 3.89705071297E-01 1.00000000000E+00

0 2 1 0. 1. *

7.24830098379E-01 1.00000000000E+00

0 2 1 0. 1. *

1.94161012380E-01 1.00000000000E+00

0 3 4 10. 1.

7.41294606370E+01 1.43632166760E-02

2.13598425870E+01 8.66281770960E-02

7.49952405370E+00 2.56314305410E-01

2.76013941690E+00 4.03740623680E-01

0 3 1 0. 1. *

1.06696876154E+00 1.00000000000E+00

0 3 1 0. 1. *

8.36071589357E-01 1.00000000000E+00
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0 3 1 0. 1. *

2.57419273107E-01 1.00000000000E+00

0 4 1 0. 1. *

2.22306915419E+00 1.00000000000E+00

Zn - triple ζ Zn - triple ζ - mod

30 16 30 13

0 0 8 2. 1. 0 0 8 2. 1.

4.05924310280E+05 2.24420174830E-04 4.05924310280E+05 2.24420174830E-04

6.08469557350E+04 1.74020866260E-03 6.08469557350E+04 1.74020866260E-03

1.38473430920E+04 9.05133395650E-03 1.38473430920E+04 9.05133395650E-03

3.91961585510E+03 3.68173414450E-02 3.91961585510E+03 3.68173414450E-02

1.27635941670E+03 1.20048502560E-01 1.27635941670E+03 1.20048502560E-01

4.58672544350E+02 2.85760576210E-01 4.58672544350E+02 2.85760576210E-01

1.78287252460E+02 4.10874620620E-01 1.78287252460E+02 4.10874620620E-01

7.06121928370E+01 2.18169624560E-01 7.06121928370E+01 2.18169624560E-01

0 0 4 2. 1. 0 0 4 2. 1.

4.43880779500E+02 -2.49342749840E-02 4.43880779500E+02 -2.49342749840E-02

1.37558752670E+02 -1.18179557660E-01 1.37558752670E+02 -1.18179557660E-01

2.22680834790E+01 5.53673184680E-01 2.22680834790E+01 5.53673184680E-01

9.52173106060E+00 5.26289349360E-01 9.52173106060E+00 5.26289349360E-01

0 0 2 2. 1. 0 0 2 2. 1.

1.48741140650E+01 -2.29299552540E-01 1.48741140650E+01 -2.29299552540E-01

2.46475176120E+00 7.11354847420E-01 2.46475176120E+00 7.11354847420E-01

0 0 1 2. 1. * 0 1 1 2. 1.

1.07660711961E+00 1.00000000000E+00 1.6 1. 1.

0 0 1 0. 1. * 0 1 1 0. 1.

7.59936967391E-01 1.00000000000E+00 7.59936967391E-01 1.00000000000E+00 1.

0 0 1 0. 1. * 0 1 1 0. 1.

1.34083220467E-01 1.00000000000E+00 1.34083220467E-01 1.00000000000E+00 1.

0 2 6 6. 1. 0 2 6 6. 1.

2.20535085340E+03 2.33562404480E-03 2.20535085340E+03 2.33562404480E-03

5.22353006990E+02 1.90310226340E-02 5.22353006990E+02 1.90310226340E-02

1.67730555420E+02 8.99557586750E-02 1.67730555420E+02 8.99557586750E-02

6.26700453730E+01 2.61132486310E-01 6.26700453730E+01 2.61132486310E-01

2.51097494560E+01 4.23484481730E-01 2.51097494560E+01 4.23484481730E-01

1.02251426810E+01 2.46189268850E-01 1.02251426810E+01 2.46189268850E-01

0 2 3 6. 1. 0 2 3 6. 1.

4.07134425210E+01 -3.00296675920E-02 4.07134425210E+01 -3.00296675920E-02

5.62470906960E+00 5.55752548640E-01 5.62470906960E+00 5.55752548640E-01

2.22799491160E+00 9.55810134420E-01 2.22799491160E+00 9.55810134420E-01

0 2 1 0. 1. *

7.67793092003E-01 1.00000000000E+00

0 2 1 0. 1. *

5.53471381172E-01 1.00000000000E+00

0 2 1 0. 1. *

1.63881759413E-01 1.00000000000E+00

0 3 4 10. 1. 0 3 4 10. 1.

8.85543153110E+01 1.27281700150E-02 8.85543153110E+01 1.27281700150E-02

2.57215255570E+01 7.93944998430E-02 2.57215255570E+01 7.93944998430E-02

9.12783676240E+00 2.44915068050E-01 9.12783676240E+00 2.44915068050E-01

3.43123640640E+00 4.03905264790E-01 3.43123640640E+00 4.03905264790E-01

0 3 1 0. 1. * 0 3 1 0. 1.

1.22403302850E+00 1.00000000000E+00 1.22403302850E+00 1.00000000000E+00

0 3 1 0. 1. * 0 3 1 0. 1.
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4.52228523894E-01 1.00000000000E+00 4.52228523894E-01 1.00000000000E+00

0 3 1 0. 1. * 0 3 1 0. 1.

1.88864754578E-01 1.00000000000E+00 1.88864754578E-01 1.00000000000E+00

0 4 1 0. 1. * 0 4 1 0. 1.

2.60217014872E+00 1.00000000000E+00 2.60217014872E+00 1.00000000000E+00

Zn - quadruple ζ

30 25

0 0 11 2 1

5742307.1507000 0.86864381562D-05

861450.7879000 0.67364668570D-04

196346.0586600 0.35349715135D-03

55682.8707370 0.14884153943D-02

18183.9023940 0.53840916617D-02

6569.6448019 0.17252738209D-01

2563.5613276 0.49238679132D-01

1063.1147176 0.12235812174

462.89771078 0.24835390245

209.52821049 0.35830632832

97.240787991 0.27880259960

0 0 4 2 1

1929.2689992 0.83077002177D-02

598.07122307 0.81882590163D-01

229.69667336 0.37588060221

99.416819228 0.71067260445

0 0 1 2 1

44.241101421 1.0000000

0 0 1 2 1

21.194367113 1.0000000

0 0 1 0 1

10.158731597 1.0000000

0 0 1 0 1

4.3746176158 1.0000000

0 0 1 0 1

2.0901489071 1.0000000

0 0 1 0 1 *

9.59621063781E-01 1.00000000000E+00

0 0 1 0 1 *

3.30202931230E-01 1.00000000000E+00

0 0 1 0 1 *

1.76572210034E-01 1.00000000000E+00

0 2 9 6 1

10690.4451070 0.17142867222D-03

2532.3159340 0.15088012830D-02

821.94295003 0.84368777910D-02

313.42757800 0.34898103208D-01

132.18314247 0.10993617353

59.620554387 0.25207277070

28.019488868 0.38325657524

13.511704850 0.30787091255

6.4053711253 0.86411696761D-01

0 2 5 6 1

89.981131918 -0.96262847843D-02

32.241767106 -0.47509407258D-01

6.3809448581 0.45834100431
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2.9477928353 0.94473799128

1.3200854955 0.75923464871

0 2 1 0 1 *

1. 1.

0 2 1 0 1 *

8.50011386106E-01 1.00000000000E+00

0 2 1 0 1 *

0.3 1.

0 2 1 0 1 *

1.54630798107E-01 1.00000000000E+00

0 3 6 10 1

305.22298937 0.27359792434D-02

91.468273202 0.23585229776D-01

34.986985968 0.10858422440

14.849415187 0.32843594226

6.6858545707 0.66180235634

3.0309412620 0.89165339320

0 3 1 0 1 *

1.17444930445E+00 1.00000000000E+00

0 3 1 0 1 *

0.6 1.

0 3 1 0 1 *

0.4 1.

0 3 1 0 1 *

2.09255044622E-01 1.00000000000E+00

0 4 1 0 1

8.0200000 1.0000000

0 4 1 0 1

2.6140000 1.0000000

0 4 1 0 1 *

8.29986512749E-01 1.00000000000E+00

0 5 1 0 1 *

3.61717895240E+00 1.00000000000E+00

Ga - triple ζ Ga - triple ζ - mod

31 16 31 17

0 0 8 2 1 0 0 8 2 1

435548.6625400 0.23646329650D-03 435548.6625400 0.23646329650D-03

65289.5890310 0.18335271776D-02 65289.5890310 0.18335271776D-02

14858.7842560 0.95371863081D-02 14858.7842560 0.95371863081D-02

4205.9734729 0.38803412468D-01 4205.9734729 0.38803412468D-01

1369.6416431 0.12661604848 1369.6416431 0.12661604848

492.30348905 0.30175310292 492.30348905 0.30175310292

191.41923233 0.43543934218 191.41923233 0.43543934218

75.840558665 0.23282363780 75.840558665 0.23282363780

0 0 4 2 1 0 0 4 2 1

474.30810613 -0.26743707958D-01 474.30810613 -0.26743707958D-01

147.10297560 -0.12654657542 147.10297560 -0.12654657542

23.982599435 0.58840346839 23.982599435 0.58840346839

10.298230094 0.56324271589 10.298230094 0.56324271589

0 0 2 2 1 0 0 2 2 1

16.050381430 -0.24516439508 16.050381430 -0.24516439508

2.6988468784 0.74578049593 2.6988468784 0.74578049593

0 0 1 2 1 * 0 0 1 2 1

1.19037990995E+00 1.00000000000E+00 1.19037990995E+00 1.00000000000E+00
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0 0 1 0 1 * 0 0 1 0 1

6.16564253310E-01 1.00000000000E+00 6.16564253310E-01 1.00000000000E+00

0 0 1 0 1

0.3 1.

0 0 1 0 1 * 0 0 1 0 1

1.54361520209E-01 1.00000000000E+00 1.54361520209E-01 1.00000000000E+00

0 2 6 6 1 0 2 6 6 1

2432.0171070 0.22434065928D-02 2432.0171070 0.22434065928D-02

576.12049582 0.18342265336D-01 576.12049582 0.18342265336D-01

185.11584354 0.87279697167D-01 185.11584354 0.87279697167D-01

69.246572556 0.25684868351 69.246572556 0.25684868351

27.818107777 0.42398378107 27.818107777 0.42398378107

11.420229938 0.25701340043 11.420229938 0.25701340043

0 2 3 6 1 0 2 3 6 1

42.819661530 -0.19326519119D-01 42.819661530 -0.19326519119D-01

6.3885901000 0.31571386917 6.3885901000 0.31571386917

2.6698993326 0.57617792822 2.6698993326 0.57617792822

0 2 1 1 1 * 0 2 1 1 1

1.06018400680E+00 1.00000000000E+00 1.06018400680E+00 1.00000000000E+00

0 2 1 0 1 * 0 2 1 0 1

5.97745330763E-01 1.00000000000E+00 5.97745330763E-01 1.00000000000E+00

0 2 1 0 1 * 0 2 1 0 1

1.59345047474E-01 1.00000000000E+00 1.59345047474E-01 1.00000000000E+00

0 3 5 10 1 0 3 5 10 1

103.92331829 0.11464613652D-01 103.92331829 0.11464613652D-01

30.371094389 0.73625747383D-01 30.371094389 0.73625747383D-01

10.872078097 0.23505107382 10.872078097 0.23505107382

4.1549137954 0.40318563513 4.1549137954 0.40318563513

1.5345659145 0.40824748152 1.5345659145 0.40824748152

0 3 1 0 1 * 0 3 1 0 1

1.60879809916E+00 1.00000000000E+00 1.60879809916E+00 1.00000000000E+00

0 3 1 0 1 * 0 3 1 0 1

5.50843627724E-01 1.00000000000E+00 5.50843627724E-01 1.00000000000E+00

0 3 1 0 1 * 0 3 1 0 1

1.69523212205E-01 1.00000000000E+00 1.69523212205E-01 1.00000000000E+00

0 4 1 0 1 * 0 4 1 0 1

2.60392252756E+00 1.00000000000E+00 2.60392252756E+00 1.00000000000E+00

Ge - triple ζ Ge - triple ζ - mod

32 16 32 16

0 0 8 2. 1. 0 0 8 2. 1.

4.66115005920E+05 2.24872646600E-04 4.66115005920E+05 2.24872646600E-04

6.98754207620E+04 1.74354267290E-03 6.98754207620E+04 1.74354267290E-03

1.59032767160E+04 9.06914822060E-03 1.59032767160E+04 9.06914822060E-03

4.50182334530E+03 3.69061746850E-02 4.50182334530E+03 3.69061746850E-02

1.46605709240E+03 1.20501679070E-01 1.46605709240E+03 1.20501679070E-01

5.27078417280E+02 2.87486417030E-01 5.27078417280E+02 2.87486417030E-01

2.05003950740E+02 4.16223218850E-01 2.05003950740E+02 4.16223218850E-01

8.12515960650E+01 2.23978456950E-01 8.12515960650E+01 2.23978456950E-01

0 0 4 2. 1. 0 0 4 2. 1.

5.05746612820E+02 -2.51846092910E-02 5.05746612820E+02 -2.51846092910E-02

1.56965937440E+02 -1.18989297210E-01 1.56965937440E+02 -1.18989297210E-01

2.57614481760E+01 5.49301358700E-01 2.57614481760E+01 5.49301358700E-01

1.11066546870E+01 5.29393091290E-01 1.11066546870E+01 5.29393091290E-01

0 0 2 2. 1. 0 0 2 2. 1.
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1.72720591040E+01 -2.28545957280E-01 1.72720591040E+01 -2.28545957280E-01

2.94382890480E+00 6.83779303170E-01 2.94382890480E+00 6.83779303170E-01

0 0 1 2. 1. * 0 0 1 2. 1.

1.27865696000E+00 1.00000000000E+00 1.27865696000E+00 1.00000000000E+00

0 0 1 0. 1. * 0 0 1 0. 1.

3.39119160320E-01 1.00000000000E+00 3.39119160320E-01 1.00000000000E+00

0 0 1 0. 1. * 0 0 1 0. 1.

1.31627163226E-01 1.00000000000E+00 1.31627163226E-01 1.00000000000E+00

0 2 6 6. 1. 0 2 6 6. 1.

2.63393462410E+03 2.21439253100E-03 2.63393462410E+03 2.21439253100E-03

6.24001616280E+02 1.81408991410E-02 6.24001616280E+02 1.81408991410E-02

2.00585284040E+02 8.66321849220E-02 2.00585284040E+02 8.66321849220E-02

7.50970815250E+01 2.56490205920E-01 7.50970815250E+01 2.56490205920E-01

3.02143884740E+01 4.26586112620E-01 3.02143884740E+01 4.26586112620E-01

1.24400875670E+01 2.62005273130E-01 1.24400875670E+01 2.62005273130E-01

0 2 3 6. 1. 0 2 3 6. 1.

4.59813160020E+01 -2.03217676780E-02 4.59813160020E+01 -2.03217676780E-02

6.99456544160E+00 3.20137445270E-01 6.99456544160E+00 3.20137445270E-01

2.96860013270E+00 5.90510145550E-01 2.96860013270E+00 5.90510145550E-01

0 2 1 2. 1. * 0 2 1 2. 1.

1.20835020190E+00 1.00000000000E+00 1.20835020190E+00 1.00000000000E+00

0 2 1 0. 1. * 0 2 1 0. 1.

4.74440968948E-01 1.00000000000E+00 4.74440968948E-01 1.00000000000E+00

0 2 1 0. 1. * 0 2 1 0. 1.

1.67787699914E-01 1.00000000000E+00 1.67787699914E-01 1.00000000000E+00

0 3 5 10. 1. 0 3 5 10. 1.

1.19448875810E+02 1.05865445210E-02 1.19448875810E+02 1.05865445210E-02

3.50629152930E+01 6.96012809450E-02 3.50629152930E+01 6.96012809450E-02

1.26369245290E+01 2.28070352870E-01 1.26369245290E+01 2.28070352870E-01

4.88886729220E+00 4.03010672200E-01 4.88886729220E+00 4.03010672200E-01

1.84531953920E+00 4.13048470150E-01 1.84531953920E+00 4.13048470150E-01

0 3 1 0. 1. * 0 3 1 0. 1.

1.99591025098E+00 1.00000000000E+00 6.59011400517E-01 1.00000000000E+00

0 3 1 0. 1. * 0 3 1 0. 1.

6.59011400517E-01 1.00000000000E+00 0.35492132 1.

0 3 1 0. 1. * 0 3 1 0. 1.

1.61065170150E-01 1.00000000000E+00 1.61065170150E-01 1.00000000000E+00

0 4 1 0. 1. * 0 4 1 0. 1.

2.83623731395E-01 1.00000000000E+00 2.83623731395E-01 1.00000000000E+00

Ge - quadruple ζ(one s added**)

32 25

0 0 11 2.0 1.0

7233056.0346000 0.76638751457D-05

1082886.1731000 0.59603601369D-04

246481.4695900 0.31319088031D-03

69862.4269550 0.13194051561D-02

22815.8096620 0.47736099191D-02

8246.5369297 0.15319250467D-01

3219.9367257 0.43900870673D-01

1336.5743706 0.11028573632

582.87737501 0.22912630489

264.59511360 0.34779259246

123.77823320 0.29968722223

0 0 4 2.0 1.0
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2311.1055804 0.75033084731D-02

716.27089868 0.74778386626D-01

275.45330910 0.35092882302

118.93292565 0.72055989686

0 0 1 2.0 1.0

58.435699085 1.0000000

0 0 1 2.0 1.0

26.261575973 1.0000000

0 0 1 0.0 1.0

12.664880671 1.0000000

0 0 1 0.0 1.0

5.7269548505 1.0000000

0 0 1 0.0 1.0

2.7555023203 1.0000000

0 0 1 0.0 1.0

1.2432886754 1.0000000

0 0 1 0.0 1.0 *

6.09412279021E-01 1.00000000000E+00

0 0 1 0.0 1.0 *

1.95548301909E-01 1.00000000000E+00

0 0 1 0.0 1.0 **

0.09 1.

0 2 9 6.0 1.0

16555.7110740 0.10199370391D-03

3914.9903745 0.90504190546D-03

1269.4766518 0.51558490762D-02

484.35437789 0.22010335708D-01

204.64985822 0.73434798827D-01

92.791032094 0.18608955294

44.055060255 0.33330981945

21.601319931 0.36229776246

10.732169233 0.17765186263

0 2 4 6.0 1.0

8.0343224115 0.31484763263

4.5613438333 0.38737744790

3.1794882223 0.50034353638

0.92612041457 0.22656707948

0 2 2 2.0 1.0

100.88933962 -0.11146182144

36.640254741 -0.52324324314

0 2 1 0.0 1.0

1.7977040907 1.0000000

0 2 1 0.0 1.0 *

9.09921700010E-01 1.00000000000E+00

0 2 1 0.0 1.0 *

4.14457345952E-01 1.00000000000E+00

0 2 1 0.0 1.0 *

1.35441466557E-01 1.00000000000E+00

0 3 7 10 1.0

420.99565921 0.78212192196D-03

126.36209818 0.69560123831D-02

48.661473548 0.33712188323D-01

20.880325527 0.10717291194

9.5418229355 0.23161030141

4.4353653868 0.33390954301

2.0285421942 0.33720676378
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0 3 1 0 1.0 *

7.84734435140E-01 1.00000000000E+00

0 3 1 0 1.0 *

6.08906904885E-01 1.00000000000E+00

0 3 1 0 1.0 *

3.09325861217E-01 1.00000000000E+00

0 4 1 0 1.0 *

5.36350774877E-01 1.00000000000E+00

0 4 1 0 1.0 *

2.14097848679E-01 1.00000000000E+00

0 5 1 0 1.0 *

4.41702281401E-01 1.00000000000E+00

As - triple ζ

33 16

0 0 8 2. 1.

4.98032421580E+05 2.27401969000E-04

7.46568687430E+04 1.76328164130E-03

1.69909600040E+04 9.17280403810E-03

4.80962003210E+03 3.73378293440E-02

1.56628870550E+03 1.21995361170E-01

5.63213604990E+02 2.91374753240E-01

2.19111799780E+02 4.23263514790E-01

8.68660610300E+01 2.29214642780E-01

0 0 4 2. 1.

5.38195124790E+02 -2.52541972970E-02

1.67148502240E+02 -1.19154611150E-01

2.76055171590E+01 5.46284959800E-01

1.19478585210E+01 5.30015209760E-01

0 0 2 2. 1.

1.85380231330E+01 -2.34791881360E-01

3.20189857390E+00 6.91670534280E-01

0 0 1 2. 1. *

1.45403251228E+00 1.00000000000E+00

0 0 1 0. 1. *

6.22974277547E-01 1.00000000000E+00

0 0 1 0. 1. *

2.03491176095E-01 1.00000000000E+00

0 2 6 6. 1.

2.67894215460E+03 2.33189552870E-03

6.34617658400E+02 1.90421499770E-02

2.03939676060E+02 9.02297449130E-02

7.63238903690E+01 2.61690376930E-01

3.06641249430E+01 4.18571681550E-01

1.25050567320E+01 2.34478301900E-01

0 2 4 6. 1.

4.92562295490E+01 -2.12355398700E-02

7.72748914660E+00 3.04702066680E-01

3.54104934760E+00 5.28883731070E-01

1.69855855010E+00 3.72722509550E-01

0 2 1 3. 1. *

7.23074504430E-01 1.00000000000E+00

0 2 1 0. 1. *

3.20532535387E-01 1.00000000000E+00

0 2 1 0. 1. *
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1.17101493690E-01 1.00000000000E+00

0 3 5 10. 1.

1.35332893050E+02 9.92911441060E-03

3.98602127440E+01 6.65688434960E-02

1.44464283590E+01 2.22757683070E-01

5.64329003560E+00 4.03092243820E-01

2.16681886230E+00 4.16716679460E-01

0 3 1 0. 1. *

6.67956264756E-01 1.00000000000E+00

0 3 1 0. 1. *

5.14071576787E-01 1.00000000000E+00

0 3 1 0. 1. *

2.49218364367E-01 1.00000000000E+00

0 4 1 0. 1. *

3.22333802755E-01 1.00000000000E+00

As - quadruple ζ

33 25

0 0 11 2. 1.

8.21748261980E+06 7.05906184220E-06

1.23050037200E+06 5.48808896110E-05

2.80225866480E+05 2.88091646980E-04

7.94825094150E+04 1.21297794640E-03

2.59637833510E+04 4.39145598800E-03

9.38140101930E+03 1.41253629610E-02

3.66049119720E+03 4.06579156180E-02

1.51823560240E+03 1.03003826330E-01

6.61800989200E+02 2.17300771010E-01

3.00586421270E+02 3.39957514120E-01

1.41111372960E+02 3.10886340770E-01

0 0 4 2. 1.

2.57708705800E+03 7.07529919800E-03

7.98078722770E+02 7.13836152560E-02

3.06575749480E+02 3.42870246340E-01

1.32275588020E+02 7.43614034130E-01

0 0 1 2. 1.

6.74487022350E+01 1.00000000000E+00

0 0 1 2. 1.

2.92091804410E+01 1.00000000000E+00

0 0 1 0. 1.

1.41565093260E+01 1.00000000000E+00

0 0 1 0. 1.

6.55615066820E+00 1.00000000000E+00

0 0 1 0. 1.

3.13928472380E+00 1.00000000000E+00

0 0 1 0. 1.

1.42946310500E+00 1.00000000000E+00

0 0 1 0. 1. *

6.77177254855E-01 1.00000000000E+00

0 0 1 0. 1. *

2.99938309105E-01 1.00000000000E+00

0 0 1 0. 1. *

1.19396264012E-01 1.00000000000E+00

0 2 10 6. 1.

2.51985042780E+04 5.47581683720E-05
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5.97256013810E+03 4.85724624520E-04

1.94191231830E+03 2.79080856250E-03

7.43593811040E+02 1.22015059620E-02

3.15638280520E+02 4.26662851380E-02

1.43968789250E+02 1.18709191410E-01

6.90686831640E+01 2.49094070230E-01

3.42543056290E+01 3.60613569030E-01

1.73717467590E+01 2.93922418320E-01

8.76345556280E+00 9.78290573660E-02

0 2 5 6. 1.

2.28490245820E+02 -2.49001407650E-03

8.63135554880E+01 -1.94825158430E-02

3.67513662670E+01 -6.14950710380E-02

8.53651494640E+00 4.72580650620E-01

4.19351285990E+00 1.02360650790E+00

0 2 1 3. 1.

2.04649804170E+00 1.00000000000E+00

0 2 1 0. 1. *

1.07203779185E+00 1.00000000000E+00

0 2 1 0. 1. *

5.90412624961E-01 1.00000000000E+00

0 2 1 0. 1. *

3.39939297171E-01 1.00000000000E+00

0 2 1 0. 1. *

1.12388419051E-01 1.00000000000E+00

0 3 7 10. 1.

4.79325996120E+02 7.17228001960E-04

1.43960648550E+02 6.44192230460E-03

5.55489092240E+01 3.17764989640E-02

2.39275810060E+01 1.02762491680E-01

1.09881941720E+01 2.27109528430E-01

5.14893562620E+00 3.34774741180E-01

2.38368108920E+00 3.41759860710E-01

0 3 1 0. 1. *

1.52041426629E+00 1.00000000000E+00

0 3 1 0. 1. *

1.19428158287E+00 1.00000000000E+00

0 3 1 0. 1. *

4.27933068275E-01 1.00000000000E+00

0 4 1 0. 1. *

9.47824275248E-01 1.00000000000E+00

0 4 1 0. 1. *

3.92943392968E-01 1.00000000000E+00

0 5 1 0. 1. *

6.59887506294E-01 1.00000000000E+00

Se - triple ζ

34 16

0 0 8 2. 1.

5.31071666960E+05 2.41089731680E-04

7.96030441170E+04 1.86964314410E-03

1.81158442400E+04 9.72716165360E-03

5.12789231940E+03 3.96047930310E-02

1.66991308390E+03 1.29488551360E-01

6.00575345270E+02 3.09594372890E-01
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2.33700212470E+02 4.51157692160E-01

9.26724439320E+01 2.45791890330E-01

0 0 4 2. 1.

5.71575136750E+02 -2.68957078810E-02

1.77636863750E+02 -1.26709893530E-01

2.95177670520E+01 5.76990017190E-01

1.28243997950E+01 5.63690754080E-01

0 0 2 2. 1.

1.98482358410E+01 -2.51324155340E-01

3.47440184860E+00 7.29054169800E-01

0 0 1 2. 1. *

1.58974829107E+00 1.00000000000E+00

0 0 1 0. 1. *

4.61736708989E-01 1.00000000000E+00

0 0 1 0. 1. *

1.81399717148E-01 1.00000000000E+00

0 2 6 6. 1.

2.81535005660E+03 2.55690268540E-03

6.66925582980E+02 2.08740269010E-02

2.14342131880E+02 9.87720962500E-02

8.02466879420E+01 2.84718212210E-01

3.22510812880E+01 4.50035849340E-01

1.31064325620E+01 2.44160910550E-01

0 2 4 6. 1.

5.33661085160E+01 -2.15584562730E-02

8.18277771950E+00 3.26623106380E-01

3.62399456720E+00 5.77404993190E-01

1.63415914010E+00 3.43013208260E-01

0 2 1 4. 1. *

7.20783886526E-01 1.00000000000E+00

0 2 1 0. 1. *

2.99622949889E-01 1.00000000000E+00

0 2 1 0. 1. *

1.03443166373E-01 1.00000000000E+00

0 3 5 10. 1.

1.51829102790E+02 9.39702769880E-03

4.48399925230E+01 6.40865039910E-02

1.63289995100E+01 2.18342380040E-01

6.43050576120E+00 4.03147896490E-01

2.50480251690E+00 4.19664914900E-01

0 3 1 0. 1. *

7.96157680621E-01 1.00000000000E+00

0 3 1 0. 1. *

5.98438540754E-01 1.00000000000E+00

0 3 1 0. 1. *

3.14576737908E-01 1.00000000000E+00

0 4 1 0. 1. *

4.02554512000E-01 1.00000000000E+00

Br - triple ζ

35 16

0 0 8 2. 1.

5.65073252560E+05 2.36603146900E-04

8.47017231790E+04 1.83483325080E-03

1.92762719000E+04 9.54658498600E-03
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5.45642845760E+03 3.88771421530E-02

1.77695035000E+03 1.27183142310E-01

6.39193982760E+02 3.04376621910E-01

2.48788239610E+02 4.44909404970E-01

9.86783054940E+01 2.43816430580E-01

0 0 4 2. 1.

6.06078245680E+02 -2.65271587090E-02

1.88455984840E+02 -1.24845848090E-01

3.14971445060E+01 5.64686835590E-01

1.37360083200E+01 5.55552685640E-01

0 0 2 2. 1.

2.12032127660E+01 -2.49409204930E-01

3.76164201780E+00 7.12131197430E-01

0 0 1 2. 1. *

1.75343977436E+00 1.00000000000E+00

0 0 1 0. 1. *

5.09089234470E-01 1.00000000000E+00

0 0 1 0. 1. *

1.94973500592E-01 1.00000000000E+00

0 2 6 6. 1.

3.01969557230E+03 2.49710497980E-03

7.15354811260E+02 2.04192675960E-02

2.29983287510E+02 9.68971483090E-02

8.61678446150E+01 2.80539012520E-01

3.46678708020E+01 4.46063904730E-01

1.41138703070E+01 2.44100739230E-01

0 2 4 6. 1.

5.70856530820E+01 -2.18559507100E-02

8.81938458400E+00 3.27070753200E-01

3.93403028720E+00 5.78552295200E-01

1.79988303840E+00 3.35709876980E-01

0 2 1 5. 1. *

7.74849635373E-01 1.00000000000E+00

0 2 1 0. 1. *

3.14209820909E-01 1.00000000000E+00

0 2 1 0. 1. *

1.13205299852E-01 1.00000000000E+00

0 3 5 10. 1.

1.68853702570E+02 8.96639819880E-03

4.99779499190E+01 6.20620593160E-02

1.82749133380E+01 2.14747323840E-01

7.24556946310E+00 4.03353367460E-01

2.85623150250E+00 4.22088130800E-01

0 3 1 0. 1. *

9.28062896006E-01 1.00000000000E+00

0 3 1 0. 1. *

7.29226503460E-01 1.00000000000E+00

0 3 1 0. 1. *

3.30559845991E-01 1.00000000000E+00

0 4 1 0. 1. *

4.22343575443E-01 1.00000000000E+00

Kr - triple ζ

36 16

0 0 8 2. 1.

6.00250975750E+05 2.37406103990E-04
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8.99766507810E+04 1.84102405390E-03

2.04768142250E+04 9.57955806990E-03

5.79615540780E+03 3.90206504880E-02

1.88759131960E+03 1.27726456280E-01

6.79114585190E+02 3.05965213000E-01

2.64382445110E+02 4.48574744370E-01

1.04883685740E+02 2.47229573270E-01

0 0 4 2. 1.

6.41473707640E+02 -2.67452798050E-02

1.99575248200E+02 -1.25711225670E-01

3.35454629540E+01 5.64837363900E-01

1.46839551440E+01 5.59727655390E-01

0 0 2 2. 1.

2.26031018600E+01 -2.52987718000E-01

4.06506829910E+00 7.09921599650E-01

0 0 1 2. 1. *

1.92219601397E+00 1.00000000000E+00

0 0 1 0. 1. *

5.33811961515E-01 1.00000000000E+00

0 0 1 0. 1. *

1.98006161430E-01 1.00000000000E+00

0 2 6 6. 1.

3.23295896140E+03 2.48856079740E-03

7.65964426940E+02 2.03790074280E-02

2.46339408100E+02 9.69771885840E-02

9.23652830410E+01 2.81999609540E-01

3.71995095510E+01 4.51162543580E-01

1.51721665340E+01 2.49171314960E-01

0 2 4 6. 1.

6.09313216980E+01 -2.21736035190E-02

9.47926006460E+00 3.28384627780E-01

4.25646863260E+00 5.81249971200E-01

1.97293137620E+00 3.28635417830E-01

0 2 1 6. 1. *

8.56378220759E-01 1.00000000000E+00

0 2 1 0. 1. *

3.42924168394E-01 1.00000000000E+00

0 2 1 0. 1. *

1.18735766352E-01 1.00000000000E+00

0 3 5 10. 1.

1.86417609040E+02 8.61202846010E-03

5.52741243450E+01 6.03944063040E-02

2.02832191200E+01 2.11813318690E-01

8.08845369760E+00 4.03662934130E-01

3.22140338530E+00 4.24028606860E-01

0 3 1 0. 1. *

1.12352780795E+00 1.00000000000E+00

0 3 1 0. 1. *

6.85749126033E-01 1.00000000000E+00

0 3 1 0. 1. *

3.59611504956E-01 1.00000000000E+00

0 4 1 0. 1. *

6.26853929226E-01 1.00000000000E+00

Kr - quadruple
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36 25

0 0 11 2 1

11713823.0080000 0.56915790360D-05

1755253.3979000 0.44214471278D-04

399717.4192400 0.23227813842D-03

113285.7926000 0.97973661050D-03

36977.2052930 0.35537627541D-02

13355.0365800 0.11468673282D-01

5210.9012988 0.33241627469D-01

2162.1137020 0.85620725674D-01

943.29291023 0.18708766876

429.20724331 0.31497583326

202.40720840 0.33406191042

0 0 4 2 1

3260.4985521 0.73091509287D-02

1011.1069716 0.74040355445D-01

392.44359273 0.35414962222

173.21702132 0.80188286115

0 0 1 2 1

96.619988467 1.0000000

0 0 1 2 1

38.158284867 1.0000000

0 0 1 0 1

18.959517570 1.0000000

0 0 1 0 1

9.2505996199 1.0000000

0 0 1 0 1

4.3486517621 1.0000000

0 0 1 0 1

2.0380324209 1.0000000

0 0 1 0 1 *

6.65036553434E-01 1.00000000000E+00

0 0 1 0 1 *

3.29132367931E-01 1.00000000000E+00

0 0 1 0 1 *

1.34171789744E-01 1.00000000000E+00

0 2 10 6 1

28609.3357670 0.60526369543D-04

6773.1236364 0.53786288403D-03

2199.8011079 0.30935356550D-02

841.50201590 0.13514318412D-01

356.92110288 0.47090086910D-01

162.71174351 0.12960370449

78.004264994 0.26607435646

38.682579997 0.36775851233

19.589158685 0.27406903542

9.7990863417 0.78773352304D-01

0 2 5 6 1

261.37786869 -0.16397212361D-02

100.09932146 -0.12034797573D-01

44.012139363 -0.34891485263D-01

10.854010739 0.25212650561

5.4351930182 0.57400781830

0 2 1 6 1

2.7062805542 1.0000000

0 2 1 0 1 *
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1.38393484069E+00 1.00000000000E+00

0 2 1 0 1 *

5.95803286434E-01 1.00000000000E+00

0 2 1 0 1 *

2.52417675094E-01 1.00000000000E+00

0 2 1 0 1 *

9.61569614696E-02 1.00000000000E+00

0 3 7 10 1

665.35057386 0.59588702935D-03

200.17995366 0.54594260457D-02

77.545085570 0.27980992479D-01

33.677854345 0.94119165910D-01

15.624928334 0.21825215619

7.4427867423 0.33739971242

3.5336073535 0.35141418853

0 3 1 0 1 *

1.54178368928E+00 2.07567189310E-01

0 3 1 0 1 *

6.29353174709E-01 1.00000000000E+00

0 3 1 0 1 *

2.47493605437E-01 1.00000000000E+00

0 4 1 0 1 *

9.55723793967E-01 1.00000000000E+00

0 4 1 0 1 *

4.12146433686E-01 1.00000000000E+00

0 5 1 0 1 *

7.39603984823E-01 1.00000000000E+00
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Castelli, I. E.; Clark, S. J.; Dal Corso, A., et al. Reproducibility in density functional

theory calculations of solids. Science 2016, 351, aad3000.

(2) Daga, L. E.; Civalleri, B.; Maschio, L. Gaussian Basis Sets for Crystalline Solids: All-

Purpose Basis Set Libraries vs System-Specific Optimizations. Journal of Chemical The-

ory and Computation 2020,

56



Appendix C

12.5 Ta-Based half Heusler-Basis Sets

Basis sets adopted for the calculations.

---Cobalt---

27 13

0 0 8 2.0 1.0

325817.01553 .22568462484E-03

48839.636453 .17499397533E-02

11114.937307 .91003134097E-02

3146.1603642 .36996256837E-01

1024.4378465 .12044269621

368.02508816 .28598731649

142.91229205 .40908312004

56.482649209 .21500145739

0 0 4 2.0 1.0

356.40298318 -.24767059678E-01

110.31165215 -.11702139134

17.659634834 .55215522200

7.5059030479 .53246877060

0 0 2 2.0 1.0

11.501807176 -.22942470077

1.9081994606 .71180933514

0 0 1 1.0 1.0

0.79396696891 1.0000000000

0 0 1 0.0 1.0

0.33 1.0000000000

0 1 1 0.0 1.0

0.14 1.0 1.0

0 2 6 6.0 1.0

1731.1369144 .23905767685E-02

409.91750438 .19382999967E-01

131.45648578 .90905448509E-01

48.987439714 .26146681577

19.537078992 .42157264570

7.9287281634 .24571813557

0 2 3 6.0 1.0

31.076017584 -.29438069973E-01

4.2835180697 .55615568168

1.7022921563 .96772195064

0 2 1 0.0 1.0

0.64202908602 1.0000000000

0 3 4 8.0 1.0

68.140745239 .11983845360E-01

19.685241019 .73688540475E-01

6.9322128825 .23085496779

2.6025125694 .39281059225

0 3 1 0.0 1.0

9.23992055019E-01 4.02034122280E-01

0 3 1 0.0 1.0

2.83380580890E-01 2.14156067430E-01

0 4 1 0.0 1.0

1.90233147324E+00 1.00000000000E+00

---Tantalum---

273 11

INPUT

13. 0 2 2 2 1 1

14.546408 1345.880647 0

7.273204 36.766806 0

9.935565 378.425301 0

4.967782 22.293091 0

6.347377 104.883956 0

3.173688 8.755848 0

2.017881 12.017961 0

3.040330 -11.728933 0

0 0 4 2.0 1.0

24.473650944 0.20590322488

18.721372549 -0.74670795514

11.500000000 3.4071363897

10.350000000 -2.8175487609

0 0 1 2.0 1.0

3.8436180089 1.0000000000

0 0 1 0.0 1.0

1.0202266016 1.0000000000

0 0 1 0.0 1.0

0.46774781869 1.0000000000

0 0 1 0.0 1.0

9.00596741452E-02 1.0000000000
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Appendix C

0 2 4 6.0 1.0

17.000000000 -0.32577305616E-01

12.008186536 0.10336287365

5.0278760583 -0.28526521696

1.1937124184 0.51790141155

0 2 1 0.0 1.0

0.57889707053 1.0000000000

0 2 1 0.0 1.0

0.27225198801 1.0000000

0 3 3 3.0 1.0

3.9738796278 -0.52799310714E-01

1.4528884813 0.18558319471

0.61042908544 0.42959071631

0 3 1 0.0 1.0

1.94462635348E-01 1.00000000000E+00

0 4 1 0.0 1.0

2.16673293845E-01 1.00000000000E+00

---Tin---

250 13

INPUT

22 0 2 4 4 2 0

17.4204140000000 279.988682000000 0

7.63115500000000 62.3778100000000 0

16.1310240000000 66.1625230000000 0

15.6280770000000 132.174396000000 0

7.32560800000000 16.3394170000000 0

6.94251900000000 32.4889590000000 0

15.5149760000000 36.3874410000000 0

15.1881600000000 54.5078410000000 0

5.45602400000000 8.69682300000000 0

5.36310500000000 12.8402080000000 0

12.2823480000000 -12.5763330000000 0

12.2721500000000 -16.5959440000000 0

0 0 4 2.0 1.0

1577.0715931 0.17042767713E-03

235.26601078 0.81467057272E-03

38.206330645 -0.39057904293E-02

13.097031765 0.53245922343

0 0 2 2.0 1.0

11.673161352 1.5435287275

5.9463871497 0.76421510041

0 0 1 0.0 1.0

1.89101828124E+00 1.00000000000E+00

0 0 1 0.0 1.0

8.80485842761E-01 1.00000000000E+00

0 0 1 0.0 1.0

1.58075912633E-01 1.00000000000E+00

0 2 3 6.0 1.0

221.55767496 0.31125177983E-03

21.084021433 0.31108097016E-01

8.7600138521 -0.27571560918

0 2 3 2.0 1.0

2.5902185134 0.45912328666

1.3409064118 0.49682867217

0.67241607517 0.18962377821

0 2 1 0.0 1.0

2.21703584625E-01 1.00000000000E+00

0 3 6 10.0 1.0

108.33210154 0.46561853277E-03

23.703936630 0.54063163067E-01

22.339843906 -0.58928768877E-01

4.0874834028 0.19588500896

1.9737354146 0.42301799185

0.90158257692 0.39252716176

0 3 1 0.0 1.0

3.65796267659E-01 1.00000000000E+00

0 3 1 0.0 1.0

1.56348742647E-01 1.00000000000E+00

0 4 1 0.0 1.0

2.72050278384E-01 1.00000000000E+00

0 4 1 0.0 1.0

9.93533608529E-01 1.00000000000E+00

---Iridium---

277 11

INPUT

17. 0 2 2 2 1 1

13.652203 732.269200 0

6.826101 26.484721 0

10.279868 299.489474 0

5.139934 26.466234 0

7.349859 124.457595 0

3.674929 14.035995 0

3.034072 21.531031 0

4.808857 -21.607597 0
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0 0 3 2.0 1.0

30.000000000 0.30797903228

27.000000000 -0.46726361781

13.961973911 0.47161003146

0 0 1 2.0 1.0

5.3956977802 1.0000000000

0 0 1 0.0 1.0

1.2149128721 1.0000000000

0 0 1 0.0 1.0

0.55885743756 1.0000000000

0 1 1 0.0 1.0

0.14097974313 1.0 1.0

0 2 4 6.0 1.0

15.902664143 -0.16290720099

14.415830698 0.23483212987

5.7597608991 -0.30305337176

1.5008913108 0.55512982069

0 2 1 0.0 1.0

0.72348035957 1.0000000000

0 3 4 7.0 1.0

8.6321692504 0.75000099949E-01

6.5898192302 -0.17326965173

1.5808379663 0.55065196913

0.71827834905 0.85273641436

0 3 1 0.0 1.0

3.04433219672E-01 1.00000000000E+00

0 3 1 0.0 1.0

1.57796987088E-01 1.00000000000E+00

0 4 1 0.0 1.0

6.04504862393E-01 1.00000000000E+00

---Rhodium---

245 12

INPUT

17. 0 2 4 4 2 0

12.194816 225.312054 0

5.405137 32.441582 0

11.280755 52.872826 0

10.927248 105.745526 0

5.090117 8.619344 0

4.851832 16.973459 0

9.136337 25.108501 0

8.964808 37.695731 0

3.643612 4.202584 0

3.636007 6.292790 0

8.616228 -9.673568 0

8.629435 -12.899847 0

0 0 2 2 1.0

17.0000000000 -0.166908031390

13.9105816940 0.342350016520

0 0 1 2 1.0

5.2481265288 1.000000000000

0 0 1 0 1.0

1.2262575928 1.000000000000

0 0 1 0 1.0

0.60 1.000000000000

0 1 1 0 1.0

0.30 1.000000000000 1.

0 2 4 6 1.0

11.7671036310 0.059494859388

6.74851330830 -0.237358534770

1.75026798340 0.490193343030

0.84321166133 0.506239337510

0 2 1 0 1.0

0.71404324000 1.000000000000

0 2 1 0 1.0

0.34365143000 1.000000000000

0 3 4 7 1.0

19.8578301360 0.006696077819

10.0613781390 -0.021981738213

2.26195464770 0.379187062360

0.97098845035 0.672899765920

0 3 1 0 1.0

0.38353699000 1.000000000000

0 3 1 0 1.0

0.15000226000 1.000000000000

0 4 1 0 1.0

1.09499000000 1.000000000000
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12.6 Ullmannites-Basis Sets

Basis sets adopted for the calculations.

---Nichel---

28 15

0 0 8 2. 1.

3.51535729350E+05 2.25293868840E-04

5.26958092830E+04 1.74686162230E-03

1.19924682930E+04 9.08499921360E-03

3.39457766890E+03 3.69407484470E-02

1.10535945850E+03 1.20328199500E-01

3.97146777690E+02 2.85967150570E-01

1.54275429740E+02 4.09830201960E-01

6.10187237800E+01 2.16206428510E-01

0 0 4 2. 1.

3.84455597390E+02 -2.46512792680E-02

1.19048791990E+02 -1.16585052770E-01

1.91370122230E+01 5.48641266760E-01

8.15267185620E+00 5.26400511220E-01

0 0 2 2. 1.

1.25794086420E+01 -2.27978842930E-01

2.08708660810E+00 7.07037382150E-01

0 0 1 2. 1.

4.13070286139E+00 1.00000000000E+00

0 0 1 0. 1.

8.57355806521E-01 1.00000000000E+00

0 0 1 0. 1.

1.92795025905E-01 1.00000000000E+00

0 2 6 6. 1.

1.88309074860E+03 2.37482584430E-03

4.45951553200E+02 1.92894571720E-02

1.43084308150E+02 9.07182115070E-02

5.33729207220E+01 2.61814141170E-01

2.13219193570E+01 4.23091498320E-01

8.66435619940E+00 2.46416860150E-01

0 2 3 6. 1.

3.41442552110E+01 -2.96771291630E-02

4.71224559210E+00 5.56168240960E-01

1.87092318450E+00 9.63577664600E-01

0 2 1 0. 1.

6.79923475521E-01 1.00000000000E+00

0 2 1 0. 1.

1.56834370548E-01 1.00000000000E+00

0 3 4 8. 1.

7.45916034650E+01 1.20774546720E-02

2.15906327520E+01 7.46372621540E-02

7.62461425800E+00 2.32367755020E-01

2.86322067620E+00 3.90426516800E-01

0 3 1 0. 1.

1.00790128764E+00 1.00000000000E+00

0 3 1 0. 1.

6.39433655247E-01 1.00000000000E+00

0 3 1 0. 1.

3.00360431319E-01 1.00000000000E+00

0 4 1 0. 1.

2.16004241173E+00 1.00000000000E+00

---Antimony---

251 16

INPUT

23. 0 2 4 4 2 0

16.330865 281.071581 0

8.556542 61.716604 0

14.470337 67.457380 0

13.816194 134.933503 0

8.424924 14.716344 0

8.092728 29.518512 0

14.886331 35.447815 0

15.146319 53.143466 0

5.908267 9.179223 0

5.594322 13.240253 0

14.444978 -15.366801 0

14.449295 -20.296138 0

0 0 4 2. 1.

1.61241999330E+03 2.85403807830E-04

2.38844520970E+02 1.33937787460E-03

2.39981188090E+01 -4.93881545740E-02

1.51931242130E+01 4.33922272540E-01
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0 0 2 2. 1.

1.17364097330E+01 9.21255199650E-01

6.52597747940E+00 7.92352802260E-01

0 0 1 0. 1.

2.06015363274E+00 1.00000000000E+00

0 0 1 0. 1.

9.87094551814E-01 1.00000000000E+00

0 0 1 0. 1.

3.06059047204E-01 1.00000000000E+00

0 0 1 0. 1.

1.38071528035E-01 1.00000000000E+00

0 2 3 6. 1.

2.15683933540E+02 2.60518232210E-04

1.63744790880E+01 7.37280001950E-02

9.72162833450E+00 -2.72300281280E-01

0 2 3 3. 1.

2.79826431540E+00 4.64726923740E-01

1.47110450330E+00 5.03642420750E-01

7.51653853010E-01 1.87066662940E-01

0 2 1 0. 1.

4.95738271502E-01 1.00000000000E+00

0 2 1 0. 1.

2.59379082132E-01 1.00000000000E+00

0 2 1 0. 1.

1.26075565322E-01 1.00000000000E+00

0 3 6 10. 1.

1.15903122530E+02 5.31409150510E-04

3.04742337200E+01 5.94111391660E-03

1.82284182390E+01 -1.05637069470E-02

4.32914566460E+00 2.03481773410E-01

2.12948184960E+00 4.27483789280E-01

9.96826366920E-01 3.85395608090E-01

0 3 1 0. 1.

4.21224760073E-01 1.00000000000E+00

0 3 1 0. 1.

1.54857004391E-01 1.00000000000E+00

0 4 1 0. 1.

1.12025841254E+00 1.00000000000E+00

0 4 1 0. 1.

2.74140727352E-01 1.00000000000E+00

---Sulphur---

16 13

0 0 7 2. 1.

6.07009281040E+04 5.46959442250E-04

9.10261068540E+03 4.22972245570E-03

2.07141660090E+03 2.17478241590E-02

5.86024768210E+02 8.51000535890E-02

1.90553950210E+02 2.47991284590E-01

6.76303842600E+01 4.67036404060E-01

2.51273069050E+01 3.64345875500E-01

0 0 3 2. 1.

1.12574630100E+02 2.16700402400E-02

3.47955542170E+01 9.36023017600E-02

6.51155562150E+00 -2.60680014220E-01

0 0 2 2. 1.

3.23990322610E+00 1.28420894350E+00

1.54771608810E+00 6.60364165840E-01

0 0 1 0. 1.

4.79267087636E-01 1.00000000000E+00

0 0 1 0. 1.

2.10561167562E-01 1.00000000000E+00

0 2 5 6. 1.

5.64367160270E+02 2.47967963170E-03

1.33426243790E+02 1.96779302500E-02

4.24682711890E+01 8.99800082580E-02

1.56165275800E+01 2.57058805750E-01

6.10939884690E+00 4.35151672920E-01

0 2 1 4. 1.

2.43785034818E+00 1.00000000000E+00

0 2 1 0. 1.

1.09182124384E+00 1.00000000000E+00

0 2 1 0. 1.

4.31410869933E-01 1.00000000000E+00

0 2 1 0. 1.

1.57376926419E-01 1.00000000000E+00

0 3 2 0. 1.

3.75600000000E+00 2.00000000000E-01

8.12000000000E-01 1.00000000000E+00

0 3 1 0. 1.

2.44218244587E-01 1.00000000000E+00

0 4 1 0. 1.

5.38814682974E-01 1.00000000000E+00
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---Selenium---

34 16

0 0 8 2. 1.

5.31071666960E+05 2.41089731680E-04

7.96030441170E+04 1.86964314410E-03

1.81158442400E+04 9.72716165360E-03

5.12789231940E+03 3.96047930310E-02

1.66991308390E+03 1.29488551360E-01

6.00575345270E+02 3.09594372890E-01

2.33700212470E+02 4.51157692160E-01

9.26724439320E+01 2.45791890330E-01

0 0 4 2. 1.

5.71575136750E+02 -2.68957078810E-02

1.77636863750E+02 -1.26709893530E-01

2.95177670520E+01 5.76990017190E-01

1.28243997950E+01 5.63690754080E-01

0 0 2 2. 1.

1.98482358410E+01 -2.51324155340E-01

3.47440184860E+00 7.29054169800E-01

0 0 1 2. 1.

1.58974829107E+00 1.00000000000E+00

0 0 1 0. 1.

4.61736708989E-01 1.00000000000E+00

0 0 1 0. 1.

1.81399717148E-01 1.00000000000E+00

0 2 6 6. 1.

2.81535005660E+03 2.55690268540E-03

6.66925582980E+02 2.08740269010E-02

2.14342131880E+02 9.87720962500E-02

8.02466879420E+01 2.84718212210E-01

3.22510812880E+01 4.50035849340E-01

1.31064325620E+01 2.44160910550E-01

0 2 4 6. 1.

5.33661085160E+01 -2.15584562730E-02

8.18277771950E+00 3.26623106380E-01

3.62399456720E+00 5.77404993190E-01

1.63415914010E+00 3.43013208260E-01

0 2 1 4. 1.

7.20783886526E-01 1.00000000000E+00

0 2 1 0. 1.

2.99622949889E-01 1.00000000000E+00

0 2 1 0. 1.

1.03443166373E-01 1.00000000000E+00

0 3 5 10. 1.

1.51829102790E+02 9.39702769880E-03

4.48399925230E+01 6.40865039910E-02

1.63289995100E+01 2.18342380040E-01

6.43050576120E+00 4.03147896490E-01

2.50480251690E+00 4.19664914900E-01

0 3 1 0. 1.

7.96157680621E-01 1.00000000000E+00

0 3 1 0. 1.

5.98438540754E-01 1.00000000000E+00

0 3 1 0. 1.

3.14576737908E-01 1.00000000000E+00

0 4 1 0. 1.

4.02554512000E-01 1.00000000000E+00

---Palladium---

246 14

INPUT

18. 0 2 2 2 2 0

11.800000 235.245962 0

5.880000 34.682650 0

10.820000 170.430396 0

5.460000 25.301872 0

9.870000 70.206324 0

4.500000 14.777436 0

13.070000 -31.401554 0

6.530000 -5.298965 0

0 0 2 2. 1.

1.80000000000E+01 -1.66053885980E-01

1.46621343080E+01 3.48999550550E-01

0 0 1 2. 1.

5.51270085981E+00 1.00000000000E+00

0 0 1 0. 1.

2.04501763798E+00 1.00000000000E+00

0 0 1 0. 1.

1.17769543373E+00 1.00000000000E+00

0 0 1 0. 1.

3.48879966389E-01 1.00000000000E+00

0 0 1 0. 1.

1.69427729703E-01 1.00000000000E+00
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0 2 4 6. 1.

1.25528993000E+01 6.17289982060E-02

7.24444963800E+00 -2.41786267530E-01

1.89059410780E+00 4.94532009150E-01

9.07371687600E-01 5.04543626260E-01

0 2 1 0. 1.

8.32687071605E-01 1.00000000000E+00

0 2 1 0. 1.

5.45343357684E-01 1.00000000000E+00

0 2 1 0. 1.

1.33096657339E-01 1.00000000000E+00

0 3 4 8. 1.

2.23574575750E+01 3.95594795460E-03

1.06825263820E+01 -1.40390116010E-02

2.48582325500E+00 2.42194767760E-01

1.07353339030E+00 4.25802832810E-01

0 3 1 0. 1.

4.40967675265E-01 1.00000000000E+00

0 3 1 0. 1.

1.53779835739E-01 1.00000000000E+00

0 4 1 0. 1.

1.21768039162E+00 1.00000000000E+00
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