
Institute of Architecture of Application Systems

University of Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Master Thesis

Definition and Evaluation of an
Onboard Vehicle API Concept

Rachit Garg

Course of Study: M.Sc. Information Technology
Specialization Embedded Systems
Engineering

Examiner: Dr. Ilche Georgievski

Supervisor: Dipl. Infom. Jens Kübler,
Vector Informatik GmbH

Commenced: May 03, 2023

Completed: November 03, 2023

Acknowledgements

The satisfaction and joy of learning technologies that have the potential to shape our future and
possibly the current time by doing is just amazing and I am grateful to get this opportunity and
want to express my gratitude to Dr. Ilche Georgievski for letting me pursue my Master Thesis at the
Institute of Architecture of Application Systems, University of Stuttgart.

The work would not have been possible without the constant support and mentoring by my supervisor
Dipl. Infom. Jens Kübler at Vector Informatik GmbH. His timely feedback and thought process
helped me not only learn new technologies, but also push myself to the limits to become a better
Software Engineer and transition into the professional world.

Finally I would like to thank the whole staff of INFOTECH for an awesome study program at the
University of Stuttgart, my fellow workmates at Vector Informatik GmbH and of course my friends
and family, who always believed in me.

3

Abstract

As the world witnesses an era of Software Defined Vehicle (SDV) and Internet of Things (IoT), the
vehicles start becoming more intelligent, bringing in more software complexity than ever. This
includes the Electrical/Electric (E/E) systems embedded inside today’s SDVs. The Electronic
Control Unit (ECU) is now capable of running software which can not only communicate with
other ECUs within the vehicle, but also to the outside world using protocols which are already
in use within the Information Technology (IT) world for a long time. This lead to the emergence
of an off-board vehicle Application Programming Interface (API) concept which allows external
devices like smartphones or servers to access vehicle information such as those of sensors and
other peripherals inside the vehicle. The Connected Vehicle Systems Alliance (COVESA) came up
with an approach of defining a catalog for vehicle signals using the Vehicle Signal Specification
(VSS) initiative. The World Wide Web Consortium (W3C) then brings this into use by defining
Vehicle Information Service Specification (VISS). But the current VISS standard, namely version
2, defines transport bindings for WebSocket, Hypertext Transfer Protocol (HTTP) and Message
Queuing Telemetry Transport (MQTT). These are well established protocols in the IT world and
also suitable for off-board use cases. But if we want to use such an API concept inside the vehicle,
so that the internal applications can also take advantage of a standardized catalog of signals and be
reused between different vehicles, we need to consider protocols already in use inside vehicles as
well. Scalable service-Oriented MiddlewarE over IP (SOME/IP) is one such example. Therefore, in
this thesis, we elaborate the concept of a vehicle API, look at related technologies in more detail.
Later, we take a look at one of the suitable candidates for an in-vehicle protocol, namely SOME/IP
and see it’s respective trade-offs. Finally, we conceptualize and realize a Vehicle API concept for
onboard usage.

4

Contents

1 Introduction 13
1.1 Context . 13
1.2 Problem Statement . 14
1.3 Methodology . 14
1.4 Document Structure . 15

2 Background Information 16
2.1 Vehicle API . 16
2.2 VSS . 17
2.3 VISS . 19
2.4 SOME/IP . 26

3 State of the Art 40

4 Design and Analysis 42
4.1 Some questions regarding SOME/IP as transport binding 42
4.2 Service Design . 42
4.3 Service Interface Versioning . 44
4.4 Request ID Generation . 45
4.5 Handling Subscriptions . 45
4.6 Serialization of VISS Requests and Responses 46
4.7 Address Resolution . 68

5 Realization 75
5.1 Components . 75
5.2 Communication Flows . 81
5.3 SOMEIPVISSClient API Flows . 87

6 Evaluation 94
6.1 Scenario . 94
6.2 Setup . 95
6.3 Measurements . 97
6.4 Results . 97

7 Conclusion and Outlook 110
7.1 Conclusion . 110
7.2 Limitations . 111
7.3 Future Work . 111

Bibliography 113

5

List of Figures

1.1 Problem Statement . 14

2.1 Components of a Vehicle API . 16
2.2 Example VSS Tree . 17
2.3 VSS Tools Workflow . 19
2.4 Relationship Between VSS and VISS . 20
2.5 VISS Read Request . 20
2.6 VISS Read Response . 21
2.7 VISS Update Request . 22
2.8 VISS Update Response . 22
2.9 VISS Subscribe Request . 22
2.10 VISS Subscribe Response . 23
2.11 VISS Unsubscribe Request . 23
2.12 VISS Unsubscribe Response . 23
2.13 VISS Subscription . 24
2.14 VISS Error Response . 25
2.15 Relationship Between SOME/IP and Automotive Ethernet 26
2.16 SOME/IP Message Format [9] . 27
2.17 SOME/IP Service Discovery (SOME/IP-SD) Message Format [10] 29
2.18 SOME/IP-SD OfferService Entry Example [10] 30
2.19 SOME/IP-SD StopOfferService Entry Example [10] 30
2.20 SOME/IP-SD FindService Entry Example [10] 30
2.21 SOME/IP-SD Subscribe Entry Example [10] . 31
2.22 SOME/IP-SD StopSubscribe Entry Example [10] 31
2.23 SOME/IP-SD SubscribeAck Entry Example [10] 31
2.24 SOME/IP-SD SubscribeNack Entry Example [10] 32
2.25 Configuration Option [10] . 32
2.26 Service Discovery Flow [10] . 33
2.27 Methods Flow [9] . 34
2.28 SOME/IP Request Message . 34
2.29 SOME/IP Success Response Message [9] . 35
2.30 SOME/IP Error Response Message [9] . 35
2.31 Events Flow [9] . 36
2.32 SOME/IP Event Notification Message [9] . 37
2.33 Fields Flow [9] . 37
2.34 Type-Length-Value (TLV) Serialization of Data Type without Length Field [9] . . 39
2.35 TLV Serialization of Data Type with Length Field [9] 39
2.36 SOME/IP Union / Variant Serialization with Metadata [9] 39

6

4.1 VISS Request using JavaScript Object Notation (JSON) Serialization 47
4.2 Example VISS Request using JSON Serialization 47
4.3 VISS Success Response using JSON Serialization 48
4.4 Example VISS Success Response using JSON Serialization 48
4.5 VISS Error using JSON Serialization . 49
4.6 Example VISS Error Response using JSON Serialization 49
4.7 VISS Subscription using JSON Serialization . 50
4.8 Example VISS Subscription using JSON Serialization 50
4.9 VISS Read Request using SOME/IP Serialization 53
4.10 VISS Read Success Response using SOME/IP Serialization 54
4.11 Example VISS Read Request using SOME/IP Serialization 55
4.12 Example VISS Read Success Response using SOME/IP Serialization 56
4.13 VISS Update Request using SOME/IP Serialization 57
4.14 VISS Update Success Response using SOME/IP Serialization 58
4.15 Example VISS Update Request using SOME/IP Serialization 58
4.16 Example VISS Update Success Response using SOME/IP Serialization 59
4.17 VISS Subscribe Request using SOME/IP Serialization 59
4.18 VISS Subscribe Success Response using SOME/IP Serialization 60
4.19 Example VISS Subscribe Request using SOME/IP Serialization 60
4.20 Example VISS Subscribe Success Response using SOME/IP Serialization 61
4.21 VISS Unsubscribe Request using SOME/IP Serialization 61
4.22 VISS Unsubscribe Success Response using SOME/IP Serialization 62
4.23 Example VISS Unsubscribe Request using SOME/IP Serialization 62
4.24 Example VISS Unsubscribe Success Response using SOME/IP Serialization . . . 63
4.25 Example VISS Subscription using SOME/IP Serialization 64
4.26 Example VISS Subscription using SOME/IP Serialization 65
4.27 VISS Error Response using SOME/IP Serialization 66
4.28 Example VISS Error Response using SOME/IP Serialization 66
4.29 Example VSS Tree with Partitioning . 68
4.30 Address Resolution Approach 1 . 70
4.31 Separate Configuration Option Per Signal . 71
4.32 Single Configuration Option for all Signals . 71
4.33 Address Resolution Approach 2 . 72
4.34 Address Resolution Approach 3 . 74

5.1 SDMessageProcessorInterface . 75
5.2 TcpMessageProcessorInterface . 76
5.3 SOMEIPVISSServer Component Diagram . 79
5.4 SOMEIPVISSClient Component Diagram . 80
5.5 SOME/IP-SD Message Reception on Client . 81
5.6 SOME/IP Response / Notification Reception on Client 82
5.7 SOME/IP Request Message Transmission from Client 83
5.8 SOME/IP Request Message Reception on Server 85
5.9 SOME/IP Positive Response Transmission from Server 85
5.10 SOME/IP Negative Response Transmission from Server 86
5.11 SOME/IP Notification Transmission from Server 87
5.12 SOMEIPVISSClient Read Flow . 90

7

5.13 SOMEIPVISSClient Update Flow . 91
5.14 SOMEIPVISSClient Subscribe Flow . 92
5.15 SOMEIPVISSClient Unsubscribe Flow . 93

6.1 Model Car . 94
6.2 Deployment Diagram . 95
6.3 Bandwidth Usage in No Service Discovery Case 98
6.4 Protocol Hierarchy in No Service Discovery Case 99
6.5 Packet Lengths in No Service Discovery Case 99
6.6 Bandwidth Usage in Dynamic Service Discovery Case with Repetition Time = 1s 100
6.7 Protocol Hierarchy in Dynamic Service Discovery Case with Repetition Time = 1s 100
6.8 Packet Lengths in Dynamic Service Discovery Case with Repetition Time = 1s . 100
6.9 Request / Response for No Service Discovery Case 102
6.10 Request / Response for Dynamic Service Discovery Case 103
6.11 Notifications for No Service Discovery Case . 104
6.12 Notifications for Dynamic Service Discovery Case 105
6.13 Request Payload . 106
6.14 Response Payload . 106
6.15 Subscription Payload . 107
6.16 OfferService Payload for Server 1 . 107
6.17 OfferService Payload for Server 2 . 108
6.18 OfferService Messages for Server 1 when message is fragmented 109
6.19 OfferService Messages for Server 1 when message is fragmented (Continued) . . 109

8

List of Tables

2.1 Message Types [9] . 28
2.2 Allowed Return Codes . 28
2.3 Wire Types and their Corresponding Data Types [9] 38

4.1 VSS Datatype to SOME/IP Union Type ID mapping 52
4.2 Comparison Between the Payload Sizes of Messages Based on Serialization Type 67
4.3 SOME/IP Method ID to VISS Operation Mapping 69

6.1 Host Machine Specifications . 95
6.2 Virtual Machine (VM) Specifications . 96
6.3 Server 1 Configuration . 96
6.4 Server 2 Configuration . 96
6.5 Client Configuration . 97
6.6 Response Statistics for No Service Discovery Case 98
6.7 Execution Statistics for Dynamic Service Discovery Case with Repetition Time = 1s 99
6.8 Expected and Captured Packets for No and Dynamic Service Discovery Case . . 102
6.9 Average Deltas for OfferService Messages Using Maximum Configuration Options

Length . 108

9

Listings

2.1 Mirrors.vspec . 18
2.2 Main.vspec . 18
2.3 Overlay.vspec . 18
2.4 VISS Read Request Example [49] . 21
2.5 VISS Read Success Response Example [49] . 21
2.6 VISS Update Request Example [49] . 22
2.7 VISS Update Success Response Example [49] 22
2.8 VISS Subscribe Request Example [49] . 23
2.9 VISS Subscribe Success Response Example [49] 23
2.10 VISS Unsubscribe Request Example [49] . 24
2.11 VISS Unsubscribe Success Response Example [49] 24
2.12 VISS Subscription Notification Example [49] 25
2.13 VISS Error Response Example [49] . 26

10

Acronyms

ADAXO Automotive Data Access - Extended and Open. 40

API Application Programming Interface. 4

ASCII American Standard Code for Information Interchange. 32

AUTOSAR AUTomotive Open System ARchitecture. 41

BOM Byte Order Mark. 46

CAN Controller Area Network. 41

COVESA The Connected Vehicle Systems Alliance. 4

DDS Data Distribution Service. 17

DoIP Diagnostics over Internet Protocol. 13

dp data point. 51

E/E Electrical/Electric. 4

ECU Electronic Control Unit. 4

ExVe Extended Vehicle. 40

HTTP Hypertext Transfer Protocol. 4

HTTPS Hypertext Transfer Protocol Secure. 19

IAM Identity Access Management. 111

IDL Interface Definition Language. 19

IoT Internet of Things. 4

IP Internet Protocol. 13

IPC Inter Process Communication. 41

IT Information Technology. 4

IVI In-Vehicle Infotainment. 40

JSON JavaScript Object Notation. 7

JWT JSON Web Token. 20

LIN Local Interconnect Network. 41

LSB Least Significant Byte. 27

11

Acronyms

MOST Media Oriented System Transport. 41

MQTT Message Queuing Telemetry Transport. 4

MSB Most Significant Byte. 27

NEVADA Neutral Extended Vehicle for Advanced Data Access. 40

OEM Original Equipment Manufacturer. 40

OSI Open Systems Interconnection. 26

OTA Over-The-Air. 13

SD Service Discovery. 33

SDV Software Defined Vehicle. 4

SOA Service Oriented Architecture. 26

SOME/IP Scalable service-Oriented MiddlewarE over IP. 4

SOME/IP-TP SOME/IP Transport Protocol. 71

SOME/IP-SD SOME/IP Service Discovery. 6

SOVD Service Oriented Vehicle Diagnostics. 13

TCP Transmission Control Protocol. 75

TLV Type-Length-Value. 6

TTL Time To Live. 29

UDP User Datagram Protocol. 28

UTF-8 Unicode Transformation Format-8. 46

V2X Vehicle-to-everything. 13

VDA Verband der Automobilindustrie. 40

VHAL Vehicle Hardware Abstraction Layer. 41

VIN Vehicle Identification Number. 18

VISS Vehicle Information Service Specification. 4

VM Virtual Machine. 9

VSC Vehicle Service Catalog. 16

VSS Vehicle Signal Specification. 4

W3C The World Wide Web Consortium. 4

YAML Yet Another Markup Language. 18

12

1 Introduction

1.1 Context

Recently, the mobility sector has seen a number of technological innovations. A vehicle which
was seen just as a means of reaching from point A to B, is now focusing on how to provide more
immersive experience to it’s passengers. Many of these innovations are possible due to a number of
factors like electrification, expansion of IoT, and advancements in vehicle ECU architectures. This
has lead to software becoming one of the prominent defining features inside vehicles and hence,
turning them into SDVs.

Therefore, new technologies and standards are emerging in this field. These include Over-The-Air
(OTA) updates, Vehicle-to-everything (V2X) [12], Vehicle API [5], and Service Oriented Vehicle
Diagnostics (SOVD) [66] to name a few. These open up opportunities for the vehicles to not only
consume services, but to also provide them. This means that we need to somehow connect classical
Embedded Systems concepts with the technologies found in the IT world like connected and scalable
cloud systems. This is a challenging task as we need to introduce connected features, keeping in
mind not only the security aspects, but also the functional safety aspects [62].

These factors also started to influence the communication inside the vehicle, Making the software
within ECUs increasingly complex. Hence, we see a shift from domain to zonal architecture [31],
enabled with the help of Automotive Ethernet [53], consisting of Internet Protocol (IP) based
application layer protocols such as SOME/IP [9] and Diagnostics over Internet Protocol (DoIP)
[46].

The focus of this master thesis is on one such technology which aims to be a part of these Software
Defined Connected Vehicles, namely the Vehicle API. A Vehicle API is typically built of three
components: A stable data catalog accessible to applications, an operationalization in form of
methods to access the data, and a network binding enabling programmed clients to obtain the
data via a defined endpoint. By this, a Vehicle API enables interoperability and portability across
applications and platforms. VSS solves the issue of defining a standardized vehicle catalog, whereas
VISS solves the issue of operationalization and network bindings that the vehicle API will work with.
With the VISS [13] [49] an open service implementation for VSS [25], three network bindings -
HTTP, MQTT and WebSocket – have been defined. The network bindings are suitable for off-board
applications, but it is unclear if they fulfill onboard application requirements.

13

1 Introduction

1.2 Problem Statement

This master thesis aims to evaluate the state of the art in existing Vehicle API solutions with respect
to automotive requirements such as performance and usability. Based on this evaluation, a suitable
concept is created, implemented and evaluated. Focal points are network binding solutions and
operationalization of a Vehicle API. Hence we conceptualize, implement and evaluate a concept to
map VISS around one such tried and tested automotive protocol, i.e. SOME/IP and look at it’s
various trade-offs. Figure 1.1 shows the problem statement in an intuitive fashion.

Figure 1.1: Problem Statement

1.3 Methodology

The process of the thesis was split into the following steps:

1. Orientation:

• Understanding the concept of a Vehicle API and related concepts.

• Analyzing the recent developments in the field of Vehicle API and related technologies.

• Analyzing VSS, VISS, SOME/IP and SOME/IP-SD specifications.

2. Conceptualization:

• Framing design questions.

• Designing and comparing concepts for service discovery.

• Designing and comparing concepts for representing methods and data to be mapped
from VISS to SOME/IP.

• Understanding whether the approaches are feasible.

3. Realization:

• Choosing one or more feasible design concepts.

• Choosing a set of libraries and frameworks to implement them.

14

1.4 Document Structure

• Choosing or developing (in case they do not exist) the classes and interfaces needed to
implement VISS clients and servers.

• Integrating the chosen and developed classes and interfaces according to client and
server implementation.

• Implementing a public API to access the developed client’s methods.

4. Assessment:

• Designing a test scenario.

• Implementing tests to verify client’s methods and Measure various parameters to
evaluate the overall solution.

1.4 Document Structure

• Chapter 2 gives a brief overview on the important technical topics mentioned throughout
this report.

• Chapter 3 highlights the recent developments and the related technologies being used and
under discussion at the time of writing this report.

• Chapter 4 discusses and gives an analysis on the design decisions and the various trade-offs
that need to be considered.

• Chapter 5 provides the necessary information on the implementation details.

• Chapter 6 provides insight on the evaluation results including benchmarks and the testing
methodology used.

• Chapter 7 summarizes the findings, gives an outlook and concludes the thesis.

15

2 Background Information

This chapter describes the technologies which are relevant to understand the work done as part of
this thesis. first, we describe what a Vehicle API is and it’s related components which include a
catalog, operationalization and a network binding. Later, we describe their concrete forms namely
VSS, VISS, Automotive Ethernet along with SOME/IP.

2.1 Vehicle API

According to [5] and [22], A vehicle API provides ways to access and manipulate data inside
a vehicle without having to deal with the complexity of how this data is actually generated or
stored, making it easier for application programmers without the domain or vehicle model specific
knowledge to leverage this data into their applications. Figure 2.1 shows the components of a
Vehicle API.

Figure 2.1: Components of a Vehicle API

The main idea is to offer a standardized catalog of vehicle signals or services, provide ways to
access these via an operationalization and a network binding technology to enable the transport.

2.1.1 Catalog

A catalog can be of either services and signals. A service catalog, for example, Vehicle Service
Catalog (VSC) [24] [23] aims to model complex interfaces consisting of custom data types and
methods. This could include vehicle specific API definition. On the other hand, VSS focuses on
defining a standard catalog for vehicle signals. Signals are data representing a specific aspect of
vehicle state, for example, speed.

16

2.2 VSS

2.1.2 Operationalization

It describes conceptual access methods for data retrieval. It handles the (behavioral) semantics
of these methods. These semantics could be for example, retrieving data (pull or push based) or
handling concurrent access semantics. VISS is one such example of an operationalization for
VSS.

2.1.3 Network Binding

Network Binding refers here to the application layer protocol used for the transport of an opera-
tionalization. Examples of network bindings include HTTP [58], WebSockets [55] MQTT [60],
SOME/IP and Data Distribution Service (DDS) [61].

2.2 VSS

Vehicle

Cabin

Door

Row1
Row2

Left Right Left Right

IsLocked IsLocked IsLockedIsLocked

VehicleIdentification

VIN

Speed
Sensor

Branch

Attribute

Actuator

Figure 2.2: Example VSS Tree

VSS [25] by COVESA defines a syntax and a standardized catalog of vehicle signals. It defines
a simple type model with a set of primitive types, arrays and in version 4 structs that one may
utilize to define vehicle specific signals. Type constraints and physical units can be modeled. They
may be attributed to be Sensors, Attributes and Actuators. Figure 2.2 shows an example VSS tree
constructed by taking signals from the API catalog of the Mahindra model from [29].

The signals can be structured in a tree format and the nodes are divided into:

17

2 Background Information

1. Branches: These are nodes which do not contain any value but are needed to reach
the leaf nodes. By defining branches on is able to structure and instantiate the
defined signals multiple times. Example: “Vehicle.Cabin.Door.Row1.Right” and
‘‘Vehicle.Cabin.Door.Row2.Right”

2. Attributes: These are leaf nodes containing constant values like Vehicle Identification
Number (VIN). Example : “Vehicle.VehicleIdentification.VIN”.

3. Sensors: These are leaf nodes containing values which change and can be read like speed.
Example “Vehicle.Speed”.

4. Actuators: These are leaf nodes containing values which can be read and written to. Example:
setting the “Vehicle.Cabin.Door.Row1.Left.IsLocked” from “True” to “False”.

For specifying various vehicle signals, vspec [18] files are used. It is an abstraction Data Definition
Language written in Yet Another Markup Language (YAML) syntax. It has support for features
such as includes [20] and overlays [21].

Includes allow to import signal specifications from another vspec files into the desired vspec
file and also reuse same signals under different branches using prefixes. Listing 2.2 shows an
example of includes where a Main.vspec file includes another vspec file named Mirrors.vspec.
Let us assume this file contains a boolean signal named isHeatingOn (as shown in Listing 2.1)
which indicates whether heating is on (true) or off (false) for a particular rear view mirror. Now
in the Main.vspec isHeatingOn is prefixed with both the prefixes (Vehicle.Body.Mirrors.Left
and Vehicle.Body.Mirrors.Right) and it now contains Vehicle.Body.Mirrors.Left.IsHeatingOn and
Vehicle.Body.Mirrors.Right.IsHeatingOn signals.

IsHeatingOn

datatype: boolean

type: sensor

description: Rear view mirror's heating status

Listing 2.1: Mirrors.vspec

#include Mirrors.vspec Vehicle.Body.Mirrors.Left

#include Mirrors.vspec Vehicle.Body.Mirrors.Right

Listing 2.2: Main.vspec

Overlays provide a way to modify the standard catalog. Consider the Figure 2.2. If we want to add a
another signal to it named Vehicle.TestBranch.TestSignal. We specify a new branch as TestBranch
and a new signal under TestBranch named TestSignal as shown in Overlay.vspec (see Listing 2.3).
Multiple overlays can be added as well. This file is then given to the tool for processing vspec files
indicating that this is an overlay.

Vehicle:

type: branch

Vehicle.TestBranch

type: branch

Vehicle.TestBranch.TestSignal

18

2.3 VISS

type: actuator

description: "Test signal"

datatype: uint32

Listing 2.3: Overlay.vspec

2.2.1 Tools and Workflow

[27] is a repository which hosts tools, that convert the VSS tree description given in one or multiple
vspec files into Interface Definition Language (IDL) specifications such as Franca [33], Protobuf
[34], etc. as well as other formats such as YAML, TTL [68], JSON [17], and GraphQL [35] which
can later be used to generate code for interfaces or schema for storing the data internally.

.vspec file

.vspec file

One or more vspec files

vspec parser
IDL or data

representation
Schema

Code generator

Generated code

Generated code

Generated
Code

FrancaIDL, ProtoBuf, JSON, etc.

One or more code files in a supported
programming language such as C++, Java, Python, etc.

Figure 2.3: VSS Tools Workflow

2.3 VISS

VISS is an operationalization for accessing VSS signals. For accessing a protected resource, a flow
inspired from [37] is used. VISS version 2 defines transport for the following network bindings:

• Secure WebSockets [55]

• Hypertext Transfer Protocol Secure (HTTPS) [63]

• MQTT [60]

Figure 2.4 shows how VISS is related to VSS. There are two specifications, namely Core [13],
which describes the general terms and methodology including service interfaces and their functions
on a higher level, and Transport [49], which defines the specific implementations with respect to
specific network bindings.

19

2 Background Information

Figure 2.4: Relationship Between VSS and VISS

An implementation for a VISS version 2 server and client is available at [71]. At the time of writing
it is implemented in Go programming language.

2.3.1 Methods

Implementing Read and Update methods is mandatory. Subscribe, Unsubscribe and Subscription
are optional. Timestamp when used as a field is specified according to [45] as stated in [13]. Only
when they are used inside tokens, they must adhere to Unix time. It defines the following methods:

1. Read: Used to read one or more signals given a mandatory path, an optional filter field and
an optional authorization field in the request. The mandatory path field specifies the path of
the signal to be read in hierarchical format as specified by VSS. The path can use either ‘.’ or
‘/’ as delimiters. The filter field provides additional information to gain more control on what
is returned in the response. One can restrict the data retrieved both on a content or temporal
basis through the use of filers. Further, read request allows to retrieve some runtime metadata
of the VISS services that are utilizing filters. [13] specifies various types of filters in detail.
For reading a protected signal, an additional authorization field is supplied with a JSON Web
Token (JWT) token [47].

The success response consists of a timestamp at which the server executed the request, the
data which in turn contains the path and the data point structure which contains the actual
value of the signal along with a timestamp denoting the time of capture of the value. The value
irrespective of the actual datatype is serialized as a string. The read request and response
message structures are depicted in Figure 2.5 and Figure 2.6 respectively.

Figure 2.5: VISS Read Request

20

2.3 VISS

Figure 2.6: VISS Read Response

Listing 2.4 and Listing 2.5 show examples of a Read request and a success response
respectively.

{

"path":"Cabin.Door.Row2.Left.IsLocked"

}

Listing 2.4: VISS Read Request Example [49]

{

"data": {

"path":"Cabin.Door.Row2.Left.IsLocked",

"dp": {"value": "true",

"ts": "2022-11-09T08:41:00Z"

}

},

"ts": "2022-11-09T08:50:00Z"

}

Listing 2.5: VISS Read Success Response Example [49]

2. Update: Used to update or write a value to a signal at a given path. For the request path and
value fields are mandatory. For updating a protected signal, a JWT token is provided in an
additional authorization field. Figure 2.7 depicts the message structure for an update request.

A success update response contains the timestamp of execution of request by the server.
Figure 2.8 depicts the structure of success update response.

21

2 Background Information

Figure 2.7: VISS Update Request

Figure 2.8: VISS Update Response

Listing 2.6 and Listing 2.7 show examples of an Update request and a success response
respectively.

{

"path":"Cabin.Door.Row2.Left.IsLocked",

"value": false

}

Listing 2.6: VISS Update Request Example [49]

{

"ts": "2020-04-15T13:37:00Z"

}

Listing 2.7: VISS Update Success Response Example [49]

3. Subscribe: Used to subscribe to one or more signals given a mandatory path and a mandatory
filter field (if not given, then event issued whenever a new value is published according
to [49]). For subscribing to a protected signal, a JWT token is provided in an additional
authorization field. Figure 2.9 denotes the message structure for a subscribe request.

The success response contains a subscriptionId field which identifies event messages of a
particular subscription and timestamp denoting the starting time of a subscription. Figure 2.10
denotes the message structure for a subscribe response.

Figure 2.9: VISS Subscribe Request

22

2.3 VISS

Figure 2.10: VISS Subscribe Response

Listing 2.8 and Listing 2.9 show examples of an Subscribe request and a success response
respectively. Filter field is not given as we assume events being published whenever a new
value is supplied to the server.

{

"path":"Cabin.Door.Row2.Left.IsLocked"

}

Listing 2.8: VISS Subscribe Request Example [49]

{

"subscriptionId": "45678",

"ts": "2020-04-15T13:37:00Z"

}

Listing 2.9: VISS Subscribe Success Response Example [49]

4. Unsubscribe: Used to unsubscribe from an existing subscription. The request contains the
mandatory subscriptionId of a subscription. The success response contains the subscriptionId
given in the request and a timestamp of the time the subscription is terminated. Figure 2.11
denotes the message structure for an unsubscribe request and Figure 2.12 denotes the message
structure for an unsubscribe response.

Figure 2.11: VISS Unsubscribe Request

Figure 2.12: VISS Unsubscribe Response

Listing 2.10 and Listing 2.11 show examples of an Unsubscribe request and a success response
respectively.

23

2 Background Information

{

"subscriptionId": "45678"

}

Listing 2.10: VISS Unsubscribe Request Example [49]

{

"subscriptionId": "45678",

"ts": "2020-04-15T13:37:00Z"

}

Listing 2.11: VISS Unsubscribe Success Response Example [49]

5. Subscription: Asynchronous notification message from the server containing the signal, the
client has subscribed to. The format is almost the same as a success update response but
contains an additional subscriptionId identifying the subscription the event message is for.
Figure 2.13 denotes the message structure for a subscription message.

Figure 2.13: VISS Subscription

24

2.3 VISS

Listing 2.12 shows an example of a Subscription notification.

{

"subscriptionId": "45678",

"data": {

"path":"Cabin.Door.Row2.Left.IsLocked",

"dp": {"value": "true",

"ts": "2022-11-09T08:41:00Z"

}

},

"ts": "2022-11-09T08:53:00Z"

}

Listing 2.12: VISS Subscription Notification Example [49]

2.3.2 Error Response

In case of an unsuccessful response from server, an error message is used which describes the error.
It contains the a number identifying an error, a brief reason and an associated message explaining
the error in detail. Apart from these fields, a timestamp is provided which tells the time at which the
error occurs on the server. A subscriptionId field is used in case of on error response to subscribe
and unsubscribe request. The number, reason and message are described in Status Codes section in
[49]. The status codes stated in [58] are to be supported by the client.

Figure 2.14: VISS Error Response

25

2 Background Information

Listing 2.13 shows an example of an Error response.

{

"error": {

"number": 406,

"reason": "not_acceptable",

"message": "The server is unable to generate content that is acceptable to the client"

},

"ts": "2022-11-09T08:53:00Z"

}

Listing 2.13: VISS Error Response Example [49]

2.4 SOME/IP

Figure 2.15: Relationship Between SOME/IP and Automotive Ethernet

SOME/IP is an application layer (Open Systems Interconnection (OSI) Layer 7) [16] [15] protocol
on the Automotive Ethernet [53] based on Service Oriented Architecture (SOA) principles. It
consists of service discovery mechanisms [10], a service oriented protocol layer and a data type
system with a serialization scheme [9]. It provides a push and pull based communication by the use
of service primitives of methods, fields and events.

A service is identified by the following parameters:

• Service ID: It should be a unique ID, identifying each service.

• Service Instance ID: When multiple instances of the same service are offered, they can be
differentiated using the Service Instance ID.

• Major Version: Used to denote the offered service instance’s major version.

• Minor Version: Used to denote the offered service instance’s minor version.

26

2.4 SOME/IP

2.4.1 Message Format

Figure 2.16 shows how the SOME/IP message with header and payload looks like. Fields from
Message ID till Return Code constitute the SOME/IP header and the rest is payload. The important
fields are described below.

• Message ID: This 32 bit field is made up of 16 bits of Service ID (Most Significant Byte
(MSB)) and 16 bits of Method ID (Least Significant Byte (LSB)). The Method ID differs for
each methods (0x0000 to 0x7fff) and events (0x8000 to 0x8fff) of a service.

• Length: This 32 bit field denotes the length in bytes including Request ID to all the way up
to the end of the message payload.

• Request ID: This field allows both client and server to uniquely identify requests of the same
method. This 32 bit field consists of 16 bits client ID (MSB) and 16 bits session ID (LSB).

• Protocol Version: 8 bits denoting the version of SOME/IP header format being used.

• Interface Version: 8 bits denoting the service interface version in use.

• Message Type: 8 bits denoting SOME/IP message’s type. Some of the relevant message
types are described in Table 2.1. For more message types refer to Table 4.4 in [9].

• Return Code: 8 bits denoting success if 0x00 and if anything else, denotes error. It is used
in requests as well but set to 0x00. Some relevant return codes are described in [9].

• Payload: This contains the actual content or as the name suggests, the payload of a SOME/IP
message.

Figure 2.16: SOME/IP Message Format [9]

27

2 Background Information

Message Type Meaning
0x00 Request Message expecting response
0x01 Request Message expecting no response
0x80 Success Response Message
0x81 Error Response Message
0x02 Request for Notification expecting no response

Table 2.1: Message Types [9]

Message Type Allowed Return Codes
0x00 0x00 (E_OK)
0x01 0x00 (E_OK)
0x02 0x00 (E_OK)
0x80 Refer to Table 4.11 in [9]
0x81 Refer to Table 4.11 in [9] (anything except 0x00)

Table 2.2: Allowed Return Codes

2.4.2 Service Discovery

SOME/IP-SD [10] makes the discovery of services by the clients on runtime as well as subscription
mechanisms possible. The constraint is that SOME/IP-SD messages are only to be sent over User
Datagram Protocol (UDP). The discovery of services happen over a multicast group (in case of
dynamic service discovery, otherwise no need of service discovery if static configuration is used).
We first describe the message format used, then the accompanying entries and options and finally
the flow of service discovery at the end. This standard also specifies event and field subscription
semantics. Figure 2.17 shows the structure of a SOME/IP-SD message. SOME/IP-SD messages
set some values of the generic SOME/IP Protocol header fixed per SOME/IP-SD standard. The
Service ID is set to 0xFFFF and the Method ID to 0x8100. The Message Type field is set to 0x02.
Both the Protocol Version and Interface Version fields shall be set to 0x01.

28

2.4 SOME/IP

Figure 2.17: SOME/IP-SD Message Format [10]

Entries and Options

The SOME/IP-SD payload contains an array of entries and an array of options. The entries indicate
the intent of the client or server on SOME/IP-SD level and it is divided into two types:

• Service entry: indicates entries of types 0x00 (FindService), 0x01 (OfferService) and 0x01
(StopOfferService). The OfferService entry (Figure 2.18) is used to announce the service
instance by a server offering that specific service. StopOfferService entry (Figure 2.19) is
used indicate that a service offered by a service instance is not valid anymore by setting the
Time To Live (TTL) field to 0. In a service entry, one can reference options present in the
options array from 2 range of indexes given by Ind_1 and Ind_2 respectively and the number
of options referenced from both ranges are indicated by n1 and n2 fields respectively. In this
case, one option is referenced from index 0 indicated by n1 and Ind_1 respectively. For range
starting from index Ind_2, no options are referenced as n2 is 0. The service ID is 0x1000,
Instance ID is 0x0001 and the Major and Minor version fields are 0x01 and 0 respectively.
The TTL of 3 indicates that this offer is valid for 3 seconds. FindService entry is used to find
a service instance manually Figure 2.20. A specific Instance ID can be given or 0xffff if any
Instance ID of the service is sufficient.

29

2 Background Information

Figure 2.18: SOME/IP-SD OfferService Entry Example [10]

Figure 2.19: SOME/IP-SD StopOfferService Entry Example [10]

Figure 2.20: SOME/IP-SD FindService Entry Example [10]

• Eventgroup entry: indicates entries of types 0x06 (Subscribe), 0x06 (StopSubscribeEvent-
group), 0x07 (SubscribeAck) and 0x07 (SubscribeEventgroupNack). These entries are
similar to Service entries but instead of Minor version field have a Reserved field (which is
always 0), a counter field (Cntr), which can be increment in case of parallel subscribes to the
same eventgroup by the same client and an Eventgroup ID.

Figure 2.21 and Figure 2.22 show examples of Subscribe and StopSubscribe entries for
subscribing and unsubscribing to eventgroup with ID 0x1234 which have the same type
(0x06) with the difference being that the Subscribe entry has a TTL equal to the amount of
time in seconds for which the subscription is valid (In this case 3 seconds), but StopSubscribe
has 0.

30

2.4 SOME/IP

Figure 2.21: SOME/IP-SD Subscribe Entry Example [10]

Figure 2.22: SOME/IP-SD StopSubscribe Entry Example [10]

Figure 2.23 and Figure 2.24 show examples for positive subscribe acknowledgment (Sub-
scribeAck) and negative subscribe acknowledgment (SubscribeNack) for a Subscribe entry
which is shown in Figure 2.21. The SubscribeAck and SubscribeNack have the same type
(0x07), but SubscribeAck copies the TTL from the Subscribe entry sent by a client, whereas
the SubscribeNack makes it 0 and is sent in case the subscription is unsuccessful.

Figure 2.23: SOME/IP-SD SubscribeAck Entry Example [10]

31

2 Background Information

Figure 2.24: SOME/IP-SD SubscribeNack Entry Example [10]

The entries then refer to one or more options present in the array of options. The options are used
supply additional information to supplement entries like endpoints, additional configurations, etc.
The following types of options are available under SOME/IP-SD:

• Configuration: Provides additional configuration in form of key value pairs provided in
a configuration string. This string is an array of American Standard Code for Information
Interchange (ASCII) characters, where a key value pair starts with the total the length of key,
value and and equals character ’=’ and repeats the same for multiple keys until the value 0 is
reached indicating the termination of configuration string. Figure 2.25 shows the format for
such an option. The Type field is set to 0x01 and the Reserved field is set to 0. D stands for
discardable field which is exactly 1 bit.

Figure 2.25: Configuration Option [10]

• Load Balancing: Provides information required by the client to prioritize service instances
based on priority and weight criteria similar to DNS-SRV [36] records. The type field is set
to 0x02 in this case.

• IPv4 Endpoint: Provides information on possible IPv4 unicast address and the transport
layer protocol used by a client or a server instance. The type field is set to 0x04 in this case.

• IPv6 Endpoint: Provides information on possible IPv6 unicast address and the transport
layer protocol used by a client or a server instance. The type field is set to 0x06 in this case.

• IPv4 Multicast: Provides information on possible IPv4 multicast address and the transport
layer protocol used by a client or a server instance. The type field is set to 0x14 in this case.

• IPv6 Multicast: Provides information on possible IPv6 multicast address and the transport
layer protocol used by a client or a server instance. The type field is set to 0x16 in this case.

32

2.4 SOME/IP

• IPv4 Service Discovery (SD) Endpoint: Provides information on possible IPv4 SD address
of the sender and the transport layer protocol used by it. The type field is set to 0x24 in this
case.

• IPv6 SD Endpoint: Provides information on possible IPv6 SD address of the sender and the
transport layer protocol used by it. The type field is set to 0x26 in this case.

Message Flow

Figure 2.26 shows the flow for the Service Discovery phase. The server sends cyclic SOME/IP-SD
messages with an OfferService entry over a preconfigured multicast address over UDP in case of
dynamic service discovery. In case of static configuration, clients already know the endpoint and
hence no service discovery messages are sent. The client can listen for these messages or can do an
on-demand lookup for services by sending SOME/IP-SD message with a FindService entry, and in
return it receives the OfferService entry from the server.

Figure 2.26: Service Discovery Flow [10]

2.4.3 Methods

These are remote procedures that a client can invoke. A server may or may not respond depending
on whether it is a request-response or a fire and forget method type respectively. Figure 2.27 shows
an example flow for both types of method calls.

Figure 2.28 shows structure of a request message. The Message Type is always set to 0x00 and
return code to 0x00 as well.

Figure 2.29 shows the structure of a success response message. The Message ID and Request ID
fields are the same as the request, but the Message Type field is set to 0x80 and the Return Code to
0x00.

Figure 2.30 shows the structure of an error response message. The Message ID and Request ID
fields are the same as the request, but the Message Type field is set to 0x81 and the Return Code to
one of the error codes as described in Table 4.11 in [9].

33

2 Background Information

Figure 2.27: Methods Flow [9]

Figure 2.28: SOME/IP Request Message

34

2.4 SOME/IP

Figure 2.29: SOME/IP Success Response Message [9]

Figure 2.30: SOME/IP Error Response Message [9]

2.4.4 Events

These are data which need to be transmitted by the server and all the subscribing clients receive
the data along with the event notification for the same. Figure 2.31 shows an example flow for
subscribing and unsubscribing event groups. One point to note is that, a client can only subscribe to
a whole event group and not an individual event.

35

2 Background Information

Figure 2.31: Events Flow [9]

The event notification message structure is shown in Figure 2.32. The Method ID can be set to
any value but recommended to be in the range 0x8000 to 0x8fff to be able to differentiate between
requests / responses and event notifications. In the Request ID field, the Client ID is always set to
0x00, but the session ID can be set depending on whether session handling is active or inactive
(inactive then 0x00, else increment between the range 0x1 to 0xffff depending on the use case). The
Message Type in this case is always 0x02.

36

2.4 SOME/IP

Figure 2.32: SOME/IP Event Notification Message [9]

2.4.5 Fields

These are a combination of methods and events. These are data consisting of at least one of the
three: a getter, a setter or a notifier. In case a notifier is present, the field transmits the value as an
event to all it’s subscribers whenever it is changed. The getter is a request/response method without
any value in the request and the setter has the value in the request. Field notifications use the same
message format as event notifications.

Figure 2.33: Fields Flow [9]

37

2 Background Information

2.4.6 Serialization

SOME/IP protocol [9] states the general communication protocol consisting of details about
header and payload structure, serialization of and other aspects like request response functionality.
According to the standard, basic data types supported are:

• Boolean [1 Byte]

• Floating Point Number [4 / 8 Bytes]

• Unsigned Integer [1 / 2 / 4 / 8 Bytes]

• Signed Integer [Same sizes as Unsigned Integer]

Apart from the standard types, support for more complex data types is also available. These
include:

• String (fixed and dynamic length)

• Array (fixed and dynamic length)

• Multidimensional array

• Structured Datatype (struct)

• Union /variant

• Enumeration

• Bitfield

TLV

SOME/IP standard also specifies a TLV based serialization scheme. The members of a struct can
be attached with a tag consisting of Reserved Bit, Wire Type and Data ID to allow serialization of
out of order and optional members. Figure 2.34 and Figure 2.35 show the layout for a such a tagged
member with static and dynamic lengths. R stands for Reserved Bit, Wty for Wire Type (3 bits).
The Data ID is 12 bits long followed by an optional length field depending on the Wire Type which
can be 8, 16 or 32 bits long and then finally the member.

Table 2.3 shows the wire type values and their corresponding data types. For wire types 0 to 4,
the length is preconfigured and hence is not needed separately. For types 5 to 7 the length field is
required and can be 1 byte to 4 byte depending on the type as described in Table 2.3.

Wire Type Data Type
0 - 3 8, 16, 32 and 64 bit data
4 Complex Data Type (Static Size)
5 Complex Data Type (Length Field Size = 1 Byte)
6 Complex Data Type (Length Field Size = 2 Byte)
7 Complex Data Type (Length Field Size = 4 Byte)

Table 2.3: Wire Types and their Corresponding Data Types [9]

38

2.4 SOME/IP

Figure 2.34: TLV Serialization of Data Type without Length Field [9]

Figure 2.35: TLV Serialization of Data Type with Length Field [9]

Union / Variant

SOME/IP offers the possibility to serialize unions / variants as well. This works by adding additional
metadata before the union. This metadata consists of Length field (8, 16, 32 or 0 bits) and a Type
field (8, 16 or 32 bits). The bit length for both the fields can be defined in the configuration. The
Type ID for each supported datatype has to be defined in the configuration (except 0 as it is reserved
for NULL type). Figure 2.36 shows the format for serialization of unions using the metadata.

Figure 2.36: SOME/IP Union / Variant Serialization with Metadata [9]

39

3 State of the Art

The term Vehicle API is used to define APIs ranging from those which connect a vehicle to the
cloud and to those which extract information from a vehicle, without it having to be directly involved
(like scanning VIN and license plates of a vehicle, see [6]).

When it comes to Vehicle API, SOVD [66] fulfills a similar purpose, but extends beyond just
accessing and modifying vehicle signals as it provides vehicle specific diagnostic functionalities
which also include updating the software within the ECUs. Another similar concept is VSC [23],
but it can be used to define service interfaces having methods, events and properties as well. It
acts like an IDL capable of defining Original Equipment Manufacturer (OEM) and vehicle model
specific complex data types and service interfaces. It does not aim to provide a standardized catalog
of signals like VSS but provides tools to make a vehicle model specific service catalog [5].

According to [52], a majority of these features are possible due to internet access in today’s vehicles,
especially the Built-in Connectivity. Vehicle Telematics has been one area where such technologies
have been in use, for example in motor insurance based on the usage criteria [38]. This data
collection can help the OEM improve the existing vehicle by analyzing the vast amount of driving
data, and getting to know the root cause of incidents in more detail and provide a better product and
services to it’s customers. [48] states some relevant standards and existing implementations for
Vehicle APIs concerning access to data generated by the vehicle. Standards include ISO 20077
[40] [41], ISO 20078 [42] [43] for Extended Vehicle (ExVe) methodology, and ISO 20080 [44] for
remote diagnostics.

API implementations include BMW CarData [14] based on the Neutral Extended Vehicle for
Advanced Data Access (NEVADA) [48] concept, now succeeded by the Automotive Data Access -
Extended and Open (ADAXO) [70] concept by Verband der Automobilindustrie (VDA). Mercedes
Benz also provides such APIs on it’s Meredes-Benz /developers [56] portal.

[26] lists up to date information on new VSS implementations and it’s current usage by the OEMs.
At the time of writing the following open source implementations of VSS are listed on this site:

• playground.digital.auto [28]

• Aos Edge [32]

• Eclipse Kuksa [67]

• AWS IoT Fleetwise [2]

• VISS by W3C [71]

According to [72] the use of APIs inside a vehicle is mostly visible within the In-Vehicle Infotainment
(IVI) units, allowing them to access 3rd party services on the internet. Another use is to expose
certain functionality of the vehicle to allow developers to use them while developing applications
for these specific IVI units.

40

Android Automotive OS introduced the concept of Vehicle Hardware Abstraction Layer (VHAL)
[3]. It provides vehicle signals as vehicle properties [4]. OEMs need to then implement ways to
access these signals. These can be implemented in multiple ways. For example, via bus systems
like Controller Area Network (CAN) or via SOME/IP over Automotive Ethernet. It is theoretically
possible to use VSS as well as long as these properties are accessible via VISS or any other VSS
implementation as vehicle signals over a suitable transport and interfaces required by the VHAL are
implemented.

In terms of wired networking inside a modern vehicle, according to [53], CAN, Local Interconnect
Network (LIN), Media Oriented System Transport (MOST), FlexRay, Ethernet and a few other
technologies are in use. But Ethernet is increasingly finding it’s use in many onboard applications
due to it’s higher bandwidth and a more general purpose characteristics.

According to [64], SOA is finding its usage inside vehicles due to it’s dynamic reconfigurability which
allows for greater flexibility in terms of upgrading onboard software. Application layer protocols
namely SOME/IP and DDS are specified in newer software standards used in the automotive
industry, for example, AUTomotive Open System ARchitecture (AUTOSAR) Adaptive [8].

[54] provides a comparison between MQTT, SOME/IP and DDS. It also states that currently
SOME/IP and DDS have official support in AUTOSAR, whereas MQTT does not. But in terms of
adaptation in AUTOSAR for in-vehicle communication, according to [59] and [51], SOME/IP has
currently an upper edge as compared to DDS and MQTT.

In terms of Inter Process Communication (IPC), automotive middlewares are taking zero-copy and
shared memory approaches like Eclipse Iceoryx [30].

41

4 Design and Analysis

4.1 Some questions regarding SOME/IP as transport binding

While considering SOME/IP as an alternative transport binding, we need to answer a few questions
which will influence the design of the overall solution, these include:

• How do we design the SOME/IP service? How can the Service Interfaces be versioned?

• Can the VISS based subscriptions be mapped directly on SOME/IP?

• Do we use JSON for packing requests and responses on the SOME/IP side or do we take
advantage of standard data types and serialization options provided by SOME/IP? What are
the advantages and disadvantages of using these approaches?

• What approaches can be used for address resolution? For example, there can be data points
for front left and front right doors whose addresses are Vehicle.Chassis.Front.Left.Door
and Vehicle.Chassis.Front.Right.Door. Do we store both values on a centralized server or
take advantage of the distributed nature of ECUs within a vehicle?

• What about the security aspects?

4.2 Service Design

There are three major approaches, with the help of which the services can be designed for our use
case, these are listed below:

4.2.1 Single Method for all VISS Operations

In this approach, a single SOME/IP method is used for all possible VISS operations. In this scenario
a VISS request is passed to the server to a method with a predefined method id, for example 0x0001,
and it is the responsibility of the server to check the request contents to determine which type of
operation (VISS Read, Update, etc.) corresponds to it and process it accordingly.

42

4.2 Service Design

Advantages

1. Service interface is simpler as there is only one method.

2. Signals can be distributed between ECUs as only the method signature need to be the same
between them.

3. Read and subscribe requests with filters can implemented as a part of the single method
skeleton on the server side as well, but subscription handling has to be taken care in a
dedicated way for each subscription on the server side.

Disadvantages

1. Logic of the skeleton can become complex as all possible VISS requests and responses have
to be processed in a single method.

4.2.2 Separate Method for each VISS Operation

In this approach, each VISS operation is mapped to its own SOME/IP method. This means that the
client can just call the specific operation separately for each VISS operation. For example method
id 0x0001 for VISS Read, 0x0002 for VISS Update and so on.

Advantages

1. Logic of the skeleton can be implemented flexibly as it is divided into multiple methods.

2. Signals can be distributed between ECUs as only the method signatures need to be the same
between them.

3. Read and subscribe requests with filters can implemented as method skeletons on the server
side as well, but subscription handling has to be taken care in a dedicated way for each
subscription on the server side.

Disadvantages

1. Service Interface is more complex than the previous approach due to multiple methods.

4.2.3 Signals Modeled as Fields

SOME/IP provides fields which allows data to be subscribed to and have getters and setters. Each
signal can be made a field with it’s dedicated eventgroup so that each signal’s subscription is
separate from the other. Getters would act as read method, setters as update method.

43

4 Design and Analysis

Advantages

1. Focus is only on data, and rest is automatically taken care by the semantics of fields.

Disadvantages

1. Good for read and subscribe requests without filters. Read and subscribe requests with filters
cannot be implemented directly with field’s subscription logic.

2. Cannot map the VSS signal tree partially between different service instances as all the fields
need to be implemented by a given service instance. This is due to the fact that since signals
are now fields, they become a static part of a given service interface.

4.3 Service Interface Versioning

While versioning the service interface for the service, the major version is incremented when big
changes (or in other terms breaking changes) are introduced. The minor version is incremented
when new functionality is added without breaking compatibility with the older version. For example,
addition of a new field or method, but keeping the old ones as it is, is not a breaking change, but
modifying the signature of a preexisting function or a field would be a breaking change.

In our scenario, VISS and VSS have separate versioning scheme, so it is important to decide how
the major and minor versions of our service interface will be affected. As of writing the report, VSS
is at version 2 and draft date of 18th April 2023. While VSS is at version 4.

[13] does not specifically state any particular version of VSS, but VSS could also introduce breaking
changes atleast in the semantics of data (removal or addition of new data types or modification to
current datatypes). For example, VSS version 4 introduced support for structs.

In order to align both standards, one needs to somehow decide upon two major approaches:

1. Use own arbitrary versioning scheme to which the exact VSS and VISS versions are
mapped. For example, Major Version 0x01, Minor Version 0x00000002 could mean that it
uses version 2 of VISS, draft date 18th April 2023 and VSS version 4. The only downside is
that one then needs to keep track of all this information.

2. Combine both versioning schemes such that the developer and / or clients and servers can
decode and encode the versioning information themselves. One has to keep in mind that
SOME/IP defines major version field (or interface version) to be only 8 bits. Whereas minor
version to be 32 bits. Which means that the major version can contain the major version
of either VISS or VSS. And the minor version can be a combination of minor version of
one and major and minor version of the other. Since we are describing ways of mapping
VISS to SOME/IP, we can consider major version field to contain the major version of VISS
and the minor version to contain a combination of minor version of VISS and major and
minor versions of VSS. For example Major Version 0x02 and Minor Version 0x0AC10AE8.
The Major Version represents version 2 of VISS and the minor version when interpreted in
decimal is 180423400 which can be interpreted as 18.04.23 which is the draft date of VISS

44

4.4 Request ID Generation

version (18th April 2023) and the remaining 3 digits of the decimal representation 400 as
4.0.0 or version 4 of VSS. This is just an example and not a rule to be followed. One can
choose own convention, but it should be fixed so that only the convention needs tobe known
and not the version details (as they can be extracted from it).

4.4 Request ID Generation

An approach suggested in [9], states that the client IDs can be fixed such that they remain unique
among each client. Then a random session ID can be generated by each client such that the same
session ID does not repeat for the same client at the same time. This should work for our design,
because the clients are generally known at design time. As long as two clients do not share the
same client ID, the request ID will always be unique. If multiple applications are running on the
same ECU, we suggest:

1. If the applications are known at design time and do not change, then each app can have one
or multiple fixed client IDs depending on the need.

2. If the applications are not known at the design time like in IVI ECUs, then there can either
be a single client per ECU like a daemon with a unique client ID which processes the VISS
requests for each application. Or Each ECU can have a pool of client IDs which are mutually
exclusive from the ones in another ECU and are allocated to each application on need basis
and released when not required by that application, so that they can be used by another
application. These client IDs would then be required to kept track of by each ECU itself.

4.5 Handling Subscriptions

Read and update request / response can be directly mapped to SOME/IP methods. But when it
comes to subscription, it gets complicated due to the fact that SOME/IP-SD standard manages
the subscriptions via eventgroups, which means that a client subscribes not just to a single event,
but rather to an eventgroup. The issue can be resolved to an extent if we assign each signal to it’s
own eventgroup, but we still cannot manage subscriptions with filters which might be different for
different clients. Hence, we need a way to manage subscriptions independent of the SOME/IP-SD
standard. Since, event notifications are sent via SOME/IP standard just like requests and responses.
It means, we can implement subscribe and unsubscribe as methods and subscriptions can then
be managed on server (to send notifications depending on the condition specified by the client in
request) as well as client side (so that the client keeps the individual connection alive or endpoint
open as long as it is subscribed). This might mean that we loose some of the optimizations like
grouping of event notifications on multicast addresses, but we gain more flexibility required for a
data-oriented approach.

Server can keep a key value pair, where the key is the signal name, and the value is a list of
(subscriptionId, client connection, rule_function). Client connection is the information required to
send notification to remote client and rule function is the function which can check if a condition
as specified by the client in filter is satisfied and if satisfied then send. The server can store this

45

4 Design and Analysis

information before sending the subscribe positive reply. A publish function on the server can
be made which accesses the key value pair and checks the condition for each remote client of a
particular signal and send notification accordingly to all subscribers satisfying the criteria.

The client upon receiving a subscribe success response can store the information in it’s own local
key value pair, where key is the subscriptionId and value is the information required to connect to
the remote server.

In case of an unsubscribe, the client can check the remote server info in the key value pair for a
specific subscriptionId and send the request accordingly. This way on success, the server and client
can remove the entry in their respective key value pairs.

4.6 Serialization of VISS Requests and Responses

There are multiple possibilities for modeling requests and responses as long as the request and
response data structures use SOME/IP supported data types and serialization as described in [9].

4.6.1 Using JSON

In this approach, we wrap the VISS JSON [17] requests and responses (as described in [49]) in
SOME/IP request and response message payloads. This is done by using the string data type
(Unicode Transformation Format-8 (UTF-8) [73]). Note that all strings would include 3 bytes Byte
Order Mark (BOM) and 1 byte termination character (here 0). So each string length would be 4
bytes plus it’s original length.

Figure 4.1 shows the VISS request payload. The Message ID is set to the respective Service ID
and the Method ID to tell which VISS operation request is being referred to. Message Type is set
to 0x00 and Return Code to 0x00 as well. The JSON encoded VISS request can be serialized in
the VISS Request String field as a UTF-8 dynamic string and it’s length is indicated by the VISS
Request Length field in SOME/IP payload. Figure 4.2 shows an example of such a request with
client ID to be 1001.

46

4.6 Serialization of VISS Requests and Responses

Figure 4.1: VISS Request using JSON Serialization

Figure 4.2: Example VISS Request using JSON Serialization

Figure 4.3 shows the VISS success response payload. The Message ID is set to the respective
Service ID and the Method ID to tell which VISS operation response is being referred to. The
Message Type is set to 0x80 and the Return code to 0x00. Rest is same as request payload, but
instead of request, we serialize the success response in JSON as a UTF-8 dynamic string with the
help of VISS Response Length and VISS Response String fields. Figure 4.4 shows an example
success response to the request shown in Figure 4.2.

47

4 Design and Analysis

Figure 4.3: VISS Success Response using JSON Serialization

Figure 4.4: Example VISS Success Response using JSON Serialization

Figure 4.5 shows a possible structure for a VISS error response payload. The Message ID field has
the same function as in VISS request and success response as shown earlier. We can use the built-in
mechanism of SOME/IP Message Type 0x81 and error code E_NOT_OK by using Return Code

48

4.6 Serialization of VISS Requests and Responses

0x01 in the response. we serialize the error response in JSON as a UTF-8 dynamic string with the
help of VISS Error Length and VISS Error String fields. 4.6 shows an error response to the request
shown in Figure 4.2.

Figure 4.5: VISS Error using JSON Serialization

Figure 4.6: Example VISS Error Response using JSON Serialization

Figure 4.7 shows the possible structure for a VISS subscription payload. One can choose to be in
the range of 0x8000 to 0x8fff as suggested by SOME/IP standard. But we are going a bit beyond the
standard, hence 0x0005 as method ID. The request ID is always 0, session ID could be incremented
if session handling is used. But here we use 0 as we are not doing session handling for subscriptions.

49

4 Design and Analysis

The message type is 0x02 (notification) and return code of 0. The actual JSON payload is contained
in VISS subscription string field, whose length is indicated by a 32 bit VISS Subscription length
field. Figure 4.8 shows an example of a VISS subscription.

Figure 4.7: VISS Subscription using JSON Serialization

Figure 4.8: Example VISS Subscription using JSON Serialization

50

4.6 Serialization of VISS Requests and Responses

Advantages

1. Easier to implement than designing own data structure as the VISS standard already defines
requests and responses in JSON.

2. Since it is just a string, it is scalable as internal data can be nested and changed or adapted during
runtime without changing the request or response definition on the SOME/IP serialization
side.

Disadvantages

1. Can lead to extra space being used for encoding data like field names, or characters like ’{’,
’}’, ’:’, etc. which might already be known and also need to be encoded as a string of UTF-8
characters.

4.6.2 Using pure SOME/IP Serialization

In this approach, each VISS request and response can be encoded using standard SOME/IP data
types. The data point (dp) field can be serialized as a union (also known as a variant) as defined by
SOME/IP. We describe a mapping with basic data types and arrays for the same using the mapping
as shown in Table 4.1. We do not consider padding here.

VSS Datatype SOME/IP Union Type ID
uint8 1
int8 2
uint16 3
int16 4
uint32 5
int32 6
uint64 7
int64 8
boolean 9
float 10
double 11
string 12
uint8[] 13
int8[] 14
uint16[] 15
int16[] 16
uint32[] 17
int32[] 18
uint64[] 19
int64[] 20

51

4 Design and Analysis

Table 4.1 continued from previous page
VSS Datatype SOME/IP Union Type ID
boolean[] 21
float[] 22
double[] 23
string[] 24

Table 4.1: VSS Datatype to SOME/IP Union Type ID mapping

All the strings (both dynamic as well as fixed length) are UTF-8 with 3-byte BOM and termination
character (0). The SOME/IP header for requests, responses and notifications remains the same as in
the JSON serialized version. The payload format changes and hence the lengths of the messages
vary as a result. All timestamps are 24 byte fixed strength UTF-8 strings.

Read

Figure 4.9 shows a possible structure of a read request using the SOME/IP based serialization
scheme. The fields for length can be 8, 16 or 32 bits. path_length field is used to indicate the length
of the path_string field, then comes the optional filter_string with the filter_length indicating the
length of this string (length is 0 if not used). And then the same for optional authorization_token
string with authorization_length indicating it’s length (0 if not used).

52

4.6 Serialization of VISS Requests and Responses

Figure 4.9: VISS Read Request using SOME/IP Serialization

Figure 4.10 shows a possible structure of a read success response serialized using SOME/IP based
serialization scheme. The payload contains an array of n data items. Each data item i (where i can be
from 1 to n) contains it’s own path string denoted by path[i]_string accompanied by a path[i]_length
denoting it’s length (can be 8, 16 or 32 bits). value[i] is a variant and hence accompanied by
value[i]_length and value[i]_type. capture[i]_timestamp_string is the time at which the value[i] was
captured. data_length denotes the total length of the data array in bytes starting from path[1]_length,
all the way up to capture[n]_timestamp_string. server_timestamp_string is the time at which the
request is processed by the server.

53

4 Design and Analysis

Figure 4.10: VISS Read Success Response using SOME/IP Serialization54

4.6 Serialization of VISS Requests and Responses

Figure 4.11 and Figure 4.12 show examples of a read request and a success response using SOME/IP
based serialization scheme. The length fields are chosen to be 32 bits in these examples.

Figure 4.11: Example VISS Read Request using SOME/IP Serialization

55

4 Design and Analysis

Figure 4.12: Example VISS Read Success Response using SOME/IP Serialization

Update

Figure 4.13 shows a possible structure of an update request serialized using SOME/IP based
serialization scheme. The payload structure is similar to a read request, but with the additional value
field where the value to be written is supplied, which is a union / variant and hence accompanied
with the value_length and value_type fields.

56

4.6 Serialization of VISS Requests and Responses

Figure 4.13: VISS Update Request using SOME/IP Serialization

Figure 4.14 the possible structure of an update success response serialized using SOME/IP based
serialization scheme. The payload consists of the time (server_timestamp_string) at which the
request is processed by the server (in this case the time at which the value is updated by the server).

57

4 Design and Analysis

Figure 4.14: VISS Update Success Response using SOME/IP Serialization

Figure 4.15 and Figure 4.16 show examples of update request and success response messages. The
length fields are chosen to be 32 bits in these examples.

Figure 4.15: Example VISS Update Request using SOME/IP Serialization

58

4.6 Serialization of VISS Requests and Responses

Figure 4.16: Example VISS Update Success Response using SOME/IP Serialization

Subscribe

Figure 4.17 shows the possible structure of a subscribe request serialized using SOME/IP based
serialization. The payload structure is exactly the same as that of the read request.

Figure 4.17: VISS Subscribe Request using SOME/IP Serialization

59

4 Design and Analysis

Figure 4.18 shows the possible structure of a subscribe success response serialized using SOME/IP
based serialization. The payload structure is similar to an update success response with the addition
of an additional subscription_id field to provide a unique subscription ID as a 32 bit integer value.

Figure 4.18: VISS Subscribe Success Response using SOME/IP Serialization

Figure 4.19 and Figure 4.20 show examples of a subscribe request and a success response. The
length fields are chosen to be 32 bits in these examples.

Figure 4.19: Example VISS Subscribe Request using SOME/IP Serialization

60

4.6 Serialization of VISS Requests and Responses

Figure 4.20: Example VISS Subscribe Success Response using SOME/IP Serialization

Unsubscribe

Figure 4.21 shows the possible structure unsubscribe request serialized using SOME/IP based
serialization. The payload only consists of a subscription_id where the subscription ID for an active
subscription is provided, from which one wishes to unsubscribe.

Figure 4.21: VISS Unsubscribe Request using SOME/IP Serialization

Figure 4.22 shows the unsubscribe success response, whose payload structure is exactly the same as
that of subscribe success response.

61

4 Design and Analysis

Figure 4.22: VISS Unsubscribe Success Response using SOME/IP Serialization

Figure 4.23 and Figure 4.24 show examples of a unsubscribe request and a success response. The
length fields are chosen to be 32 bits in these examples.

Figure 4.23: Example VISS Unsubscribe Request using SOME/IP Serialization

62

4.6 Serialization of VISS Requests and Responses

Figure 4.24: Example VISS Unsubscribe Success Response using SOME/IP Serialization

Subscription

Figure 4.25 shows the possible structure of a subscription notification serialized using SOME/IP
based serialization. The payload structure is similar to a read success response with the addition of
an additional subscription_id field to provide a subscriptionId as a 32 bit integer value.

63

4 Design and Analysis

Figure 4.25: Example VISS Subscription using SOME/IP Serialization

Figure 4.26 shows an example of a subscription notification. The length fields are chosen to be 32
bits in this example.

64

4.6 Serialization of VISS Requests and Responses

Figure 4.26: Example VISS Subscription using SOME/IP Serialization

Error Response

Figure 4.27 shows a possible structure for an error response. The error_number field is chosen to
be 16 bits, the error_reason field can map to a error reason stored in an enum and hence only 8
bits assigned here. The error message (err_msg) needs to represent a proper message and hence
a dynamic UTF-8 string with 8 bits err_msg_length field indicating it’s length. The message is
concluded by a server_timestamp_string field.

65

4 Design and Analysis

Figure 4.27: VISS Error Response using SOME/IP Serialization

Figure 4.28 shows an example error response for the VISS read request shown in Figure 4.11. The
error reason is chosen to be invalid_path (in this example mapped to an enumeration with value
0x0D for invalid_path) as described in section 4.1 of [13].

Figure 4.28: Example VISS Error Response using SOME/IP Serialization

Advantages

1. Can save space if the structure of data is already known as field names and special characters
need not be encoded separately.

Disadvantages

1. Need to design separate request and response structures for all supported VISS operations.

66

4.6 Serialization of VISS Requests and Responses

4.6.3 Comparison Between Both Serialization Formats

Table 4.2 compares the payload sizes of the examples given in Section 4.6.1 and Section 4.6.2. As
mentioned before the SOME/IP based scheme is more efficient in terms of storage than the JSON
based scheme which is evident from the comparison But if any big structural change happens, then
it is easier to work with the JSON based serialization, as the fundamental type remains a string.

JSON SOME/IP
Read Request 48 Bytes 45 Bytes
Read Response 133 Bytes 94 Bytes
Update Request 62 Bytes 50 Bytes
Update Response 40 Bytes 24 Bytes
Subscribe Request 48 Bytes 45 Bytes
Subscribe Response 63 Bytes 28 Bytes
Unsubscribe Request 34 Bytes 4 Bytes
Unsubscribe Response 63 bytes 28 Bytes
Subscription 158 Bytes 98 Bytes
Error Response 136 Bytes 67 bytes

Table 4.2: Comparison Between the Payload Sizes of Messages Based on Serialization Type

67

4 Design and Analysis

4.7 Address Resolution

Figure 4.29: Example VSS Tree with Partitioning

In Figure 4.29, we take the advantage of the distributed nature of ECUs present in
a vehicle. The signals are distributed over ECU 1, ECU 2 and ECU 3. ECU 1
contains the signals for the first row namely, Vehicle.Cabin.Door.Row1.Left.IsLocked
and Vehicle.Cabin.Door.Row1.Right.IsLocked. Similarly ECU 2 contains the same
signals but for the second row namely, Vehicle.Cabin.Door.Row2.Left.IsLocked and
Vehicle.Cabin.Door.Row2.Right.IsLocked. ECU 3 contains Vehicle.Speed and Vehi-
cle.VehicleIdentification.VIN.

We came up with three approaches for resolving the server responsible for a particular signal. To
make the sequence diagrams easier to comprehend, we only consider a subset of the given tree with
only 2 ECUs named Server_A and Server_B containing Vehicle.Cabin.Door.Row1.Left.IsLocked
and Vehicle.Cabin.Door.Row2.Left.IsLocked signals respectively. In the sequence diagrams,
the User can be some general application like in an IVI unit (most likely an user application),
which wants to send and receive VISS requests and responses, without getting into the details of
implementation of the SOME/IP transport. Client is the actual implementation of the SOME/IP
client responsible for receiving requests from User and forwarding them to the suitable VISS server
(in this case either Server_A or Server_A), as well as receiving responses from the server using
SOME/IP as the network binding, and forwarding them to the User.

68

4.7 Address Resolution

We have used the approach described in Section 4.2.2 for the below described address resolution
approaches. The Service IDs and Method IDs for the VISS operations over SOME/IP are described
in the mapping given in Table 4.3.

Service ID Method ID VISS Operation
0x1000 0x0001 Read
0x1000 0x0002 Update
0x1000 0x0003 Subscribe
0x1000 0x0004 Unsubscribe
0x1000 0x0005 Notification
0x2000 0x0001 Read (via Proxy)
0x2000 0x0002 Update (via Proxy)
0x2000 0x0003 Subscribe (via Proxy)
0x2000 0x0004 Unsubscribe (via Proxy)
0x2000 0x0005 Notification (via Proxy)

Table 4.3: SOME/IP Method ID to VISS Operation Mapping

4.7.1 Approach 1: No Service Discovery

In this approach, a client side mapping (probably in the form of a manifest) is available. Each
client uses this local mapping to resolve the server responsible for providing access to the required
signal.

In Figure 4.30, the User requests to read the signal Vehicle.Cabin.Door.Row2.Left.IsLocked.
It sends a VISS read request to the client, which in turn, receives this request in the form of a
standard VISS request as defined by it’s API. The client then looks up the signal in a local Signal to
Server mapping (probably in the form of a manifest). Depending on the result, the Client packs
the request into a SOME/IP request message and forwards it to a corresponding Server (In this
case Server_B). The Server_B then responds with the corresponding VISS response packed into a
SOME/IP response message. The client then receives the response, unpacks it and sends it back to
the User as a standard VISS read response.

Advantages

1. No need of separate service discovery phase as the endpoint information is available locally.

2. No upper limit on number of signals offered by a service instance.

Disadvantages

1. Inflexible in case of any change to the network structure. Mappings need to be manually
configured again for each client separately.

69

4 Design and Analysis

2. Similarly, in case of changes to the network during runtime, for example via partial networking,
where some parts of network are not used, can lead to timeouts on the client side if the server
becomes unavailable as the client tries to look for only the preconfigured endpoint.

3. The client knows the endpoint information of the servers directly, which may not be suitable
in the security context for certain deployment scenarios.

Figure 4.30: Address Resolution Approach 1

4.7.2 Approach 2: Decentralized Service Discovery and Decentralized Messaging

In this approach, all servers responsible for particular signals, announce these signals during the
service discovery phase in the OfferService messages using one configuration option per signal (for
example, (Figure 4.31)). The clients can then directly compare each offer with the signal they want
and if found in one of the configuration options, can then choose the particular server for accessing
the signal. In case of multiple servers offering the same signal, the one with the first match will be
used.

In Figure 4.33, instead of the client looking into a local signal to server mapping to find the
corresponding server, it looks at the configuration options of servers referenced by their respective
OfferService entries during the service discovery phase. When a corresponding configuration
option has the signal that the client is looking for, it looks into the endpoint option (in this case
IPv4) referenced by the corresponding OfferService entry. This way the client knows where to send
SOME/IP requests and receive responses from. The client sees that the given signal is available at
Server_B indicated by the configuration string "leaf=Vehicle.Cabin.Door.Row2.Left.IsLocked".
After Service Discovery, the rest of the process is the same as previous approach.

One point to note here is that, SOME/IP-SD allows only a single configuration option to be sent
per OfferService message. But if the condition is relaxed then using UDP one should be able to
send 65507 bytes of payload with fragmentation (using IP fragmentation [39]) and 1472 bytes
without fragmentation. This means that after subtracting the SOME/IP header size (16 bytes),
SOME/IP-SD message with length arrays for both entries and options, OfferService entry and an

70

4.7 Address Resolution

IPv4 endpoint option (a total of 40 bytes), we are left with 65451 bytes for configuration options
with fragmentation and 1416 bytes without fragmentation. So if assuming configuration options of
length each 40 bytes are used, then one should be able to transmit a total of 1636 and 35 signals per
service instance for both cases respectively. [9] states SOME/IP Transport Protocol (SOME/IP-TP)
which allows to send bigger UDP messages limiting the size of a segment to 1400 bytes, meaning
1392 bytes usable by SOME/IP message. But since, SOME/IP-SD standard allows duplicate keys
in different entries, one can also put the signals as separate entries within the same configuration
option like [length1]leaf=signal1[length2]leaf=signal2....[0] (Figure 4.32) and still use the UDP
limits and follow the SOME/IP-SD standard.

Figure 4.31: Separate Configuration Option Per Signal

Figure 4.32: Single Configuration Option for all Signals

Advantages

1. More flexible as compared to the 1st approach due to the fact that each server now manages
it’s own list of signals and hence more dynamic as the list can now be directly updated on the
offering server itself.

2. More tolerant to failures as compared to the previous approach due to it’s distributed working.

71

4 Design and Analysis

Disadvantages

1. OfferService messages can contain a lot of data depending on the number of signals and can
affect the bandwidth in case of cyclic messages if the bandwidth is scarce.

2. UDP has upper limits on message sizes.

3. The client knows the endpoint information of the servers directly, which may not be suitable
in the security context for certain deployment scenarios.

Figure 4.33: Address Resolution Approach 2

4.7.3 Approach 3: Centralized Service Discovery and Centralized Messaging

This approach is a hybrid of approach 1 and approach 2. The Service Discovery mechanism remains
the same as approach 2, but instead of client directly discovering the servers via SOME/IP-SD
messages, this task is given to a separate Proxy which does this Service Discovery and maintains an
internal Signal to Server mapping, so that the client only sees the Proxy as the VISS server. The
Proxy uses a separate Service ID, but the rest of the service design including method signatures
remain the same as that of the VISS servers. The Proxy’s sole purpose is to take the SOME/IP
requests from the clients and after looking up the Signal to Server mapping, change the request
header to the one required by the server and do the reverse for responses received from server and
routing them back to client.

72

4.7 Address Resolution

In Figure 4.34, the User sends the VISS read request to read the signal Vehi-
cle.Cabin.Door.Row2.Left.
IsLocked the same way as the previous two approaches. The client does Service Discovery only for
the Proxy and once discovered packs the VISS request into a SOME/IP request message with service
ID of the Proxy (in this case 0x2000). The method ID and other parameters remain the same as the
previous approaches. The Proxy is a long running process (probably a daemon), which monitors
for OfferService entries with configuration and endpoint options like the client in approach 2 did
and maintains a local Signal to Server mapping which it keeps updating on the basis of received
SOME/IP-SD messages from servers. It also has to maintain a mapping to resolve the responses
received from servers back to the respective clients. Upon receiving the SOME/IP request from
client, the Proxy does a lookup for the respective server (in this case Server_B), changes the Service
ID to the one required by the server (In this case 0x1000) and sends the request to the server. Upon
receiving response from the server, the Proxy looks up which client it is for, changes the Service ID
of the response again to 0x2000, and forwards it to the client. The client then unpacks the SOME/IP
response message and sends the standard VISS response to the User.

Advantages

1. More secure than approach 1 and approach 2, as the access to internal VISS servers is
managed at a central place (Proxy) and the clients do not know the endpoint information of
these servers directly. In fact, the servers can be placed in a different multicast group as long
as the proxy can listen to their SOME/IP-SD messages containing the OfferService entries,
configuration options and endpoint options.

2. The clients do not have to process configuration options of multiple servers by themselves as
it is done by the proxy itself.

Disadvantages

1. OfferService messages can contain a lot of data depending on the number of signals and can
affect the bandwidth in case of cyclic messages if the bandwidth is scarce.

2. UDP has upper limits on message sizes.

3. The proxy is the central point of failure.

73

4 Design and Analysis

Figure 4.34: Address Resolution Approach 3

74

5 Realization

For the implementation we have only considered a SOME/IP client and server to make it easy to
implement and evaluate our design. The basic idea is that the client observes all the offers with the
configuration options. Depending on the signal to be read, updated, or subscribed to, the client
compares the signal described in configuration option and sends the request to the corresponding
server. One can also instantiate the client in such a way that it looks into a static signal to server
mapping to discover servers instead of comparing configuration options.

The implementation was done on C++ using Adaptive MICROSAR [69] libraries provided by
Vector Informatik GmbH and the JSON library from Microsoft’s C++ Rest SDK [57].

5.1 Components

Figure 5.3 shows the component diagram for the server (SOMEIPVISSServer) and Figure 5.4 for
the client (SOMEIPVISSClient) respectively. The common components are as follows:

1. ServiceDiscoveryEndpoint: This is responsible for maintaining an Unicast UDP endpoint
and joining a multicast group for sending and receiving SOME/IP-SD messages. In our case
for sending and receiving OfferService messages on the server and the client respectively.

2. SDMessageProcessorInterface: A reference to an object implementing this interface is
passed to the constructor of ServiceDscoveryEndpoint object. The implementing class has to
implement a process function using which the implementing class can apply its logic to a
received SOME/IP-SD message. Figure 5.1 shows the classes which implement this interface.

Figure 5.1: SDMessageProcessorInterface

3. TcpEndpoint: This is responsible for maintaining a local Transmission Control Protocol
(TCP) endpoint on the client and server. In case of a server, it implements the TCP server
functionality as well. The provided service instance needs to be registered in this object.

75

5 Realization

4. TcpConnection: This is an object which takes the remote and local endpoint and represents
a logical TCP connection between the two. This is responsible for forwarding SOME/IP
messages to remote client or server. It Also forwards the received requests, responses, or
notifications to be processed by client or server. For a client, this is instantiated directly as we
know the remote endpoint while connecting (active TCP connection), but for a server this is
created by the TcpEndpoint, when it receives the connection request from the client (passive
TCP connection). The required service instance needs to be registered in this object.

5. TcpMessageProcessorInterface: A reference to an object whose class implements this
interface is passed to the TcpConnection and TcpEndpoint constructors. The classes
implementing this interface have to implement a process function, which is responsible for
processing the received message via TCP connection on client or server. Figure 5.2 shows
the classes which implement this interface. Note: TcpConnectionSharedPtr is used as an
alias to mention a shared pointer to a TcpConnection.

Figure 5.2: TcpMessageProcessorInterface

6. Reactor: This class starts a reactor [65] thread on the client or a server which is then
passed to ServiceDiscoveryEndpoint, TcpEndpoint and TcpConnection objects to register
their callbacks for the corresponding events in this thread.

7. TimerManager: Used for managing timers and repetitive tasks like sending OfferServce
messages in fixed intervals and check expiry of tasks.

8. ReactorThread: A wrapper taking Reactor and TimerManager objects in it’s constructor. It
is Used for starting and stopping Reactor in client or server.

9. VISSError: A struct which represents a single VISS error.

10. VISSErrorResponse: Represents an object encapsulating the VISSError struct.

11. ErrorResponseJSONSerializer: Object used to serialize VISSErrorResponse object into
JSON.

5.1.1 SOMEIPVISSServer

1. ServerConfig: This object is used to pass various configuration parameters to the server
instance. These include:

• unicast_addr: The unicast IPv4 address of the server endpoint used for sending and
receiving SOME/IP-SD messages via UDP.

76

5.1 Components

• multicast_addr: The IPv4 address of the multicast group for SOME/IP-SD.

• unicast_port: The port used for the unicast UDP endpoint.

• multicast_port: The port used for the multicast.

• service_id: Service ID of the provided service instance.

• instance_id: Instance ID of the provided service instance.

• major_version: Major version of the provided service instance.

• minor_version: Minor version of the provided service instance.

• ttl: TTL for the OfferService message

• repetition_time: Interval between each subsequent OfferService message to be sent.

• signals: List of signals (stored as ara::core::String) that are supported by the provided
service instance.

2. ServerSDMessageProcessor: This class implements the SDMessageProcessorInterface by
implementing its process function which is currently blank as we ignored SOME/IP-SD
messages from client to server for now.

3. ServerRequestProcessor: This class implements the TcpMessageProcessorInterface and
processes client method requests and sends back the corresponding responses back to the
clients.

4. ServerSubscriptionMap: This class is used to keep track of subscriptions based on the
signals. It is implemented as a map with keys as signals (represented as ara::core::String) and
the value being a list of pairs of SubscriptionId (unsigned 32-bit integer in this implementation)
and ResponseSender shared pointers (can be TCP or UDP as long as they implement this
interface, but TCP for this implementation). The ResponseSender is made up of TcpEndpoint
and TcpConnection in this case and acts as a handle of connections on the server side.

5.1.2 SOMEIPVISSClient

1. ClientConfig: This object is used to pass various configuration parameters to the client
instance. These include:

• unicast_addr: The unicast IPv4 address of the client endpoint used for sending and
receiving SOME/IP-SD messages via UDP.

• multicast_addr: The IPv4 address of the multicast group for SOME/IP-SD.

• unicast_port: The port used for the unicast UDP endpoint.

• multicast_port: The port used for the multicast.

• service_id: The required service instance’s service ID.

• instance_id: The required service instance’s instance ID.

• major_version: The required service instance’s major version.

77

5 Realization

• minor_version: The required service instance’s minor version.

• client_id: Fixed client ID to be used as a part of request ID when sending requests.

• signal_to_server_mapping: A map containing keys as signals (as ara::core::String)
and value as a pair of Endpoint object (which contains the IPv4 address and port of the
TCP server responsible for handling the respective signal) and the ProvidedServiceInfo
object (which contains Service ID, Instance ID, Major Version and Minor Version of
the provided service instance).

• discovery_attempts: Amount of seconds for which a busy waiting is made for
discovering a server in case of dynamic service discovery via configuration options.

• connection_attempts: Amount of seconds for which a busy waiting is made for
connecting to the remote server.

• response_attempts: Amount of seconds for which a busy waiting is made for receiving
response from the connected server.

2. ClientSDMessageProcessor: This class implements the SDMessageProcessorInterface by
implementing its process function which compares the configuration option and the required
service parameters given in the constructor to the ones in the OfferService messages, once a
match is found whose required service parameters and any one of the configuration option
matches the one given during its construction, it saves the remote endpoint information
including IPv4 address and port as well as its service instance ID.

3. ClientResponseProcessor: This class implements the TcpMessageProcessorInterface and is
responsible for processing method responses and notifications coming from the server.

4. ClientSubscriptionMap: This object is used to keep track of subscriptions on the client
side and is implemented as a map with keys being SubscriptionId (unsigned 32-bit integer)
and value being a SubscriptionInfo object (which contains the remote endpoint object,
TcpConnection shared pointer, instance ID of the provided service and the user’s desired
callback function, which is to be called when a subscription is received.

5. SDConfigurationOption: This is a SOME/IP-SD configuration option containing the
configuration string with key being ‘leaf’ and the value being the signal name. It is
constructed for each separate call of read, update or subscribe methods.

78

5.1 Components

Figure 5.3: SOMEIPVISSServer Component Diagram

79

5 Realization

Figure 5.4: SOMEIPVISSClient Component Diagram

80

5.2 Communication Flows

5.2 Communication Flows

This section gives insight into some of the important flows required for communication between the
SOMEIPVISSClient and the SOMEIPVISSServer instances via SOME/IP with the use of sequence
diagrams and pseudo codes (wherever necessary).

5.2.1 Reception of SOME/IP-SD Messages on Client

Figure 5.5 shows how a SOME/IP-SD message is received and processed on the client. The
processing happens inside the process() function of ClientSDProcessor object. The function does
the following:

1. For each OfferService Entry:

a) Check if service ID matches the provided one.

b) Check if the instance ID matches the provided one or the provided one is 0xffff.

c) Check if the major version matches the provided one or the provided one is 0xff.

d) Check if the minor version matches the provided one or the provided one is 0xffffffff.

e) If all the previous conditions fulfilled, then:

i. Check if the received configuration option (if exists) is equal to the one which is
provided, if yes, then:

A. Store the server endpoint information (IP address, port number) and the instance
id.

Figure 5.5: SOME/IP-SD Message Reception on Client

81

5 Realization

5.2.2 Reception of Response / Notification on Client

Figure 5.6 shows how a client receives and processes a received response or a notification message
from the server. The TcpConnection’s HandleRead() and ProcessMessage() functions validate the
received response if it is coming from the expected service instance and if the format is right before
passing it to ClientResponseProcessor. The process() function inside the ClientResponseProcessor
object is responsible for checking the message type and based on that dispatch the message to the
respective handling sub function. It handles it in the following way:

1. If the message type is 0x80 (Response), then do the following:

a) If the method ID is 0x01, call the processVISSReadResponse(SomeIpMessage, Re-
sponseSenderSharedPtr) method.

b) Else if the method ID is 0x02, call the processVISSUpdateResponse(SomeIpMessage,
ResponseSenderSharedPtr) method.

c) Else if the method ID is 0x03, call the processVISSSubscribeResponse(SomeIpMessage,
ResponseSenderSharedPtr) method.

d) Else if the method ID is 0x04, call the processVISSUnsubscribeResponse(SomeIpMessage,
ResponseSenderSharedPtr) method.

e) Else call the processVISSErrorResponse(SomeIpMessage, ResponseSenderSharedPtr)
method.

2. Else if the message type is 0x02 (Notification) and method ID is 0x05, then call the
processVISSNotification(SomeIpMessage) method.

3. Else, call processVISSError(SomeIpMessage, ResponseSenderSharedPtr) method.

Figure 5.6: SOME/IP Response / Notification Reception on Client

5.2.3 Sending Request from Client

Figure 5.7 shows how a request is sent from a client to a server. The client prepares the SOME/IP
method request message using the sendRequestPacket() method and then uses the TcpConnection
object’s Forward() method to send the packet to the server. The sendRequestPacket() method does
the following:

1. Set the service ID to ClientConfig.service_id.

82

5.2 Communication Flows

2. Set the method ID to method_id.

3. Set the client ID to ClientConfig.client_id.

4. Set the protocol version to 0x1.

5. Set the interface version to ClientConfig.major_version.

6. Set the session ID to a randomly generated ID.

7. Set the length field to 8 + length of the payload (which includes length field of request_string
and request_string itself) (in bytes).

8. Set the message type to 0x00 (Request).

9. Set the return code to 0x00 (OK).

10. Serialize the message and send it to server via TcpConnectionSharedPtr’s Forward() method.

Figure 5.7: SOME/IP Request Message Transmission from Client

5.2.4 Reception of Request on Server

Figure 5.8 shows how a request message is received on the server from a client and processed.
The TcpConnection object’s HandleRead()and ProcessMessage() methods check the validity of the
received request message. The process() method on ServerRequestProcessor is used to check and
dispatch the requests to their corresponding handling sub functions. it does the following:

1. If the message type is 0x00 (Request), then do the following:

a) If the method ID is 0x01, call the processVISSReadRequest(SomeIpMessage, Respons-
eSenderSharedPtr) method.

b) Else if the method ID is 0x02, call the processVISSUpdateRequest(SomeIpMessage,
ResponseSenderSharedPtr) method.

c) Else if the method ID is 0x03, call the processVISSSubscribeRequest(SomeIpMessage,
ResponseSenderSharedPtr) method.

d) Else if the method ID is 0x04, call the processVISSUnsubscribeRequest(SomeIpMessage,
ResponseSenderSharedPtr) method.

e) Else, call processVISSError(SomeIpMessage, VISSErrorResponse(bad_request), Re-
sponseSenderSharedPtr) method.

83

5 Realization

2. Else, call processVISSError(SomeIpMessage, VISSErrorResponse(bad_request), Respons-
eSenderSharedPtr) method.

Since, a subscribe and an unsubscribe requests do more then just sending a response. They need
to be explained briefly. On the reception of subscribe request, the request is processed by the
ProcessVISSSubscribeRequest() method in the following way:

1. Check the validity of the VISS subscribe request.

2. If valid request, then:

a) Extract the path value from the request.

b) If valid path, then:

i. Assign a unique subscription ID and add the client’s ResponseSenderSharedPtr
along with the subscription ID to a list in the ServerSubscriptionMap[path].

ii. Prepare positive subscribe response in response_string.

iii. Call sendPositiveResponse(SomeIpMessage, response_string, ResponseSender-
SharedPtr).

Else, call processVISSError(SomeIpMessage, VISSErrorResponse(invalid_path), Re-
sponseSenderSharedPtr).

Else, call processVISSError(SomeIpMessage, VISSErrorResponse(bad_request), Respons-
eSenderSharedPtr).

On the reception of unsubscribe request, the request is processed by the ProcessVISSUnsub-
scribeRequest() method in the following way:

1. Check the validity of the VISS unsubscribe request.

2. If valid request, then:

a) Extract the subscription ID from the request.

b) Find the subscription ID in ServerSubscriptionMap by iterating over all keys and within
all their respective lists.

c) If a subscription is found with the specified subscription ID, then:

i. Remove the subscription information from the list.

ii. Prepare positive unsubscribe response in response_string.

iii. call sendPositiveResponse(SomeIpMessage, response_string, ResponseSender-
SharedPtr).

d) Else, call call processVISSError(SomeIpMessage, VISSErrorResponse(invalid_subscription),
ResponseSenderSharedPtr).

3. Else, call processVISSError(SomeIpMessage, VISSErrorResponse(bad_request), Respons-
eSenderSharedPtr).

84

5.2 Communication Flows

Figure 5.8: SOME/IP Request Message Reception on Server

5.2.5 Sending Positive Response from Server

Figure 5.9 shows how a server sends a positive response to a client. sendPositiveResponsePacket()
method prepares the SOME/IP positive response message and calls the TcpResponseSender’s
Forward() method for sending the response to the client. The sendPositiveResponsePacket() method
does the following:

1. set the service ID, method ID, client ID, protocol version, interface version and session ID to
the ones provided by the client.

2. Set the length field to 8 + length of the payload (which includes length field of response_string
and response_string itself) (in bytes).

3. Set the message type to 0x80 (Positive Response).

4. Set the return code to 0x00 (OK).

5. Serialize the message and send it to server via TcpConnectionSharedPtr’s Forward() method.

Figure 5.9: SOME/IP Positive Response Transmission from Server

5.2.6 Sending Error Response from Server

Figure 5.10 shows how a server sends an error response to a client. sendErrorResponsePacket()
method prepares the SOME/IP error response message and calls the TcpResponseSender’s Forward()
method for sending the response to the client. The sendErrorResponsePacket() method does the
following:

85

5 Realization

1. set the service ID, method ID, client ID, protocol version, interface version and session ID to
the ones provided by the client.

2. Set the length field to 8 + length of the payload (which includes length field of response_string
and response_string itself) (in bytes).

3. Set the message type to 0x81 (Error Response).

4. Set the return code to 0x01 (Not OK).

5. Serialize the message and send it to server via TcpConnectionSharedPtr’s Forward() method.

Figure 5.10: SOME/IP Negative Response Transmission from Server

5.2.7 Sending Notification from Server

Figure 5.11 shows how a server sends notification for a VISS subscription to a client. The publish()
method is responsible for checking the subscribers who have subscribed to the signal and calling
the sendNotificationPacket() method for the same. The sendNotificationPacket() is responsible
for preparing the SOME/IP notification message and calling the TcpResponseSender’s Forward()
method for sending notification to the client. The sendNotificationPacket() method does the
following:

1. Set the service ID to ServerConfig.service_id.

2. Set the method ID to 0x0005.

3. Set the client ID to 0.

4. Set the protocol version to 0x1.

5. Set the interface version to ServerConfig.major_version

6. Set the session ID to 0.

7. Set the length field to 8 + length of the payload (which includes length field of response_string
and response_string itself) (in bytes).

8. Set the message type to 0x02 (Positive Response).

9. Set the return code to 0x00 (OK).

10. Serialize the message and send it to server via TcpConnectionSharedPtr’s Forward() method.

86

5.3 SOMEIPVISSClient API Flows

Figure 5.11: SOME/IP Notification Transmission from Server

5.3 SOMEIPVISSClient API Flows

The SOMEIPVISSClient instance must first be initialized by passing a ClientConfig object in its
constructor. After doing this, the various VISS methods can be called by passing JSON string
corresponding to the request and each method call returns the response as a JSON string as well.
This section first describes the private methods which act as helper functions and then the public
methods which build up the client API.

5.3.1 Private Methods

discover

This method returns the server endpoint information and the instance ID, given the name of the
signal to be found as input. It does the following:

1. Check if static service discovery is used (i.e. ClientConfig.signal_to_server_mapping contains
the server providing the service for the specified signal).

2. If yes, then:

a) Return the IP address, port and instance ID of the provided service instance.

3. Else:

a) Prepare a SOME/IP-SD configuration option with the required signal (configura-
tion_option).

b) Initialize a ClientSDMessageProcessor object with service_id, instance_id, ma-
jor_version, minor_version parameters from ClientConfig object and configura-
tion_option.

c) Initialize a ServiceDiscoveryEndpoint object with the Reactor, TimerManager, uni-
cast_address, multicast_address and multicast_port from ClientConfig object.

87

5 Realization

d) Keep checking in a busy loop till ClientConfig..discovery_attempts seconds, if the
ClientSDMessageProcessor object has found an endpoint.

e) If found within the time, then return the IP address, port and instance ID of the discovered
service instance.

f) Else, if not found repeat steps in the busy loop.

g) If expiry reached, then return a null value indicating no service instance found.

find_connection

This method takes in the endpoint information (remote_endpoint) and returns a TcpConnection-
SharedPtr. It is used to check if an existing open TCP connection between the client and a discovered
server endpoint exists or not.

1. It checks it in the ClientSubscriptionMap object, iterating all keys until the value’s endpoint
information matches that of the provided one.

2. Else null object is returned, indicating no open TCP connection found.

connected

This method is used to check whether a connection is established within ClientCon-
fig.connection_attempts seconds within a busy waiting loop given a TcpConnectionSharedPtr.

1. Return true, if the connection is established within the specified time.

2. Else, return false indicating no connection within the specified time was possible.

sendRequestPacket

This method is described in Section 5.2.3.

waitForResponse

This method performs a busy waiting till ClientConfig.response_attempts seconds.

1. If the response is received within the specified time, return true.

2. Else, return false.

88

5.3 SOMEIPVISSClient API Flows

5.3.2 Public Methods

Read

This method takes in a VISS JSON request string (request_string) as input and returns a VISS JSON
response string as output. The input is a VISS read request and the output can be a read success
response or an error response. Figure 5.12 shows the sequence diagram for a read method call.

Update

This method takes in a VISS JSON request string (request_string) as input and returns a VISS
JSON response string as output. The input is a VISS update request and the output can be an update
success response or an error response. Figure 5.13 shows the sequence diagram for an update
method call.

Subscribe

This method takes in a VISS JSON request string (request_string) and a callback function
(callback_fn) to be registered with the subscription notifications as input and returns a VISS JSON
response string as output. The input is a VISS subscribe request and the output can be an subscribe
success response or an error response. Figure 5.14 shows the sequence diagram for a subscribe
method call.

Unsubscribe

This method takes in a VISS JSON request string (request_string) as input and returns a VISS
JSON response string as output. The input is a VISS unsubscribe request and the output can be an
unsubscribe success response or an error response. Figure 5.15 shows the sequence diagram for an
unsubscribe method call.

89

5 Realization

Figure 5.12: SOMEIPVISSClient Read Flow

90

5.3 SOMEIPVISSClient API Flows

Figure 5.13: SOMEIPVISSClient Update Flow

91

5 Realization

Figure 5.14: SOMEIPVISSClient Subscribe Flow

92

5.3 SOMEIPVISSClient API Flows

Figure 5.15: SOMEIPVISSClient Unsubscribe Flow

93

6 Evaluation

This chapter discusses the test scenario in Section 6.1, test setup in Section 6.2, measurements
and some limitations associated with them in Section 6.3 and finally concludes with the results in
Section 6.4.

6.1 Scenario

The test scenario consists of two SOME/IP based VISS servers and a single client. Server 1 contains
the locking status for the left and right door for row 1 and Server 2 the same for row 2 (as shown
in Figure 4.29). Both the servers publish the information about their left doors in case any client
is interested to receive notifications about the status. Figure 6.1 shows the arrangement in an
intuitive way). The proposed approaches using our implementation described in Section 4.7.1
and Section 4.7.2 are then evaluated for this test scenario for the JSON serialization scheme
(Section 4.6.1). At the end, the maximum OfferService message size is tested and the results are
described in Section 6.4.4.

Figure 6.1: Model Car

94

6.2 Setup

6.2 Setup

Figure 6.2: Deployment Diagram

The test scenario and further evaluations are performed on an Ubuntu 20.04 VM running on
VMWare Workstation 15 Player. Figure 6.2 shows a deployment diagram with the setup, which
consists of 3 virtual ethernet adapters each configured with it’s own unique static IPv4 address and
connected to Server 1, Server 2 and the client respectively. Each server process runs a single service
instance and contains a set of mutually exclusive signals as described in previous section.

The general hardware specifications of the test machine are given in Table 6.1 and for the VM are
given in Table 6.2.

OS Windows 10
RAM 64 GB
CPU Intel(R) Core(TM) i7-8850H CPU at 2.60GHz
GPU NVIDIA Quadro P1000

Table 6.1: Host Machine Specifications

95

6 Evaluation

OS Ubuntu 20.04
RAM 55.6 GB
Processors 12
Graphics Memory 768 MB
Hard Disk 300GB

Table 6.2: VM Specifications

The configurations for Server 1, Server 2 and the Client are given in Table 6.3, Table 6.4, and
Table 6.5 respectively. The TCP and UDP ports are chosen in accordance with [7].

Unicast IP Address 192.168.7.1
Unicast Port 30501
Multicast IP Address 224.0.0.17
Multicast Port 30490
Service ID 0x1000
Instance ID 0x0001
Major Version 1
Minor Version 0
Offer Service TTL 3s
Offer Service Repetition Time 100ms
Signals Cabin.Door.Row1.Left.isLocked, Cabin.Door.Row1.Right.isLocked

Table 6.3: Server 1 Configuration

Unicast IP Address 192.168.7.2
Unicast Port 30502
Multicast IP Address 224.0.0.17
Multicast Port 30490
Service ID 0x1000
Instance ID 0x0002
Major Version 1
Minor Version 0
Offer Service TTL 3s
Offer Service Repetition Time 100ms
Signals Cabin.Door.Row2.Left.isLocked, Cabin.Door.Row2.Right.isLocked

Table 6.4: Server 2 Configuration

96

6.3 Measurements

Unicast IP Address 192.168.7.3
Unicast Port 0 (Choose any Ephemeral port)
Multicast IP Address 224.0.0.17
Multicast Port 30490
Service ID 0x1000
Instance ID 0xffff
Major Version 1
Minor Version 0
Client ID 0x1234
Discovery attempts 5
Connection attempts 5
Response attempts 5

Table 6.5: Client Configuration

6.3 Measurements

Average response times and standard deviations for read, update, subscribe and unsubscribe requests
as well as error responses are measured for all 4 possible signals using a test script. This is done
for both dynamic and no service discovery cases. The test script calls the public methods of the
SOMEIPVISSClient object and for each method various requests are sent. These requests are
repeated for 10 times per set of methods to get more accurate average response times and standard
deviations.

The test script also captures the packets in the sequence in a pcap file using dumpcap command line
utility provided by Wireshark. These captures are used to analyze the average bandwidth require-
ments and packet structures of requests, responses, notifications and SOME/IP-SD OfferService
messages.

Limitations regarding the fact that the ethernet adapters are virtual and the fact that it might take
more time on VM for certain allocations and deallocations as compared to a physical machine, have
allowed to test only 2 cases (no service discovery and a repetition time of 1s in case of dynamic
service discovery). Some of these issues can be alleviated by perhaps using a smaller timescale for
busy waiting and more mutexes. But this is a subject of optimization and due to constraints of time,
have been left out of scope.

6.4 Results

This section describes the evaluations performed by capturing the packets and analyzing the pcap
files for both the approaches described in Section 4.7.1 and Section 4.7.2. General statistics for
both cases are first derived separately using Wireshark and then the the results are checked and
insights are derived in Section 6.4.3. Finally the section is concluded with an additional test to
check the implications when sending OfferService messages to the maximum allowed limit for a
UDP message with IP fragmentation in Section 6.4.4.

97

6 Evaluation

6.4.1 No Service Discovery Case

For the approach described in Section 4.7.1, the execution of the test script took roughly 24 seconds,
received 60 notifications and the rest of the results that it measured during the execution are
presented in Table 6.6.

Average Time Standard Deviation
Success Read Response 5.033 ms 8.297 ms
Success Update Response 3.748 ms 0.435 ms
Success Subscribe Response 1.986 ms 0.513 ms
Success Unsubscribe Response 1.879 ms 0.207 ms
Error Response 40.948 ms 612.374 ms

Table 6.6: Response Statistics for No Service Discovery Case

Figure 6.3 shows the I/O graph for this approach. This graph indicates the throughput (or bandwidth
requirements) during the execution in terms of bytes per second of packets transmitted between
client and both the servers. Since there are no SOME/IP-SD messages present in this case, only
SOME/IP messages and their corresponding TCP messages contribute to the bandwidth in this case.
The average bandwidth is 5788.44 bytes per second according to the measurements, peaking at
65622 bytes per second.

Figure 6.3: Bandwidth Usage in No Service Discovery Case

The Protocol Hierarchy and the Packet Lengths statistics via Wireshark are presented in Figure 6.4
and Figure 6.5 respectively. The Protocol Hierarchy shows the number of packets according to their
protocol and the Packet Lengths shows the statistics of packets based on their lengths.

98

6.4 Results

Figure 6.4: Protocol Hierarchy in No Service Discovery Case

Figure 6.5: Packet Lengths in No Service Discovery Case

6.4.2 Dynamic Service Discovery Case

For the approach described in Section 4.7.2 with a repetition time of 1s, the execution of the test
script took roughly 412 seconds, received 682 notifications and the rest of the results that it measured
during the execution are presented in Table 6.7.

Average Time Standard Deviation
Success Read Response 714.557 ms 374.449 ms
Success Update Response 882.859 ms 300.228 ms
Success Subscribe Response 697.105 ms 383.849 ms
Success Unsubscribe Response 1.958 ms 0.161 ms
Error Response 623.994 ms 2273.99 ms

Table 6.7: Execution Statistics for Dynamic Service Discovery Case with Repetition Time = 1s

From the pcap file, the I/O graph, Protocol Hierarchy and the Packet Lengths statistics via Wireshark
are presented in Figure 6.6 , Figure 6.7 and Figure 6.8 respectively.

For this case, The average bandwidths for SOME/IP-SD messages by Server 1 and Server 2 are
538.670 and 538.237 bytes per second respectively and for the SOME/IP messages is 845.600 bytes
per second. This totals to a total average of 1922.507. The peak bandwidth of SOME/IP messages
exceed that of SOME/IP-SD messages peaking at 11472 bytes per second.

99

6 Evaluation

Figure 6.6: Bandwidth Usage in Dynamic Service Discovery Case with Repetition Time = 1s

Figure 6.7: Protocol Hierarchy in Dynamic Service Discovery Case with Repetition Time = 1s

Figure 6.8: Packet Lengths in Dynamic Service Discovery Case with Repetition Time = 1s

6.4.3 Insights on the Evaluation of Both the Cases

In Section 6.4.1 and Section 6.4.2, we see a huge difference in terms of round trip times for
responses. The reason why the second approach takes more time currently is due to the fact that
each OfferService message arrives after 1 second, and since the client only discovers the server

100

6.4 Results

when this message arrives, it has to wait in worst case for a maximum of about another 1 second for
the next OfferService message to arrive. This is also the reason why the standard deviation is large,
as the discovery can happen at any time in that 1 second interval.

The time required for unsubscribe responses to arrive remains same in both cases as unsubscribe
requests rely on already opened connections which are kept track of by the client, so no service
discovery needs to take place for sending an unsubscribe request, hence reducing the round trip
time.

The bandwidth of approach 1 comes out to be larger as a result that packets are sent and received in a
fraction of time as compared to approach 2. The transfer of packets via TCP for SOME/IP messages
also increases the bandwidth as more messages including 3 way handshake and acknowledgements
need to be sent additionally for these messages. UDP should decrease bandwidth due to the fact
that there is less overhead as compared to TCP but at the cost of lesser reliability.

But this result does not conclude that approach 1 is better than approach 2, as the server addresses
are not cached in these tests for the second approach, which would happen in a real case scenario.
Also, to get a better overview and be able to compare both the approaches in a better way, more
data is needed in terms of response time by varying repetition times, ideally with values less than 1
second like 100 millisecond, 1 millisecond, microseconds or nanoseconds, so that one might see the
increasing bandwidth of SOME/IP-SD messages which would then add up to increase the bandwidth
requirements of second approach as well. Due to certain limitations mentioned in Section 6.3, we
were unable to test dynamic service discovery with repetition times below 1 second properly in
our client. Also other parameters like CPU and RAM load might need to be tested preferably on a
physical system rather than a VM to get a clearer picture.

To answer the question, why there are only 458 SOME/IP packets received in the first approach
as compared to the 1102 in second approach, we looked at the protocol hierarchy of all possible
SOME/IP messages to get a better picture. This shows that some requests were not sent by the client
in the 1st approach which also lead to lesser responses. But the difference becomes huge due to
the fact that the first approach receives at least 10 times less notifications, because it completes
its execution in a fraction of time. Which is also contributed by faster subscribe responses which
leads to unsubscribes to happen much earlier as compared to the second approach in our tests as the
set of unsubscribe requests are sent after the completion of subscribe requests and responses. The
expected and captured packets are also summarized in Table 6.8 in the order in which these requests
are made (except OfferService and Notifications). The reason for loss of packets seems to be related
to allocation of resources requiring more time to complete as compared to the requests themselves
in some cases and is highly dependent on the state of VM, leading to connection failures between
the client and the server.

101

6 Evaluation

Message Type Expected Packets Packets Captured In No SD Case Packets Captured in Dynamic SD Case
Read Request 40 31 40
Read Response 40 31 40
Update Request 90 88 90
Update Response 80 79 80
Subscribe Request 40 40 40
Subscribe Response 40 40 40
Unsubscribe Request 40 40 40
Unsubscribe Response 40 40 40
Notifications nil 60 682
Error Response 10 9 10
OfferService Messages nil 0 2487

Table 6.8: Expected and Captured Packets for No and Dynamic Service Discovery Case

The messages for all types of requests, responses and notifications are captured in the pcap file. The
serialization approach used is described in Section 4.6.1. This approach is used although being less
efficient at storage compared to Section 4.6.2 as mentioned in Section 4.6.3 due to the fact that it is
more closer to the VISS message format and is supported as UTF-8 string in SOME/IP as well.
This makes it easier to analyze payload and evaluate the core concept.

Figure 6.9 and Figure 6.10 show the request response flows for the first and the second cases
respectively for some VISS read requests.

Figure 6.9: Request / Response for No Service Discovery Case

102

6.4 Results

Figure 6.10: Request / Response for Dynamic Service Discovery Case

Figure 6.11 and Figure 6.12 show the flow for VISS subscription messages as SOME/IP notifications.
They are unidirectional and asynchronous (from server to client), but require an acknowledgement
from client to server after each message due to TCP.

103

6 Evaluation

Figure 6.11: Notifications for No Service Discovery Case

104

6.4 Results

Figure 6.12: Notifications for Dynamic Service Discovery Case

Figure 6.13 and Figure 6.14 show the request and response payloads for a VISS subscribe request.
The subscription ID returned in this case is 984596710 and the corresponding subscription
notification for this ID is shown in Figure 6.15.

105

6 Evaluation

Figure 6.13: Request Payload

Figure 6.14: Response Payload

106

6.4 Results

Figure 6.15: Subscription Payload

Figure 6.16 and Figure 6.17 show the SOME/IP-SD OfferService messages from server 1 and server
2 respectively containing the configuration options for signals handled by the respective servers.

Figure 6.16: OfferService Payload for Server 1

107

6 Evaluation

Figure 6.17: OfferService Payload for Server 2

6.4.4 Possible Amount of Signals via SOME/IP-SD Configuration Options

in Section 4.7.2, we discussed about the possibility of sending multiple configuration options. We
have tried this approach by sending 1548 signals from Cabin.Door.Row0.Left.isLocked all the way
up to Cabin.Door.Row1546.Left.isLocked and then a random string to make the SOME/IP-SD
message length 65507 bytes at an interval of 1 millisecond, 10 milliseconds, 100 milliseconds and 1
second. Table 6.9. shows the average deltas for first 20 packets for all these cases. Figure 6.18
and Figure 6.19. But the period for OfferService messages becomes larger as these datagrams
when fragmented via IP, need to be reassembled as well which takes time. A possibility to use
SOME/IP-TP cannot be excluded as well. Main takeaway is that there is an effect on timing
behaviour (mainly an increase in latency) of OfferService messages on increasing the number of
signals.

Repetition Time Average Delta
1 ms 9.954795 ms
10 ms 19.731098 ms
100 ms 100.237863 ms
1 s 0.999907652 s

Table 6.9: Average Deltas for OfferService Messages Using Maximum Configuration Options
Length

108

6.4 Results

Figure 6.18: OfferService Messages for Server 1 when message is fragmented

Figure 6.19: OfferService Messages for Server 1 when message is fragmented (Continued)

109

7 Conclusion and Outlook

7.1 Conclusion

We understood, designed, implemented and evaluated parts of the VISS server and client on
SOME/IP. With the design and implementation, we went up and beyond and asked ourselves
whether the SOME/IP stack in it’s current state fits our scenario or not.

The answer to that question depends on the use case scenario. One can if using a centralized server
scenario go with the all the approaches discussed in Section 4.2.1, Section 4.2.2 and Section 4.2.3,
taking the trade-offs of all of them in account, or for that matter consider using already available
transport binding, especially MQTT if the use case allows it.

The real value of SOME/IP comes in distributed server and service scenarios where the concept
of service instances makes it a suitable candidate and also being a tried and tested solution in
automotive environments, adds only more value to it. It seems promising as it allows flexibility with
service discovery, allowing one to decide whether to do it dynamically or not do it at all by simply
using a preconfigured signal to server mapping as described in Section 4.7.1. In case one decides
to do it dynamically, one can go beyond the SOME/IP-SD standard and allow more configuration
options to fit inside the OfferService message’s referenced option array or fit multiple signals within
a single configuration option, if one wants to follow the SOME/IP standard. Doing that paves way
for approaches described Section 4.7.2 and Section 4.7.3.

As with everything currently available in the market, SOME/IP is also not an all-in-one or a perfect
solution. if a few things are made more flexible, then it can become suitable for a range of solutions
which were not imagined at it’s design time. This includes offering more dedicated subscribe
options than just eventgroups, like dedicated runtime subscription handling capabilities per client to
allow for the dynamism needed to model subscription behavior for standards like VISS.

Although the results for service discovery tests described in Section 6.4.1 and Section 6.4.2 are
non-conclusive. But what we did come up with, are the design aspects which needs to be taken care
of, an experimental yet interesting implementation realizing not only the service discovery scenarios
mentioned in Section 4.7.1 and Section 4.7.2, but also a dedicated application level subscription
handling mechanism on both the client and the server, aspects which need to be tested, examples on
how they can be tested and limiting factors along with room for improvement and extensions in the
current SOME/IP standard.

110

7.2 Limitations

7.2 Limitations

As stated in Section 6.3 and Section 6.4.3, the limitations posed by the VM and the fact that there
needs to be more optimizations to be made like caching in the dynamic service discovery case, ask
for more extensive testing. One then needs to evaluate the solution preferably on a real network of
ECUs or physical hosts with repetition times under 1 second for the dynamic service discovery
case. The fact that security and safety aspects need to be evaluated when deploying the solution
on a real world vehicle cannot simply be neglected. By the end of this thesis, W3C released new
draft specifications for both the core [1] and transport [50] of VISSv2. These standards introduce
new changes including authorization token being an optional field in responses. We use the older
specifications due to time constraints of the thesis. The server currently also does not check for
duplicate subscriptions, which means if a client makes multiple subscribe requests for the same
signal, each request is treated as a separate subscribe request with own unique subscription ID and
hence the client can receive duplicate events if more than one subscribe request is made for the
same signal without unsubscribing the other. We use separate configuration option per signal. This
was done to make the implementation easier. But in a real world scenario, if one wants to follow the
SOME/IP standard strictly, one can also put multiple signals inside a single configuration option as
according to [10], it supports duplicate keys within different entries.

7.3 Future Work

The thesis could lead to the following future work:

1. Implementation and test using the proposed SOME/IP based serialization scheme (Sec-
tion 4.6.2) and then comparing it practically with the one, which is used in the current
implementation (Section 4.6.1).

2. Further optimizations to the current implementation like caching, checking for duplicate
subscription on server, packing all the signals within a single configuration option (or perhaps
finding a clever way of encoding it without mentioning each signal) and testing with repetition
times under 1 second.

3. Implementation of the service discovery approach described in Section 4.7.3.

4. Although the subscription concept allows for expansion with rules for filters. It was not
implemented. This needs to be seen in future along with how these filters will work with the
distributed service scenario.

5. Security and rights management w.r.t onboard applications need to be researched on. Does
one need the JWT based approach as described by [13] or other access management systems
like, for example, Identity Access Management (IAM) [11] module on AUTOSAR Adaptive?

6. Error events have not been implemented (like token expired) as they heavily depend on the
type of security measure used (in this case, the JWT token). These could be implemented in
the future.

111

7 Conclusion and Outlook

7. Middleware protocols like DDS look promising and COVESA also conducted a meeting to
discuss the possibilities of VSS with DDS [19]. Hence, a detailed comparison of SOME/IP
based implementation with the ones in DDS and MQTT could be another task.

112

Bibliography

[1] I. Agudo, U. Bjorkengren, W. Lee. VISS version 2 - Core. W3C Working Draft.
https://www.w3.org/TR/2023/WD-viss2-core-20230927/. W3C, Sept. 2023 (cit. on p. 111).

[2] Amazon Web Services, Inc. Reference Implementation for AWS IoT FleetWise. url: https:
//github.com/aws/aws-iot-fleetwise-edge (cit. on p. 40).

[3] Android Open Source Project. Vehicle Hardware Abstraction Layer - Overview. url:
https://source.android.com/docs/devices/automotive/vhal (cit. on p. 41).

[4] Android Open Source Project. Vehicle Properties. url: https://source.android.com/docs/
devices/automotive/vhal/properties (cit. on p. 41).

[5] S. Aust. “Vehicle API and Service Catalog for Next Generation Mobility”. In: 2022 25th
International Symposium on Wireless Personal Multimedia Communications (WPMC). 2022,
pp. 418–423. doi: 10.1109/WPMC55625.2022.10014905 (cit. on pp. 13, 16, 40).

[6] AutoReportNG. 7 Uses Of An API In The Automotive Industry. 2022. url: https://

autoreportng.com/2022/10/7-uses-of-an-api-in-the-automotive-industry.html (cit. on
p. 40).

[7] AUTOSAR. Example for a Serialization Protocol (SOME/IP) V1.1.0 R4.1 Rev 3. 637. Mar.
2014. url: https://www.autosar.org/fileadmin/standards/R4- 1/CP/AUTOSAR_TR_

SomeIpExample.pdf (cit. on p. 96).
[8] AUTOSAR. Methodology for Adaptive Platform, R22-11. 709. Nov. 2022. url: https://

www.autosar.org/fileadmin/standards/R22-11/AP/AUTOSAR_TR_AdaptiveMethodology.pdf

(cit. on p. 41).
[9] AUTOSAR. SOME/IP Protocol Specification - Foundation R22-11. 696. Nov. 2022. url:

https://www.autosar.org/fileadmin/standards/R22-11/FO/AUTOSAR_PRS_SOMEIPProtocol

.pdf (cit. on pp. 13, 26–28, 33–39, 45, 46, 71).
[10] AUTOSAR. SOME/IP Service Discovery Protocol Specification - Foundation R22-11. 802.

Nov. 2022. url: https://www.autosar.org/fileadmin/standards/R22-11/FO/AUTOSAR_PRS_
SOMEIPServiceDiscoveryProtocol.pdf (cit. on pp. 26, 28–33, 111).

[11] AUTOSAR. Specification of Identity and Access Management AUTOSAR AP R22-11. 900.
Nov. 2022. url: https://www.autosar.org/fileadmin/standards/R22-11/AP/AUTOSAR_SWS_
IdentityAndAccessManagement.pdf (cit. on p. 111).

[12] Avnet, Inc. Vehicle-to-everything (V2X) communication - the design engineer’s guide. 2023.
url: https://www.avnet.com/wps/portal/abacus/solutions/markets/automotive-and-
transportation/automotive/communications- and- connectivity/v2x- communication/

(cit. on p. 13).
[13] U. Bjorkengren, W. Lee, I. Agudo. VISS version 2 - Core. W3C Working Draft.

https://www.w3.org/TR/2023/WD-viss2-core-20230418/. W3C, Apr. 2023 (cit. on pp. 13,
19, 20, 44, 66, 111).

113

https://github.com/aws/aws-iot-fleetwise-edge
https://github.com/aws/aws-iot-fleetwise-edge
https://source.android.com/docs/devices/automotive/vhal
https://source.android.com/docs/devices/automotive/vhal/properties
https://source.android.com/docs/devices/automotive/vhal/properties
https://doi.org/10.1109/WPMC55625.2022.10014905
https://autoreportng.com/2022/10/7-uses-of-an-api-in-the-automotive-industry.html
https://autoreportng.com/2022/10/7-uses-of-an-api-in-the-automotive-industry.html
https://www.autosar.org/fileadmin/standards/R4-1/CP/AUTOSAR_TR_SomeIpExample.pdf
https://www.autosar.org/fileadmin/standards/R4-1/CP/AUTOSAR_TR_SomeIpExample.pdf
https://www.autosar.org/fileadmin/standards/R22-11/AP/AUTOSAR_TR_AdaptiveMethodology.pdf
https://www.autosar.org/fileadmin/standards/R22-11/AP/AUTOSAR_TR_AdaptiveMethodology.pdf
https://www.autosar.org/fileadmin/standards/R22-11/FO/AUTOSAR_PRS_SOMEIPProtocol.pdf
https://www.autosar.org/fileadmin/standards/R22-11/FO/AUTOSAR_PRS_SOMEIPProtocol.pdf
https://www.autosar.org/fileadmin/standards/R22-11/FO/AUTOSAR_PRS_SOMEIPServiceDiscoveryProtocol.pdf
https://www.autosar.org/fileadmin/standards/R22-11/FO/AUTOSAR_PRS_SOMEIPServiceDiscoveryProtocol.pdf
https://www.autosar.org/fileadmin/standards/R22-11/AP/AUTOSAR_SWS_IdentityAndAccessManagement.pdf
https://www.autosar.org/fileadmin/standards/R22-11/AP/AUTOSAR_SWS_IdentityAndAccessManagement.pdf
https://www.avnet.com/wps/portal/abacus/solutions/markets/automotive-and-transportation/automotive/communications-and-connectivity/v2x-communication/
https://www.avnet.com/wps/portal/abacus/solutions/markets/automotive-and-transportation/automotive/communications-and-connectivity/v2x-communication/

Bibliography

[14] BMW Group. BMW Open Data Platform. 2020. url: https://bmw-cardata.bmwgroup.com/
thirdparty/public/car-data (cit. on p. 40).

[15] R. T. Braden. Requirements for Internet Hosts - Application and Support. RFC 1123. Oct.
1989. doi: 10.17487/RFC1123. url: https://www.rfc-editor.org/info/rfc1123 (cit. on
p. 26).

[16] R. T. Braden. Requirements for Internet Hosts - Communication Layers. RFC 1122. Oct.
1989. doi: 10.17487/RFC1122. url: https://www.rfc-editor.org/info/rfc1122 (cit. on
p. 26).

[17] T. Bray. The JavaScript Object Notation (JSON) Data Interchange Format. RFC 8259. Dec.
2017. doi: 10.17487/RFC8259. url: https://www.rfc-editor.org/info/rfc8259 (cit. on
pp. 19, 46).

[18] COVESA. Basic Rules :: Vehicle Signal Specification. url: https://covesa.github.io/
vehicle_signal_specification/rule_set/basics/#specification-format (cit. on p. 18).

[19] COVESA. COVESA Spotlight: How DDS Enhances VSS for Software Defined Vehicle -
YouTube. url: https://www.youtube.com/watch?v=2NRhBlZXG_0 (cit. on p. 112).

[20] COVESA. Includes :: Vehicle Signal Specification. url: https://covesa.github.io/

vehicle_signal_specification/rule_set/includes/ (cit. on p. 18).

[21] COVESA. Overlay :: Vehicle Signal Specification. url: https://covesa.github.io/vehicle_
signal_specification/rule_set/overlay/ (cit. on p. 18).

[22] COVESA. Vehicle API - Wiki Front Page. 2022. url: https://wiki.covesa.global/display/
WIK4/Vehicle+API (cit. on p. 16).

[23] COVESA. Vehicle Service Catalog (VSC) - Common Interface Description Model. 2022.
url: https://wiki.covesa.global/display/WIK4/Vehicle+Service+Catalog+%28VSC%29+-
+Common+Interface+Description+Model (cit. on pp. 16, 40).

[24] COVESA. Vehicle Service Catalog (VSC) GitHub Repository. 2022. url: https://github.
com/COVESA/vehicle_service_catalog (cit. on p. 16).

[25] COVESA. Vehicle Signal Specification. url: https://covesa.github.io/vehicle_signal_
specification/ (cit. on pp. 13, 17).

[26] COVESA. VSS Resources at a Glance - Wiki Front Page. url: https://wiki.covesa.global/
display/WIK4/VSS+Resources+at+a+Glance (cit. on p. 40).

[27] COVESA. vss-tools GitHub Repository. url: https://github.com/COVESA/vss-tools (cit. on
p. 19).

[28] digitalplaybook.org. Overview: playground.digital.auto. url: https://www.digitalplaybook.
org/index.php?title=Overview:_playground.digital.auto (cit. on p. 40).

[29] digitalplaybook.org. playground.digital.auto Vehicle API Catalogue. url: https://digitala
uto.netlify.app/model (cit. on p. 17).

[30] Eclipse Foundation. Home - iceoryx.io. url: https://iceoryx.io/latest/ (cit. on p. 41).

[31] Electronic Design. What’s the Difference Between Domain and Zonal Automotive Archi-
tectures? 2021. url: https://www.electronicdesign.com/markets/automotive/article/
21166567/electronic- design- whats- the- difference- between- domain- and- zonal-

automotive-architectures (cit. on p. 13).

114

https://bmw-cardata.bmwgroup.com/thirdparty/public/car-data
https://bmw-cardata.bmwgroup.com/thirdparty/public/car-data
https://doi.org/10.17487/RFC1123
https://www.rfc-editor.org/info/rfc1123
https://doi.org/10.17487/RFC1122
https://www.rfc-editor.org/info/rfc1122
https://doi.org/10.17487/RFC8259
https://www.rfc-editor.org/info/rfc8259
https://covesa.github.io/vehicle_signal_specification/rule_set/basics/#specification-format
https://covesa.github.io/vehicle_signal_specification/rule_set/basics/#specification-format
https://www.youtube.com/watch?v=2NRhBlZXG_0
https://covesa.github.io/vehicle_signal_specification/rule_set/includes/
https://covesa.github.io/vehicle_signal_specification/rule_set/includes/
https://covesa.github.io/vehicle_signal_specification/rule_set/overlay/
https://covesa.github.io/vehicle_signal_specification/rule_set/overlay/
https://wiki.covesa.global/display/WIK4/Vehicle+API
https://wiki.covesa.global/display/WIK4/Vehicle+API
https://wiki.covesa.global/display/WIK4/Vehicle+Service+Catalog+%28VSC%29+-+Common+Interface+Description+Model
https://wiki.covesa.global/display/WIK4/Vehicle+Service+Catalog+%28VSC%29+-+Common+Interface+Description+Model
https://github.com/COVESA/vehicle_service_catalog
https://github.com/COVESA/vehicle_service_catalog
https://covesa.github.io/vehicle_signal_specification/
https://covesa.github.io/vehicle_signal_specification/
https://wiki.covesa.global/display/WIK4/VSS+Resources+at+a+Glance
https://wiki.covesa.global/display/WIK4/VSS+Resources+at+a+Glance
https://github.com/COVESA/vss-tools
https://www.digitalplaybook.org/index.php?title=Overview:_playground.digital.auto
https://www.digitalplaybook.org/index.php?title=Overview:_playground.digital.auto
https://digitalauto.netlify.app/model
https://digitalauto.netlify.app/model
https://iceoryx.io/latest/
https://www.electronicdesign.com/markets/automotive/article/21166567/electronic-design-whats-the-difference-between-domain-and-zonal-automotive-architectures
https://www.electronicdesign.com/markets/automotive/article/21166567/electronic-design-whats-the-difference-between-domain-and-zonal-automotive-architectures
https://www.electronicdesign.com/markets/automotive/article/21166567/electronic-design-whats-the-difference-between-domain-and-zonal-automotive-architectures

Bibliography

[32] EPAM Systems, Renesas Electronics Corporation. Aos – Open Functions Management
System. url: https://aoscloud.io/de/ (cit. on p. 40).

[33] franca. Franca. url: https://franca.github.io/franca/ (cit. on p. 19).

[34] Google LLC. Protocol Buffers Documentation. 2023. url: https://protobuf.dev/ (cit. on
p. 19).

[35] GraphQL Foundation. GraphQL | A query language for your API. 2023. url: https:

//graphql.org/ (cit. on p. 19).

[36] A. Gulbrandsen, D. L. Esibov. A DNS RR for specifying the location of services (DNS SRV).
RFC 2782. Feb. 2000. doi: 10.17487/RFC2782. url: https://www.rfc-editor.org/info/
rfc2782 (cit. on p. 32).

[37] D. Hardt. The OAuth 2.0 Authorization Framework. RFC 6749. Oct. 2012. doi: 10.17487/
RFC6749. url: https://www.rfc-editor.org/info/rfc6749 (cit. on p. 19).

[38] S. Husnjak, D. Peraković, I. Forenbacher, M. Mumdziev. “Telematics system in usage based
motor insurance”. In: Procedia Engineering 100 (2015), pp. 816–825 (cit. on p. 40).

[39] Internet Protocol. RFC 791. Sept. 1981. doi: 10.17487/RFC0791. url: https://www.rfc-
editor.org/info/rfc791 (cit. on p. 70).

[40] International Organization for Standardization. Road Vehicles — Extended vehicle (ExVe)
methodology — Part 1: General information. Standard. Geneva, CH: International Organiza-
tion for Standardization, Dec. 2017 (cit. on p. 40).

[41] International Organization for Standardization. Road Vehicles — Extended vehicle (ExVe)
methodology — Part 2: Methodology for designing the extended vehicle. Standard. Geneva,
CH: International Organization for Standardization, Jan. 2018 (cit. on p. 40).

[42] International Organization for Standardization. Road vehicles — Extended vehicle (ExVe) web
services — Part 1: Content and definitions. Standard. Geneva, CH: International Organization
for Standardization, Nov. 2021 (cit. on p. 40).

[43] International Organization for Standardization. Road vehicles — Extended vehicle (ExVe)
web services — Part 2: Access. Standard. Geneva, CH: International Organization for
Standardization, Nov. 2021 (cit. on p. 40).

[44] International Organization for Standardization. Road vehicles — Information for remote
diagnostic support — General requirements, definitions and use cases — Amendment 1.
Standard. Geneva, CH: International Organization for Standardization, Nov. 2021 (cit. on
p. 40).

[45] International Organization for Standardization. Data elements and interchange formats
— Information interchange — Representation of dates and times. Standard. Geneva, CH:
International Organization for Standardization, Dec. 2004 (cit. on p. 20).

[46] M. Johanson, P. Dahle, A. Soderberg. “Remote vehicle diagnostics over the internet using
the DoIP protocol”. In: Proceedings of the Sixth International Conference on Systems and
Networks Communications. IARIA Barcelona, Spain. 2011, pp. 226–231 (cit. on p. 13).

[47] M. B. Jones, J. Bradley, N. Sakimura. JSON Web Token (JWT). RFC 7519. May 2015. doi:
10.17487/RFC7519. url: https://www.rfc-editor.org/info/rfc7519 (cit. on p. 20).

[48] F. J. Koch. “Opportunities and Barriers for Advancing the API Economy within the Automotive
Industry”. In: Technische Universität München: Munich, Germany (2019) (cit. on p. 40).

115

https://aoscloud.io/de/
https://franca.github.io/franca/
https://protobuf.dev/
https://graphql.org/
https://graphql.org/
https://doi.org/10.17487/RFC2782
https://www.rfc-editor.org/info/rfc2782
https://www.rfc-editor.org/info/rfc2782
https://doi.org/10.17487/RFC6749
https://doi.org/10.17487/RFC6749
https://www.rfc-editor.org/info/rfc6749
https://doi.org/10.17487/RFC0791
https://www.rfc-editor.org/info/rfc791
https://www.rfc-editor.org/info/rfc791
https://doi.org/10.17487/RFC7519
https://www.rfc-editor.org/info/rfc7519

Bibliography

[49] W. Lee, U. Bjorkengren. VISS version 2-Transport. W3C Working Draft. https://www.w3.org/TR/2023/WD-
viss2-transport-20230418/. W3C, Apr. 2023 (cit. on pp. 13, 19, 21–26, 46).

[50] W. Lee, U. Bjorkengren. VISS version 2-Transport. W3C Working Draft. https://www.w3.org/TR/2023/WD-
viss2-transport-20230908/. W3C, Sept. 2023 (cit. on p. 111).

[51] T. Lin, D. F. Blanco, J. Guariguata. Communication Management in Automotive Service-
Oriented Architectures. IEEE SA Ethernet and IP at Automotive Technology Day. Nov. 2021.
url: https://standards.ieee.org/wp-content/uploads/import/documents/other/eipatd-
presentations/2021/d1-02.pdf (cit. on p. 41).

[52] N. Lu, N. Cheng, N. Zhang, X. Shen, J. W. Mark. “Connected vehicles: Solutions and
challenges”. In: IEEE internet of things journal 1.4 (2014), pp. 289–299 (cit. on p. 40).

[53] K. Matheus, T. Königseder. Automotive ethernet. Cambridge University Press, 2021 (cit. on
pp. 13, 26, 41).

[54] A. Mayr, M. Helmling. “Middleware Protocols in the Automobile: Service-Oriented, Data-
Centric or RESTful?” In: Elektronik automotive (Mar. 2020). url: https://cdn.vector.com/
cms/content/know-how/_technical-articles/PREEvision/PREEvision_MiddlewareProtoco

ls_ElektronikAutomotive_202003_PressArticle_EN.pdf (cit. on p. 41).

[55] A. Melnikov, I. Fette. The WebSocket Protocol. RFC 6455. Dec. 2011. doi: 10.17487/RFC6455.
url: https://www.rfc-editor.org/info/rfc6455 (cit. on pp. 17, 19).

[56] Mercedes-Benz Connectivity Services GmbH. Mercedes–Benz /developers – The API
platform by Mercedes-Benz. url: https://developer.mercedes-benz.com/ (cit. on p. 40).

[57] Microsoft. JSON · microsoft/cpprestsdk Wiki · GitHub. 2017. url: https://github.com/
microsoft/cpprestsdk/wiki/JSON (cit. on p. 75).

[58] H. Nielsen, J. Mogul, L. M. Masinter, R. T. Fielding, J. Gettys, P. J. Leach, T. Berners-Lee.
Hypertext Transfer Protocol – HTTP/1.1. RFC 2616. June 1999. doi: 10.17487/RFC2616. url:
https://www.rfc-editor.org/info/rfc2616 (cit. on pp. 17, 25).

[59] T. Nomura, A. Katsuyuki. What is the conqueror in the SOA platform for the future in-vehicle
networks? - A study based on JASPAR’s automotive use cases. IEEE SA Ethernet and
IP at Automotive Technology Day. Nov. 2021. url: https://standards.ieee.org/wp-
content/uploads/import/documents/other/eipatd-presentations/2021/additional-

presentation.pdf (cit. on p. 41).

[60] OASIS. MQTT Version 5.0. Standard. Mar. 2019. url: https://docs.oasis-open.org/mqtt/
mqtt/v5.0/mqtt-v5.0.pdf (cit. on pp. 17, 19).

[61] OMG. OMG Data Distribution Service (DDS) Version 1.4. formal/2015-04-10. Mar. 2015.
url: https://www.omg.org/spec/DDS/1.4/PDF (cit. on p. 17).

[62] R. Palin, D. Ward, I. Habli, R. Rivett. “ISO 26262 safety cases: Compliance and assurance”.
In: (2011) (cit. on p. 13).

[63] E. Rescorla. HTTP Over TLS. RFC 2818. May 2000. doi: 10.17487/RFC2818. url: https:
//www.rfc-editor.org/info/rfc2818 (cit. on p. 19).

[64] M. Rumez, D. Grimm, R. Kriesten, E. Sax. “An overview of automotive service-oriented
architectures and implications for security countermeasures”. In: IEEE access 8 (2020),
pp. 221852–221870 (cit. on p. 41).

116

https://standards.ieee.org/wp-content/uploads/import/documents/other/eipatd-presentations/2021/d1-02.pdf
https://standards.ieee.org/wp-content/uploads/import/documents/other/eipatd-presentations/2021/d1-02.pdf
https://cdn.vector.com/cms/content/know-how/_technical-articles/PREEvision/PREEvision_MiddlewareProtocols_ElektronikAutomotive_202003_PressArticle_EN.pdf
https://cdn.vector.com/cms/content/know-how/_technical-articles/PREEvision/PREEvision_MiddlewareProtocols_ElektronikAutomotive_202003_PressArticle_EN.pdf
https://cdn.vector.com/cms/content/know-how/_technical-articles/PREEvision/PREEvision_MiddlewareProtocols_ElektronikAutomotive_202003_PressArticle_EN.pdf
https://doi.org/10.17487/RFC6455
https://www.rfc-editor.org/info/rfc6455
https://developer.mercedes-benz.com/
https://github.com/microsoft/cpprestsdk/wiki/JSON
https://github.com/microsoft/cpprestsdk/wiki/JSON
https://doi.org/10.17487/RFC2616
https://www.rfc-editor.org/info/rfc2616
https://standards.ieee.org/wp-content/uploads/import/documents/other/eipatd-presentations/2021/additional-presentation.pdf
https://standards.ieee.org/wp-content/uploads/import/documents/other/eipatd-presentations/2021/additional-presentation.pdf
https://standards.ieee.org/wp-content/uploads/import/documents/other/eipatd-presentations/2021/additional-presentation.pdf
https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.pdf
https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.pdf
https://www.omg.org/spec/DDS/1.4/PDF
https://doi.org/10.17487/RFC2818
https://www.rfc-editor.org/info/rfc2818
https://www.rfc-editor.org/info/rfc2818

[65] D. C. Schmidt. “Reactor: an object behavioral pattern for demultiplexing and dispatching
handles for synchronous events”. In: Proceedings of the First Pattern Languages of Programs
Conference. 1994 (cit. on p. 76).

[66] M. Steffelbauer. “SOVD-The Diagnostic Standard of Tomorrow”. In: ATZelectronics world-
wide 16.4 (2021), pp. 44–48 (cit. on pp. 13, 40).

[67] The Eclipse Foundation. Eclipse KUKSA. url: https://eclipse.github.io/kuksa.website/
(cit. on p. 40).

[68] D. Tomaszuk, G. Kellogg. RDF 1.2 Turtle. W3C Working Draft. https://www.w3.org/TR/2023/WD-
rdf12-turtle-20230831/. W3C, Aug. 2023 (cit. on p. 19).

[69] Vector Informatik GmbH. MICROSAR Adaptive. 2023. url: https://www.vector.com/de/
de/produkte/produkte-a-z/embedded-components/adaptive-microsar/ (cit. on p. 75).

[70] Verband der Automobilindustrie e. V. ADAXO: Automotive Data Access – Extended and
Open. Position. Berlin, DE, Dec. 2021. url: https://www.vda.de/dam/jcr:72f7590f-cd77-
4e8c-b8dd-d34df3c483f9/VDA_5690_Positionspapier_ADAXO_EN_RZ.pdf?mode=view (cit. on
p. 40).

[71] W3C. W3C Automotive Interface Implementation - WAII. url: https://github.com/w3c/
automotive-viss2 (cit. on pp. 20, 40).

[72] N. Weiss, M. Schreieck, M. Wiesche, H. Krcmar. “From Product to Platform: How can BMW
compete with Platform Giants?” In: Journal of Information Technology Teaching Cases 11.2
(2021), pp. 90–100 (cit. on p. 40).

[73] F. Yergeau. UTF-8, a transformation format of ISO 10646. RFC 3629. Nov. 2003. doi:
10.17487/RFC3629. url: https://www.rfc-editor.org/info/rfc3629 (cit. on p. 46).

https://eclipse.github.io/kuksa.website/
https://www.vector.com/de/de/produkte/produkte-a-z/embedded-components/adaptive-microsar/
https://www.vector.com/de/de/produkte/produkte-a-z/embedded-components/adaptive-microsar/
https://www.vda.de/dam/jcr:72f7590f-cd77-4e8c-b8dd-d34df3c483f9/VDA_5690_Positionspapier_ADAXO_EN_RZ.pdf?mode=view
https://www.vda.de/dam/jcr:72f7590f-cd77-4e8c-b8dd-d34df3c483f9/VDA_5690_Positionspapier_ADAXO_EN_RZ.pdf?mode=view
https://github.com/w3c/automotive-viss2
https://github.com/w3c/automotive-viss2
https://doi.org/10.17487/RFC3629
https://www.rfc-editor.org/info/rfc3629

	1 Introduction
	1.1 Context
	1.2 Problem Statement
	1.3 Methodology
	1.4 Document Structure

	2 Background Information
	2.1 Vehicle api
	2.2 vss
	2.3 viss
	2.4 SOME/IP

	3 State of the Art
	4 Design and Analysis
	4.1 Some questions regarding SOME/IP as transport binding
	4.2 Service Design
	4.3 Service Interface Versioning
	4.4 Request ID Generation
	4.5 Handling Subscriptions
	4.6 Serialization of viss Requests and Responses
	4.7 Address Resolution

	5 Realization
	5.1 Components
	5.2 Communication Flows
	5.3 SOMEIPVISSClient api Flows

	6 Evaluation
	6.1 Scenario
	6.2 Setup
	6.3 Measurements
	6.4 Results

	7 Conclusion and Outlook
	7.1 Conclusion
	7.2 Limitations
	7.3 Future Work

	Bibliography

