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Abstract

This thesis presents data-integrated methods to improve the computational per-
formance of partitioned multi-physics simulations, particularly on highly parallel
systems. Partitioned methods allow using available single-physic solvers and well-
validated numerical methods for multi-physics simulations by decomposing the
domain into smaller sub-domains. Each sub-domain is solved by a separate solver
and an external library is incorporated to couple the solvers. This significantly re-
duces the software development cost and enhances the flexibility, while it introduces
new challenges that must be addressed carefully. These challenges include, but are
not limited to, efficient data communication between sub-domains, data mapping
between not-matching meshes, inter-solver load balancing and equation coupling.

In the current work, the inter-solver communication is improved by introducing
a two-level communication initialization scheme to the coupling library preCICE.
The new method significantly speed ups the initialization and removes memory
bottlenecks of the previous implementation. In addition, a data-driven inter-solver
load balancing method is developed to efficiently distribute available computational
resources between coupled single-physic solvers. This method employs both re-
gressions and deep neural networks (DNN) for modeling the performance of the
solvers and derives and solves an optimization problem to distribute the available
CPU and GPU cores among solvers. To accelerate the equation coupling between
strongly coupled solvers, a hybrid framework is developed that integrates DNNs
and classical solvers. The DNN computes a solution estimation for each time step
which is used by classical solvers as a first guess to compute the final solution. To
preserve DNN's efficiency during the simulation, a dynamic re-training strategy
is introduced that updates the DNN’s weights on-the-fly. The cheap but accurate
solution estimation by the DNN surrogate solver significantly reduces the number
of subsequent classical iterations that are necessary for the solution convergence.
Finally, a highly scalable simulation environment is introduced for fluid-structure
interaction problems. The environment consists of highly parallel numerical solvers
and an efficient and scalable coupling library. This framework is able to efficiently
exploit both CPU-only and hybrid CPU-GPU machines. Numerical performance in-
vestigations using a complex test case demonstrate a very high parallel efficiency on
a large number of CPUs and a significant speed-up due to the GPU acceleration.
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Kurzzusammenfassung

Diese Arbeit prasentiert datenintegrierte Methoden zur Verbesserung der Rechenleis-
tung partitionierter multiphysikalischer Simulationen, insbesondere auf hochparal-
lelen Systemen. Partitionierte Methoden ermoglichen die Verwendung verfiigbarer
Einzelphysik-Loser und gut validierter numerischer Methoden fiir Multiphysik-
Simulationen, indem das Gebiet in kleinere Teilgebiete zerlegt wird. Jedes Teilgebiet
wird von einem separaten Loser geldst, und eine externe Bibliothek ist integriert,
um die Loser zu koppeln. Dies reduziert die Softwareentwicklungskosten erheblich
und erhoht die Flexibilitdt, wahrend es neue Herausforderungen mit sich bringt, die
sorgfaltig angegangen werden miissen. Zu diesen Herausforderungen gehoren unter
anderem eine effiziente Datenkommunikation zwischen Subdoménen, Datenmap-
ping zwischen nicht iibereinstimmenden Netzen, Lastausgleich zwischen Losern
und Gleichungskopplung.

In der vorliegenden Arbeit wird die Kommunikation zwischen Losern verbessert,
indem ein zweistufiges Kommunikations-Initialisierungsschema in die Kopplungs-
bibliothek preCICE eingefiihrt wird. Das neue Verfahren beschleunigt die Initial-
isierung erheblich und beseitigt Speicherengpéasse der bisherigen Implementierung.
Dartiber hinaus wird ein datengetriebenes Lastbalancierungs-Verfahren zwischen
Losern entwickelt, um verfiigbare Rechenressourcen effizient zwischen gekoppel-
ten Einzelphysiklosern zu verteilen. Diese Methode verwendet sowohl Regressio-
nen als auch Deep Neural Networks (DNN) zum Modellieren der Leistung der
Loser, leitet ein Optimierungsproblem ab und 16st es, um die verfiigbaren CPU- und
GPU-Kerne auf die Loser zu verteilen. Um die Gleichungskopplung zwischen stark
gekoppelten Losern zu beschleunigen, wird ein hybrides Framework entwickelt, das
DNNSs und klassische Loser integriert. Das DNN berechnet fiir jeden Zeitschritt eine
Losungsschiatzung, die von klassischen Losern als erste Schatzung zur Berechnung
der endgiiltigen Losung verwendet wird. Um die Effizienz des DNN wéhrend der
Simulation zu erhalten, wird eine dynamische Retraing-Strategie eingefiihrt, die die
Gewichtungen des DNN im laufenden Betrieb aktualisiert. Die billige, aber genaue
Losungsschdtzung durch den DNN-Ersatzloser reduziert die Anzahl der nachfol-
genden klassischen Iterationen, die fiir die Losungskonvergenz erforderlich sind,
erheblich. SchliefSlich wird eine hochskalierbare Simulationsumgebung fiir Fluid-
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Struktur-Interaktionsprobleme eingefiihrt. Die Umgebung besteht aus hochparalle-
len numerischen Losern und einer effizienten und skalierbaren Kopplungsbibliothek.
Dieses Framework ist in der Lage, sowohl reine CPU- als auch Hybrid-CPU-GPU-
Maschinen effizient zu nutzen. Untersuchungen der numerischen Performance an-
hand eines komplexen Testfalls zeigen eine sehr hohe parallele Effizienz auf einer
grofien Anzahl von CPUs und eine deutliche Beschleunigung durch die Verwendung
von GPUs.
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1 Introduction

Multi-physics applications are of increasing interest as computational science com-
munities strive to address broad questions about complex physical and engineered
systems characterized by multiple interacting physical processes that have tradi-
tionally been considered separately [1]. However, these problems require solutions
that span a multitude of physical phenomena, which often can only be solved using
simulation techniques that cross several disciplines [2]. This includes a wide range
of applications, such as fluid-structure interaction [3| 4,5, 6, 7], fluid acoustics cou-
pling [8, 9,10, 11] and conjugate heat transfer [12, 13, |[14].

Numerical methods to solve multi-physics problems can be divided into two main
categories, monolithic and partitioned. In a monolithic approach, the equations from
all occurring physics are discretized and solved as a single large system, inherently
accounting for their mutual interaction. Examples of this approach can be found
in [15} 16, (17]. The monolithic method provides the opportunity to develop highly
tailored and efficient solutions for specific problems. An important disadvantage of
this approach is the requirement of developing a new solver and implementing soft-
ware for each new problem. This significantly increases the software development

cost.

In a partitioned approach, on the other hand, the problem is divided into smaller
subdomains according to the governing physics, hence, separate solvers are used for
each sub-problems. In this setting, a coupling technique must be adopted to account
for the interaction of the domains. One of the big advantages of the partitioned
approach is the possibility to use the most adapted and well-validated numerical
methods for each sub-problem. Moreover, it allows using previously developed
and computationally optimized single-physics solver codes, thus saving excessive
software development effort [18, 19, 20]. The efficiency of this approach has been
shown in many publications [20, 21, |7].

The modern scientific and engineering multi-physics problems that we address are
often very complex and require a huge computational effort [7]. Therefore, massively
parallel computers must be exploited efficiently for running these simulations. In
a partitioned approach, the parallel efficiency of the single-physics solvers plays an
important role in the overall performance of the coupled simulations. In recent years,
numerous efficient codes have been developed for many single-physics problems,
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particularly fluid and structure systems. This includes both open-source solvers
such as OpenFoam [22]], Calculix [23] and FEniCSx [24] as well as commercial and
in-house software codes such as ANSYS Fluent [25] and Termofluids [26, 27].

Nevertheless, using efficient single-physics solvers does not guarantee a scalable
coupled simulation. Multi-code coupling introduces several new challenges that
must be properly addressed for an efficient simulation. These challenges include,
but are not limited to (i) efficient data communication between solvers, (ii) accurately
mapping the interface data when solvers use non-matching meshes, (iii) equation
coupling at the common interface to ensure the solution is converged, and (iv) load
balancing between coupled solvers to maximize the parallel efficiency and mini-
mize idle times. In the following, I briefly introduce these challenges and solutions
proposed in the literature so far.

1.1 Equation Coupling

To fulfill the physical equilibrium at the common interface and achieve a converged
solution (in each implicit time step or for the stationary solution), the involved
solvers perform a kind of fixed-point iteration in a partitioned simulation. To better
illustrate this, the coupling in a partitioned solution is explained through an example.
Assume we have two solvers coupled in a partitioned simulation, say S1 and S2.
These two can be for example a fluid and a solid solver in a fluid-structure interaction
(FSI) problem. The solvers can be modeled as two operators S; : X; — X, and
Sy + X9 — Xj, each of them taking the output of the other one at the coupling
interface as input. In an FSI problem, the fluid solver S; takes the displacement
at the common interface z; € X; as the input, and calculates the corresponding
pressure distribution at the boundary z; € X,. In return, the solid solver S, takes z
as an input to calculate the displacement.

The solvers can be called either in a parallel or a serial manner. In the former, both
solvers are called simultaneously, while in the latter they run one after the other.
In the case of a serial coupling scheme, S; and \S; are applied consecutively. This
process can be presented as the following fixed point iteration:

I'Tew - ACC e} SQ e} Sl<I1). (11)
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On the other hand, in a parallel coupling scheme, we apply S; and S, simultaneously
to a set of input vectors X; and Xo:

< “ ) — ACCo ( 5(2) ) . (1.2)
Ta Si(71)

ACC denotes a convergence acceleration method. For a simple fixed-point iteration,
ACC is the identity. More sophisticated approaches are under-relaxation or quasi-
Newton which will be explained later in this section.

In addition to the categorization into the parallel and sequential coupling, coupling
schemes can be categorized into explicit and implicit methods. In the former, solvers
are called for a fixed number of times (iterations of the fixed point equation) during
each time step disregarding the convergence of the solution at the boundary. This can
lead to numerical instabilities and inaccurate solutions if there is a strong physical
coupling between domains. Implicit schemes, on the other hand, iterate until con-
vergence, meaning that further iterations do not change the solution. These schemes
prevent numerical instabilities and produce more accurate solutions. However, due
to the higher number of iterations, these schemes are computationally more expen-

sive.

Combining the mentioned categorizations results in four different coupling schemes:
(i) explicit-serial, (ii) explicit-parallel, (iii) implicit-serial, and (iv) implicit-parallel. In
the following, each one is explained briefly.

In an explicit-serial scheme the first solver S; uses the boundary values of the previ-
ous time step xgtfl) to solve the domain equations and output new coupling values
xgt). When the first solver has finished, the second solver S, starts the solution with
the new coupling values a:gt). This process is repeated until the end of the simulation
tmax is reached. Algorithm [Tjexpresses this scenario as a pseudo-code.

Algorithm 1 Pseudo-code: explicit-serial coupling scheme for the partitioned simu-
lation.

initialize 2\”
fort=1,... t,.c do
-Tg) — 51(37?71))
2y Sy(al))
end for

In an explicit-parallel scheme, the coupled solvers (S1 and 52) run simultaneously
using the values of the previous time step @Y, 28™), ie., lines 3 and 4 in Alg.
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are executed at the same time.

Algorithm 2 Pseudo-code: explicit-parallel coupling scheme for the partitioned sim-
ulation.

1: initialize 2\*, 2"

cfort=1,... t . do
iﬂg) — Sl(ﬂfgtfl))
2{)  Sy(af )
end for

S N

The implicit-serial scheme is similar to the explicit-serial in the sense that coupled
solvers are called one after the other. The difference, however, is that for each time
step, the solution is repeated until a convergence criterion is met. This scenario is
depicted in Alg.

Algorithm 3 Pseudo-code: implicit-serial coupling scheme for the partitioned simu-
lation.

initialize "
fort=1,...,th. do
Jj<0
while not converged do
27 Sy (@)
xgt),]-l-l (_ SQ(Igt),Jﬂ)
J<J+1
end while
20 g0 > assign starting value for next iteration
end for

Finally, in an implicit-parallel coupling scheme, the solvers are called simultane-
ously using the values of the previous iteration. This process is repeated within each
time step until the solution converges. The algorithm is shown on Alg.

In case of using an implicit coupling scheme, either serial or parallel, the fixed-point
equation are commonly accelerated with Aitken’s relaxation (e.g. [18, 28| 29]) or
Newton-based methods (e.g. [30, 31, 32]) which is not included in Alg. 1-4. Fixed-
point iterations with Aitken’s relaxation are seen to be efficient and robust in some
serial coupling solution cases (see e.g. [28]]). However, they often lead to robust,
but still slow convergence, and their performance decreases in a parallel (simulta-
neous) coupling solution. On the other hand, parallel execution together with a
quasi-Newton method is very efficient and robust [33, 21]. Therefore, in the current
work, the quasi-Newton method is used to accelerate implicitly coupled solvers.
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Algorithm 4 Pseudo-code: implicit-parallel coupling scheme for the partitioned
simulation.

1: initialize xgo)’o, 200

2: fort =1,...,tn. do

3: 7+ 0

while not converged do
0 50
A9 a9
J—J+1

end while

x&tﬂ)’o — xgt

10: xgt+1)’0 — :Bgt)

11: end for

M > assign starting values for next iteration
7j

In the following, the quasi-Newton acceleration method is explained in a parallel
coupling setting. Our short introduction follows the description in [3]], a more de-
tailed introduction of the method can be found in [32, 34} |35]. One iteration of the
parallel execution of the fixed-point equation problem can be written in matrix-like
notation as

;(4er1 - 0 SQ le ( 1 3)
x5 Sy 0 ) \xk)’ '
where k indicates the iteration count in the current time step t"~! — ¢", and the tilde

N | Skt 1
sign in X; ' and X; "' means these new values are not converged yet and must be

modified in a subsequent quasi-Newton step. The vector form of the underlying
fixed-point equation (Eq. (1.3)) can be shortly written as

x = H(x), (1.4)

where x = X and H = 59 S(;Q . To solve Eq. 4) the fixed-point itera-
X2 1

tion (Eq. (1.3)) can be accelerated by a subsequent Newton step

X = H(x") — T'R(XY) (1.5)

where k denotes the iteration count, R is the residual function R(x*) = H(x*) — x*,

and 7! is the inverse Jacobian of R(x*) = x* — H~!(x*). Since the calculation of the
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inverse Jacobian is not feasible, it is approximated based on the secant equation
T Vi = Wi (1.6)

in which the hat sign indicates the approximation and W, and V;, are two matrices
which include increments of x = #(x) and the residual R collected from the previous

iterations
Wi = [AX", AX*!, . AX (1.7)
Vi = [ARF, ARF! . AR'] (1.8)

with AX* = X' — X" and AR* = R’ — R""!. There are various options to solve the
underdetermined system[I.6] The classical interface quasi-Newton (IQN) approach
uses minimization of the Frobenius norm as presented in [33| 36, |35] to close the
system:

A

/e

— min., (1.9)
F
which results in the following Jacobian estimation:
Tt =Wi(Vivi) VL (1.10)

Alternatively, we can use a multi-vector quasi-Newton method (IMV]) as proposed
in [37, 32]]. In this approach, instead of minimizing the Frobenius norm of the Jaco-
bian, the distance between the current and the previous time step’s Jacobian (7,
and J (", respectively) is minimized (|7, — J~"|| — min.). This results in the
following approximation for the Jacobian inverse:

~ ~ ~

Jit = 0 4 (W - FHOVYVEV) VL, (B

where £ indicates the iteration number at the current time step, while n refers to the
previous time step t". It should be noted that we cannot always use all available data
from previous iterations, since this might induce linear dependencies in the columns
of V, which leads to an ill-posed problem. Therefore, linearly dependent data must
be removed by using a proper filter [38, 32, 37].

The estimated Jacobian is used to find the increment of x, according to Eq. (1.5). This
process must be repeated until the convergence criterion is met and we can move to
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the next time step. The convergence criterion is defined as

IR
IR

< €FSI (1.12)

with a prescribed small value for epg;.

In the first iteration of the first time step, there is no previous data available to use
the quasi-Newton method. Therefore, the fixed-point equation can be accelerated
with an under-relaxation. In addition, at the beginning of each time step, a second-
order extrapolation is used to create a better initial guess which helps to decrease
the number of required iterations.

Note that the serial scheme usually requires fewer iterations, however, it always idles
one solver. On the other hand, the parallel scheme requires a slightly higher number
of iterations, but it does not idle any solver. The parallel scheme has been shown to
be more efficient for highly parallel simulations. In addition, for coupling three or
more solvers, the parallel coupling scheme is numerically more efficient since the
acceleration is applied to all coupling variables. Furthermore, it is technically more
straightforward as it treats all coupling connections in an equal manner.

1.2 Data Communication

Inter-solver data communication is an important component of a partitioned simula-
tion. Efficient handling of this communication can significantly reduce the coupling
cost. In a partitioned simulation, coupled single-physics solvers need to exchange
coupling data, which is usually handled by an external coupling library. These li-
braries usually use either message passing interface (MPI) or lower-level TCP/IP
sockets for inter-solver communication. In general, there are two main models to
establish inter-solver communication: (i) the centralized intercommunication model
(CICM) and (ii) the distributed intercommunication model (DICM). While the for-
mer (Fig. employs a central entity as a server to handle communications of other
entities (clients), the latter (Fig. allows entities to directly exchange data between
each other [39]. Both models have been used in available coupling libraries. For
example, MpCClI [40], OpenPALM [41] and EMPIRE [42] use a CICM model, while
preCICE [34] and OASIS3-MCT [43] employ a DICM model. A DICM model has
many advantages over a CICM model:
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1. The direct message communication is faster since it does not travel over an
extra entity.

2. It has a higher potential for parallelization since the message exchange is per-
formed point-to-point.

3. A DICM model avoids any memory issue that a CICM model can suffer from
the accumulated messages from clients.

4. The load can be better balanced since there is no central entity that can be
overloaded with messages (In the cases that the central entity involves also in
computations, its load can be much higher than that of other entities).

Parallel Solver A Parallel Solver B

> <——» ( process B,
process A, ) «—»

process A ) 4> <—» ( process B,

< ( process B,

Server A
Server B

Figure 1.1: Inter-solver data communication models: centralized intercommunica-
tion model (CICM).

Inter-solver communication can be also categorized based on the communication
mode, which can be blocking or non-blocking. In a blocking mode, the operation
does not return until it is completed. For example, when calling MPI_Recv in an
MPI communication, the operation is complete only when the message has been
received. On the other hand, a non-blocking operation returns immediately, letting
other operations continue [44]. The DICM model can be used efficiently only in
conjunction with non-blocking operations. Using blocking operations sequentializes
the communication, since these operations can only be performed one after the other,
i.e., one blocking operation must be finished before starting to call the next one.
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Parallel Solver A Parallel Solver B

process A, ? process B,

process A, ) 4= process B,

process A_ ( process B_

Figure 1.2: Inter-solver data communication models: distributed intercommunica-
tion model (DICM).

1.3 Data Mapping

In a partitioned coupled simulation, it is required that common interface values are
transmitted between domains. For instance, in a fluid-structure interaction prob-
lem, once the displacement of the structure is computed, it must be imposed on the
fluid domain. In general, it is not feasible to generate matching interface meshes for
coupled problems. This is because solvers have different requirements for their com-
putational mesh. They may need different interpolation scheme order within a single
element. In addition, depending on the geometry and the governing physics, differ-
ent mesh resolutions can be required. Therefore, when meshes are non-matching, an
interpolation/projection step has to be performed to enable an accurate information
transfer between domains [45, 46].

In literature, various methods have been proposed such as nearest neighbor interpo-
lation [46]], projection methods [47, 48] and interpolation methods based on radial
basis functions (RBF) [49, 50].

Nearest neighbor mapping (Fig. is a simple mapping method in which data
are copied from nearest neighbor points in the partner mesh (for example from mesh
A to mesh B). A search algorithm is needed to find the closest point in mesh A (x )
to a given point in mesh B (x ). The variable in z 4 is then transferred to z 5.
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Projection based mapping (Fig. is based on the projection of data points of
mesh B to mesh A. Instead of taking the values from the closest point z4, the point
xp is orthogonally projected on mesh A and the reconstructed value of the quantity
of interest in that point is taken.

RBF based mapping uses radial basis functions centered at the source data points as
basis functions for a global interpolation function [46].

\ WYQO
.//.‘\/‘ ) L d
(a) Nearest neighbor mapping. (b) Nearest projection mapping.

Figure 1.3: Schematic view of consistent projection-based mappings in a two-
dimensional case. Arrows show the data transfer direction. This illus-
tration has been taken from [51].

All these mapping methods can be used in both conservative and consistent forms.
The conservative form preserves integral values of the data, whereas the consis-
tent form reproduces constant functions on the mapping surface exactly. Consistent
mapping is used for data such as displacements in which the point-value is of im-
portance, whereas conservative mapping is suitable for data such as forces for which
the integral value must be preserved.

1.4 Load Balancing

Running a partitioned simulation on a massively parallel machine requires that the
coupling data are communicated between different nodes. In a black-box partitioned
framework, one mpiexec command per solver is called which pins an independent
set of MPI processes to each solver. Therefore, processes can not be shared between
solvers and, thus, must be distributed among them. This is schematically shown in
Fig.[1.4

Depending on the coupling strategy, parallel or serial, the distribution of computa-
tional resources must be optimized to maximize the parallel efficiency. An imbal-
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Parallel Solver A . Parallel Solver B

() (e ) G ) Coem )
(rwens) () Cem ) (v

(et e ) o) (e
(o) oo ) (e
(= =D =2
GDACDICD

Figure 1.4: Inter-solver load balancing: distribution of computational resources be-
tween two solvers A and B.

anced distribution can result in a significant performance drop. Note that this is
a different issue than load balancing within processes of a single solver. Each pro-
cess’s load per unit (e.g., per mesh element) must be measured to evenly distribute
the computation load among processes. Even though load balancing within a sin-
gle solver has been extensively studied, see for example [52, 53], to the best of my
knowledge, the inter-solver load balancing for partitioned coupled simulations is
largely neglected in the literature. The main issue here is that the coupled solvers
use different degrees of hardware optimizations, different numerical methods, un-
predictable numbers of iterations per time step and equation systems, etc., which
make using analytical or heuristic weights per discretization point for balancing the
load across solvers impossible.

1.5 Thesis Structure and Contributions

This thesis presents methods to improve the computational efficiency of partitioned
multi-physics simulations by addressing the remaining issues in data communica-
tion, load balancing, and equation coupling. Inter-solver data communication has

11
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been properly addressed in the literature. Implementing point-to-point communica-
tion between partner ranks of coupled solvers in the preCICE coupling library has
removed the performance and memory bottleneck of central communication. The
implementation is very efficient on a large number of CPU cores [54]. However, the
initialization of communication is still performed sequentially. To effectively address
this issue, chapter 2| introduces a two-level efficient initialization scheme for parti-
tioned multi-physics simulations.

As explained earlier, the inter-solver load balancing is an open issue for partitioned
simulations. Chapter 3| addresses this challenge by incorporating a data-driven
performance modeling and optimizing the distribution of computational resources
among coupled single-physics solvers. For performance modeling, two different
methods are used. For problems with small to medium problem sizes, a single
variable regression method is adapted. The overhead of performance modeling
for problems with large mesh sizes using this regression is considerable, even pro-
hibitive. Therefore, multi-variable modeling methods using regression and neural
networks are introduced. The neural networks alternative can generate accurate
but cheaper performance models for the problems with a large computational mesh.
Based on these performance models and according to the coupling scheme (parallel
or serial), an optimization problem is derived and solved to calculate the optimal
load balancing between coupled single-physics solvers.

For equation coupling in strongly coupled problems, Quasi-Newton methods have
shown promising performance. However, there exist cases where these advanced
methods still require a high number of iterations to produce converged solutions. To
address these cases, Chapter {4]introduces a machine learning-based idea to further
accelerate the solution convergence. In this method, we use a combination of con-
volutional neural networks and recurrent layers to estimate the coupled problem’s
solution. We show that feeding this estimation to the numerical solvers along with
an advanced quasi-Newton acceleration method can further improve the conver-
gence speed.

To demonstrate the high efficiency of the partitioned method and improvements
made by the methods introduced in this thesis, a highly parallel FSI framework
with GPU-acceleration capability is introduced in chapter 5| The framework couples
highly parallel solvers using preCICE library and incorporates the load balancing
scheme introduced in chapter 3 to investigate complex problems in the field of hemo-
dynamics simulation. Finally, chapter|f summarizes and concludes the thesis.

12



2 Efficient and Scalable Communication
Initialization with preCICE

preCICE is an open-source library that provides the required functionality to couple
independent parallel solvers to establish a partitioned multi-physics multi-code sim-
ulation environment. For data communication between the respective executables
at run time, preCICE implements a point-to-point scheme, where ranks of coupled
solvers directly exchange data avoiding a central communication instance. This
drastically reduces the cost of data communication during the simulation. To ini-
tialize the coupling, mesh partitions of the respective solvers need to be compared
to determine the point-to-point communication channels between the processes of
both codes. In the case of performing the mesh communication in a gather-scatter
manner, this initialization effort can become a limiting factor, if we either reach
memory limits or if we have to re-initialize communication relations in every time
step. In the current chapter, it is explained how the sequential gather-scatter com-
parison of mesh partitions is replaced by a two-level approach that first compares
bounding boxes around mesh partitions in a sequential manner, uses the results
to establish pairwise communication between processes of the two solvers, and fi-
nally compares mesh partitions between connected processes in parallel. It is shown
that the two-level initialization method is five times faster than the old one-level
scheme on 24,576 CPU cores using a mesh with 628,898 vertices. In addition, the
two-level scheme can handle much larger computational meshes, since the central
mesh communication of the one-level scheme is replaced by a fully point-to-point
mesh communication scheme [55]. The remainder of this chapter is organized as
follows. Section [2.1|introduces the communication schemes in preCICE with a focus
on the initialization phase. The new initialization method is explained in Sec.
Scalability and efficiency measurements and analysis are presented in Sec. while
Sec. 2.4/ summarizes and concludes the chapter.

13



2 EFFICIENT AND SCALABLE COMMUNICATION INITIALIZATION WITH
PRECICE

2.1 Introduction to the Coupling Library preCICE

The coupling library preCICE has been developed to couple different solvers in
multi-physics simulations and to (1) handle the communication between different
solvers, (2) provide data mapping for the coupling data, and (3) offer iterative equa-
tion coupling schemes for surface coupled problems in a modular way. The major
components and the library concept of preCICE are shown in Fig.

T 4 ZpreCICE B
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I'W < A Couplipg Library for Par.titioned > jl
S— Multi-Physics Simulations i

\ / CalculiX
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: < | . B |
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< & ----@----- @ -~ —> | TI
solver 1
data mapping time interpolation
Ateles (APES) APl in: ANSYS Fluent
Alya System C/ C++ COMSOL
Carat++ Fortran FEAP
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Figure 2.1: Main components and the library concept of the preCICE coupling li-
brary. preCICE provides data communication, equation coupling and
data mapping between non-matching meshes for partitioned coupled
multi-physics simulations. This illustration has been taken from [34].

Communication: For multi-physics problems, different solvers need to communi-
cate with each other in order to exchange coupling data and get the required informa-
tion at the common boundaries. preCICE establishes the necessary communication
channels between different ranks of the involved solvers. The inter-code commu-
nication is based on either MPI ports (MPI-2.0) or lower-level TCP/IP sockets. The
latter, even though slower, is particularly important on HPC systems as many MPI
implementations do not support MPI ports functionality. preCICE does not use any
central communication unit (Fig. and run-time communication is fully parallel
point-to-point (Fig. , i.e., each rank directly communicates with the connected
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Figure 2.2: General concepts for the communications between ranks of coupled
solvers can be performed either:(a) via a server rank or (b) directly be-
tween partner ranks. preCICE uses the latter concept.

ranks of the other solver [54].

Data Mapping: Due to non-matching meshes used by various solvers, the communi-
cated coupling data of the sending solver must be mapped to the right points in the
mesh points of the receiving solver. preCICE offers various mapping methods which
can be selected according to the physical constraints of the simulation. In particular,
all mapping methods are available both as conservative and as consistent variants.
The conservative form preserves integral values of the data, whereas the consistent
form reproduces constant functions on the mapping surface exactly. The consistent
mapping is used for data such as displacements in which the point-value is of im-
portance, whereas the conservative mapping is suitable for data such as forces for
which the integral value must be preserved. We briefly explain the different mapping
methods implemented in preCICE [34]. Nearest Neighbor (NN) mapping (Fig.
is the simplest method that needs only vertex positions and copies the data to the
closest data point of the partner mesh. Nearest Projection (NP) mapping (Fig.
is based on the projection of data points of the receiving solver’s mesh to the sending
solver’s mesh and a second-order interpolation. This mapping requires topology
information of the source mesh, i.e., a surface triangulation. Radial Basis Function
(RBF) mapping uses radial basis functions centered at the source data points for a
proper data mapping. This method needs no topological information.

Equation Coupling: Depending on the physical coupling strength between coupled
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(a) Nearest neighbor mapping. (b) Nearest projection mapping.

Figure 2.3: Schematic view of consistent projection-based mappings in a two-
dimensional case. Arrows show the data transfer direction. This illus-
tration has been taken from [54].

tields, executing a certain time step might require iterating for a fixed small number
of iterations or for a higher number of iterations to converge to the implicitly coupled
solution. These two scenarios are known as explicit and implicit coupling, which are
both supported by preCICE. It must be pointed out, that these two alternatives can
be used in both serial and parallel schemes. In serial schemes, one solver waits until
the other one finishes one iteration, while in the parallel scheme, both solvers run
simultaneously and exchange the coupling data at the end of each iteration/time
step. Various convergence acceleration methods such as Aitken and quasi-Newton
are implemented in preCICE. More details can be found in [54, 32].

As already mentioned, preCICE uses a peer-to-peer communication concept to cou-
ple MPI-parallel codes and avoids using any central communication instance for
data exchange. In addition, coupling numerics (such as radial-basis function interpo-
lation or quasi-Newton acceleration) are computed directly within the library on the
processes of the coupled codes [56]. This makes the computational cost of the actual
coupling per time step negligible compared to the typical run time of the coupled
codes themselves, even for very large cases on ten thousand processes [54].

In the following, we focus on the initialization. The purpose of the initialization
is to determine partner ranks between coupled solvers and identify the exact list
of data that must be communicated between partner ranks during the run time.
preCICE previously used a one-level initialization scheme implementation by Uek-
ermann [54]. The one-level approach and the methods implemented in similar cou-
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pling libraries have been explained in [57]. This explanation is extended in the
remainder of this section for a better understanding. To better explain the one-level
approach, we provide an example which is schematically shown in Fig. In
this implementation, the interface mesh partitions of one solver (B in this exam-
ple) are gathered in the master rank (step I) and communicated to the ranks of the
other solver (A in this example) via a master-to-master communication (step II) fol-
lowed by a broadcast (step III). Each rank of A can compare its mesh partition to
the received mesh and identify the list of partner ranks (in solver B) and the data
that must be communicated during the run time according to the selected mapping
scheme (step IV). Therefore, the chosen data mapping scheme and the mesh geome-
try strongly impact this filtering. Finally, this information is gathered in the master
rank of A (step V) and communicated to the ranks of solver B via a master-to-master
communication followed by a broadcast, so that ranks of solver B also have access

to this information.

For test cases with a relatively small computational mesh and those exploiting up to
a few hundred processes, the performance of the initialization of the coupling is non-
critical. Considering this and given the fact that a very high number of time steps
is computed after a single initialization, the initial implementation by Uekermann
(one-level scheme) can be efficiently used for many coupled simulations. However,
the initialization can become a limiting factor, if we either reach memory limits in
the gather-scatter algorithm or if we have to re-initialize communication relations
due to dynamic changes in mutual data dependencies between coupled codes.

To this end, Lindner [51, 11] already removed several initialization bottlenecks con-
cerning the creation of communication channels on the one hand and neighborhood
search between data points of mesh partitions of two solvers on the other hand. I
briefly summarize these contributions in the following two paragraphs.

As already mentioned, preCICE offers two communication backends to realize com-
munication between two codes: MPI and Transmission Control Protocol (TCP)/IP. In
general, the coupled parallel codes use MP1I for their internal communication. If MPI
is chosen as the communication backend, inter-communicators between the ranks of
the two MPI worlds of the solvers are created through MPI ports to connect the cou-
pled codes. These extra MPI communicators include interface processes from both
solvers, in contrast to the solvers” MPI communicator which only includes the pro-
cesses of the same solver. These extra communicators are needed for data exchange
among processes of coupled solvers. Previously, one communicator per process of
one solver existed which contains only this process along with all its partner ranks

17



2 EFFICIENT AND SCALABLE COMMUNICATION INITIALIZATION WITH
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Figure 2.4: Previous one-level initialization scheme of preCICE: (I) Interface mesh
partitions of solver B are gathered in the master rank, (II) communicated
to the master rank of solver A, and (III) broadcasted to the ranks of A.
(IV) Each rank of A compares its mesh partition to the received mesh to
identify the list of partner ranks and the list of data that must be commu-
nicated during run time. (V) This information is gathered in the master
rank of A and communicated to the ranks of B. This illustration has been
taken from [54].

of the other solver. This resulted in a very large number of extra communicators
and thus increased the total initialization time. Lindner replaced this concept by
using a single large communicator including interface ranks of both solvers. This
reduced the cost of the creation of the communication channels and also improved
the efficiency of the actual data communication on some high-performance comput-
ing architectures. To establish TCP/IP-based connections, each pair of connected
processes needs to exchange a connection token via the file system. Storing all tokens
in a single directory exerts a heavy load on the file system when a large number of
communication pairs exist. To reduce the load on the file system, Lindner introduced
a hash-based scheme, which distributes the connection files among different directo-
ries in an optimal way. This reduces the file system load significantly.
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In terms of the mapping itself, the bottleneck after establishing communication chan-
nels between the processes is the comparison of mesh partitions of the two solvers
to determine the exact data dependencies between mesh entities (elements, vertices,
...) of the two non-matching meshes. For all three data mapping methods that pre-
CICE offers (i.e. nearest neighbor, nearest projection, and RBF), a neighborhood
search of mesh vertices must be carried out during initialization. Lindner reduced
the cost of this neighborhood search for the nearest-neighbor mapping from O(n?)
to O(nlog(n)) by introducing a tree-based search scheme. Similarly, he managed to
speed up both the neighborhood search and the initialization of the RBF interpola-

tion system matrix.

This chapter tackles another bottleneck by removing the remaining gather-scatter
components of the initialization, which still hinder very large coupled simulations.
The one-level gather-scatter approach is replaced by a two-level scheme. On the first
level, only bounding boxes around mesh partitions are communicated in a gather-
scatter manner to determine preliminary communication channels. On the second
level, potential partner ranks directly communicate full mesh data for final filtering
and determining the final list of communication channels and mesh dependencies.

Before we explain the new concept in detail, we give an overview of the communi-
cation and data mapping initialization strategies of similar coupling software and
briefly compare them to ours. The commercial tool MpCCI [58] initializes the cou-
pling on a centralized coupling server [40], which degrades scalability [54]. The
initialization process can, however, be repeated in case of re-meshing in one of the
coupled codes. DTK [59] creates a third rendezvous decomposition on additional
coupling processors to correlate two independently decomposed meshes. To this end,
a recursive coordinate bisectioning algorithm is used, which can completely operate
on distributed mesh structures [60]. OpenPALM [41] follows a similar bounding-box
approach for comparing mesh partitions as the one we propose in this contribution.
Afterward, octree-based data structures are used to accelerate the search process
within each mesh partition. MUI [61] does not create mesh structures at initializa-
tion but computes on-the-fly data mapping in every coupling step. This allows to
couple dynamically changing meshes and particle codes. To avoid all-to-all com-
munication, each rank can optionally define additional regions of interest, which
are compared during initialization similar to our bounding-box comparison. Finally,
CUPyDO [62] follows a similar approach as preCICE previously used [54]: mesh
partitions are gathered and scattered by a single processor during initialization.
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2.2 Efficient Initialization Using Bounding Boxes

This section explains how bounding boxes can be used for efficient communication
initialization. We first explain the procedure in which: (1) the communication chan-
nels between partner ranks of coupled solvers are identified and established and (2)
the exact list of the data that must be communicated during run time is obtained
according to the selected mapping scheme. In the end, we explain a very specific use
case of bounding boxes to parallelize filtering of mesh vertices that are shared among
several processes of a solver in the RBF mapping implementation in preCICE.

2.2.1 Two-level Initialization Scheme

The two-level scheme is introduced to effectively address the scalability and memory
issues of the communication initialization in preCICE, explained in Sec. This
scheme breaks down the initialization into two levels. The first level identifies and
establishes potentially required communication channels, while the second level
specifies the actual list of data to be exchanged. Both levels have been initially de-
scribed in [57]]. This section extends this description for a better understanding.

In the first level, each process located at the common interface computes a bounding
box around its coupling mesh partition, see Fig. The bounding box is defined by
the range of x-, y-, and z-coordinates of the respective mesh partition. The bounding
boxes of all processes with a non-empty coupling region (coupling processes) are
gathered in a master process of one solver (solver B in the example of Fig.[2.5). This
corresponds to step I in Fig. The set of bounding boxes is communicated to the
other solver via master-to-master communication and then broadcast to all coupling
processes of the receiving solver (steps II and III in Fig. 2.5). Each process of the
receiving solver (solver A) compares its bounding box with the received set to iden-
tify relevant partner processes with mesh partitions that potentially interact with the
own coupling mesh partition in the given data mapping (step IV). The information
about the partner ranks and potentially required channels are gathered in the master
rank of A (step V), communicated to the ranks of solver B via a master-to-master
communication (step IV) followed by a broadcast to the ranks of solver B (step VII).
This level provides the required information regarding the list of connected processes
to establish communication channels. preCICE uses this information to establish the
communication channels. Some of these connections may be omitted if the list of
data to be communicated is found to be empty later. preCICE offers two options
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to establish communication channels: (i) based on MPI via MPI ports or (ii) using
lower-level TCP/IP sockets. For MPI-based communication, preCICE constitutes a
single extra MPI communicator including all coupling processes of both solvers. For
the TCP/IP-based communication, a hash-based directory and file naming scheme
is implemented to store the connection tokens in an optimally distributed way. This
reduces the load on the file system substantially. More details on creating communi-
cation channels in preCICE can be found in [51].

For storing and communicating bounding boxes, preCICE uses a C++ std::map data
structure, which maps the process id to the respective bounding box. This facilitates
the bounding box set communication and the filtering in the receiving partition [57].

In the second level, ranks of B send their mesh partitions directly to the partner
processes in solver A (step I in Fig. using the point-to-point communication
channels established in the first level. The processes of the receiving solver A com-
pare their mesh partition to the received partitions to filter and identify the list of
data that must be communicated during run time (step II in Fig.[2.6)). The mesh fil-
tering is done according to the configured data mapping scheme. Each process of A
keeps only those vertices of the received mesh that influence the values at the target
point. For example, in case of using the nearest neighbor mapping, only the closest
data point (of the received mesh) to each data point at the target mesh is preserved
and the other data points are filtered out. The filtering process is described in detail
in [57, 51].

With the new scheme, the gathering of the complete coupling mesh data at the
master process and the subsequent scattering at the partner solver can be avoided.
Thus, it removes the memory issue of the previous approach (see Sec. and the
user can run highly parallel high-resolution simulations even if the whole coupling
mesh does not fit into the memory assigned to a single process. In addition, the
direct point-to-point mesh communication between partner processes improves the
scalability of the initialization scheme.

2.2.2 Bounding Boxes for Parallel Filtering of Shared Mesh Vertices

In case of using RBF mapping, a parallel PETSC matrix [63] for the underlying
linear system of the mapping has to be populated. In this matrix, every vertex of
the input mesh represents one matrix line and every vertex of the output mesh
a matrix column. To assemble this matrix correctly and efficiently, two steps are
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Figure 2.5: Two-level initialization scheme: the first level exchanges bounding boxes
and establishes the communication channels between partner processes.
The master process of B gathers the bounding boxes from other processes
(I) and communicates them to the master process of solver A (II). The
master process of solver A broadcasts the received bounding boxes to all
other processes of solver A (III). Each process of A compares the received
set of bounding boxes to its own to find the potential partner ranks (PPR)
in solver B (IV). The complete set of sent bounding boxes is drawn in
black, while the green boxes represent the subset relevant for the respec-
tive process of solver A. The list of PPR for all processes of A is gathered
in the master process (V) and is communicated to the processes of solver
B via master communication (VI) followed by a broadcast (VII), such that
not only the processes of solver A, but also the processes of solver B know
their potential communication partners [57].

required: (i) computing the pattern of the sparse matrix and allocating the respective
PETSC matrix structure in a single step instead of allocating one entry after the other,
(ii) computing the actual matrix entries. For both steps, it is necessary that each
vertex is represented only once. Thus, RBF mapping requires completely separated
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I- Communicate mesh to connected remote ranks
II- Filter the received mesh according to the mapping scheme

Figure 2.6: Two-level initialization scheme: the second level exchanges mesh parti-
tions between partner processes to identify the exact list of data that have
to be communicated during the simulation. Each process of solver B di-
rectly communicates its mesh partition to the relevant partner processes
of solver A (I) using the channels established in level I. Each process of
solver A compares its own mesh partition to the received mesh partitions
and identifies the list of data that must be communicated during run time
(IT). The complete received mesh partitions are drawn in black and the
parts that actually have to be communicated in green [57].

vertices lists, i.e. one vertex can not be shared among several ranks. This requires an
elimination of duplications taking into account that the subsequent parallel solving
step via preCICE requires a balanced distribution of matrix rows among the ranks.
Therefore, the list of vertices must be checked after filtering to handle the shared
entities. Previously, preCICE used to gather the list of owned vertices from the
received mesh in the master rank, after filtering within individual ranks, to check
and re-distribute the common entities. This procedure is inefficient as it exerts high
load on the master rank while it idles the others. In the new approach, bounding
boxes are used to parallelize the procedure and balance the load among all ranks.
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Initially, each rank of the receiving solver must identify the neighboring ranks of
the same solver before any decision about the shared vertices can be made. To do
this, each rank of solver A computes a bounding box around its mesh partition (this
refers to the own mesh and not the one that has been received from the other solver).
These bounding boxes are gathered and broadcast via the master rank. Each rank
identifies the neighbors by comparing its bounding box against the received set. The
procedure is schematically shown in Fig.

I- Ranks of A compue a BB around the filtered mesh received from B
II- BBs are gathered in master B
III- BB set is Broadcased to all ranks A

II

KDCRNEK
SOV
I %‘Mﬁ}‘}"‘

Figure 2.7: Two-level initialization scheme: The parallel filtering is aimed to filter
all shared vertices among ranks of solver A to ensure that each vertex is
tagged as ‘'owned’ by only one rank. All ranks of A compute a bounding
box around their mesh partition (I). The master process of A gathers the
bounding boxes from other processes (II) and broadcasts them to the all
processes of A (III). Each process can identify its neighbors by comparing
the received bounding boxes with its own.

In the next step, each rank checks if vertices in its own partition are duplicated in
neighboring partitions by testing if the owned vertices (in the mesh partition that
is received from solver B and filtered according to the selected mapping scheme)
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tit into the bounding box of a neighbor rank. Shared vertices along with the total
number of owned vertices are then exchanged with the neighbors following a point-
to-point direct communication. If a vertex is shared among n ranks, the following
procedure is followed to decide on the owner of the vertex:

1. The rank with the lowest number of vertices owns the vertex.

2. If various ranks own equal number of vertices, the rank with the lowest id

owns the vertex.

The above procedure is followed individually in all ranks. However, since all ranks
have access to the list of shared vertices and number of vertices already owned by
the neighbors, the procedure results in a consistent output.

2.3 Performance Results

We compare the old one-level with the new two-level initialization scheme of pre-
CICE described in Sec. To numerically demonstrate the improvements due to
the new initialization approach, we present a test case, where we can evaluate the
two-level initialization. A realistic coupling mesh is used along with two dummy
solvers to only focus on the initialization phase. For performance comparison, an
old version of preCICE (1.5.2 ) and a newer version (2. 2. 0) are used. Both were
extended with additional time measuring commands and are available on the public
preCICE git repository[] The performance analysis for the proposed scheme has been
initially presented in [57]. In this section, I repeat the performance measurements
and extend the analysis for a more profound explanation.

2.3.1 Test Case Description

We use the Abstract Solver Testing Environment (ASTE)P|as the dummy solver, which
is a framework that allows to imitate a parallel solver coupled via preCICE. This al-
lows to inspect various performance characteristics of the preCICE initialization
without the cost of using a real solver.

The test case setup involves two ASTE participants B and A. Each rank reads mesh

Thttps://github.com/precice/precice/tree/performance-paper
Zhttps://github.com/precice/aste/tree/mapping-tests
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data from given files and hands it over to preCICE by calling the preCICE Applica-
tion Programming Interface (API). Participant B reads its mesh and provides both
the mesh structure and the physical data to preCICE. Participant A reads its mesh
and provides the mesh structure to preCICE. A then receives both the mesh and the
data from participant B, uses the configured consistent mapping to map the received
data to the local mesh, and finally writes the resulting vertex data to a file. The
overview of this process is depicted in Fig.

. ParticipantB +| M, - ML g - _<:E
L - L= T ‘g
I mapping S5
< ©| <
M, [~ Participant A <% |~ £

preCICE preCICE

Figure 2.8: Test configuration using ASTE. Participant B on the left reads the mesh
structure and physical data from a file Bi,. Participant A on the right
reads the mesh structure from the file A;,. B and A initialize communi-
cation, then data are transferred from Mp to My, mapped to M4 using a
nearest-projection mapping and finally written to a file A,y This illustra-
tion is taken from [57].

We use surface meshes of a turbine blade geometryﬂ shown in Fig. 2.9 for our nu-
merical investigations. The geometry was triangulated using GMSH[64] fixing the
edge-length to achieve an almost uniform element size and shape.

Figure 2.9: Different perspectives on the turbine-blade test geometry. This illustra-
tion is taken from [57].

For inter-code data exchange, we use TCP/IP socket communication. For data map-
ping between non-matching interface meshes, we use the nearest projection scheme

3Wind Turbine Blade created by Ivan Zerpa, February 7th, 2012 https://grabcad.com/
library/wind-turbine-blade—-4
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provided in preCICE. In addition, both the overall initialization times and more
detailed breakdown values are reported per core average. For all experiments, we
avoided synchronization to minimize times and, thus, the initialization time. Though
it optimizes the overall initialization time, may slightly reduce the communication-
related events breakdown accuracy due to events’ time overlaps.

2.3.2. Performance Analysis

To show the complexity and scalability improvements in preCICE, we conduct
both strong and weak scaling studies. All measurements are carried out on the
SuperMUC-NG supercomputerf|at the Leibniz Supercomputing Centre of the Bavar-
ian Academy of Science and Humanities (LRZ). This machine consists of 3.1GHz
Intel Xeon Platinum 8174 (SkyLake) processors. Each node contains two processors
with 24 cores per processor (48 cores per node) and 96GB of RAM. The nodes are
connected via Intel Omni-Path interconnect.

Strong Scaling

The strong scalability of the developed initialization scheme is evaluated using var-
ious computational meshes, which are given in Table Mesh M4 (with mesh
width 0.005 and 628 898 vertices) is used to compare the overall performance of the
newly developed two-level initialization and the old one-level scheme since this
is the largest mesh that can be handled by the old version of preCICE. The one-
level scheme is unable to handle finer meshes due to the memory issues explained
in Sec. On the other hand, the new two-level initialization scheme would be
applicable for much larger meshes as the memory bottleneck induced by sending
the complete coupling meshes from A to B via master communication has been
eliminated. Accordingly, we also present strong scalability measurements with finer
meshes only for the two-level scheme later in this section.

Figure compares the initialization times of both versions using mesh M4. The
number of CPU cores indicates the total number of processes, i.e., MPI ranks for both
domains together. The available cores are divided between the domains with a ratio
1:3 to ensure that we do not get matching partitions between both solvers.

4https://doku.lrz.de/display/PUBLIC/SuperMUC-NG
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Table 2.1: Strong scalability study: Meshes for the wind turbine blade at varying
mesh resolution (mesh width). The mesh width indicates the average edge
length used to construct the surface mesh [57].

Mesh ID Mesh width Number of Vertices Number of Triangles

M4 0.0005 628 898 1257391
M5 0.0004 1660616 3321140
Mé 0.0003 2962176 5924260

—

Initialization time [s

Figure 2.10:

1600 4 —®— Two-level (new) scheme
—&— One-level (old) scheme

1400 1
1200 -
1000 -
800 1
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400 1

200 A

768 1536 3072 6144 12288 24576
Total number of CPU-cores

Strong scalability measurements: Total initialization time comparison
between the two-level approach and the previously used one-level
scheme. A mesh with mesh width 0.005 resulting in 628 898 vertices
(Table M4) is used for conducting the analysis. This illustration is
taken from [57].

The comparison proves significant initialization time reduction compared to the one-

level scheme. While we observe a better performance for the one-level scheme for

the cases with a small number of CPUs, the new scheme significantly outperforms

the old one for large numbers of CPU-cores. The initialization time for 24,576 CPU-

cores is less than 6 minutes for the two-level scheme, while the old scheme requires

approximately 5 times more time. All CPU-cores exploited for this experiment are

located at the common interface. In a real surface-coupled simulation, the interface

ranks are only a small fraction of the total ranks. Therefore, the introduced scheme
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is expected to be very efficient even when a simulation exploits the whole machine
capacity (several hundred thousands of CPU-cores).

The observed improvement is attributed mainly to (i) replacing the gather-scatter
mesh communication with the bounding box scheme and (ii) enhancing the nearest
projection implementation in preCICE. While the former is discussed here, details
about the latter can be consulted in [57]. Fig. compares the boundary mesh
communication time between the one-level and two-level initialization schemes. In
the mesh communication phase, coupled solvers exchange their interface mesh par-
titions (Fig. 2.6|step I for the new two-level scheme, Fig.|2.4|steps I to III for the old
one-level scheme). The received mesh partition is filtered and the interpolation is
computed in the mapping computation and depicted in Fig. step II. The com-
parison indicates, that the new scheme has significantly reduced the required time
for the mesh communication. This reduction is due to the replacing the (via-)master
mesh communication in the old scheme with a point-to-point method in the new
one (see also Fig. [2.12). Figure shows a strong increase of the communication
time with increasing number of cores in the one-level scheme for the mesh com-
munication. The mesh communications in the old scheme consists of a sequential
gathering of mesh partitions from all processes (in a loop over all processes, see
Fig. [2.4|step I), communicating the whole mesh partition at the common interface
via master communication (Fig.2.4{step II) and broadcasting it to all processes in the
receiving solver (Fig. [2.4|step III). The sequential gather and broadcast are O(p) in
the number p of the processes. Therefore, the increase in the mesh communication
cost is expected. The mesh communication cost for the new scheme is analyzed later
in this section.

In the following, we focus on further analyzing the run time and scalability of the
new two-level approach in a further breakdown study. The breakdown of the com-
plete initialization time is given in Fig.

The figure shows, that the bounding box comparison and feedback (Fig. steps 11
and IIT) constitute the majority of the run time for the new two-level initialization,
in particular for core counts larger than 1536. The increase in the time spent for
bounding box comparison for a higher number of processes is expected since for a
higher number of processes in the partner solver, each process needs to compare its
bounding box with more partner processes. Currently, this operation is O(p?) in the
number p of processes in total and O(p) per process. In addition, the time required
for the feedback phase, which consists of gathering feedbacks from processes in the
master rank and sending it to the other solver also increases with the number of
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Figure 2.11: Strong scalability study: Comparison of run times for the mesh com-
munication between between the two-level and the one-level scheme.
The mesh M4 is used for conducting the analysis. This corresponds to
Fig.2.6step I for the two-level scheme and Fig.[2.4|steps I to III for the
one-level scheme. This illustration is taken from [57]].

processes. This increase is also expected, as the higher number of processes includes

more communication in the gather operation.

We observe from Fig. that the time required for mesh communication decreases
with the increasing number of cores up to 1536 and increases afterward. The reduc-
tion is due to the decreasing size of mesh partitions, that are communicated, while
the latter increase might be because of the higher communication overhead. This
can be due to an unfavorable distribution of the communication partners on the
machine or due to the higher accumulated number of communication events within
the communicator. However, this step takes only about 1s and its contribution to the
total initialization time is very small.

The time to communicate bounding boxes also increases with the increasing number
of cores. This is because, for higher core counts, more bounding boxes are gathered
in the master rank, communicated via the master ranks, and broadcast to the slave
ranks of the other solver (Fig. steps I to III). This operation is inevitable in the
current approach. However, its contribution is very small (less than 100 ms).
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10 Total initialization time
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Figure 2.12: Strong scalability study: Initialization time breakdown for the two-level
initialization approach using mesh M4. Only parts significantly con-
tributing to the run time are depicted: 1- Bounding box comparison
and feedback (Fig.[2.5|steps IV to VII). 2- Mesh communication (Fig.
steps II). 3- Bounding box communication (Fig. 2.5 steps II and III). 4-
Compute nearest projection mapping (Fig. 2.6|step II). This illustration
is taken from [57].

Finally, the run time for the mapping computation (Fig. steps I) decreases with
the increasing number of cores. In this step, it is computed that how the values in
the mesh points of the partner solver must be interpolated to the mesh points of the
own mesh. Increasing the number of cores reduces the size of the mesh partitions
that must be compared to compute this mapping, thus the comparison becomes
cheaper. Therefore, the reduction in the mapping computation time corresponds to
our expectations. In addition, recent improvements to the mapping computation in
the preCICE library strongly contribute to this enhancement. More details can be

found in [57, 34].

For a deeper analysis of the performance and efficiency of the two-level scheme,
we present the initialization time breakdown in Fig. for the case that coupling
solvers use non-matching meshes. For this experiment, we use mesh M5 for solver
A and M6 for solver B.

The figure shows, that, even for a finer mesh, the bounding box comparison and
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Figure 2.13: Strong scalability study: Initialization time breakdown for the two-level
initialization approach using mesh M5 for solver A and mesh M6 for
B. Only parts significantly contributing to the run time are depicted:
1- Bounding box comparison and feedback (Fig. [2.5|steps IV to VII). 2-
Mesh communication (Fig. [2.6/step II). 3- Bounding box communication
(Fig.[2.5steps Il and III). 4- Compute nearest projection mapping (Fig.
step II). This illustration is taken from [57].

teedback are still the most expensive components. The time spent for bounding box
communication also increases with increasing number of cores. However, this cost
does not depend on the mesh size and is only correlated with the number of interface
processes, as expected. In addition, we observe a gradual increase in the mesh com-
munication time, which is probably due to a larger communication overhead for the
cases with higher core number and, thus, an increasing overall number of messages.
The mesh communication time is higher than for the case with mesh M4, which is
due to the larger mesh. Similar to the previous case with smaller mesh, the mapping
computation time is still insignificant compared to the other components.

Weak Scaling

To better analyze the performance of the new initialization scheme, including mem-
ory efficiency, we present weak scalability measurements in this section. For this

32



2.3 PERFORMANCE RESULTS

purpose, the distribution of CPU cores among the solvers A and B for all used meshes
are specified in Table As seen, the mesh size per partition is kept almost constant
for both solvers to satisfy the required condition for the weak scaling analysis.

Figure compares the initialization time of the new two-level approach and the
old scheme for increasing mesh sizes and increasing the total number of cores. The
measurements for the old initialization scheme are restricted to meshes M1-M4, since
it runs out of memory for meshes with higher resolution, as explained in Sec.

Table 2.2: Weak scalability study: Meshes for the wind turbine blade at varying
mesh resolution (mesh width). The mesh width indicates the average edge
length used to construct the surface mesh. The total number of cores is
approximately proportional to the number of mesh vertices. The available
CPU cores are distributed with a 1:3 ratio between the solvers [57].

Mesh  Mesh  #Vertices Cores #Vertices per core
ID  Width Total Total B A B A
M1 0.0025 25722 104 26 78 989 330
M2 0.0010 165009 720 192 528 859 312
M3 0.00075 330139 1344 336 1008 982 328

M4 0.0005 628898 2496 624 1872 1007 336
M5 0.0004 1660616 6144 1536 4608 1081 361
Mé 0.0003 2962176 12288 3072 9216 964 321

An excellent reduction in initialization time is observed when replacing the old
method with the new two-level scheme. Figure shows, that the new scheme sig-
nificantly reduces the time for the communication of the interface mesh. In addition,
the new scheme is capable of handling very large interface meshes, since it does not
use any central mesh communication instance. Even though the initialization time
for the finest mesh M6 and 12288 CPU cores is still in the range of a few minutes,
we observe a steep increase for larger meshes, which is due to the increase in mesh
communication time as seen in Fig.

To analyze the reason of the mentioned performance drop, we present the initializa-
tion breakdown for various mesh sizes and CPU cores in Fig. We observe, that
the mesh communication time increases considerably for meshes M5 and M6. This
increase might be due to the higher accumulated communication events and accu-
mulated data size (which is communicated) for higher mesh resolutions and higher
number of processes. However, deeper investigations are necessary to disclose the
cause of this behavior. The bounding box communication and comparison cost is the
dominant component also in this example. This cost only depends on the total num-
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Figure 2.14: Weak scalability study: Total initialization time comparison between the
two-level and the one-level schemes. The core distribution and the mesh
information are given in Tab. This illustration is taken from [57].

ber of cores, not on the mesh resolution as can be seen in a comparison of Fig.
and Fig. For the mapping computation, we observe an almost constant time,
which is expected as a result of the constant mesh partition size per core. Therefore,
the super-linear increase in the total initialization time can be mainly attributed to
the bounding box communication and comparison and the mesh communication.
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Figure 2.15: Weak scalability study: Comparison of mesh communication time be-
tween the two-level and the one-level scheme. The core distribution and
the mesh information are given in Tab. This illustration is taken
from [57].
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Figure 2.16: Weak scalability study: Initialization time breakdown for the two-level
initialization scheme. Only algorithmic parts with significant contri-
butions to the initialization run time are depicted. : 1- Bounding box
comparison and feedback (Fig. [2.5/steps IV to VII). 2- Mesh communi-
cation (Fig. 2.6 step II). 3- Bounding box communication (Fig.[2.5|steps
IT and III). 4- Compute nearest projection mapping (Fig.[2.6/step II). The
core distribution and the mesh information are given in Tab. This
illustration is taken from [57].
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2.4 Summary

In this chapter, it is explained how the initialization of the coupling library preCICE
is improved by replacing the previous one-level scheme with a performant two-level
scheme. This improved the scalability of the initialization by replacing gather-scatter
mesh communication with a parallel point-to-point scheme. In addition, it removed
the memory bottleneck of the one-level scheme which was due to gathering interface

mesh in a master rank.

To evaluate the proposed algorithms, we presented strong and weak scaling mea-
surements for an artificial turbine blade test case using various mesh resolutions. The
performance analysis showed, that five times faster initialization can be achieved
with the new implementation on 24, 576 (interface) cores using a coupling interface
mesh with 628, 898 vertices. By avoiding the memory bottleneck of the old one-level
(gather-scatter) scheme, the new method is able to handle much larger meshes. The
largest surface mesh which is considered in this chapter had nearly three million
vertices, which, in a real simulation, could correspond to a coupled setup running
on a complete supercomputer (several hundred thousand cores). The new method
is able to initialize this setup in less than six minutes.

Detailed performance analysis revealed, that the most expensive component of the
new scheme is the comparison of bounding boxes and the sending of connection
feedback to the coupling partner. Using more efficient data structures such as linked-
cells to store the set of bounding boxes could potentially further improve the initial-
ization.
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3 Data-Driven Performance Modeling and
Load Balancing

This chapter is concerned with the inter-solver load balancing in large-scale parti-
tioned multi-physics/multi-scale simulations where separate solver codes are used
for different physical phenomena and additional software for technical and numeri-
cal coupling. An unbalanced distribution of computational resources among single-
physics solvers can lead to idle times in one or multiple solvers (in case more than
two solvers are coupled) and can drastically reduce the computational performance
of the coupled simulation. A data-driven approach is developed to address this issue
and improve the performance of the simulations. For this purpose, two different
methods are considered for the empirical performance modeling of single-physics
solvers: (i) the so-called performance model normal form (PMNF) regression and (ii)
neural networks. Based on these performance models, an appropriate optimization
problem is derived and solved to find the optimal distribution of computational
resources between solvers. The optimization problem directly depends on the equa-
tion coupling type (serial or parallel). We present two different test cases to evaluate
the effect of the proposed method. For both test cases, we use the Ateles solver pro-
vided by the APES framework [65]. Furthermore, the preCICE library [34] is used
to couple the subdomains of the partitioned solver. Performance analyses show that
the proposed method provides significant improvements in terms of load balancing
and scalability. In most cases, the proposed method can almost remove the load
imbalance completely, hence the run time is decreased considerably (by up to 25%)
and the load imbalance is reduced to around only 1%. The remainder of this chapter
is organized as follows. Section 3.1|introduces the load balancing issue for the parti-
tioned multi-physics problems. The empirical performance modeling methods are
explained in Sec. This includes both a single-variable model that uses only the
core number as the input and two multi-variable models that require the problem
size as well. The derivation of the optimization problem and its solution to calcu-
late an optimal computational resources distribution are presented in Sec. We
present a multi-step load balancing approach for the test cases that use large com-
putational mesh, where we do not have access to enough performance data to build
cheap multi-variable performance models. Section [3.5 describes a load balancing
method developed specifically for the APES framework. We compare the results of
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the proposed general method to this specific approach. Section. 3.6/ provides per-
formance analysis results for real-world applications and Sec. 3.7 summarizes and
concludes the chapter.

3.1 Introduction to Load Balancing in Multi-Physics Simulations

The simulation of multi-physics and multi-scale problems is a challenging task in
terms of the realization, physical accuracy, and computational efficiency, in particu-
lar when the scalability of the solution on massively parallel computers is concerned.
As explained in chapter. |1, using efficient single-physics simulation codes does not
automatically guarantee to achieve a good parallel efficiency for a partitioned cou-
pled multi-physics simulation. One of the issues that multi-code coupling introduces
is the load balancing between solvers. This type of load balancing is different from
intra-solver load balancing. Depending on the equation coupling scheme between
domains (see Sec.[I.T]for details), solvers may require boundary data from each other
at the beginning of each time step and/or an iteration. This is where the load im-
balance and/or performance drop can occur. For example, in the case of a parallel
coupling (implicit and explicit), if one of the solvers is slower than the other one,
the faster solver will have to wait for the input from the other one. This can idle
the faster solver and significantly reduce the performance of the coupled framework.
Since the coupled solvers use different degrees of hardware optimizations, different
numerical methods, unpredictable numbers of iterations per time step and equation
systems, etc., it is impossible to use analytical or heuristic weights per discretization
point for balancing the load across solvers. We propose a novel, data-driven two
steps approach to address the issue. The proposed method requires a performance
model for each solver that can estimate its simulation run time as a function of the
number of used CPU cores. Then, an integer optimizer is needed to use the per-
formance models to calculate the best distribution of CPUs among solvers. This
optimization depends mainly on the type of coupling. This chapter explains the
proposed load balancing approach for both serial and parallel coupling schemes and
investigates sophisticated test cases exploiting large supercomputers. In addition,
to prove the method’s capability, we compare the results to a solver-specific scheme
and show that the presented method can distribute the computational resources with
the same performance, even better in some cases, and with a lower overhead cost.
Note that the proposed method is suitable for black-box partitioned approaches that
use independent solvers for each sub-problem and incorporate a library to couple
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them. In this approach, one mpiexec command per solver is executed which pins
an independent set of MPI processors to each solver. Therefore, processors can not
be shared between solvers and, thus, must be distributed among them..

3.2 Performance Modeling

To properly distribute available computational resources among solvers and achieve
the optimal load balancing, a performance model for each solver is necessary that
can predict single physic solvers’ run time. Due to the complexity of the solvers’
performance, using analytical models is not feasible and thus, we use empirical
models instead. We introduce and adapt two methods for this purpose: (i) the
so-called performance model normal form (PMNF) regression [66] and (ii) neural
networks. Although PMNF regression shows promising results for single variable
(number of cores) models, the results for multi-variable models (number of cores
and problem size) are not very satisfactory. Therefore, we introduce an alternative
approach using neural networks. Both methods need some performance measure-
ments as input to build the desired model. These measurements are obtained by
running coupled simulations for a few time steps. All models map a set of parame-
ters vy, ..., v, to the predicted run time. We aim to determine the mapping function
f such that it minimizes the loss function L(f (v}, ..., v%) 4*), a suitable distance
measure between predicted run times and measurements y* for m sets of parameters
o, ..., vk k = 1,...,m. The performance modeling process, which we use in the
current work, is schematically shown in Fig. The performance modeling using
a single input parameter (number of processes) has been described in [67, 68]. This

section extends the idea for a multi-parameter modeling.

3.2.1 PMNF Regression

The PMNF regression was originally introduced for the performance modeling of
code kernels to find and resolve scalability issues [66]. In this chapter, we use this
regression to model a whole physical solver’s performance. The model maps p
number of cores (CPUs or GPUs) assigned to each solver to its run time. The aim
is to find the mapping function f that minimizes the loss function L(f(p"),y*), a
suitable distance measure between predicted run times and measurements y*, where
k is the number of performance measurements. For the modeling, we initially do a
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Figure 3.1: Performance modeling for black box load balancing across solvers: work-
flow to find the best matching performance model. The performance
models are checked by metrics evaluated on a validation data set to select
the model with the smallest validation error. This illustration is taken
from [68].

few performance measurements to gather the required data for the regression. The
authors of [66] suggest that only a few data points are sufficient for an accurate
model. Later in this chapter, we will show that with 6 measurements (5 for training
and 1 for validation) we can accurately model the solver’s performance. Calotoiu et
al. [66] suggest the following formulation for the run time model:

n

f(p) = cxp™ logd(p) (3.1)

k=1

where iy, ji, and n are the model hypotheses, and the coefficients ¢, are the degrees
of freedom of the regression. Calotoiu et al. [66] suggest that the search space given
byn =2,y € I ={0,5,...,%2} and j; € J = {0,1,2} is sufficient for many ap-
plications. However, our investigation shows that extending the search space to
n=21={0+5,...,£2} J = {0,£1,£2} improves the modeling. We use the
mean square error (MSE) between the measured and the predicted run times as a
loss function. To find the optimal model, we simply check all hypotheses within
the search space, calculate a cross-validation-based loss, which is the accumulative
error on a validation data set, for each model, and pick the one with the smallest
validation loss. This process must be done for all solvers to find the appropriate

performance model for each of them [68].

42



3.2 PERFORMANCE MODELING

3.2.2 EPMNF Regression

Providing enough performance measurements for PMNF regression can be expen-
sive, for instance when a very large computational mesh is used for a simulation. In
such cases, one possible remedy is to use a multi-variable performance model which
uses both the core number and the mesh size as an input to predict the run time. This
allows building the model with performance measurements gathered from much
smaller mesh sizes.

The PMNF regression is, however, limited to a single input parameter modeling (the
number of ranks assigned to the solver). Calotoiu et al. introduce the extended per-
formance model normal form (EPMNF) to include more variables in the performance
model. For d parameters vy, . . ., v4, the EPMNF is given by [66]:

n d
frvg) = e [ [ o logy (w). (3.2)
=1

k=1 =

Where n is the number of regression terms for each variable. If we use only two
terms for each variable in the regression, we need to find 2n x d parameters in total.
Analogous to the one dimensional case, we define two sets I and .J of possible values,
i.e., restrict our search to i;; € I and jj; € J.

The large search space of this model quickly becomes a problem. In the single pa-
rameter case, we have to check || - |.J| possible combinations for each of the n terms.
We do not need to consider models with repeated terms and their order does not
matter, resulting in a total of ("'/1) = (**%) = 7750 combinations for the extended
setof n = 2,1 = {0,+%,...,£2} J = {0,£1,£2}. In the d-dimensional case, the
number of parameters per term increases exponentially with d. There are a (|I]-|J|)¢
possible combinations per term and ((‘I "T'L‘]Dd) total models. Expanding the example
search space to d = 2 dimensions leads to ((25;5)2) = 122,062, 500 candidates, or
(®%9°) & 1.9¢12 for d = 3. Note that the evaluation of each hypothesis is not trivial,
since we need to generate data, calculate coefficients, and evaluate the cross valida-
tion loss for each. In conclusion, generating and comparing all models in the search

space is generally not feasible, except for very small search spaces.

Calotoiu et al. [66] propose a heuristic approach that drastically accelerates the gener-
ation process for multi-dimensional models. Hierarchical search prunes the search
space to only include hypotheses that are combinations of the best single parame-
ter models. This approach aims to reduce the number of evaluated candidates by
selecting only those model hypotheses which are likely to be the best ones. Accord-
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ingly, we determine the best single parameter models in a first step based on data
generated with representative values for the other parameters, build all combina-
tions, generate a multi-dimensional data-set varying all parameters, and choose the
optimal models for this reduced set as described above, i.e., we then determine the
cross-validation based loss for both of these and choose the one with the smaller loss.
Note that there is no guarantee that the best model of the full search space is, in fact,
part of the restricted one.

If n > 1, we need to explore all possible options that can be obtained by combining
all subsets of terms. There are 2" such subsets for each of the d single parameter
models, resulting in a total of 2" combinations. To better understand the impact,
that it has on the number of evaluated hypotheses, let us look at our running exam-
plen =21 ={0,+%,...,+£2} and J = {0,£1,+2} and d = 3: In order to find the
three best single parameter models, we need to check 3 x 7750 = 23, 250 hypotheses
and then compare the 22*? = 64 possible combinations, which makes for an overall
number of 23, 314 regression problems, reducing the full search space of 1.2¢12 mod-
els to less than 0.0000002% of its original size.

Later in Sec. we show that the EPMNF method with hierarchical search is not
able to predict the solver performance accurately in a test case with the input param-
eters core count and problem size. In addition, it is not easily possible to increase
the number of input parameters, e.g., include the hardware properties in the per-
formance model. We have shown that the complete search space for two variables
is already very big and adding more variables extends the search space even more.
Therefore, we take an alternative approach and use neural networks (NNs) to model
the solver performance against the number of cores and the problem size. Studying
the effect of hardware properties on the solver’s performance is out of this chapter’s
scope and is a topic for future research.

3.2.3 Neural Networks

After discussing the drawbacks of EPMNF for multi-variable performance modeling,
we aim to use neural networks to predict the run time of the solvers involved in the
coupled simulation and study the effect of different parameters, e.g., problem size
and core counts, on the run time. Deep learning networks have become more popu-
lar in the past years and they have been tried out for many problems. This popularity
is mainly due to their success in pattern recognition and image classification which
convinced scientists to try them out as a remedy for other applications. Although
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neural networks were already introduced in 1943 [69], they have barely been used
in practice for many years, since there was no efficient way to train them, computers
were not powerful enough to handle large networks and available training data were
insufficient. Small networks were not capable of solving the sophisticated problems
and lack of computing power and sufficient training data hindered using larger net-
works. Therefore, the capability of this method remained unknown for many years.
However, the development of more powerful computers and the introduction of
the back-propagation algorithm changed the story. New algorithms and improved
hardware made them very powerful choices for certain problems (e.g., image classi-
tication [70] and speech recognition [71]) in the early 2010s [72].

There exist many variants of neural networks, we focus on the densely connected
feed-forward networks for the first step. A schematic illustration of a densely con-
nected neural network with two hidden layers is shown in Fig. Each hidden
layer comprises several neurons, whose input-output relation is determined by an
activation function o : R — R. The output values are then mapped to the input of
the next layer via multiplication with a weight-matrix IW. In addition, each layer
has a bias term h. This can be interpreted as a neuron with a constant output of 1.
Each layer’s output can be calculated as S = o(W*S™ + h') in the forward path,
where S and S° are the input and the output of the layer i. A set of training data
is needed to train the neural network, i.e., to determine the entries of the weight ma-
trices by minimizing a given loss function. Neural networks can be used to represent
a mapping with arbitrary input and output dimensions. Since we study the solver’s
run time, considering NNs with one-dimensional output is sufficient. Various hy-
perparameters and methods were tried and the following setup is selected as it led
to the best performance. We use leaky rectified linear units (ReLUs) as the activation
function and the mean square percentage error (MSPE) between the predicted and
the measured run time as the loss function. We use the Adaptive Moment Estima-
tion (ADAM) [73] optimization method to minimize the loss function and update
the weights and apply a dropout regularization technique to avoid over-fitting [74].
Each item is explained in detail in the following sections. In the current work, we use
the Keras package with TensorFlow backend [75] to implement the neural network.
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Figure 3.2: A schematic depiction of a neural network with 2 hidden layers, where
z; and y; are the input and the output of the network, W represents the
weight matrix and o' is the activation function of layer i.

RelLU Activation Functions

To define a neural network, a non-linear activation function o is needed to transform
the input of a neuron into its output. There are plenty of suggestions for possible
functions with different properties and use cases. We tested different options and
rectified linear units (ReLUs) performed best for our case.

Glorot et al. [76] showed that rectified linear units (ReLUs) have a better performance
for training the NNs than sigmoid and hyperbolic tangent functions. Since 2017, they
are therefore the most commonly used activation function in deep learning [77]. In
the simplest case, o is given by

o(z) = max(0,x). (3.3)

Although the gradient is zero for all negative inputs, it does not vanish for large
(as it does for sigmoid activation, e.g.). A vanishing gradient stops the network’s
learning and weights do not update anymore. At z = 0, the gradient is undefined,
but in practice, z = 0 very rarely occurs. Nonetheless, a value for this unlikely case
should be selected, e.g., zero. The problem for negative inputs can be fixed with
leaky ReLUs:

{x forz >0,
o(z) = (3.4)

ex forx <0,
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where ¢ is some small value e.g. ¢ = 0.01. Alternatively, ¢ can also be considered
as a parameter that must be learned alongside the weights[72]. We use a constant
¢ = 0.01 in the current work.

Adaptive Moment Estimation (ADAM) Optimizer

The most important factor for creating well-performing neural networks is the opti-
mization of the entries of the weight matrix IW. During training, we essentially solve
an optimization problem minimizing the loss of the given training data. The choice
of the optimizer is heavily contributing to the result. All common optimizers work in
the same fashion: they begin with some initial parameter estimate W and update
this estimate according to some rule WD « W 4+ n® 50, Their main difference is
the choice of the search-direction 5'and the learning-rate (or step-size) n*) for step ().
The parameters are updated until either a maximum number of iterations is reached,
or some convergence criterion is fulfilled. After trying different available options,
we found the ADAM [73]] optimizer to have the best performance in our case.

ADAM is based on the well-known stochastic gradient descent method (SGD)[78]],
but it uses a concept called momentum to further improve the convergence of the op-
timization. The so-called momentum is conceived by observing a common problem
in gradient descent-based optimizers. In cases where the eigenvalues of the Jaco-
bian of the loss function with respect to the weights vary strongly, gradient descent
oscillates between slopes while only slowly converging towards the minimum [79].
Using the momentum (m®)) aims to improve the convergence by adding a fraction
p1 € [0, 1) of the previous search direction to the current one:

m® = pymtY + (1— pl)j_l/[;/

WD ) ), (3.5)

Where m(® is the momentum, L is the loss function and W are weight matrix entries.
This speeds up the optimization. In addition to the first momentum in equation (3.5),
ADAM uses the second momentum

_ dL dL
v = ppuH 4 (1 - Pz)m O (3.6)

Where © is the entry-wise product. The moments are initially set to be zero-vectors
m® = 0, »(© = § which leads to a bias towards 0, especially during the first few
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steps. The parameters pi,ps € [0,1) counteract this issue by exponential decay
adjusting of the moments. We use values of p; = 0.9 and p; = 0.999 as suggested by
[73].

v®. (3.7)

T 14
ph is the t-th power of p; (the same holds for p}). The ADAM update rule is then

W Wb nm—(t). (3.8)

00 + €
Kingma et al. [73] suggest a global learning-rate of » = 0.01 and a smoothing value
of e = 107%. Empirical evidence in [73] shows that ADAM outperforms other
optimizers in terms of convergence speed and quality of the found solution in many

cases.

Loss function

The most commonly used loss function for regression problems in neural networks
is the mean squared error (MSE). Previous results [72] have shown that the mean
square percentage error (MSPE) is better suited for our specific application. This is
because the measured run times have different orders of magnitudes and the mean
squared error penalizes deviations on the larger data points much more. The MSPE
is given by

JMSPE ._ 100% <~ Z (yk - ) : (3.9)

k=

where y;, are the actual measured run times and f(p) are the corresponding pre-
dictions. Compared to the mean squared error, the MSPE loss is relative to the
magnitude of the pointwise data.

Regularization

Due to the high number of weights, neural networks may suffer from over-fitting.
Meaning that, after training, the performance is good on the training data set, but
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poor on test data due to a lack of generalization. We found out that using the dropout
technique [74], which reduces the number of weights, improves the training results
significantly. Dropout randomly deactivates some neurons during each training step.

input layer hidden layers output layer

Figure 3.3: A neural network with two hidden layers with dropout applied. Gray
circles represent disabled neurons.

Figure3.2|shows a fully connected neural network with two layers and three neurons
for the input, five for hidden layers, and two for the output layer. Applying a dropout
of p = 0.2 to a five-neuron layer means choosing 1 neuron randomly (uniform
distribution) and disabling them, as shown by the gray neurons in Fig. With
this, only the remaining neurons’ weights are updated. In the next training step, a
different set of neurons are selected and disabled, again randomly, the previously
deactivated neurons are resumed (with the weights that they had before deactivation)
and training is applied to all active neurons.

3.3 Computational Resources Distribution

In this section, an optimization problem is derived which uses the performance mod-
els to calculate the core distribution with the lowest total run rime. The optimization
procedure has been initially described in [67, 68]. The description is modified in
this section for a better understanding. We show that the interpretation of the op-
timization problem directly depends on whether we execute the involved solvers
simultaneously or one after the other.
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The inter-solver load balancing aims to find the optimal assignment of cores for
each solver for a limited number of available cores (), such that the overall run

time F'(q1,. .., q) is minimized. This can be expressed by the following optimization
problem:
minimize F(py,...,p)
P1;--5p1
(3.10)

l
subject to Z P < Q.

=1

Where p; is the core count for solver . The optimization process that we used in
the current work is schematically shown in Fig[3.4l The function F' depends on the
single solver run time f; and the choice of the iterative coupling scheme, in particular
on whether both solvers are executed simultaneously (parallel coupling) or one after
the other (serial coupling). The interpretation of this optimization problem depends

Figure 3.4: Load balancing across solvers: workflow for finding the optimal core
assignment.

on the coupling scheme. If a parallel coupling scheme (implicit or explicit) is used,
the waiting time of the solvers must be minimized. In other words, the run times that
different solvers spend for one iteration or time step must be as similar as possible.
Figure[3.5schematically explains the idea. In this case, the optimization problem can
be written in the following form:

minimize F(pi,ps,...,p) with F = max f;(p;)

Pl Pi
! (3.11)
subject to Z P < Q.

=1

If we use a serial coupling scheme (implicit or explicit), the sum of the run time of
all solvers must be minimized. This can be understood from Fig. In this case,
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Figure 3.5: Inter-solver load balancing problem: execution diagrams for explicit and
implicit parallel coupling schemes. Solid bars are the time that the solver
is running, while, dashed bars indicate that the solver is not performing
any calculations and the associated cores are idling [68].

the optimization problem will be turned to the following form:

!
minimize F(py,...,p) with F' = Z fi(pi)
oot i=1
z (3.12)
subject to Z P < Q.
i=1

The available cores must be distributed in a way that the total time spent for one iter-
ation is minimized. Note that, following a serial coupling scheme where solvers can
not share the available computational resources always imply substantial idle times.
Consequently, this approach is less efficient compared to the parallel method and is
not followed in the current work. However, since both methods are used in literature
(For instance, see [29]), we included the formulation for the sake of completeness.
If the f; are given by the PMNF regression, this optimization is a nonlinear, possi-
bly non-convex integer problem. It can be solved by the use of branch and bound
techniques. However, we introduce a new constraint that simplifies the solution pro-
cedure. The introduced performance models are able to estimate the scalability limit
of each solver, i.e., the point where further increasing the core count will increase
the run time and, thus, should be avoided. Using this limit as an upper bound for
the core count, we can safely assume that the f; are monotonically decreasing, i.e.,
assigning more cores to a solver never increases the run time (within the solvers’
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Figure 3.6: Inter-solver load balancing problem: execution diagrams for explicit and
implicit serial coupling schemes. Solid bars are the time that the solver is
running, while dashed bars indicate that the solver is not performing any
calculations and the associated cores are idling [68]].

scalability limit). Based on this, we can simplify the constraint in Eq.(|3.10) to

Q=> pi (3.13)

1=0

With this, the problem can be solved by brute-forcing all possible assignments for p;

as Eq.([3.13) drastically limits the amount of combinations we have to try to (Q_l) =

-1
% Since | (number of coupled solvers) is usually small (I = 2 or 3 in our test

cases), the optimal solution can be quickly calculated.

3.4 Multi-Step Inter-Solver Load Balancing

The load balancing overhead for complex problems can be very high, especially
when a large computational grid is used. The performance of the load balancing
method strongly depends on the accuracy of the performance models. In case the
target computational mesh is very large, running a large number of simulations
with the target mesh is extremely expensive. As explained in Sec. one way
to approach this issue is to build multi-variable performance models that can be
established with cheaper performance data from simulations that use smaller com-
putational meshes. However, the multi-variable performance modeling requires a
fairly high number of training data that are not available for all cases. We propose a
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multi-step approach for these cases. The proposed method needs performance data
only for two computational meshes and thus, keeps the overhead cost low, while it
preserves the accuracy of the models.

We establish the performance model and the core distribution in three subsequent
steps: (i) We initially run short simulations using a small mesh to gather initial per-
formance data. These simulations are very cheap due to the small problem size. We
use these data to create an initial performance model for each solver; (ii) for these
models to be applicable to the target mesh, we scale their output with the ratio be-
tween the target mesh size and the small mesh size; (iii) in the next step, we run only
a few short simulations with the target mesh using the core distribution obtained
from the derived models to obtain more accurate performance data; (iv) we establish
new performance models using these new data. This last step is cheaper than the
one-step model generation for a comparable accuracy since the core distribution is
already close to the final distribution such that the respective regression models are
very accurate even for a small number of data points. Note that all the simulations
for regression data generation are only performed for two time steps. Thus, their
simulation time is very small compared to full FSI simulations.

The test cases that are investigated in this chapter, either have a small mesh or we
have access to enough performance data to build multi-variable performance mod-
els. Therefore, the multi-step method will not be used in this chapter. Instead, we
will use this method for the test case presented in Chapter

3.5 Load balancing with APES

To prove the efficiency of the proposed load balancing method, we compare the
results with a solver-specific method developed for the APES [65] framework. This
method is chosen since the test cases that will be presented in the Sec. 3.6 will use
solvers from this framework. The method’s description is taken from [68] and is
repeated in this section for the sake of completeness.

”To do load balancing for simulations carried out within the APES framework, the
SPartA algorithm [80, 81] is utilized. This algorithm is implemented in the com-
mon data structure TreEIM [82] of APES and can be employed by all solvers in the
framework. The objective of this algorithm is to shift elements from one process
to another, to enable the same or similar workload on each process involved in the
computation. The SPartA algorithm is based on space-filling curves and weights per

53



3 DATA-DRIVEN PERFORMANCE MODELING AND LOAD BALANCING

element, providing information about the actual load of each element.

The method is suitable for simulations, in which the configuration of the simula-
tion setup does not change, i.e., no dynamically adaptive meshes are used. Timers
are placed in compute-intensive routines, among others in the routines where the
physical flux is computed as well as the projection onto the test function for the
underlying scheme. In the context of multi-scale and coupled problems, timers are
included to capture the workload of elements that are involved in the coupling as
well. Furthermore, multilevel meshes as well as the presence of geometries in the
simulation domain are captured by the timers [83]. With that, an informed state-
ment about the workload of each element can be made. The MPI _Wtime is used
to measure the respective times. The load balancing procedure is realized through
weight files, that are dumped after a successful simulation onto the disk and used to
redistribute the workload among the processes. The simulation is restarted and the
SPartA algorithm reads those weight files (each subdomain has one) to calculate the
new partitioning for each subdomain [83].”

3.6 Performance Results

To demonstrate the efficiency of the proposed data-driven load balancing scheme,
we examine it in two different test cases. The first test case investigates a Gaussian
pressure pulse spreading over a cubic domain. The domain is decomposed into
an inner and an outer subdomain, solved by using different mesh resolutions and
scheme orders. The pulse spreads from the inner domain to the outer part. For this
test case, we compare the load balancing results for both the proposed data-driven
scheme and the method implemented in APES explained in Sec. In addition, we
evaluate the effect of applying the proposed method on the simulation run time for
various core numbers. Furthermore, we present the initial results of multi-variable
performance modeling for this test case using both EPMNF regression(Sec. and
neural networks (Sec. 3.2.3).

The second test case investigates a very complex real-world test case. We evaluate
the proposed load balancing method for the simulation of fluid-acoustics interaction
around an aircraft wing. The simulation domain is divided into three subdomains.
In the innermost domain, the fully compressible Navier-Stokes equations are solved.
For the intermediate domain, the simpler Euler equations are solved, while, for the
outer domain, only the linearized Euler equations are considered. For this test case,
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we present the scalability and the performance measurements and show that the
data-driven method can efficiently distribute the computational resources among
the subdomains and significantly suppress the load imbalance. The scalability re-
sults are presented with and without load balancing to evaluate the significance of
effective load distribution.

For both test cases, each subdomain is treated independently by using a separate
solver to solve different equations with different mesh resolutions and scheme or-
ders. A coupling library is incorporated for data communication, data mapping, and
coupling between the single-physics domains. We use instances of the solver Ateles
[84] which is an explicit time-integrating solver which is integrated into APES and
uses the modal Discontinuous Galerkin Method (DGM) for discretization. The par-
allel and efficient fluid solver is capable of solving different equations, including the
compressible Navier-Stokes, the inviscid Euler, and the linearized Euler equations.
Ateles is specifically geared towards high-order schemes and Cartesian elements.
The restriction of the numerical scheme to Cartesian elements allows a dimension by
dimension strategy for various operations involving the basis functions in elements
[65]. To couple single-physics subdomains, we use the preCICE coupling library
which provides (1) the communication between different solvers, (2) data mapping
for the coupling variables, and (3) iterative equation coupling for surface coupled
problems in a modular way [34]. To use preCICE, each solver needs an independent
MPI_COMM_WORLD and inter-solver data communication channels are established by
using MPI ports or lower-level TCP/IP sockets. In the current work, lower level
TCP/IP sockets are used. For data mapping between non-matching meshes, a near-
est projection data interpolation method is used. For the investigations with the
method used in APES (only for the comparison in the first test case), we consider
an internal coupling approach. Here, a single MP I_COMM_WORLD can be used for all
subdomains. The test case description and initial performance analysis for both test
cases are presented in [67, 68]. This chapter extends the investigations for multi-
parameter performance modeling and provides more detailed analysis on the effect
of the proposed load balancing on the simulation run time.

3.6.1 Hardware Description

The scalability measurements are carried out on the SuperMUC-NG supercomputer
at the Leibniz Supercomputing Centre of the Bavarian Academy of Science and
Humanities (LRZ). This machine consists of 3.1GHz Intel Xeon Platinum 8174 (Sky-
Lake) processors. Each node contains two processors with 24 cores per processor
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(48 cores per node) and 96GB of RAM. The nodes are connected via Intel Omni-Path
interconnect.

3.6.2 Gaussian Pressure Pulse Test Case

In the first step, we consider a simpler test case to study the effect of the proposed
load balancing method. This test case investigates a Gaussian pressure pulse travel-
ing in a cubic domain. To reduce the simulation complexity, the domain is decom-
posed into an inner and an outer subdomain coupled using a parallel explicit scheme.
Only in the inner domain, a fine mesh is used, while the outer domain uses a coarser
mesh. This reduces the simulation complexity, by decreasing total degrees of free-
dom, while preserving the simulation accuracy. Initially, a Gaussian pressure pulse
is located in the inner domain which spreads with the speed of sound to the outer
domain. This test case is simple but representative, since each subdomain solves a
different set of equations, and has a different scheme order and a different spatial
discretization. Hence, each subdomain has a different workload and therefore load
imbalance can be foreseen, which needs to be addressed appropriately.

The complete simulation domain is a 5 x 5 x 5 unit length cube, which is decom-
posed into an inner subdomain of size 1 x 1 x 1 and an outer subdomain (see Fig. [3.7).
Initially, the pressure and density values are 10° and 1.0 respectively. The inner sub-
domain is solved using the inviscid compressible Euler equations, while for the outer
subdomain, the linearized Euler equations are used. The inner subdomain is solved
with a much finer mesh, comprising 262,144 elements, while the outer domain has
a much coarser mesh, comprising 507,904 elements [85]. The mesh resolution and
scheme order for the inner and outer subdomain are provided in Table. This
setup results in 221,184 coupling points on the common boundaries for the inner and
55,296 for the outer subdomain (non-matching mesh on the interface). The initial
perturbation of all state variables (density, momentum, and energy) are set to zero
in the outer domain, while the background density and pressure are same as in the
inner domain. The time step size is fixed for both subdomains and has a value of
107° time units.

Load Balancing and Scalability Analysis

We evaluate the proposed load balancing method by comparing the load imbalance
between the inner and the outer domain for the proposed data-driven method and
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Table 3.1: Gaussian pressure pulse test case for the inter-solver load balancing: mesh
resolution and scheme order for inner and outer subdomains for perfor-

mance analysis [68].

Euler Linearized Euler
inner domain  outer domain
Domain [x, y, z] [1,1,1] [5, 5, 5]
Elements 262,144 507,904
Scheme order 3 6
nDof 283,115,520 871,055,360

1.0e-01

I»OOB
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Pressure Perturbation

Figure 3.7: Gaussian pressure pulse test case for inter-solver load balancing: The
pressure pulse spreads over time from the inner subdomain to the outer.
The white frame highlights the coupling interface. This illustration is

taken from .

the method integrated into APES. For the data-driven method, we need the perfor-
mance models for each subdomain. We run 6 coupled simulations (5 for training and
1 for validation) with different core counts and incorporate the PMNF regression to
find appropriate models for each solver. These models for the inner and the outer
domain are depicted in Fig. The validation data point (red dot) shows that the
PMNF regression is able to accurately model both solvers’ performance.

In addition, the overall scalability of the current test case is presented in Fig.
which shows that the solver scales up to about 12,000 CPU cores for this particular
coupled configuration. The scalability results are presented also without any load
balancing, where the cores are distributed among solvers proportional to their mesh
size (number of degrees of freedom). The comparison shows that applying the data-
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driven load balancing method results in about 25% run time reduction for the higher
number of cores. Furthermore, Fig. compares the load imbalance between the

® |nner domain training data 8000 e Quter domain training data
2000 * Inner domain validation data *  Outer domain validation data
Regression Regression

1500 4 6000 -

1000 A 4000 -

Run time per time step [ms]
Run time per time step [ms]

500 2000

0 1000 2000 3000 4000 5000 6000 7000 8000 0 1000 2000 3000 4000 5000 6000 7000 8000
Number of cores Number of cores

(a) Inner domain. (b) Outer domain.

Figure 3.8: Gaussian pressure pulse test case for inter-solver load balancing: Data
driven performance models for the inner and the outer domains. The
method suggests finer(p) = 2.4edp=%log(p)~2 — 5.8edp—>log(p)~" and
Jouter(p) = 4.8¢3p™1?°log(p)? 4+ 1.3e5p~1log(p) ' as performance models
for the inner and the outer domain, where p is the number of cores.

subdomains (inner and outer) using both methods for different core numbers. The
load imbalance is calculated as follows:

load imbalance = Lewter=finner 5 1()

fnuter

where fouer and finner are average run times (per iterations per core) for the outer
and the inner subdomain, respectively. The figure shows that the proposed method
is able to successfully remove the load imbalance between the domains and, in most
cases, the load imbalance is about 1%. For a smaller core count, we can observe a
higher run time difference between the inner and the outer domain. The reason is
due to the system used for the computation (SupermucNG), which does not allow
the sharing of a single node between the different subdomains, as they are executed
separately. As mentioned earlier, for coupling with preCICE, each solver needs an in-
dependent MPI_COMM_WORLD. Hence, each subdomain is computed simultaneously
but executed independently. Therefore, we always have to use complete nodes (48
cores) for each subdomain, which, however, prevents the optimal distribution of
the available computational resources. For coupling with the internal APES library,
we do not face this constraint, since a single MPI_COMM_WORLD can be used for all
subdomains. For larger core numbers, the situation is better since the number of
available nodes is large enough for a fine distribution. We must emphasize that this
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Figure 3.9: Gaussian pressure pulse test case for inter-solver load balancing: Aver-
age run time per time step for different core counts (strong scalability
measurement). Results are presented with and without load balancing.

is a limitation of the hardware, not the proposed method. Therefore, on a computing
system that allows node sharing between jobs, we expect a better load balancing for

smaller core numbers.

In the case of the load balancing with APES, we can observe mostly less than 1%
remaining load imbalance. In the case of the highest core count, the load imbalance
increases. This seems to be due to the perfect linear scalability assumption which is
not true for a higher number of cores. The data-driven method shows better perfor-
mance for higher core numbers since the data-driven performance models are able
to predict the solver’s run time accurately based on the performance data gathered
from sample simulations which reflect the actual behavior of each solver.

Furthermore, to evaluate the overall effect of the load balancing method on compu-
tational efficiency, we analyze the associated overhead. The main part of the load
balancing overhead comes from the small simulations that are carried out to build
the performance model functions. For the current test case, we used 6 small simu-
lations with an accumulated total run time of 29.4 seconds. After the performance
models are established, the extra cost to evaluate the core distribution for each simu-
lation is insignificant. Therefore, this overhead is only paid once, and not repeated
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Figure 3.10: Gaussian pressure pulse test case for inter-solver load balancing: Com-
parison of the load imbalance between inner and outer domains for the
data driven and the method integrated in APES. This illustration is taken
from [68].

for each simulation. This overhead for load balancing is relatively small, compared
to the consequent reduction in the computational cost. For instance, the reduction in
the run time due to the load balancing method on 11,520 cores is around 23%, which
means the reduction for a complete simulation with 2000 time steps accumulates to
241.9 seconds. The overhead is only about 12% of the saved time and thus, it is very
well justified [68].

Multi-Variable Performance Modeling

Up to now, we have only presented the performance modeling for only one vari-
able, the core number. In this section, we present the preliminary results for a multi-
variable performance model. In addition to the core number, we include the problem
size (number of elements) and present the result for the same Gaussian pulse test
case. Since we only present the performance modeling in this section, the results are
presented only for the inner domain. The test case setup is similar to the Sec. In
addition, the used mesh resolutions are provided in Table. For both the EPMNF
model and the neural network model, training data are measured performance data
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Table 3.2: Gaussian pressure pulse test case for inter-solver load balancing: various
mesh resolutions for multi-variable performance modeling of the inner
domain.

Discretization level 6 7 8 9 10
No. of elements 4096 | 32,768 | 262,144 | 2,097,152 | 16,777,216

for the mesh resolutions (provided in Table. for the various number of cores
(for 144, 288, 432, 576, 720, 864, and 1008 CPU cores). The performance model for
EPMNF regression is shown in Fig. For performance modeling, the hierarchical
search approach is used to find the best-combined base functions in multi-variable
modeling. Similar to the PMNF models, only two terms are used for the regression.

From Fig. it seems that the regression is able to model the run time against
both core number and mesh size, but looking closer at the test data (e.g. Fig.
shows that the predicted run time is not accurate at all. It seems that the model is
not even able to learn the run time of the training data. This is probably because
using only two terms for the regression is not enough. Using more terms is not
easily feasible in our simple approach, because increasing the number of terms will
increase the search space, and finding the base functions can be excessively expen-
sive. It should be repeated here, that the EPMNF regression is introduced to model
a single kernel’s performance and not a solver which consists of many complicated
kernels. Each kernel can have a different behavior which makes the behavior of the
solver complicated enough that it can not be modeled by using only two regression
terms. Therefore, we take an alternative approach and use a neural network for the

performance modeling.

As a first attempt, we use a simple densely connected network with MSPE loss. The
used network consists of 3 layers and each layer has 10 neurons. This is the smallest
network of this type that can predict the performance accurately. Other types of
networks, such as convolutional ones, may need less capacity, but this is still a work
in progress. In addition, we have used the ReLU activation function and dropout
for training regularization. The optimization method we have used is ADAM, to cal-
culate gradients, a simple back-propagation method is utilized. The neural network
performance model is shown in Fig. We observed that by using log, of the run
times for training, the learning and prediction accuracy increased significantly. It
is probably because, by applying this mapping, the input and output data have a
simpler relationship which makes it easier for the neural network to learn it.

As mentioned, the multi-variable performance prediction results are preliminary at
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Figure 3.11: Gaussian pressure pulse test case for inter-solver load balancing:
Multi-variable (core count and problem size) performance modeling
by using the EPMNF regression. The method suggests f(p,s) =
—9.65e3p~ s tog(p)*®log(s)* + 1.02edp~s tog(p)3log(s)' as a perfor-
mance model, where p is the number of cores and s is the mesh dis-
cretization level.

this stage. Our approach can be used to provide cheaper performance models for
large-scale problems by using the measurements of coarser meshes without losing
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Figure 3.12: Gaussian pressure pulse test case for inter-solver load balancing: Perfor-
mance modeling using the neural networks.

3.6.3 Airfoil Test Case

In the second test case, we study the effect of the proposed load balancing on the
fluid-structure interaction around an aircraft wing. This is a common phenomenon
in many engineering applications, where, due to the presence of a structure and the
disturbance of the fluid flow, noise is generated. The problem domain is divided
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into three fields, which are solved with different configurations which are coupled
following a parallel explicit strategy. This allows for a tailored configuration to cap-
ture the occurring physics appropriately with a much lower cost compared to the
case in which the whole domain is discretized with a fine mesh. The decomposition
of the domain into three sub-domains and the fluid velocity distribution around the
airfoil at t = 1 second is depicted in Fig.

In the innermost subdomain, an airfoil profile (5834) is located, that is modeled
as a porous material and is embedded into the equations to be solved (Immersed
Boundary Method) [86]. This subdomain is solved by the full compressible Navier-
Stokes equations, with a fine mesh resolution and a low scheme order, to capture
small scales. Far away from the viscous effects, the fluid dynamics equations to be
solved can be simplified to the compressible inviscid Euler equations (middle do-
main). Here, a coarser mesh resolution and a higher scheme order are applied. In the
outermost subdomain, we can further simplify the equations to be solved, as only
acoustic wave propagation is expected. Therefore, the linearized Euler equations are
solved, where an even coarser mesh and a higher scheme order are used. With this
configuration, we make sure to utilize the inherent properties of low dissipation and
dispersion error of the high order discontinuous Galerkin scheme for the transport
of information over large distances such as the acoustic waves in the far-field. All
subdomains are solved with the solver Ateles, while the subdomains are coupled us-
ing the library preCICE. The strategy of decomposition allows us to enable complex
simulations while reducing the computational effort and considering expensive con-
figurations only where it is necessary and enables simplifications where the physics
allows [87,183]].

The configuration of the coupled simulation is provided in Tab. The smallest
volume is covered by the innermost subdomain, where the expensive compress-
ible Navier-Stokes equations are solved. However, this domain contains the largest
amount of elements. This is required to capture small scales and resolve the bound-
ary layer at the airfoil interface. Further, the outermost subdomain, where the lin-
earized Euler equations are solved, has the least number of elements, while consid-
ering a scheme order of 9, which is the highest for this coupled scenario. In Tab.
all length scales are normalized by the chord length of the airfoil (/.). At the inlet of
the Navier-Stokes domain (innermost), a jet is prescribed, that injects a direct stream
on the structure. It is located in the exact middle with a radius » = 0.5 unit length.
The kinematic viscosity x is predefined with a value of 1.49 - 107°. The dimension-
less Mach number has a value of Ma = 0.35 and the Reynolds number is equal to
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Table 3.3: Airfoil test case for inter-solver load balancing: Configuration for the 3-
tield coupled simulation [68]].

Navier-Stokes Euler Linearized Euler
inner domain middle domain  outer domain
Domain [x, y, z] [4,2,2] [12, 6, 2] [12, 3, 2]
Elements 12672 8192 1152
Scheme order 4 6 9
nDoF 4,055,040 8,847,360 4,199,040

Re = 67,144. The fluid is streamed into the domain with a velocity, that is ramped
up linearly over time and has a final value of 7 = [0.35 - \/(7 - p/p), 0.0,0.0], with
the isothermal coefficient 7 equal to 1.4, the pressure p being 101325 and density
p = 1.0. The perturbation in the outermost subdomain is set to 0.0 initially for all
state variables (density, velocity, and pressure) [68].

In total, this coupled scenario has 17,101, 440 degrees of freedom (nDoF). The mono-
lithic approach, where the entire domain is solved with the same equations and
scheme order (Navier-Stokes equations and scheme order 4), requires nine times
more degrees of freedom [83]. Thus, the partitioned method not only is computa-
tionally cheaper but also requires significantly less memory, while it preserves the
solution accuracy. For physical results for this test case, please consult [88].

Load Balancing and Scalability Analysis

For this test case, we present the load balancing results for the data-driven method.
Similar to the previous test case, we initially need to model the performance of each
subdomain. We run 6 coupled simulations (5 for training and 1 for validation) with
different core counts and incorporate the PMINF regression to find an appropriate
model for each solver. These models for the innermost, the middle, and the outer
subdomains are depicted in Fig. In addition, the overall strong scalability of the
current test case is presented in Fig. for the cases with and without data-driven
load balancing. For the latter case, the computational resources are distributed ac-
cording to the problem size (degrees of freedom) among the solvers. The comparison
shows that applying the data-driven load balancing method reduces the total run
time by about 20% uniformly for all core counts. The scalability limit appears to be
imposed by the outermost domain whose parallel efficiency drops after around 4500
cores (total core count). This also appears to be due to the low arithmetic density

65



3 DATA-DRIVEN PERFORMANCE MODELING AND LOAD BALANCING

3.8e+01 Linearized Euler
35
30

25

© Euler
©
2

“ .E .

e Tgf c > B 20 2 Navier-Stokes

~— m - b\‘J"':’ > -« =
s \}) = ~ =
LA ~h 15 C
IS 5= Je!
e e

[ 0.0e+00 - .
Linearized Euler

(b)

Figure 3.13: Airfoil test case for inter-solver load balancing: (a) Fluid velocity distri-
bution around the airfoil at ¢ = 1s. White frames highlight the coupling
interface [83]. (b) Decomposition of the simulation domain into three
subdomains, solved with the full compressible Navier-Stokes equations
(innermost), compressible inviscid Euler (middle) and the linearized
Euler equations (outermost). This illustration is taken from .

within each core due to the small mesh partition. Fig.[3.16/shows the load imbalance
between the subdomains by using the data driven method. The load imbalance is
calculated as follows:

load imbalance = W x 100

where f,,.; and f,,;,, are the maximum and minimum values for the average run time
(per number of cores per iteration) of the three subdomains. The figure shows that
the proposed method is able to almost remove the load imbalance between domains.
Again, we can observe, that for the smallest number of cores (the first point in
Fig, the load imbalance is the highest. In this test case, different subdomains
have very different workloads. The most compute-intensive domain is the innermost
subdomain, where the Navier-Stokes equations are solved. While the outermost
subdomain needs only a few cores for the computation as its physical complexity
is much lower when compared to the innermost domain. This is also the case for
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Figure 3.14: Airfoil test case for inter-solver load balancing: data driven perfor-
mance models for the innermost, middle and the outermost subdomain.
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nermost, the middle and the outermost domain, where p is the number
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Figure 3.15: Airfoil test case for inter-solver load balancing: Average run time per
time step for different core counts (strong scalability measurement). Re-
sults are presented with and without load balancing.

the middle domain, which is less expensive than the innermost, with roughly 3.5

times faster computation. Considering all these differences in the complexity of the

subdomains, it is apparent that only a fine distribution of available cores allows for

overcoming the load imbalance. However, we can assign cores to subdomains at the
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level of whole nodes only, due to hardware limitations, leading to idling and waiting
for the other two subdomains in order to exchange data. With increasing number of
cores, we observe that the load imbalance reduces.
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Figure 3.16: Airfoil test case for inter-solver load balancing: Load imbalance between
domains using the regression based data driven method. This illustra-
tion is taken from [68].

Similar to the previous test case, we analyze the proposed data-driven load balancing
overhead for this test case to evaluate the effect of the load balancing method on the
computational efficiency. In total, 6 small simulations were carried out to produce
the required data for establishing performance models. The accumulated run time
for these simulations is 32.6 seconds. The extra cost to evaluate the core distribution
for each simulation is very small in this test case as well. For the current test case,
we need to simulate at least 0.5 seconds of physical time to achieve useful results.
The appropriate time step size for this problem is 107¢ seconds which results in
500,000 time steps. Therefore, the total overhead for load balancing is negligible,
compared to the reduction in the computational cost. For instance, the reduction in
run time due to the load balancing method on 4,608 cores is around 11 seconds for
one hundred time steps. This means the load balancing overhead is compensated
within the first 300 time steps due to the run time reduction. Given the required
500, 000 time steps, the total saved time due to applying the proposed load balancing
method is around 15 hours for a complete simulation [68]].
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3.7 Summary

A data-driven performance modeling and load balancing method for multi-physics
simulation are introduced in this chapter. To efficiently distribute cores among
solvers, we first used the PMNF regression to model the performance of each solver
against the number of cores. Then, an appropriate optimization problem is derived
and solved to find the optimal distribution. We show two different test cases to eval-
uate the effect of the proposed method. For both test cases, we use the Ateles solver
from the APES framework. Furthermore, the preCICE library is used to couple the
subdomains of the partitioned solver. In the first test case, the method is applied
to the partitioned simulation of a Gaussian pressure pulse spreading within a cubic
domain. The domain is decomposed into an inner and an outer subdomain and each
is solved with a different configuration. In the second example, a more complex test
case is investigated. We examined the load balancing for fluid-structure interaction
phenomena around an aircraft’s wing. The simulation domain is split into three sub-
domains and each is solved with a different configuration. The performance analysis
shows that the proposed load balancing method can significantly decrease the run
time (up to 25%) and improves the scalability of the simulation. In addition, we
showed that the proposed method is able to reduce the load imbalance significantly
to around 1%. The results are comparable, even better for higher core numbers, with
a solver-specific method developed specifically for the APES framework. However,
since we use the run time average (per number of cores per iteration) for perfor-
mance modeling, this small load imbalance can not be suppressed completely. A
possible remedy is using a dynamic load balancing approach to update the core dis-
tribution over the run time, but such an approach can introduce other complexities
and is subject to future works.

In addition, two different methods for multi-variable performance modeling of the
solvers are examined to study the effect of multiple variables on the solver’s run time.
We used the core number and the problem size as variables. In the first method, the
extended version of PMNF regression, called EPMNF, is used for the multi-variable
modeling of a solver. The numerical results show that EPMNF with hierarchical
search is not able to accurately model the solver’s performance with a tolerable cost.
Therefore, an alternative approach, which is using neural networks, is taken to study
multiple variable cases. The initial results show that neural networks are capable of
accurately modeling the performance. They can be used to study the effect of various
parameters such as core count, problem size, hardware properties, etc., on the run
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time simultaneously. In this work, a simple densely connected network with a ReLU
activation function is used. This approach can be used to establish performance
models using coarser meshes when establishing the performance models with the
fine target mesh is expensive. This work is also a topic for future research.
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4 Machine Learning for Convergence

Acceleration of Coupled Problems

This chapter presents a data-integrated environment for performance improvement
of partitioned FSI simulations. We combine classical physical solvers with a deep
neural network (DNN) to accelerate the solution convergence. The DNN provides
an estimation for each time step of the simulation. The estimated solution is used
by classical solvers as an initial guess to compute the final solution. The method
benefits from both the partitioned and the monolithic approach. This is achieved
by decomposing the simulation domain into a solid and a fluid subdomain to use
available solvers for each (partitioned approach advantageous) and using only a
single neural network for the entire domain (no iterative procedure needed, benefit
of the monolithic approach). The DNN is pre-trained based on data generated over
several time steps of the classical simulation. To ensure that the DNN produces
suitable results in all time steps of long simulations, we introduce an on-the-fly re-
training scheme to keep the network updated and maintain its prediction accuracy
by avoiding the so-called model-data inconsistency during the simulation. In ad-
dition, we propose a parallelization scheme for the training process of the neural
network which is compatible with the techniques used in the classical solvers. This
is a crucial step for integrating deep neural networks with highly parallel physical
solvers to investigate large complex problems.

We provide numerical evidence to show, that the proposed method significantly
improves the performance of the FSI simulation. We present a numerical conver-
gence analysis for a one-dimensional simulation of flow in a deformable tube. The
numerical investigations show, that the neural network acceleration scheme with the
on-the-fly re-training is able to significantly reduce the number of FSI solution itera-
tions. Furthermore, our initial investigation of the proposed parallelization scheme
shows, that the training can scale perfectly to 64 CPU cores.

The rest of this chapter is organized as follows. Section {4.1|introduces the applica-
tion of machine learning methods in simulation science and explains the approach
that we address in this chapter in more detail. Sec. 4.2 presents the data-integrated
scheme for FSI simulations. This includes the coupled solver design, the neural
network architecture, and the on-the-fly training strategy. Section. |4.3|explains the
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parallelization method for the neural network training. The numerical investigations
to prove the effectiveness of the proposed methods are presented in Sec. while
Sec. 4.5 summarizes and concludes the chapter.

4.1 Introduction to the Application of Machine Learning in

Simulation Science

Machine learning methods have shown promising performance in various scientific
fields. One potential usage of these methods is their application in improving the
performance of numerical simulations, i.e., data-integrated simulation. Given the
vast amount of simulation and experimental data, enough data are available for
training data-driven models. These models can be either integrated into the simula-
tion or used as a stand-alone post-processing tool, e.g., for optimization.

Machine learning, in general, and deep neural networks, specifically, have been
vastly investigated for simulation science. For instance, Raissi et al. investigated
vortex-induced vibrations of bluff bodies to approximate lift and drag forces by em-
ploying deep neural networks [89]]. A breakthrough in this field has been achieved
by introducing physics-informed neural networks [90, 91, 92]. This class of neural
networks integrates the prior knowledge into the learning mechanism by adding
the basic physical laws into the loss function. This penalizes the input-output map-
pings that do not satisfy basic physics and, thus, improves the learning result. Deep
neural networks have also been applied to FSI problems. For instance, Gaymann
et al. applied DNNSs for FSI topology optimization [93]. In the current study, we
aim to use deep neural networks to improve the performance of partitioned FSI
simulations. We integrate DNN's with classical fluid and solid solvers for an efficient
data-integrated simulation.

In addition, we propose a novel parallelization scheme for the training of deep neural
networks that is compatible with the parallelization techniques employed in classi-
cal simulation software. This is important from various perspectives: (i) Given the
size of the training data set in a typical simulation application, efficient training and
inference must be considered; (ii) modern classical solvers for investigating complex
problems are usually highly parallel. Integrating DNN with these solvers is only
possible when the DNN follows a similar parallelization scheme for training and

inference.

There are various approaches in the literature to improve the efficiency of the train-
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ing, i.e., to reduce the time-to-train, while preserving the learning quality. We can
generally categorize these schemes into data parallelization and model paralleliza-
tion [94]. While the former distributes the training data set among different processes,
the latter shares all data among processes but distributes the computations. Both
methods need data communication for synchronization. As an example, Vivian et
al. [95] presented a data-parallel approach, where the available training data are split
into smaller chunks. Each chunk is given to a separate network. Through a global
reduction operation, the networks resulting from different training data chunks can
share their weights. The weights are averaged and constitute a new network, which
is shared among all individual MPI ranks. This procedure is repeated until all avail-
able data are fed into the network and the training is completed. This approach is
able to reduce the training time. However, it alters the learning algorithm resulting
in decreased learning efficiency. In addition, the global reduction operations are
potential performance bottlenecks.

The proposed method in the current study is based on decomposing the individual
training data sets into smaller spatial sections. This method is primarily targeting
simulations in different scientific areas but can be generalized to be utilized for other
fields as well.

4.2 Data-Integrated Fluid-Structure Interaction Simulation with

Deep Neural Networks

To accelerate the equation coupling between fluid and structure domain in a strongly
coupled FSI simulation, we train a neural network to predict the converged solu-
tion at the coupling interface at the end of a new time step. The classical solvers
use the estimation as an informed initial guess for the implicit coupling iterations
(see Sec. to calculate the final numerical solution by performing an iterative pro-
cedure to solve the fixed point equation. Since the estimated solution is produced by
a DNN trained with converged values at the common interface, the classical solvers
require fewer iterations for the solution until convergence.

As schematically shown in Fig. we do not use two neural networks for the fluid
and the structure solver, respectively, but only a single neural network to output the
converged solution of a whole coupled time step. This has the advantage that we
avoid having to iterate between a fluid and a solid neural network surrogate to get
the predicted solution. In addition, we reduce the output to interface data (instead
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neural networks: schematic view of using neural networks to accelerate
the partitioned simulation of fluid-structure interaction problems. A neu-
ral network is trained to receive simulation results at time step ¢! (step
0) and compute an estimation of the converged solution for time step ¢"
(step 1). The classical solvers use the initial estimation (step 2) to compute
the exact solution following an iterative procedure (step 3). In this layout,
a serial coupling strategy is illustrated with the fluid solver being the first
participant. Accordingly, the neural network only estimates the part of
the solution that is needed by the fluid solver, i.e., boundary displace-
ment. The solid solver receives the initial values at the common interface
from the fluid solver accordingly.
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of data in the whole three-dimensional simulation domain), which further reduces
the cost for both training and evaluation of the DNN. However, it induces a strong
need for re-training during the actual simulation as input and output at the coupling
interface are not uniquely related (the time step, e.g., also depends on values at the
outer domain boundaries of the solid and the fluid). This will be explained in more
detail in Sec.

In the rest, we explain the different steps of the combined neural network and clas-
sical solvers simulation. The neural network receives a simulation history sequence
(network’s input, step 0) to estimate the solution for the new time step (network’s
output, step 1). The estimated solution is transferred to the classical solvers (step 2)
to be used as the first guess to compute the final converged solution (step 3). This
procedure is executed until the simulation ends. Note that, in the current study, we
follow a serial coupling scheme. Therefore, only the first participant (fluid solver in
this work) requires the solution estimation from the DNN.

To generalize the DNN’s prediction and ensure that the network gives valid results,
i.e., good estimates over many time steps, in particular more time steps than we used
for training, we can follow two (naive) approaches to effectively train the neural net-
work. In the first approach, the partial solution history of one simulation can be used
as a training data set. For instance, if a simulation requires 1,000 time steps, one
can run the first 500 time steps without neural network acceleration, gather training
data, train the network and continue the next 500 time steps with acceleration. In
the second approach, if we want to generate a network that can be used in a variety
of similar scenarios, geometric information of the test scenario (e.g., the tube diam-
eter for the case of a flow in a flexible tube) can be added to the network input, the
network can be trained for a few different geometries and used for acceleration for
cases with new geometries.

However, both approaches are prone to so-called model-data inconsistency and pro-
vide only very limited potential for saving overall computational cost. Training the
neural network with one set of data and using it for a completely different setting
can result in low estimation accuracy. This is due to the violation of the indepen-
dent and individually distributed (IID) training and evaluation data assumption.
If the distribution of the training and the evaluation data are different, statistical
machine learning methods’ performance deteriorates. This is a general issue for
these methods, details of which can be found in [96]. In the application discussed
in this chapter, there is a possibility, that the relation between interface data from
one time step to the next (input and output of our network) changes over time and,
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second, that the physical solution is not similar enough for the pre-trained DNN to
be still applicable if the geometry varies. In such cases, if the estimate solution is
not accurate enough, the method can even result in a higher number of subsequent
classical iterations. Accuracy is crucially important for convergence acceleration,
in particular, to outperform the available numerical methods such as quasi-Newton
(explained in Sec.[I.I). We propose on-the-fly re-training of the initial neural network
to address this issue.

4.2.1 On-the-Fly Training to Avoid Model-Data Inconsistency

To avoid the degradation of the neural network’s estimation over subsequent time
steps of the simulation due to the so-called model-data inconsistency, we propose
a dynamic training scheme that updates the neural network during the simulation.
At given intervals, the last few time steps that have already been computed are used
to run a re-training step. This brings the training and the inference data distribution
as close as possible and prevents the estimation accuracy drop by re-imposing the
IID assumption. A possible downside of this strategy can be the delay due to the
re-training step, thus increasing the total simulation time. This delay can be avoided
by overlapping the last time step computation and re-training the network.

4.2.2 Neural Network Architecture Design and Hyper Parameters’
Tuning

We intend to use neural networks as a surrogate solver to estimate the solution. To
obtain an accurate estimation while keeping the network as small as possible, we
must consider the physical constraints of the problem when designing the network
and tuning the hyperparameters. In a time-dependent continuum domain, as the
test case of the current chapter, all unknowns of the system have both spatial and
temporal connectivity correlations. Any kind of modeling must account for these
connectivity correlations to get accurate results. Note that applying convolution
operations when the input data are spatially unstructured is not trivial, since this
operation expects the arrangement of the data to be structured to apply the convo-
lution kernel. For unstructured data, one can use graph-based neural networks to
apply similar convolutions, see, e.g., [97].

We use a combination of convolutional (CNN) layers and recurrent (RNN) layers to
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preserve the mentioned properties. The network’s design is schematically shown
in Fig. It receives a sequence of field variables (e.g., for three subsequent time
steps), more specifically, in a fluid-structure interaction test case, the pressure and the
velocity from the fluid solver and the structural deformation from the solid solver
as an input to predict the same field variables for the next time step. Both the input
and the output of the DNN are limited to the common interface to reduce the train-
ing and the inference time and computational cost. Each element of the sequence
(each time step) initially enters a block of CNN layers, divided into two subblocks of
encoder and decoder, to investigate the spatial connectivity. The output of the CNN
block is a sequence with the same dimensions. This is then passed on to a block of
RNN layers to analyze the time dependency. The network’s output is the predicted
tield values for the next time step.

Input

Encoder Output

RNN RNN RNN

Figure 4.2: Convergence acceleration in partitioned FSI simulation using surrogate
neural networks: The architecture of the surrogate neural network for the
solution estimation. The input data include a sequence of field variables,
i.e., pressure, velocity, and deformation for an FSI test case. These data
initially enter two blocks of CNN layers, i.e., encoder and decoder blocks.
The output of the CNN blocks is then passed on to the RNN layers. In
this figure, RNN layers include three internal sub-layers. Each sub-layer
receives one element of the input sequence (z;) along with the hidden
state (h;) of the previous layer and computes its hidden state. The hidden
state of the last sub-layer is the output of the RNN block and the entire
network which is the solution estimation for the next time step.

Many parameters must be fitted for efficient training of the neural network. These
parameters include but are not limited to, type and number of layers, activation func-
tions, loss function, optimization method, and regularization techniques. For each
of these parameters, various options are available in the literature. Our experiments
show that the following choices are more efficient than others. We use leaky ReLU
activation functions (see Sec. for details) to map the input of a neuron to its
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output. The mean square error is considered as a loss function which is given by:

1"
L= E Z(yprediction - ytarget)Q’ (41)
k=1

where yi4,c: are the target values and yp,cqiction are the corresponding predictions.
To minimize the value of the loss function and compute the network’s weights, an
ADAM optimizer is incorporated. The numerical values of each field variable (pres-
sure, velocity, and deformation) can have different orders of magnitude. To avoid
numerical errors due to this discrepancy, we normalize each variable independently,
i.e., all input elements are between -1 and 1 after normalization.

4.3 Parallel Training Based on Training Data Decomposition

Modern scientific and engineering FSI applications are often very complex and re-
quire a huge computational effort. Therefore, any simulation software must be able
to efficiently run on parallel computers. Efficient parallel training and inference of
neural networks are necessary to combine them with classical solvers for a data-
integrated simulation. There are various approaches in the literature to parallelize
the training and inference of neural networks. These approaches can be generally
divided into data parallelization and model parallelization schemes [94]. The first
approach divides the data among different processes while the second approach
shares all data among processes but distributes the computation among processes.
Both approaches require data communication for synchronization. In this section,
a novel parallelization scheme for the training of deep neural networks (DNNs) is
proposed. The proposed method is compatible with the parallelization techniques
that are used for classical solvers.

The proposed method works based on the decomposition of the individual training
data sets into smaller spatial sections as shown in Fig. instead of distributing
complete data sets among processes. Each section is then assigned to an indepen-
dent neural network. Thus, each network learns the data for its subdomain and the
training phase is communication-free. One way to ensure continuity across the sub-
domains’ interfaces is employing a domain overlapping strategy, i.e., subdomains
share data points at their interface with the neighbors.

Training: Suppose that we have a set of 1000 training data sets, each representing a
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two-dimensional square domain with 100 data points. The following steps must be
taken for training [55]:

1. Split each data set into smaller sections, for example, 4 smaller subdomains,
each with only 25 data points.

2. Add a layer of interface data from the neighboring sections such that each

subsection gets, e.g., 36 data points.
3. Feed each section into an individual network (see Fig.4.3).
4. Parallelize the training by assigning one MPI rank to each network.
5. Use an individual cost function and optimization process for each network.

6. Train each network for the specific part of the domain and use it to predict only

’ﬁ%ﬁﬁh“%w

Figure 4.3: Parallelization of neural network training: Each data set is decomposed
into smaller spatial sections, each of which is fed into an individual neu-
ral network. Individual networks learn only a subsection of the domain,
which results in faster training due to fewer data points. In addition,
smaller networks with fewer weights can be used, since learning a sub-
section of the domain is an easier task compared to learning the entire
domain. This illustration is taken from [55].

its section.

LRSS

Parallelization of networks that include CNN layers poses further challenges, but
also offers options to consider continuity of the output across subdomains. Applying
CNNs reduces the size of the two-dimensional input data set by (k-1) rows and (k-1)
columns if we use a k x k convolution kernel. Thus, the network output can not
be directly compared to the target data (since the input and the target data have
different sizes). For the first layer, the input size can be increased to match its output
size with the target data. For our domain partitioning approach, this means, that the
input data for neighboring processes must be overlapping. This helps both to match
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dimensions and preserve the spatial connectivity between neighboring processes,
since the effect of neighboring data points from other subsections can be reflected on
the interface data points. In the case of using a single CNN layer, the overlapping
input can remove the mismatch of output and target data dimension. For the cases
with more than one layer, the following options are possible to solve the dimension
mismatch issue:

1. Padding the input data with zeros, to achieve the desired size of the output,
2. padding the input data with data from neighboring subdomains,

3. comparing only the inner (N — k + 1) x (N — k + 1) data points of the target
data to the network output,

4. adding de-convolutional layers or the transpose convolution.

Comparing only the inner data points (option 3) limits the usability of the output
data, as substitutes of the actual simulation (data at subdomain interfaces are miss-
ing). Therefore, this option is avoided in the current study.

Since each network is responsible only for a single subdomain, there is no need for
data exchange between processes in the training phase. The data are directly fed
into the network from the memory. This avoids possible bottlenecks due to the data
communication.

Inference: Individual networks can be used in parallel for the inference of the subdo-
main, that they are trained for. Each network receives the input sequence up to time
step ¢ to predict the solution at time ¢ + 1. If the parallel network is integrated into the
classical solvers for acceleration, as explained in Sec/4.2} data communication might
be needed between processes of the solver and processes of the neural network. This
data exchange can be performed directly between the processes that owns the same

subdomain to minimize the communication overhead.

4.4 Performance Analysis

To prove the effectiveness of the proposed data-integrated method on improving the
performance of FSI simulations, we present a numerical convergence analysis for
a fluid-structure interaction test case. We show that the proposed method is able
to considerably reduce the number of required iterations. In addition, we prove
that the on-the-fly training is able to remove the so-called model data inconsistency
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problem. This test case is only a preliminary one to prove the concept and show
that the method is able to improve the performance of a simple one-dimensional
FSI example. To exploit the method for complex problems, further steps must be
performed that will be explained in this section. Furthermore, we investigate the
computational performance of the parallel training by means of a single-physics test
case.

4.4.1 Data-Integrated FSI Simulation

This section provides numerical evidence for the effectiveness of the proposed data-
integrated method using a one-dimensional FSI simulation. This test case studies the
fluid flow inside a deformable tube. We initially describe the test case and explain
the governing equations for fluid flow and structure deformation along with the
coupling equations. Next, we analyze the effect of the proposed method on the
convergence speed and the accuracy of the results.

Test Case Description

We present the governing equations for the simulation of an internal flow inside an
elastic tube. The test case is schematically shown in Figl4.4] We briefly explain the
one-dimensional model equations for the fluid flow, structure deformation and FSI
coupling at the common boundary.

Fluid flow

In the current study, we consider an unsteady and incompressible flow model. Due
to the axisymmetric geometry, the flow can be described by quasi-two-dimensional
continuity and the momentum equations which read

8_a N d(av)
ot ox

—0, (4.2)

d(av) d(av?) 1, 0(ap) da,
o tTa ToUa e =0 *3)

where a is the cross-sectional area (dependent on z), v is the flow velocity in z-
direction, p is the fluid pressure, and p is the fluid density [98].
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Figure 4.4: One-dimensional tube test case: schematic geometry and parameters. The
fluid pressure p acting on the inner tube walls is causing scalar circumfer-
ential stress 04,4 in the tube walls which leads to deformation in the radial
direction. The illustration is taken from [98].

Structure deformation
The conservation laws of mass and momentum govern the structural domain, whose
general Lagrangian form can be written as

0 od

where p, is the structural density and d is the displacement at the reference con-
figuration. The stress tensor o is related to the displacement filed. In the current
one-dimensional model, it is given by a linear elastic constitutive relation law with
the scalar circumferential stress

Opp = pt ZOTO) + 0o, (4.5)

where E is the Young’s modulus, r is the tube radius, and o044 is the circumferential
stress with o at reference position ry. The motion of the tube wall is, thus, limited
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to the radial direction.

FSI coupling condition
The coupling conditions on the fluid-structure interface are derived from the physical
equilibrium at the shared boundary. The dynamic FSI interface conditions are given

by
pr = ogeh, (4.6)

where  is the thickness of the tube wall.

Both the fluid and solid domain are discretized into 100 one-dimensional linear
elements with equal size. This implies (i) we have matching meshes at the com-
mon interface, (ii) the common interface coincides with the volume of the domains.
The time discretization for the fluid and the structure equations is both done by
a first-order backward Euler scheme with time step size At = 0.01s. A transient
dimensionless inflow velocity is prescribed at the inlet as

Uy = Uy + fé—%sm%%), (4.7)
where n is the time step number, 7" = 10 is the oscillation period of the inflow velocity
and U, = 10m/s is the initial velocity. The pressure at the outlet is 0. In addition,
initial values for velocity, pressure, and deformation are 0. Complete details about
this test case can be found in [9§].

Numerical Convergence Acceleration Investigation

To accelerate the equation coupling between the structure and the fluid domain, we
train a single neural network as a surrogate solver to estimate the solution at the
common interface for both domains. The network consists of CNN and RNN layers
as explained in Sec We stack one vector for each domain variable, e.g., pressure,
velocity, and deflection, to build the two-dimensional input data. This is shown in
Fig. Each row corresponds to one domain variable and each column represents
data that belong to one point in the mesh. The CNN block (Fig. consists of convo-
lutional (encoder) and deconvolutional (decoders) layers. We use a kernel with size
3 x 3 to mimic the spatial connectivity. With this kernel size, we can capture the effect
of domain variables of all neighbors on the target point. This also ensures including
the effect of different domain variables on each other. In simple words, with the
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padded pressure
velocity 0000000000 00000000
deflection 000000 O0GOC6OS - - - 00000000
pressure 0000000000 00000000
padded velocity
convolution

velocity .
deflection O OC D OO0 O e
pressure D OO0 00000 C

Xy X+ v« X, v v X v oo X

Figure 4.5: One-dimensional tube test case: The input data consists of 3 vectors,
each representing one domain variable. In this figure, velocity data are
shown in green, deflection in orange, and pressure in blue. The horizon-
tal position of each point (z;) shows the corresponding grid point in the
discretization. The convolution is applied to ensure not only the spatial
connectivity between neighbors but also to capture the connection be-
tween the domain variables. To ensure that the convolution is applied
properly on velocity and pressure data points, we pad the upper and
the lower boundary of the input vectors using the pressure and velocity
variables, respectively. The padded data are shown with a transparent
color.

current data configuration, the convolution considers the effect of the pressure, the
velocity, and the deflection of all neighbors on the variables of the target point (for
instance, we observe the effect of neighbor points on the predicted deflection of x5
in Fig.[4.5). Using deconvolution layers, that reverse the effect of convolution, pre-
serves the size of the input data, and makes the padding unnecessary. The output of
each layer is mapped using a ReLU activation function before entering the next layer.
We use a single RNN layer afterward with 3 hidden layers to learn the temporal
connectivity. The network design information is summarized in Table

The network input consists of sequences of 3 consecutive time steps (the input
consists of time steps n — 2, n — 1, n for output time step n + 1). Each time step of
the input initially goes through the CNN layers independently to learn the spatial
connectivity. The processed sequence enters the RNN layer for temporal connectiv-
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Table 4.1: Deformable tube test case: Neural network design and hyper parameters.

Layer Type  No. of layers Inputseq. size Kernel size Act. function

Convolution 2 - 3x3 ReLU
(encoder)
DeConvolution 2 - 3x3 ReLU
(decoder)
RNN 3 (hidden) 3 - -

ity learning. The RNN'’s output is compared with the next time step (the one after
the input sequence) via the predefined MSE loss function to compute the network’s
weight using the ADAM optimization method with a learning rate of 1072.

The training is performed in two steps: (i) initial training with the first half of the
time steps generated with classical simulation to obtain the pre-trained network, (ii)
re-training during the hybrid classical-NN simulation after every five time steps to
improve the prediction’s accuracy. For the initial training, the first 80 time steps are
used as the training data set. These time steps can form 77 training sets (nota; — Mseq
with 1t = 80 being the total number of time steps and n,., = 3 the input sequence
size). The re-training is performed using only the last 5 time steps. The re-training is
faster since fewer input data must be analyzed and fewer training epochs are needed
as the network is already pre-trained. The training error given the performed num-
ber of training epochs is depicted in Fig. |4.6|for both the initial network training and
on-the-fly re-training. First, we observe fluctuations in the error for the initial net-
work training. It seems that, this is due to the learning rate. When the loss decreases,
performing a stochastic gradient descent step can increase the error if the learning
rate is not small enough. This can be alleviated by reducing the learning rate. How-
ever, a smaller rate increases the number of required epochs and the training time.
Our experiments show, that reducing the learning rate flattens the error curves, but
it does not affect the final training error. Therefore, we did not reduce the learning
rate and only truncated the training when the error reached the value of 1075, which
seems to be the smallest possible value in this setup. Further investigations are nec-
essary to better understand and address these error peaks.

In addition, it can be seen, that the network’s training error reduces very quickly in
the re-training. As expected, the pre-trained network learns a small time window of
the simulation much better than a large window. Our experiments show, that even
with 1,000 training epochs, the initial network is not able to produce an estimation
that is close enough to the actual solution to reduce the number of classical iterations.
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On the other hand, the on-the-fly re-training is able to compute a satisfactory estima-
tion after approximately 50 training epochs using only the last five time steps. This
estimation is close enough to the actual solution and reduces the number of classical
iterations.

In the rest of this section, we present the numerical investigation results on the con-
vergence acceleration of the FSI test case. We initially compare the accuracy of the
simulation with and without neural network acceleration in Fig. 4.7/ to prove that
combining the neural network solver with numerical solvers does not affect the sim-
ulation results. The comparison is performed only for the part of the simulation
that was not used for training the initial network. The comparison shows, that the
acceleration keeps the simulation results unchanged. This is expected, since the clas-
sical iterative solution procedure between numerical solvers, after the estimation is
provided by neural network, guaranties the correctness of the solution.

We run the same simulation with various acceleration schemes, including Aitken
under relaxation, quasi-Newton, and neural network with and without on-the-fly
training to compare the number of required iterations for a few time steps. The
convergence is checked for the pressure and the deflection as explained in Sec.
The convergence criterion is set to 107° for all schemes. For quasi-Newton, the ini-
tial relaxation is set to 0.01 and the maximum number of used iterations to 50. In
addition, QR?2 filter type [32] is used as explained in Sec. For the Aitken method,
an initial relaxation of 0.1 is used. In addition, since the same discretization is used
for both domains, the meshes are matching and we use the nearest neighbor method
for the data mapping. The results are provided visually in Fig. and numeri-
cally in Table It is observed, that the acceleration with the neural network has
the best performance when the network is re-trained on-the-fly. It is apparent that,
without re-training, the prediction’s accuracy drops rapidly, and the number of the
required subsequent classical iterations increases. On-the-fly re-training updates the
network’s weight and keeps the prediction accurate enough to minimize the number
of required iterations. Note, that the convergence analysis is provided for the first
tive time steps after the time steps used for training the initial network. However,
for the rest of the simulation, we observed a similar pattern.
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Figure 4.6: One-dimensional tube test case: number of training epochs for initial
network training and on-the-fly re-training. The re-training requires sig-
nificantly fewer epochs to be able to compute a satisfactory solution esti-
mation. The re-training is performed using the first 5 time steps that are
computed after the time steps for initial training.
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Figure 4.7: One-dimensional tube test case: comparison of simulation results with
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and without neural network acceleration. The simulation results are com-
pared for cross-section deflection, the fluid pressure, and the fluid velocity
at the mid-point of the domain. The results are provided for the part of
the simulation (second half), where we applied the neural network accel-
eration. The first half of the simulation is used to train the initial network.
Thus, it is not included in the comparison. The plots are normalized (all
values are between -1 and 1 in all three plots) to enable accuracy compar-
ison among variables, i.e., pressure, velocity, and deflection. The black
lines represent the simulation with acceleration, while the red ones stand
for the case without neural network acceleration. The comparison shows
that the acceleration does not affect the simulation results.



Number of iterations

100+

25+

10

4.4 PERFORMANCE ANALYSIS

HEl On-the-fly training neural network
Il Static training neural network
HEE Quasi Newton
HEl Aitken under relaxation

Without acceleration

3
Time step

Figure 4.8: One-dimensional tube test case: The required number of iterations is

compared for various accelerations schemes, including Aitken under re-
laxation, quasi-Newton, and neural network with and without on-the-fly
re-training. The comparison is performed for the first five time steps after
the time steps that are used for initial training. We observe that, without
re-training, the neural network is not able to provide an accurate solution
estimation after the first time step. The estimation deviates substantially
from the actual values, which results in a high number of iterations af-
terward. The on-the-fly training addresses this issue by updating the
neural network’s weight every five time steps using the five most recent
computed time steps. As seen in Fig. approximately 50 epochs are
required for the re-training. We observe, that this approach requires the
minimum number of iterations among all schemes.
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Table 4.2: Deformable tube test case: number of required iterations for various accel-
eration techniques.

Time step 1 2 3 4 5

No acceleration 45 101 - - -
Aitken under-relaxation 15 13 14 13 13
Quasi Newton 8 6 7 6 6

NN acceleration 6 17 28 43 51

NN acceleration with on-th-fly re-training 3 3 3 3 3

4.4.2 Parallelization of Neural Networks Training for Machine Learning

of Partial Differential Equations

This section provides numerical performance results for parallel training of neural
networks. For performance analysis, we use a two-dimensional test case that inves-
tigates the Gaussian pressure pulse within a square domain. The pulse is initially
located in the square center and it moves towards boundaries during the simulation.
We provide strong scalability measurements and accuracy investigation to prove,
that the proposed method can efficiently parallelize neural network training. The
parallelization of training is applied to a single-physics problem and is not yet inte-
grated into classical simulation solvers for neural network acceleration of partitioned

fluid-structure interaction simulations.

Test Case Description

For our numerical tests, we consider the linearized Euler equations (Eq.(4.8)). The
equations to be solved allow determining the perturbation (marked with ') given a
known constant background (denoted with a subscript c) [99]

Op' + V- (uep + pu’) =0 (4.8a)
_
’ ’/ 1 /
Ou' +V- (ucu +—p) =0 (4.8b)
0, p' + V- (uep’ +ypeu’) =0, (4.8¢)

where p, p, and u are the density, pressure, and velocity, respectively. All terms that
are non-linear in the perturbations are neglected.
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At all four boundaries, outflow boundaries are considered, i.e., the pressure perturba-
tion is set to zero, while all other quantities (density and velocity) have homogenized
Neumann boundary conditions.

Initially, the fluid is at rest, the density perturbation is set to zero. The background
pressure is 1 bar and the background density is defined to be 1 kg/m?. A pressure
perturbation can be prescribed which corresponds to the mentioned Gaussian pulse.
For this purpose, we locate a Gaussian pressure pulse in the center of our square
domain at P(0.0, 0.0). The half-width of the pulse is set to 0.3 m and the amplitude is
0.5. The background velocity in both directions is zero. For comparison and to train
the neural network used in this work, the solver Ateles [84, 65] is used to generate
the training and validation data.

Numerical Performance and Accuracy Analysis

In the current test case, each training data set consists of grid-type data points, 256
at each direction accumulating to a total of 65,536 points. For each point, the net-
works receive density, pressure, and velocity in z- and y-direction. The training
data are gathered as a list of three-dimensional arrays, where the z- and y-direction
corresponds to the domain and the z-direction accounts for the various data types
(density, pressure, and velocities). For parallelization, we decompose the domain
into smaller subdomains as described in Sec.4.3]and use an individual network for
each subdomain.

The network that is used for each subdomain of this test case consists of convolu-
tional layers to mimic the spatial connectivity and accounts for the effect of domain
variables on each other. The output of each layer is mapped using a ReLU activa-
tion function before entering the next layer. The network’s output is compared with
the next time step via the predefined MSE loss function to compute the network’s
weight. We use the ADAM optimization method with a learning rate of 10~3. The
network design information is summarized in Table

We initially compare the network’s output for parallel and serial training in Fig.
to investigate the effect of parallelization on the accuracy of predictions. For both
cases, the network receives the domain information, including pressure, density, and
velocities at time step (¢), and predicts the domain status in the next time step. In
total, 1500 training and validation data are produced by running a single simulation.
The first 1000 time steps are used for training and the remaining ones for validation.
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Table 4.3: Neural network training parallelization: CNN layers architecture and
arrangement. Output channels of each layer must match with the input
channels of the next layer.

layer number input channels outputchannels  kernelsize  padding

1 4 6 4x6x%x3x3 Yes
2 6 16 6 x 16 x 3 x 3 Yes
3 16 6 16 x 6 x 3 x3 Yes
4 6 4 6 x4x3x%x3 Yes

For the parallel training, the domain is decomposed into four square subdomains
and each is assigned to a separate neural network. The domains are overlapping
to minimize the possible discontinuity in the common interfaces. It seems that, for
the current test case, we can preserve the continuity across the common interface
by overlapping the subdomains. For more complicated geometries, further inves-
tigations are required to study the effect of parallelization on the accuracy of the
network’s prediction.

In the rest of this section, we present a strong scalability analysis for the proposed
scheme up to 64 CPU cores in Fig. The domain is decomposed into square
subdomains and each subdomain is assigned to a separate network. Each network
is trained independently and the training is stopped when the training accuracy
reaches a certain value (in this case to 107°). We observe an almost perfect strong
scaling, where the training time reduces as the number of CPU cores is increased.
This behavior is expected, as parallelization reduces the size of training data and
thus the training time. In addition, avoiding communication during training con-
tributes to the observed efficiency. It must be noted, that the inference time is very
small since it is performed only for a single time step.
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Density Pressure Velocity x-direction Velocity y-direction

(a) Serial training and inference.

(b) Parallel training and inference.

Figure 4.9: Neural network training parallelization: comparison of the neural net-
work’s output for the parallel and the serial inference. The input and
output data are compared for the time step 25 in the validation data set.
For the parallel inference, the domain is decomposed into four smaller
square subdomains. A layer of interface data with the width of 2 data
points from the neighboring subdomains is added to overlap the sub-
domains. This overlapping is intended to ensure continuity across the
common interfaces of the subdomains. It seems that, for the current test
case, the overlapping strategy can effectively preserve the continuity for
all domain variables.
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Figure 4.10: Neural network training parallelization: strong scalability measure-

94

ments for the proposed parallelization scheme. Each training data set
is split into smaller square subdomains. Each subdomain is assigned to
a separate neural network. The training is performed for each network
until the training error of all networks is reached to 107°. The training
time decreases as the number of exploited CPU cores increases.



4.5 SUMMARY

4.5 Summary

We presented a data-integrated simulation environment for the partitioned solution
of strongly coupled FSI problems. The partitioned approach provides the opportu-
nity to reuse available single-physics solvers. This reduces the software develop-
ment cost, however, for problems in which the subdomains are strongly coupled, the
method requires a high number of iterations to reach a converged solution.

In the current study, we combined deep neural networks with classical solvers for a
more efficient simulation by reducing the number of required iterations. The deep
neural network, consisting of CNN and RNN layers, is trained to provide a solution
estimation at the beginning of each time step. The classical solvers benefit from
the estimation of the converged solution and need fewer iterations to reach the fi-
nal solution. We introduced a dynamic re-training scheme that keeps the network
updated during the simulation and avoids the so-called model-data inconsistency.
The method improves the performance of the simulation while keeping the solution
accuracy untouched. For a simple, but representative, one-dimensional test case
that studies the fluid flow within a deformable tube, the data-integrated method
reduces the number of iterations to 3, while the purely classical methods, such as
quasi-Newton, require at least 6 iterations.

In addition, as a first attempt to prepare the method to be used in more complex
problems, we introduced a parallelization scheme for the training of neural networks
that can be used in such applications. The method partitions the simulation domain,
similar to parallelization methods in classical simulations, and assigns each subdo-
main to an individual neural network. We show that the training can be perfectly
scaled to many processors (64 CPU cores in our test case).

Another challenge that must be addressed before applying the method to more com-
plex simulations is the capability of training the network with data provided on
unstructured grids. Modern simulation software use unstructured grids to generate
computational mesh for complex geometries. Application of classical convolution
to these data structures is not possible, since the operation can be applied only on
structured grids. A possible remedy for this problem is using graph-based neural
networks which are capable of handling unstructured data. This topic will be in-
vestigated in future works. In addition, in a three-dimensional test case, the DNN
must be able to perform the estimation based on partial data from the domain, i.e.,
only data from the common interface. This requires further investigations since not
having access to a major part of the domain can reduce the estimation accuracy.
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5 A Highly Scalable Solver with GPU
Acceleration for Partitioned Solution of

Fluid-Structure Interaction Problems

This chapter presents a highly scalable solver with GPU acceleration capability for
the partitioned solution of the fluid-structure interaction (FSI) problems. This solver
represents a showcase demonstrating how hybrid CPU-GPU architectures can be effi-
ciently used for surface-coupled multi-physics simulations with minimal additional
implementation cost based on existing solvers and a parallel coupling software.
An adaptive off-loading scheme is introduced to port the solvers” most compute-
intensive kernels to GPUs. I.e., the single physics solvers are modified to be capable
of exploiting hybrid architectures (CPU-GPU) efficiently, while the coupling itself
is not affected and is still executed on the CPUs. A multi-step data-driven load bal-
ancing approach based on the scheme presented in chapter 3|is derived to efficiently
distribute the available computational resources among the solvers.

We show scalability and efficiency results for a patient-specific aorta test case on a
CPU-only and on a hybrid CPU-GPU machine. The results show strong scalability
for up to 13,440 cores on the CPU-only machine and for up to 8 compute nodes (232
CPU cores and 16 GPUs) on the hybrid system. In addition, the overall run time
of the coupled FSI simulations is reduced by a factor of 7.2 using GPU acceleration,
compared to the case with the same number of CPUs without GPU acceleration. In
the remainder of this chapter, we briefly introduce the FSI problem and available
solvers addressing this sort of problem in Sec. Section 5.2]explains the governing
equations and numerical methods for each sub-problem along with the coupling
conditions and convergence acceleration techniques. Section 5.3|explains the single
physics solvers’ parallelization to exploit hybrid CPU-GPU architectures. Section
describes the inter-solver parallelization which includes parallel data communica-
tion and a multi-step inter-solver load balancing scheme. Scalability and efficiency
measurements and analysis are presented in Sec. while Sec. 5.6|summarizes and
concludes the chapter.
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5.1 Introduction

The interaction of a flexible structure with a flowing fluid is observed in various
physical phenomena [100] with a wide range of applications in many fields of en-
gineering, such as the stability of aircraft wings subject to turbulent flow [101]], the
blood flow in the arteries [102], the effect of winds on bridges [103], the vibration of
wind turbine blades [104], and the vibrations of heat exchangers [105].

Given the high complexity of FSI problems, their investigation requires a huge
amount of computational resources and time. To reduce the simulation time, par-
allel solvers can be used to efficiently exploit distributed systems, e.g. supercom-
puters. Recently, many efforts have been made to develop efficient and scalable
multi-physics solvers for FSI problems using either monolithic [106, 107, |108] or
partitioned [109, 29, [110] approaches. In the remainder of this section, I briefly intro-
duce some of the partitioned FSI solvers that have been presented in the literature
to exploit parallel computing architectures.

Cajas et al. [29] presented a parallel solver which combines two instances of an
in-house code (for fluid and solid). MPI communication is used for a point-to-
point inter-solver data transfer, while each solver uses a master-slave communication
scheme. An inter-code load balancing method is proposed based on overloading the
available cores to minimize idle time. In this method, some of the cores execute MPI
processes for fluid and solid solvers alternatingly. The coupled solver scales well up
to 1280 MPI processes on 768 CPU cores [29].

Hewitt et al. [110] developed a framework based on coupling open-source single-
physics solvers (OpenFOAM for the fluid and ParaFEM for the structure). In this
framework, the inter-code communication is handled via two master ranks (each
belongs to one of the solvers). The solver is shown to scale well on 1,536 cores for
a coupled FSI problem. The coupled solver uses the same cores for the fluid and
the solid solver, executing different MPI processes consecutively (serial coupling) for
each solver.

In addition, there are several solvers capable of exploiting hybrid architectures
for FSI problems in literature. For instance, Jiang et al. [111] presented a GPU-
accelerated solver which follows a multi-code coupling strategy for the solution of
FSI problems in the field of biomechanics. A lattice Boltzmann solver is used for the
incompressible fluid simulation along with an explicit finite element solver for the
solid domain. An Aitken relaxation is employed to improve the convergence of the
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tixed point coupling iterations. All computations from both solvers are offloaded to
GPUs using the CUDA library. The numerical performance analysis shows that the
GPU acceleration (with Nvidia GeForce 108Ti) results in 18.44 times faster simulation
compared to CPU-only simulation (on Xeon E5-1620v4 CPU) for an FSI benchmark
on a single GPU.

In the current work, we present a scalable and efficient simulation environment for
the partitioned solution of FSI problems with GPU acceleration capability. We follow
a partitioned approach where we couple two instances of the TermoFluids solver [27]
through the preCICE coupling library [34]. The CPU-only single-physics solvers for
this work and the semi-implicit coupling strategy are provided by Naseri [112,113].
Coupling the solvers via the preCICE library is also a joint contribution of Naseri
and myself [7]. For the current study, we modified the single-physics solvers to effi-
ciently exploit hybrid CPU-GPU architectures. Our code is configured in a way that
we exploit one GPU per CPU core. A data-based load balancing scheme, similar to
the approach introduced in Chapter 3} is also incorporated to maximize the parallel
efficiency. In addition, the inter-solver communication in our solver is limited to
CPUs, and data exchange between GPUs is carried out indirectly via CPUs.

5.2 Governing Equations and Numerical Methods

In this section, the fluid and the structure governing equations along with the cou-
pling conditions on their common interface are presented. Moreover, the numerical
methods for discretization and solvers in each single-physics problem as well as the
iterative coupling method are described. The fluid and the structure domains are re-
ferred to as Q;(t) C R* forall ¢ in (0,7) and Q,(¢) C R3 for all ¢ in (0, T), respectively,
where t € (0,7") denotes time. The fluid-structure interface is the common boundary
of the domains, denoted by I'(¢) = 9€2¢(t) N 082(t).

5.2.1 Fluid Solver

Governing Equations: The unsteady flow of an incompressible viscous fluid is math-
ematically described by the Navier-Stokes equations. To solve the fluid flow in a
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moving domain, an Arbitrary Lagrangian-Eulerian (ALE) formulation is used to-
gether with a conforming mesh technique. In a moving domain, the ALE formula-
tion of the Navier-Stokes equations is given by

ou 1
§+c~w_p—fv-af, (5.1)
V-u=0, (5.2)

where u is the fluid velocity and p; the fluid density. The vector ¢ represents the
ALE convective velocity ¢ = u — w, which is the relative fluid velocity to a domain
moving with a velocity w. For an incompressible Newtonian fluid, the stress tensor

o ; can be calculated as
op=—pl+ ps(Vu+ vu'), (5.3)

where p is the fluid pressure, I the unit tensor, and 1y the dynamic viscosity of the
fluid.

Numerical Methods: A fractional-step projection method along with an explicit
time advancement is used to solve the velocity-pressure coupling of the momentum
equation. The following three steps must be performed for the solution of the fluid
governing equations from time step n ton + 1

1
w =u" — At[§(c” -Vu" — ﬂAu”) — ("t vur! - ﬂAu”’l)], (5.4)
2 Ps 2 Pf
At
—Ap™ =V . uP, (5.5)
Pt
A
un+1 —uP — _tvpm—l (56)
Ps

in Q7"!, where At is the time increment and u” is a predicted velocity field which
does not satisfy the incompressibility condition (Eq. (5.2)). We use an explicit second-
order Adams-Bashforth method for the temporal discretization of the convective
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and diffusive terms in Eq. (5.4). Using an explicit method avoids solving a nonlinear
system of equations for the fluid velocity field.

The fluid pressure field is obtained by solving a Poisson equation as in Eq. (5.5). This
pressure field is then used to project the intermediate velocity field onto a divergence-
free field through the correction in Eq. (5.6). The Poisson equation for the pressure is
the only implicit part of the discretized fluid equations, for which a linear system of
equations is constructed and solved using a conjugate gradient solver with a Jacobi
preconditioner.

The fluid equations are discretized in space using a finite-volume method on a collo-
cated unstructured mesh with second-order symmetry-preserving schemes. These
schemes conserve the mass, momentum, and kinetic energy of the flow at the dis-
crete level which is crucial in turbulent flow simulations [114, [115].

A conforming mesh technique is used to track the moving boundary. Thus, the fluid
mesh needs to move to adapt to the new location of the interface. A parallel moving
mesh technique based on the radial basis function interpolation method [116] is ap-
plied to move the fluid grid in accordance with the new location of the interface and
define the discretized fluid domain at the new time step Q;}“. The method evaluates
an interpolated position for the interior vertices of the fluid grid given the known
displacement on the interface. Since the method does not need mesh connectivity
information, it can be applied to both structured and unstructured grids. Moreover,
it only requires solving a linear system of equations whose size is limited by the
number of vertices on the fluid-structure interface.

The domain velocity field w is evaluated using the Geometric Conservation Law
(GCL) [117]. The GCL guarantees the conservation of volume during the mesh
translation. For any control volume (CV) in the fluid domain, the GCL reads

v
E—/wdA_O, (5.7)

where v and s stand for the volume and the boundary surface of the CV, respectively,
and A is the area vector pointing outward. In the discretized domain, the time rate
of change of volume of a CV is equal to the sum of volumes swept by its faces. We
evaluate the domain velocity at each face of the control volume (w s,..) based on the
volume swept by that face. With a second-order backward discretization, it reads

1, ov

3, v
n+1l __ i
> (I

e n+1
Whaee = 5 GA7™

" (5.8)
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where A is the surface area, n is the unit normal vector of the face, and v is the
volume swept by the translated face at one time step.

5.2.2 Structural Solver

Governing Equations: The conservation laws of mass and momentum govern the

structural domain. Their Lagrangian form can be written as

p(s) = ps, (5.9)

o ( od
2 (pSE) _V.o. (5.10)

where the reference (undeformed) configuration of the body is denoted with su-
perscript 0, p; is the structural density, and d is the displacement at the reference
configuration. The hyper-elastic Saint Venant-Kirchhoff constitutive model relates
the Cauchy stress tensor o, to the displacement field:

o, = %[2#5(3 — 1) + Atr(B — 1)), (5.11)

where B represents the left Cauchy-Green deformation tensor B = F - F7, and pu,
and )\, are the Lamé’s parameters. The material deformation tensor F is evaluated
as F = I+ Vd and its determinant is denoted by J = det(F).

Numerical Methods: An implicit trapezoidal rule time integration is used to solve
the solid equations:

At

Vn+1 = v+ 5 (v . O_;”Hrl +V- (7?) , (512)
Ps
A
@ =t (), (5.13)

ad
ﬁ.
The equations are discretized in space using a finite-volume method with a total

where v approximates the first time derivative of the displacements d, v =

Lagrangian approach. The momentum equation is integrated on the undeformed

configuration.

The coupling between different directions of the displacement and the geometrical
and material non-linearities found in V - ¢! in the right-hand side of Eq. (5.13)
are split up into a linear diffusion part LAd""! and a non-linear deferred correction.
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Thus, to solve a time step, we perform an outer fixed-point iteration (accelerated by
an Aitken A? acceleration technique for multidimensional problems [118])

qrtik+l (1— ozk)d"H’k 4 azAtZICAd"H’kH X
Ps
At?
ap, (dn + Atv'+ L ((V . 0—;1+17k _ ICAdn+17k))> 7

where «y, is the relaxation factor of the Aitken acceleration.

The inner diffusive system is discretized by a central difference scheme with a non-
orthogonal correction. Selecting an optimal value of the diffusion coefficient X =
(2us + As) improves the convergence of the iterative process. The gradient of the
displacement (and hence, the strain and stress tensors) are evaluated directly on the
cell faces.

5.2.3 FSI coupling

Governing Equations: The coupling conditions on the fluid-structure interface are
derived from the physical equilibrium (kinematic and dynamic equilibrium) at the
shared boundary. For a no-slip type interface, they read

odp

— 14

ur =

o Nr = o Nr (515)

at I', where nr is the unit normal vector on the interface.

Numerical Methods: A Dirichlet-Neumann domain decomposition approach for the
coupling of the fluid and the structure equations is followed in this work. Therefore,
the fluid equations are solved for a known displacement of the interface (Dirich-
let boundary condition derived from kinematic equilibrium Eq. (5.14)), while the
structure equations are solved for known stress on the common interface (Neumann
boundary condition derived from dynamic equilibrium Eq. (5.15)).

In this work, a semi-implicit FSI coupling method, as proposed in [119, 113], is
used. The method segregates the fluid pressure term and strongly couples it to the
structure via coupling iterations. The remaining fluid terms and the geometrical
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nonlinearities are only loosely coupled to the structure and, therefore, solved only
once at every time step. Algorithm |5 describes the method used in this work.

The Segregation of the fluid pressure term is achieved based on a projection method

Algorithm 5 One time step in the semi-implicit FSI coupling method

1: Predict the location of the interface by extrapolating from previous time steps.
2: Move the mesh and evaluate the surface velocities.
3: Solve the fluid ALE convection-diffusion equation for the predicted velocity

field (Eq. (5.4)).

4: while not converged do > < ‘783((‘(713 > - ( S-i )

Solve equations of the pressure (Eq. and the structure (Eq. 5.13)).

Update interface stresses and velocities.
Execute quasi-Newton acceleration on stresses and velocities.

end while

9: Evaluate the corrected velocity field using the converged pressure

field (Eq. (5.6)).
10: Apply the boundary condition on the corrected velocity using the converged
deformation.

to solve the fluid equations. From the discretized fluid equations at Eq. to
Eq. (5.6), only the Poisson equation for pressure (Eq. (5.5)) is strongly coupled to the
structure. Hence, this equation is solved several times per time step, i.e., in each
coupling iteration, while the remaining fluid equations and the mesh movement are
only executed once per time step. In addition, the Poisson equation for the pres-
sure is the only implicit part of the fluid discretized equations, for which a linear
system of equations is solved. Therefore, the solution of this equation represents
the majority of the computational cost of solving the fluid equations in the coupled
FSI problem. The structure equations are implicitly discretized in time as described
in Eq. (5.14). Each time step of the coupled problem is solved by performing mesh
movement, convection, and diffusion in the fluid solver and, subsequently, solving
the fixed point equation

< Stor) ) — < dr ) (5.16)
P(dr) or

iteratively, where S represents the mapping of interface stress tensor or to inter-
face displacement vector dr by the structure solver and P the mapping of interface
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displacement to interface stress by solving the pressure Poisson equation and re-
calculating stress in the fluid solver. The convergence of the iterative solution of
Eq. is accelerated by using a multi-vector quasi-Newton method, as explained
in Sec.

The solution of the pressure Poisson equation for the fluid (Eq. is where we use
the GPUs for acceleration, as described in the following sections.

5.3 Single-Physics Solver Parallelization and GPU Acceleration

In a partitioned simulation, two levels of parallelization can be exploited: (i) the
intra-solver level and (ii) the inter-solver level. While the former corresponds to the
efficient implementation of single physics solvers, the latter concerns the optimal
inter-solver load balancing, the implementation of efficient high-speed communica-
tion between them, and efficient data mapping between non-matching meshes. This
section focuses on (i), i.e., the parallelization of solvers and the GPU acceleration of

the fluid solver.

5.3.1 Single-Physics Solver Parallelization

This section summarizes the parallelization for the single-physics solver which is
explained in more detail in [7]. A distributed-memory model is used for paralleliza-
tion of the computations at each single-physics solver and communication between
processes is established using the Message Passing Interface (MPI) standard. The
distributed-memory parallelization is carried out based on spatial domain decom-
position. We decompose the computational domain 2 (either 2 or €,) into n non-
overlapping subdomain blocks, €y, ..., €2,,_1, and assign each block to a different MPI
rank. Each block contains cells (control volumes) that are owned by the MPI rank,
and halo cells that represent the neighbors of the owned cells belonging to a different
process. Two cells are considered to be neighbors if they share one or more vertices.
Figure5.1|schematically shows a discretized domain and its decomposition into two
subdomain blocks.

The METIS library [120] is used to carry out the decomposition of the computational
domain. METIS divides the computational mesh into roughly equal partitions using
a parallel multilevel k-way graph-partitioning method to minimize both the load
imbalance and the number of halo cells [120]. Roughly equal sizes of the blocks
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Computational domain Subdomain 1 Subdomain 2

Figure 5.1: Spatial domain decomposition for a single-physics solver: a discretized
domain (left) is decomposed into two subdomain blocks (right). Cell and
boundary nodes are represented as filled circles and vertices as empty
circles. The owned elements (cells, nodes and vertices) of each process are
shown in blue while the halo elements are shown in red. This illustration
is taken from [7].

balance the computational load among the processors while minimizing the number
of halo cells reduces the necessary data communication.

The parallel efficiency is mainly limited by inter-process communication. This com-
munication in the implementation of this work can be generally divided into two
categories: (i) global reduction operations which we use to evaluate norms, dot prod-
ucts, and to obtain global extrema (e.g., in time step evaluation); (ii) parallel point-to-
point communication between the processes in order to update data in the halo cells.
(i) is rarely required in the solver and is carried out by simply calling the correspond-
ing MPI collective operations. For (ii), i.e., to update halo data, the non-blocking
functions MPI_Isend and MPI_Irecv are used followed by a MPI_Waitall func-
tion for synchronization called by all processes. The communication initialization
is carried out only once at the beginning, in which a mesh analysis is performed
to find and store the list of connected processors and the list of data that must be
communicated for each MPI rank. During run time, a loop is created over this small
list to invoke the respective communication.

5.3.2 GPU Acceleration of the Fluid Solver

The respective discretized systems of equations of both the fluid flow and the struc-
ture solver are sparse. Therefore, the computations have low arithmetic intensity and
are memory-bound. Already for CPUs, the node level performance of the current
solver is optimized by minimizing memory transfers and using SIMD operations
whenever possible, depending on the operation and the type of data [7]. In this
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work, the solver is extended to exploit GPUs as co—processors on hybrid machines.
The extension is made in a modular way and can be enabled and disabled easily,
which allows running the solver efficiently on both CPU-only and hybrid CPU-GPU
machines.

As explained in Sec. the Poisson solver in the fluid solver is the most expensive
component due to the semi-implicit coupling strategy that we follow. Since we have
exploited SIMD operations within the solver, GPUs can be used to accelerate these
computations. The rest of the computations are performed on the associated CPUs.
As explained earlier, we use a PETSc KSP solver to exploit GPUs for solving the
pressure Poisson equation in the fluid solver. The PETSc’s design separates the ap-
plication code and the solver and allows using a wide range of GPU programming
models such as Kokkos, CUDA, and OpenCL. Since we use NVIDIA GPUs in this
work, the CUDA model is selected for the current study. In addition, data are shared
between the PETSc programming models and the application code and therefore no
explicit copy is needed [121].

An important performance-limiting factor when exploiting GPUs is CPU-GPU com-
munication. The communication must be minimized and preferably overlapped
with the computations to minimize the performance loss. To address this issue,
PETSc uses pinned memory which allows the RDMA system to use the full band-
width of the CPU-GPU interconnect for data transfer. In addition, PETSc follows the
lazy-mirror model which internally manages two copies of data, one on the CPU
and the other one on the GPU. When an operation is done on the GPU, the GPU
version of the data is updated, otherwise, the CPU copy of the data is updated and
vice-versa. However, when all computations are done on the GPU, there is no copy
back data to the CPU. When unified shared memory is available, which is available
since CUDA 6 on NVIDIA GPUs, the PETSc back-end class allocates only a single
data buffer for both CPUs and GPUs [121]. Therefore, one does not need to explicitly
copy data between CPU and GPU and the CUDA library takes care of this commu-
nication efficiently.

The data communication among GPUs, both within one node and among multiple
nodes, is carried out via the CPUs. GPUs do not communicate directly, for example
with using a CUDA-aware MPI. Using pinned memory can facilitate the CPU-GPU
data communication, also the inter-GPU communication. Using a CUDA-aware MPI
implementation can improve the efficiency by, for example, pipelining the computa-
tions and data communication. This is a topic for future works.

In addition, in most exa-scale hybrid machines, the number of CPU cores is higher
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than the number of GPUs. Using all CPUs and GPUs will require sharing a sin-
gle GPU among multiple CPUs, the so-called oversubscription. There is a known
overhead cost in current systems for the oversubscription, which is probably due to
lunching more kernels with smaller data chunks [121]]. Smaller data chunks are not
large enough to saturate the GPU capacity and the overall performance degrades.
The oversubscription is avoided in the current work by assigning a single GPU to
each CPU in the code configuration.

5.4 Inter-Solver Parallelization

This section focuses on the inter-solver parallelization level explained in Sec. ie.,
the inter-solver communication and load balancing. It is explained how boundary
data are exchanged between solvers efficiently. In addition, we explain how inter-
solver parallelization can be maintained efficiently and modular in the presence of
GPU co-processors. Furthermore, a data-driven load balancing based on the method
introduced in Chapter 3|is derived and adapted for an FSI application with a large
computational mesh.

5.4.1 Inter-Solver Point-to-Point Communication

Efficient inter-solver communication is a key element in parallel partitioned coupled
simulations. This is particularly important in cases with a strong bi-directional cou-
pling between the involved systems, where a high number of coupling iterations,

each requiring inter-code communication, is executed to reach a converged solution.

For the current solver, a fully parallel point-to-point communication scheme is incor-
porated to efficiently exchange boundary data among solvers. Fig.|5.2|schematically
shows the different levels of data communication. Data are transferred via CPUs
such that there is no direct connection between GPUs. We use TCP/IP sockets to
establish the communication channels and perform the necessary data exchange. For
this purpose, the fluid and the solid mesh partitions are initially analyzed to find
the required communication channels. Here, we use the parallel two-level approach
introduced in Chapter

Note that, for inter-solver communication, a separate communicator is built which
includes only the interface ranks of both solvers and that is independent of the
solvers” MPI_COMM_WORLD. Once the communication channels are established, data
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are exchanged in an asynchronous way to avoid unnecessary blocking. Establishing
the communication channels is carried out only once at the initialization stage. Dur-
ing the rest of the simulation, the same channels are used for data exchange. More
details concerning the inter-code data communication can be found in [37, 57].
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Figure 5.2: Schematic view of the multi-level communication in the coupled fluid-
structure framework. The yellow boxes represent the actions on GPUs,
the blue ones correspond to fluid solver’s CPUs, and the orange boxes
to solid solver’s CPUs. The gray arrows are used to show inter-CPU
communications, both inter-solver, and intra-solver, while the blue arrays
represent CPU-GPU communication in the fluid solver.

5.4.2 Inter-Solver Parallelization in the Presence of GPU

Co-Processors

We accelerate the fluid solver by using GPU co-processors to improve the overall
performance of the coupled solver. The acceleration must make minimum changes
to the coupled solver configuration in order to preserve its modularity. We fulfilled
this requirement by making the GPU acceleration of the fluid solver transparent to
the coupling library and the solid solver. This section describes our setup for the
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Figure 5.3: Schematic view of the overall algorithm of the coupled FSI solver for ex-
ploiting hybrid machines. The yellow box represents the actions on GPUs,
the blue ones correspond to the fluid solver’s CPUs, and the orange boxes
for the solid solver’s CPUs.

efficient exploitation of hybrid machines for partitioned FSI simulations. The setup
is schematically shown in Fig The following steps are taken to efficiently exploit
GPUs for FSI simulation:

1. Both solvers initialize on CPUs. This includes creating the required data struc-
tures, surface mesh analysis for data mapping, and establishing inter-solver
communication channels for boundary data exchange.

2. The fluid solver starts with solving the explicit ALE equations and mesh trans-
lation on the CPU, followed by constructing the pressure system of equations to
be solved on GPUs. The solid solver constructs the linearized structural system

of equations.

3. The solution of the linear systems given by Eq. (5.5) in the fluid solver is acceler-
ated using GPUs. The fluid solver copies the matrix of the pressure equation to
the GPU data structures once per time step in a compressed sparse row (CSR)
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format. The right-hand side of the liner systems is copied in every coupling
iteration. A PETSc KSP solver capable of exploiting GPUs [122,|121] is used to
iteratively solve the linear system of equations. The solution vectors are copied
back to the CPU to proceed with the remaining steps of the solution algorithm.
The structure system of equations is solved on the CPUs.

4. After each iteration, preCICE checks the convergence of the FSI coupling, and
data are communicated between the solvers. For this purpose, coupling inter-
face data are exchanged between the single-physics solvers via TCP/IP com-
munication between CPUs. This process is repeated until the FSI coupling
convergence is achieved.

5. As soon as the coupling is converged, the final fluid velocity can be calculated
using the converged pressure field. This marks the end of the time step and the
solver proceeds to the next time step.

5.4.3 Inter-Solver Load Balancing

Load balancing is non-trivial for partitioned FSI simulations. In the current work,
inside each single—physics solver, the load is balanced by dividing the computational
domain into fairly equal blocks for each process as explained in Sec. Across the
single—physic solvers, we have the condition that both solvers must finish an itera-
tion and exchange the outputs before the next iteration can start. This means, that in
case the available computational resources are not distributed optimally among the
solvers, one solver will be waiting for the partner. In the current study, we use the
multi-step load balancing method that is introduced in Sec. For this purpose, (i)
we initially build a primary performance model with data gathered from simulations
with a small mesh, (ii) scale the models with the ratio between the target mesh size
and the small mesh size, and (iii) run only a few short simulations with the target
mesh, and finally (iv) establish new performance models using these new data. This
method has a lower overhead than a one-step method while it preserves the accuracy
of the performance models.
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5.5 Performance and Scalability Analysis

To demonstrate the scalability and parallel efficiency of the presented partitioned
simulation environment, we present strong scaling measurements for the simulation
of blood flow inside a patient-specific aorta. We run scalability tests on a CPU-
only and a hybrid CPU-GPU machine, details of which will follow in this section.
The measurements are provided on both machines and the results are analyzed.
Specifically, (i) we investigate the effect of the data-driven load balancing method
on the strong scalability of the CPU-only machine, and (2) we analyze the run time
reduction by GPU acceleration.

5.5.1 Test Case Description

The numerical tools to simulate blood flow in the cardiovascular system are con-
stantly developing due to the great clinical interest and due to scientific advances
in mathematical models and computational power [123]. The blood flow dynamics
investigation can explain many underlying dysfunctions. A better understanding of
these dynamics can improve both the disease’s diagnosis and the treatment. How-
ever, computational analysis of the blood flow inside a patient-specific aorta is very
challenging. The research in this field is developing fast concerning both modeling
aspects and computational efficiency (e.g. [7, (124, [125]). In the current study, we fo-
cus on the computational performance and show that the developed FSI framework
is able to efficiently handle such complex simulations on the available hardware.

For the investigations of the current work, the geometry of the aorta provided by the
2nd CFD challenge of the STACOM 2013 conference [126] is used. Figure |5.4| (left)
depicts the geometry with inlet and outlet boundaries. Since the thickness of the
aortic wall and its mechanical properties were not provided in [126], a value in the
typical pathological range h = 2mm is assumed. For the mechanical properties of the
wall, we use the density ps = 1200kg/m?, the Young modulus F = 3 x 10°N/m?, and
the Poisson ratio v = 0.3. The density and the viscosity of the blood are assumed to
be p; = 1000kg/m® and pi; = 0.004Pa - s, similar to the values used in [7, 127].

At the inlet, we considered Dirichlet boundary conditions for the fluid velocity, using
measured flow rate data provided in [126]], along with Neumann boundary condi-
tions for the fluid pressure. At the outlet boundaries, we use explicit RCR Windkessel
boundary conditions [128] to model the effect of the rest of the vascular network,
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Figure 5.4: Aorta test case: left: 3D geometry of the patient-specific aorta (geometry
provided in [126])); right: coupled FSI solution at ¢ = 0.06, showing the
fluid velocity vectors inside the deformed aortic wall and the von Mises
equivalent stress at the wall.
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using the Windkessel parameters reported in [129]. For the structure, a clamped
boundary condition is used at the inlet and the outlets, while a traction-free bound-
ary condition is assumed on the outer surface of the aortic wall.

For the investigations of the current work, unstructured tetrahedral meshes at three
different resolutions are used for the fluid and the solid domain. The mesh informa-
tion is provided in Table The meshes for the fluid and the structure are matching
at the interface, thus no extra mapping technique is required. Figure[5.4{(right) shows
the coupled FSI solution at a time instant ¢ = 0.06s. The figure demonstrates the ve-
locity vectors inside the deformed aortic wall. The color contours in the structural
domain correspond to the von Mises equivalent stress.

Table 5.1: Aorta test case: computational grids used for the scalability tests.

Mesh name No. of cells
Fluid Structure Common Interface
M1 116M 60M 2M
M2 38M 20M 800K
M3 20M oM 400K

5.5.2 Hardware Architecture and Numerical Library Description

The scalability measurements on a CPU-only machine are carried out on the Super-
MUC NG supercomputer at the Leibniz Supercomputing Centre of the Bavarian
Academy of Science and Humanities (LRZ). This machine consists of 3.1GHz In-
tel Xeon Platinum 8174 (SkyLake) processors. Each node contains two processors
with 24 cores per processor (48 cores per node) and 96GB of RAM. The nodes are
connected via Intel Omni-Path interconnect. The GNU GCC compiler was used to
compile the code. In addition, an Intel MPI implementation compatible with the
GCC compiler was used for intra-solver parallelization.

For scalability tests on a hybrid CPU-GPU machine, the Vulcan cluster at the High-
Performance Computing Center Stuttgart (HLRS) is used. This machine has 8 het-
erogeneous compute nodes. Each node consists of 2 x 2.6GHz Intel Xeon Gold 6240
(Cascadelake) with 36 cores in total and 8 x NVIDIA Tesla V100 SXM2 GPUs. The
total available memory on each node is 768GB. We use the GNU GCC compiler and
an Intel MPI implementation compatible with the GCC compiler for intra-solver
parallelization and communication.
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5.5.3 Strong Scalability on a CPU-Only Machine

In this section, we show the strong scalability of the present partitioned FSI solver
for up to 13,440 CPU cores using the computational grid M1 (Table [5.T). The load
balancing between the solvers is carried out using the multi-step modeling and
optimization approach described in Chapter 3| along with the adjustments given
in Sec. To build performance models, we first run 5 simulations using mesh
M3. We scale the performance models according to mesh sizes to obtain appropriate
models for mesh M1 and find the CPU cores distribution. Next, we run 3 more small
simulations by using mesh M1 and the initial core distribution found in the first step
to obtain the final performance models and load balancing. The core distribution
for running the simulations to obtain the performance models are given in Table
The final core distribution is presented in Table

Table 5.2: CPU-only test case: core distribution to build performance models for the
tirst and second step of the multi-step load balancing.

Step Meshname  Number of CPU cores
Total Fluid Structure

1 M3 1440 720 720

1 M3 2400 1200 1200
1 M3 3840 1920 1920
1 M3 4800 2400 2400
1 M3 5760 2880 2880
2 M1 5760 3792 1968
2 M1 9600 5040 4560
2 M1 13440 6240 7200

Figure 5.5[shows the average run time per coupling iteration for different core counts
for mesh M1. We observe very good scalability of the solver for up to 13,440 cores,
where we achieve a parallel efficiency of 81%. The parallel efficiency for the strong
scalability on m cores is evaluated as

fixl

fm xm

efficiency = (5.17)

where f,, is the run time on m cores, and f; is the run time on the smallest number
of cores, indicated by [. If possible, the parallel efficiency is measured against the
sequential run time (! = 1). However, due to the limitation of memory on a single
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Table 5.3: CPU-only test case: run time (per coupling iteration) breakdown into com-
putation and communication times for different number of CPU cores
(strong scalability measurements using mesh M1).

total number | number of CPUs | computation time (s) inter-solver
of CPU cores | fluid structure | fluid structure communication time (s)
1920 1200 720 36.47 38.19 3.48
3840 2304 1536 15.86 16.23 2.14
7680 4800 2880 7.29 7.66 1.86
11520 5280 6240 6.47 5.90 1.38
13440 5952 7488 5.95 5.62 1.28
14400 6240 8160 6.62 5.48 1.23

core, large problems cannot be solved sequentially. Therefore, the smallest number
of cores that can be used to solve the problem is used as the basis to evaluate the
efficiency (I = 1920 for this test case).

To analyze efficiency and actual load balancing, we show the scalability graphs for
individual solvers and inter-solver communication in Figure Moreover, the run
time breakdown for different numbers of CPU cores is presented in Table We
observe very good scalability of the coupled solver for up to 13,440 cores. How-
ever, for higher core numbers, the total run time increases and the parallel efficiency
degrades. The run time breakdown in Figure 5.6/and Table 5.3|shows, that the per-
formance of the fluid solver degrades for core numbers higher than approximately
6,000, which seems to be due to the mesh size and small arithmetic intensity within
the fluid solver’s cores. The size of the computational grid (116M for fluid) is not
sufficient to be divided efficiently among six thousand processors. The communi-
cation time scales up to this point which proves the efficiency of the implemented
point-to-point communication scheme. In addition, the run time breakdown shows
that there is only a small discrepancy between structure and fluid computation times
which proves the effectiveness of the used load balancing scheme.

The performance analysis for the current test case with the single-step load balanc-
ing showed strong scalability up to about 10,000 CPU cores in [7]. The multi-step
method has improved the scalability by up to approximately 35%. This is because the
performance models obtained from the multi-step approach can predict the single-
physics solver’s scalability limit more accurately. The modification of the initial
performance models by a few measurements from the target mesh increases the ac-
curacy of the nonlinear part of the performance models (where the scalability starts
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Figure 5.5: CPU-only test case: average (per iteration per core) run time for different
core counts (strong scalability test results using mesh M1).
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Figure 5.6: CPU-only test case: average run time breakdown (per iteration per core)
for different core counts (strong scalability test results using mesh M1).
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to degrade). For the current test case, the multi-step method can predict the fluid
solver’s scalability loss, while the single-step method is not capable of such a predic-
tion. We compare the parallel scalability of the current solver to similar FSI solvers in
literature in Table The cited works follow a partitioned approach to solve large-
scale FSI problems. Other examples in literature, which did not present scalability
measurements, are not cited here. Despite many advantages that the partitioned
methods offer, loss of parallel efficiency in multi-code coupling is considered one
of their main drawbacks. This is due to the challenges in terms of data structuring,
equation coupling, domain decomposition, parallel data communication, and inter-
solver load balancing. By addressing these issues in the current work, our coupled
solver is shown to scale up to 13,440 cores with a very high parallel efficiency.

Table 5.4: CPU-only test case: Scalability of the presented simulation environment
compared to other partitioned FSI solvers in literature.

Source Spatial grid ~ Scalability =~ Parallel efficiency on

type (CPU cores) highest core count (%)
Present work Unstructured 13,440 81
Naseri et al. (2020) [7]  Unstructured 10,080 83
Hewitt et al. (2019) [110]  Structured 1,536 62
Cajas et al. (2018) [29]  Unstructured 768 68

5.5.4 Strong Scalability on a Hybrid CPU-GPU Machine

To demonstrate the potential for acceleration of the coupled simulation by using
GPUs in addition to CPUs, strong scalability measurements are presented for the
Aorta test case on a hybrid CPU-GPU machine.

The provided analysis includes the GPU acceleration effect on both the performance
of the fluid solver within the coupled FSI solver and on the overall performance
of the coupled solver. We run coupled simulations using unstructured tetrahedral
meshes presented in Table |5.1| with different numbers of compute nodes. In order
to show the GPU acceleration effect, the coupled simulations are carried out twice:
once with GPU acceleration of the fluid solver and once without using any GPUs.
For hybrid CPU-GPU simulations, the fluid solver uses an equal number of CPUs
and GPUs, i.e., from each node 8 GPUs and 8 CPU cores, to avoid oversubscription
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(see Sec.[5.3.2). On the other hand, for the fluid solver in CPU-only simulations and
the solid solver in both scenarios, all of the 36 available CPU cores within each node
are exploited. Run times for both scenarios and the respective speed-up due to the
GPU acceleration are presented in Table[5.5/and Table5.5/shows the performance
data of the fluid solver during the coupled simulations. The measurements show,
that by accelerating the fluid solver, we get up to 133.4 times speed-up. We observe a
decline in the speed-up when increasing the number of GPUs. This is probably due
to the smaller data chunk when the mesh is decomposed into smaller partitions that
is not enough to saturate the computation capacity of the GPU.

Furthermore, to investigate the GPU-acceleration effect on the overall performance
of the coupled solver, we compare the coupled simulation run times with and with-
out GPU acceleration for mesh M2. This comparison is carried out for a total number
of 8 compute nodes (machine capacity). The information about node distribution
and run times is provided in Table A 7.2 times faster simulation is achieved by
accelerating the fluid solver using GPUs. Note that the overall speed-up is currently
limited by the available total number of compute nodes. In a larger machine, where
a larger mesh can be used along with a finer compute node distribution, a higher
speed-up can be achieved. The current setup does not allow the desired distribution
of computational resources, since only complete nodes can be assigned to solvers.
For instance, if the optimal number of CPU cores for the solid solver is 54, we either
have to use 36 cores (1 node) or 72 cores (2 nodes). This degrades the load balancing
and deteriorates the overall performance.

The strong scalability measurements are presented to analyze the overall perfor-

Table 5.5: Hybrid CPU-GPU test case: fluid solver speed up by GPU acceleration
(run times measured in a coupled simulation).

Mesh number of computation time (s) speed-up
nodes | CPUs | GPUs | with GPU | without GPU
M1 2 16 16 229 2735.2 119.6
M1 4 32 32 16.9 1367.6 80.7
M2 1 8 8 15.8 2128.3 133.4
M2 2 16 16 12.1 1064.1 88.2
M3 1 8 8 8.3 992.3 119.0
M3 2 16 16 7.1 495.2 69.4

mance of the framework on a hybrid CPU-GPU machine. For these simulations, the
mesh M2 is used. The node distribution are presented in Table|5.7|for the hybrid sim-
ulations. The computational resources distribution is carried out using node counts
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Table 5.6: Hybrid CPU-GPU test case: coupled solver’s speed up by GPU accelera-
tion (coupled simulation using mesh M2).

CPU+GPU CPU-only run time (s) speed-up
fluid structure | fluid structure | CPU+GPU | CPU-only
nodes 2 6 6 2
CPUs 16 216 216 72 28.2 201.1 7.2
GPUs 16 0 - -

instead of core counts in order

to avoid node sharing between solvers. Figure

depicts the average run time per iteration for different numbers of compute nodes.
The number of nodes equals the total number of nodes exploited by the fluid and
the solid solver together. A very good reduction in computational time is achieved
by increasing the number of nodes up to 8 nodes, which is the full machine capacity,
with a parallel efficiency of 94% on 8 nodes. The parallel efficiency is defined in

Eq.5.17

100 1R —-—=- ldeal scalability -

Run time per iteration [s]

—@— Total run time

3 5 7 8
Total number of nodes

Figure 5.7: Hybrid CPU-GPU test case: average run time (per iteration per core)
for different core counts (strong scalability test results using mesh M2).
For the fluid solver, an equal number of CPUs and GPUs (8 per node) is
exploited. While, for the solid solver, all available CPUs (36) within each

node are used.
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To further study the efficiency and actual load balancing, the run time breakdown is
presented for different numbers of nodes in Fig.[5.8/and Table The GPU acceler-
ation improvement on the fluid solver is very significant and thus, the fluid solver
is much faster than the solid solver. Due to the file system limitation, only complete
nodes can be allocated to each solver. Therefore, the minimum number of GPUs
that can be exploited by the fluid solver is 8. It is observed that the solid solver’s
computation time is much higher than the accelerated fluid solver’s run time if an
equal number of computational resources is used for both solvers. Therefore, to
minimize the computation time gap between solvers, more and more nodes must be
allocated to the solid solver, while preserving the fluid solver’s nodes. Due to the
constraint of allocating complete nodes to solvers and the limitation of the compu-
tational resources, we are not able to use the introduced data-driven load balancing
method for the hybrid CPU-GPU simulations. On a larger machine, where a higher
number of nodes is available for the solid solver, or in a case where the file system
allows node sharing between solvers, much better load balancing can be achieved
by incorporating our load balancing method.

Furthermore, the point-to-point inter-solver communication time scales by the num-
ber of nodes. The inter-solver communication’s contribution to the total run time
is significant. This is because the GPU acceleration has significantly reduced the
compute time even when using a few nodes. However, since the communication is
performed via CPUs, it directly depends on the number of CPU cores. Accordingly,
using a low number of nodes results in a significant communication time as each
node needs to exchange a large amount of interface data (data chunks are larger (per
core) due to the smaller number of partitions compared to the CPU-only scenario).
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Table 5.7: Hybrid CPU-GPU test case: run time breakdown into computation and
communication times for different number of nodes (strong scalability
measurements using mesh M2).

fluid solid computation time (s) | inter-solver
nodes CPUs GPUs | nodes CPUs | fluid structure comm. time (s)
1 8 8 1 36 | 15.72 58.10 81.65
1 8 8 2 72 15.76 29.74 34.81
1 8 8 4 144 | 15.79 15.31 22.98
1 8 8 6 216 | 15.77 11.32 21.39
2 16 16 6 216 | 12.06 11.21 20.76
80 - —&— Fluid computation time
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Figure 5.8: Hybrid CPU-GPU test case: average run time breakdown (per iteration

per core) for different core counts (strong scalability test results using
mesh M2).
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5.6 Summary

We presented a strongly-coupled partitioned fluid-structure interaction simulation
environment for massively parallel CPU architectures and hybrid CPU-GPU ma-
chines. The partitioned approach is generally known to be highly flexible in terms
of the coupled codes and even the coupled types of equations, but also to be highly
challenging in terms of an efficient implementation on parallel architectures. The key
to success in our work was to use single—physic solvers and a coupling library that
were both already highly scalable on CPU machines up to very high core numbers
and to combine them with our new contributions. In terms of coupling, parallel
efficiency is already a feature that is offered only by very few libraries without intro-
ducing central communication instances that deteriorate scalability. We enhanced
this setup with three main new aspects: a semi-implicit coupling strategy that seg-
regates the fluid pressure terms and strongly couples it to the solid solver (Naseri
et. al [7]), a novel inter-code load-balancing and a generalizable approach to exploit
hybrid CPU-GPU architectures.

For inter-solver load balancing, we applied a data-driven multi-step approach. The
important innovative aspects are (i) the data-driven performance modeling allow-
ing us to overcome limitations of analytical approaches in the presence of different
types of equations and discretization and iterative solver usage; (ii) the multi-step
approach that allows us to establish the required performance models with very
low computational cost by using many data points for a coarse simulation in a first
modeling step followed by a second step, where fine simulation data are generated
already close to the final regime and, thus, very few data points are sufficient.

To port the whole coupled simulation environment to hybrid CPU-GPU architec-
tures, the coupled solver is analyzed to identify the computationally most expensive
parts, in our application the solver for the fluid pressure equation. These compo-
nents are offloaded to GPUs, which happens completely transparent to the coupling
library such that it does not interfere with the parallel efficiency of the inter-code
communication and coupling numerics.

To show the efficiency of the developed framework, a strong scalability and perfor-
mance analysis is carried out for a patient-specific aorta test case on both CPU-only
hardware and a hybrid CPU-GPU machine. CPU-only scalability measurements
using a mesh with 116 million cells for the fluid and 60 million cells for the structure
solver showed a parallel efficiency of 81% on 13,440 CPU cores. Investigations on
the hybrid CPU-GPU machine for a mesh with 38 million cells for the fluid and
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20 million cells for structure demonstrated an excellent run time reduction for the
fluid solver by a factor of 133 and for the coupled solver by a factor of 7.2 compared
to CPU-only simulation. In addition, we observed almost ideal scalability for the
coupled solver on up to 8 nodes with a parallel efficiency of 94%.
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6 Summary and Conclusion

This thesis focused on the performance improvement of partitioned multi-physics
simulations by using data-integrated methods. The main aim of this work was to
prepare coupled solvers for efficient execution on large supercomputers. Following
a partitioned approach, where the simulation domain is decomposed into smaller
subdomains and each is solved by a separate solver, allows using (i) available single-
physics solvers and (ii) well-validated numerical methods. Consequently, the par-
titioned approach reduces the software development cost and enhances flexibility.
However, it introduces new challenges, in particular when the parallel performance
of the simulation is considered. These challenges include, but are not limited to,
inter-solver data communication, load balancing, and equation coupling. Each chap-
ter of this thesis addressed one of these issues.

Chapter 2l improved the inter-solver communication initialization of the coupling
library preCICE. The enhancement is achieved by replacing the previous one-level
method with an efficient two-level approach. The new scheme improved the scal-
ability of the initialization by replacing gather-scatter mesh communication with
a parallel point-to-point scheme. In addition, the memory bottleneck of the old
method, which was due to gathering the complete interface mesh in a master rank,
is completely removed. The numerical performance analysis showed, that the two-
level scheme is up to five times faster compared to the previous one. In addition, by
resolving the memory issues, preCICE can now handle the coupling of much larger
computational meshes.

The inter-solver load balancing for highly parallel multi-physics simulations is in-
vestigated in Chapter 3] We introduced a data-driven approach to efficiently dis-
tribute the available computational resources among coupled single-physics solvers.
Two different methods were considered to model the performance of single-physics
solvers — PMINF regression and deep neural networks. The former is capable of es-
tablishing accurate single-variable (number of processors) models, while, the latter
can be used for multi-variable (number of processors and problem size) modeling.
The multi-variable scheme can build accurate performance models using the per-
formance data gathered from smaller meshes. This significantly reduces the load
balancing overhead. The performance models are then incorporated into an integer
optimization problem to calculate the optimal computational resources distribution
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among solvers. The performance investigation indicates, that the proposed method
can almost completely remove the load imbalance between solvers. Doing so signifi-
cantly improves the simulation performance and scalability. The presented method
is, however, only suitable for solvers without dynamic re-meshing. For this case,
the method can be extended to adapt the inter-solver load balancing, if any of the
single-physics solvers updates its mesh partitioning.

Chapter 4| introduced a hybrid data-integrated approach to accelerate the solution
convergence in strongly coupled simulations. A deep neural network is trained to
estimate the solution for each time step, which can be used as a first guess by the
numerical solvers to compute the final solution. An on-the-fly re-training strategy
is also presented to avoid the so-called model-data inconsistency. The presented
scheme updates the DNN during the simulation to preserve the estimation accu-
racy. For a one-dimensional FSI test case, the presented acceleration scheme with
the on-the-fly re-training can reduce the number of classical iterations to only three.
The method significantly improves even sophisticated acceleration schemes such as
quasi-Newton, which require at least six iterations for each time step. In addition, a
training and inference parallelization scheme for DNNs based on the data decompo-
sition is introduced in Chapter[d The introduced approach is compatible with the
method used in numerical simulation codes. The presented technique can be incor-
porated to integrate the DNN surrogate solvers into parallel simulation codes. To use
the DNN acceleration for more complex test cases, such as those with unstructured
meshes, more steps are necessary. For instance, graph-based neural networks with
the capability of applying convolution can be used for test cases with unstructured
meshes. In addition, the acceleration must be further investigated to study the effect
of DNN acceleration on numerical methods, such as quasi-Newton, for the problems
with two or three-dimensional meshes.

Finally, in Chapter 5} a strongly-coupled partitioned fluid-structure interaction sim-
ulation environment is introduced for massively parallel CPU architectures and
hybrid CPU-GPU machines. The simulation environment coupled highly scalable
single-physics solvers using the coupling library preCICE for an efficient FSI simula-
tion. In addition, the coupled framework is extended to exploit multi-GPU machines
by offloading the most compute-intensive kernels of the simulation to GPU cores.
To maximize the computational efficiency of this framework, we employed the data-
driven multi-step load balancing scheme introduced in Chapter 3| for simulations
on CPU-only machines. The strong scalability and performance analysis on a CPU
machine showed a parallel efficiency of 81% on 13,440 CPU cores. In addition, com-

126



putational performance analysis on a hybrid CPU-GPU machine demonstrated a
significant run time reduction for the fluid solver by a factor of 133 and the coupled

solver by a factor of 7.2 compared to CPU-only simulations with a parallel efficiency
of 94%.
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