Universitat Stuttgart

Leadership Gap in Agile Teams: How
Developers and Scrum Masters Mature

Von der Fakultét fiir Informatik, Elektrotechnik und Informationstechnik der
Universitat Stuttgart zur Erlangung der Wiirde eines Doktors der
Naturwissenschaften (Dr. rer. nat.) genehmigte Abhandlung

Vorgelegt von

Simone V. Spiegler
geboren in Bad Nauheim, Deutschland

Hauptberichter: Prof. Dr. Stefan Wagner

Mitberichter: Prof. Dr. Kurt Schneider
Prof. Dr. Michael Sedlmair

Tag der miindlichen Priifung: Dienstag, 9.11.2021

Institut fiir Software Engineering der Universitét Stuttgart

2021

ABSTRACT

An increasing number of companies aim to enable their developers to work in
an agile manner. One key success factor that supports teams in working in an
agile way is fitting leadership. Therefore, companies try to define leadership
in such self-organising teams. One agile leadership concept describes a
Scrum Master who is supposed to empower the team to work in an agile
manner. Yet, findings on such a leadership role are controversial. We still
have not understood how leadership unfolds in a team that is by definition
self-organising.

A few empirical studies suggest that leadership evolves while the team
matures and that parts of the Scrum Master role, which implies leadership
activities, are transferred to the Developers. Yet, this claim has never been
empirically tested.

This thesis aims to understand how leadership evolves while taking matu-
rity and organisational culture and structure into account.

By using Grounded Theory I continuously compare emerging data to
existing concepts from research on team leadership, role theory, maturity
and contextual factors, as well as to research on leadership in agile teams.
As a result, I develop new theories on leadership in agile teams.

Observation and qualitative interviews with 53 practitioners of 29 Scrum
teams from 11 divisions at the Robert Bosch GmbH identified a set of nine

leadership roles that are transferred from the Scrum Master to the Develop-
ment Team while it matures.

The role transfer process is context-dependent. A leadership gap and a
supportive internal team environment encourage the Developers in taking on
leadership roles, while expectations deriving from a bureaucratic culture and
structure diminish the transfer of leadership roles. Based on these results I
suggest the Agile Matching Theory which implies that organisational context
and internal team environment need to match agile features for the role
transfer to occur.

Moreover, I build on my results and examine the presence and sharing of
the nine leadership roles, named 9-Factor Theory. I conduct a quantitative
survey with 67 participants containing 37 Scrum Masters and 30 Developers.

Descriptive statistics reveal that the Scrum Master and the Development
Team score differently on the 9 factors and that leadership is most often
distributed in teams that had been working between 3 and 5 months in an
agile manner. Yet, I also find that the leadership roles predominantly remain
with one dedicated Scrum Master. I claim that one committed leader does
not become obsolete over time but is played to a lesser extend.

Based on my results I suggest to group the 9-Factor Theory into three
clusters: the Scrum Master is rather linked to psychological team factors (1),
while the Development Team tends to be linked to product-related factors
(2). Organisational factors (3) are less often present.

I suggest that it depends on the context if Developers start taking on
leadership roles. Teams learn how to take on leadership roles over time. A
regular Retrospective helps in building a shared understanding on sharing
of leadership roles. Role sharing between the Developers and the dedicated
Scrum Master is based on continuously finding an equilibrium between agile
team features and maturity, culture and structure. Dedicated leaders should
provide a leadership gap by stepping back, and trust and freedom while
taking the context into account. Moreover, the organisational context in
rather bureaucratic environment should gradually be changed towards a
better fit with agile features on team level.

My study does not only provide more theoretical underpinning to human

aspects of the agile manner but also builds groundwork for future quantitative
testing of leadership in agile teams.

Future studies should build on our theories and draw data from a larger
sample size.

/USAMMENFASSUNG

Immer mehr Unternehmen streben danach, dass Entwickler agil zusammen-
arbeiten. Ein Erfolgsfaktor, der Teams zu einer agilen Arbeitsweise befahigt,
ist eine dazu passende Art von Fithrung. Deshalb versuchen Unternehmen
herauszufinden, was Fiihrung in selbst-organisierten agilen Teams bedeutet.
Ein Fiihrungskonzept ist im Scrum Master verkorpert. Diese Rolle hat das
Ziel, ein Team zum agilen Arbeiten zu befdhigen. Die bisherigen Erkenntnis-
se hinsichtlich dieser Fithrungsrolle sind jedoch widerspriichlich. Es ist noch
immer unklar, wie sich Fithrung in selbst-organisierten Teams entfaltet.

Eine kleine Anzahl an empirischen Studien suggeriert, dass sich Fiihrung
in Abhéngigkeit vom Reifegrad eines Teams verdndert. Es wird vermutet,
dass die Scrum Master-Rolle, und somit Fithrung, teilweise auf die Entwickler
iibertragen wird. Diese Behauptung ist jedoch bisher noch nicht empirisch
untersucht worden.

Diese Doktorarbeit erforscht, wie sich Fithrung in Zusammenhang mit der
Reife eines Teams sowie der Organisationskultur und -struktur entfaltet.

Durch die Anwendung von Grounded Theory erheben und analysieren
wir qualitative Daten in mehreren Iterationsschleifen. Dabei verkniipfen
wir wissenschaftliche Erkenntnisse der Teamfiithrung, Rollentheorie, des
Reifegrads und kontextuellen Faktoren sowie der Fithrungsforschung in
agilen Teams. Ein Ergebnis dieser Arbeit sind neue Theorien beziiglich der

Fithrung in agilen Teams.

Durch qualitative Interviews und Beobachtungen von 53 Individuen von
29 Scrum Teams von 11 Geschéftsbereichen der Robert Bosch GmbH ha-
ben wir neun Fiihrungsrollen identifiziert. Diese werden von der Scrum
Master-Rolle auf die Entwickler iibertragen, wiahrend sie sich gemeinsam
weiterentwickeln.

Des Weiteren hat die Datenanalyse ergeben, dass der Transferprozess der
Rollen kontextabhingig ist. Eine Fiihrungsliicke und ein unterstiitzendes
Teamklima ermutigen das Team dazu, selbst Fiihrungsrollen zu iibernehmen.
Wohingegen Erwartungen, die auf Grund einer biirokratischen Kultur und
Struktur entstehen, diese Ubertragung von Fiihrungsrollen auf das Team
reduzieren. Auf Grund von diesen Erkenntnissen begriinden wir die Theorie
der Agilen Passung, die impliziert, dass der Organisationskontext mit einem
agilen Teamklima in Einklang sein muss, damit der Rollentransfer stattfindet.

Basierend auf diesen Ergebnissen, haben wir die Auspragung und das
Teilen der neun Fiihrungsrollen (9-Faktoren-Theorie) in einer quantitativen
Umfrage untersucht. An dieser haben 67 Teilnehmer, davon 37 Scrum Master
und 30 Entwickler, teilgenommen.

Deskriptive Statistik hat ergeben, dass Scrum Master und Entwickler in
den neun Faktoren unterschiedlich abschneiden. Am hé&ufigsten werden
Fithrungsrollen in Teams geteilt, die zwischen drei und fiinf Monaten in
einer agilen Arbeitsweise zusammengearbeitet haben. Die Ergebnisse haben
auch gezeigt, dass die Fiihrungsrollen iiberwiegend von der offiziellen Scrum
Master-Rolle gespielt werden. Unser Fazit ist daher, dass eine festgelegte Fiih-
rungsrolle im Lauf der Zeit nicht {iberfliissig wird, sich jedoch im Zeitverlauf
verdndert.

Auf Grund unserer Ergebnissen schlagen wir vor, die 9-Faktoren-Theorie in
drei Cluster aufzuteilen: der Scrum Master-Rolle werden eher psychologische
Teamfaktoren zugeschrieben (1), wahrend das Team eher auf produktbezoge-
ne Faktoren gemiinzt ist (2). Faktoren, die sich auf die Organisation beziehen
(3), sind seltener in einem Team vorhanden.

Wir vermuten daher, dass der Kontext beeinflusst, ob ein Team dazu
bereit ist, Fiihrungsrollen zu ibernehmen. Eine regelméfige Retrospektive

unterstiitzt das Team darin, ein gemeinsames Verstandnis zum Teilen von
Fiihrungsrollen zu entwickeln. Das Teilen von Fithrungsrollen zwischen den
Entwicklern und dem Scrum Master hangt von einem Gleichgewicht zwischen
agilen Teameigenschaften, dem Reifegrad, der Kultur und der Struktur ab.
Dieses Gleichgewicht wird kontinuierlich neu verhandelt. Fiihrungskréfte
sollten eine Fiihrungsliicke bereitstellen, sowie dem Team Vertrauen und
Freiheit schenken, wihrend sie den entsprechenden Kontext in Bedracht
ziehen. Dariiber hinaus sollte sich der Organisationskontext in einem eher
biirokratischen Umfeld Schritt fiir Schritt an agile Teameigenschaften anna-
hern.

Unsere Studie tragt nicht nur zu einem tieferen Verstédndnis beziiglich
der Zusammenarbeit in einem agilen Setting bei, sondern es bildet auch
ein theoretisches Fundament fiir weitere quantitative Fiihrungsforschung in
agilen Teams.

Zukiinftige Forschungsprojekte sollten auf unseren Theorien aufbauen
und Daten eines groReren Samples erheben.

ACKNOWLEDGEMENTS

This thesis was a cooperation between the Robert Bosch Automotive Steering
GmbH, Schwébisch Gmiind, Germany, and Prof. Dr. Stefan Wagner at the
Institute of Software Engineering, University of Stuttgart, Germany.

The past 3 years have been an enriching journey that empowered me to
grow personally. Tremendous support and inspiring discussions guided me
on my way. This thesis would not have been possible without the support
by my friends and supervisors, individuals from Bosch, and the research
community. I am truly thankful for the encouragement.

First of all, I would like to thank the Robert Bosch Automotive Steering
GmbH in Germany for funding this project. Particularly my supervisor Dr.
Christoph Heinecke for believing in my skills, for true commitment and trust,
for being more of a mentor and friend than a supervisor, for all the talks,
jokes, feedback and advice.

Moreover, I would like to thank Prof. Dr. Stefan Wagner at the Institute of
Software Engineering, University of Stuttgart, Germany, for academically
supporting this project. Thank you for providing trust, freedom and space to
create my own thoughts, but also for asking the right questions at the right
time and for structuring my thoughts when I felt lost.

1

I would like to thank all my friends for their support. Particularly, I would
like to thank Caro, Fred and Xenia for proof reading parts of this thesis
and some of the papers, for challenging my thoughts, for asking the right
questions, for helping me structure my thoughts and for enjoying life with
me. For being there for me in my low lights and highlights during the past
years. For helping me grow personally.

Moreover, I would like to thank Thorsten for helping me grow, for fruitful
discussions and for reading parts of this thesis and providing feedback.

This thesis was supported by the Robert Bosch Automotive Steering GmbH.
I would like to thank the final thesis students Kevin, Tom and Verena for
transcribing numerous qualitative interviews, asking challenging questions
and igniting inspiring discussions on self-organisation. My disciplinary su-
pervisors Stefan and Dirk for supporting this project. Vera for interesting
discussions and providing excellent HR related support. My local department
for welcoming and integrating me.

This thesis was extremely supported by the Agile Community all over
the Robert Bosch GmbH. Numerous experts on the agile way of working
welcomed me for knowledge exchange meetings. Particularly, I would like to
thank the Agile Transformers, the Scrum Master community and the Agile
Lunch. I had the opportunity to approach almost anyone throughout the
company which I am deeply grateful for. I would like to thank the agile
teams that allowed me to learn from them and all the volunteers who took
part in our surveys. Without your support, effort and time, this thesis would
not have been possible. Particularly, I would like to thank Peter and Theo
who empowered me to do the quantitative study. I would like to thank Anita
who was one of the first persons I met at the company when starting this
thesis and who truly inspired this thesis. Among others, I would like to thank
Martin, Magda and Frederik for good discussions.

Moreover, I received helpful advice and guidance by my mentors Jennifer

12

and Thomas. We had very interesting discussions which helped me to per-
sonally grow.

While working on the thesis I joined many events organized by the PhD
students at the Robert Bosch GmbH which was fun but also provided support.
Particularly, I would like to thank the WiSo’s for hanging out together and
being there for each other. I would especially like to thank Ann-Kathrin,
Jonas, Flo, Sarah, Ben, Eddy and Sina.

Moreover, I would like to thank my colleagues from the Institute of Soft-
ware Engineering for good discussions and support. I would especially like
to thank Daniel, Marvin and Justus with whom I not only shared an office
but also uncountable coffee breaks, discussions and jokes. I would like to
thank especially Daniel for providing valuable and honest feedback on our

paper.

I would like to thank the research community on agile software devel-
opment for making me feel welcomed to contribute to the community, for
delivering valuable feedback and inspiration at the conferences. Particu-
larly, I would like to thank the Swedish guys Johannes and Lucas: Johannes
for fruitful discussions on what leadership actually is and for an inspiring
conference in Paris. Lucas for an interesting discussion via skype and for
sending me a hard-copy of his PhD thesis on maturity all the way from Swe-
den. This thesis was a true asset to my bookshelf and inspired me many times.

Last but not least I would like to thank my family who raised me as a

critical thinker and independent person and who taught me to pursue my
dreams.

13

CITE

"Our traditional views of leaders — as special people who set the
direction, make the key decisions, and energize the troops — are
deeply rooted in an individualistic and non-systemic worldview.
Especially in the West, leaders are heroes — great men (and oc-
casionally women) who rise to the fore in times of crises. Our
prevailing leadership myths are still captured by the image of the
captain of the cavalry leading the charge to rescue the settlers from
the attacking Indians. So long as such myths prevail, they reinforce
a focus on short term events and charismatic heroes rather than
on systemic forces and collective learning."

— Peter Senge

15

CONTENTS

1 Introduction 21
1.1 Motivation 21
1.2 Research Objective, 24
1.3 Research Strategyo oo it 25
1.4 Contribution e 27
1.5 List of Publications 30
1.6 Outline 31

2 Background 33
2.1 History of Software Development 34

2.1.1 Traditional Software Development 34
2.1.2 The Waterfall Model 35
2.1.3 Traditional Software Development Teams 36
2.2 TheNeedforChange. 37
2.3 Agile Software Development 38
2.3.1 Agile Software Development 38
232 SCrum ... 40
233 AgileTeamst 43

17

3 Literature Review
3.1 Leadershipo e
3.2 AgileLeadership
3.2.1 OVEIVIEW . . . vttt it e e e e e e e e e e e
3.2.2 Leadership in Agile Teams
3.2.3 Discussion of the Literature

4 Theory Selection and Theory Building
4.1 Theory Selection unnnennn..
4.1.1 Team Leadership
4.1.2 RoleTheory,
4.1.3 Maturity oo oo et
4.1.4 Agile Team Featuresc.oo......
4.1.5 Contextual Factors
4.2 TheoryBuilding
4.2.1 Perspective on Leadership.
4.2.2 9 LeadershipRoles
4.2.3 The Role Transfer Processo v v v oo ..
4.2.4 Factors influencing the Role Transfer
4.2.5 The Agile Matching Theory
4.2.6 Summary of the Conceptual Model

5 Part I: A Grounded Theory Study
5.1 Study Design i e
5.1.1 Research Questionso......
5.1.2 Grounded Theory
5.1.3 Research Contexto v v i v u e ...
5.1.4 Data Collection and Sample
5.1.5 Data Collection Procedure

5.2.1 9 Scrum MasterRoles
5.2.2 The Role Transfer Process

18 Contents

5.2.3 Factors Influencing the Role Transfer Process. 104

5.3 DiSCUSSION . . . v v vttt et e e e e e e e e 117
5.4 Limitations and Future Work 120
6 Part II: A Quantitative Exploration 123
6.1 CONCEPL .« v v ot e e e e e e e 124
6.1.1 Motivation, 124
6.1.2 Changing Leadership in Agile Teams 125
6.2 Study Design e 126
6.2.1 Research Questions 126
6.2.2 Company Context and Participants 126
6.2.3 Measurementeuitenae.. 127
6.2.4 Data Collection00 uun... 130
6.2.5 Pilotstudy 130
6.2.6 Analysis e 131
6.3 Results. . .. oo it e 132
6.3.1 Scrum Master 133
6.3.2 Developers 134
6.3.3 Distribution of the 9 Factors between Scrum Master and
Development Team ov v vt v, 135
6.4 DiSCUSSION vttt e e 136
6.5 Practical Implications, 139
6.6 Limitations and Future Work 141
7 Discussion and Conclusion 143
7.1 Summary of the Research Findings 143
7.2 DiSCUSSION e e 147
7.2.1 The Value of a dedicated Scrum Master 147
7.2.2 Leadership in Agile Teams in Established Companies . . . 150
7.2.3 New Role Description: Agile Master 153
7.3 Practical Implications 155
7.3.1 Implications for the Developers 155
7.3.2 Implications for the Scrum Master 156

Contents 19

7.3.3 Implications for the Product Owner. 158

7.3.4 Implications for the Management 159

7.3.5 Implications for the Organisation 160

7.4 Limitations 162
7.5 Future Research Directions 164

8 Conclusion 167
Bibliography 171
List of Figures 185
List of Tables 187

20

Contents

CHAPTER

INTRODUCTION

1.1 Motivation

A steadily increasing number of organisations aim at developing their prod-
ucts in a more agile way [Stal4]. Agile teams are said to work cross-
functionally and self-organised in iterative learning loops towards a common
goal [Con09]. Even though an increasing number of organisations strive to
implement agile teams, it is not entirely clear how teams can adopt the agile
way of working [MDK09; NMMO5]. Especially rather bureaucratic companies
seem to struggle in their agile transformation [MDD09; NMMO05]. Fitting
leadership behavior is found to be one key success factor for evolving into
an agile self-organised team [GGJ19]. However, which kind of leadership
agile teams need is not yet clear.

While narratives postulate great success stories on agile teams, empirical
evidence often reveals how difficult it is for teams to work in an agile way
[GBS+16; HM16; HN17; MAD12]. While the agile approach emerged
during the 1990th and created a hype on implementing agile self-organising
teams, the idea of self-organisation is not entirely new. In fact, the successful
implementation of self-organised teams into the industrial sector has been

21

of ongoing interest over the last 70 years.

Researchers consider the topic from different angles among which are
socio-technical systems [MS87; SJ17; TB51], knowledge management [TN86],
complexity theory [Bac19; Sch97], role theory [Hod13; Yan96; ZAMO9]
and agile project management [SS20]. One recurring topic of interest is the
role of leadership in a team that is by definition self-organising.

Research on leadership in agile teams mostly differentiates between a
leader as peer or coach to the team who provides appropriate boundary
conditions (e.g. [TN86]) and an autonomous team that self-organises its
operational work (e.g. [HNM12b]). While some researchers suggest a fa-
cilitator who serves as a peer to team members [TN86] or a leader who
empowers the team to lead itself [MS87], other researchers do not consider
a formal leadership role of the team but instead emphasize self-organising
roles within the team [HNM12b; ZAMO09].

At present, the most widely known agile approach is Scrum [SB02; SS20]
which promises to create agile teams. Scrum divides leadership roles be-
tween three different parties: the Product Owner, the Scrum Master and the
Developers. The Product Owner cares for the interaction with the customer
and sets the requirements for a product. The Scrum Master facilitates the
Scrum process, enables the Development Team to work cross-functionally
and self-organised, protects the team from external disruption and helps the
organisation to adapt to the agile way of working [SS20]. The Developers
self-assign tasks towards a shared goal [CHO1].

Empirical research on Scrum teams found that the Scrum Master some-
times acts as a barrier to teams working in an agile manner in early stages.
The reason is that Scrum Masters tend to stick to a command-and-control
mode [MDD10]. Notwithstanding, dismissing a formal leader role altogether
was found to decrease teamwork. Research revealed that self-organised
teams without a dedicated leadership role establish destructive team norms
[Bar93]. However, teams applying agile methods for three years on average
appear not to struggle with the Scrum Master and are even supposed to
share the leadership role [SJ17].

Yet, there is still an inherent paradox between self-organised teams on

22 1| Introduction

the one hand and a formal leadership role on the other hand [MS87].

The diverging results on the Scrum Master role could be explained by
changes in the maturity of an agile team. A Development Team learns
how to be agile while undergoing different maturity stages [GTF17] and by
gradually taking on leadership activities of a Scrum Master. Hence, agility
of a team is a process that unfolds over time [WM18]. Yet, to the best of our
knowledge, there is no empirical analysis of the changing leadership role
of the Scrum Master. Furthermore, most studies have examined the Scrum
Master role applying qualitative methods (e.g. [Bdcl19; MDD10; SJ17]),
while there is a lack in studies to explore these roles quantitatively and to
understand how much they change.

Also Development Teams often struggle with taking on leadership roles
due to contextual hindrances. Specifically teams in bureaucratic companies
appear to face obstacles in working in an agile manner [BTO5; NMMOS5].
This type of organisation contradicts the agile way of working [NMMO05].
It is used to rely on rigid planning as opposed to iterative team learning
[BTO5], on operating in a functional departmentalised structure as opposed
to cross-functional teams [NMMO5] and on a hierarchical culture as opposed
to self-organised teams [MAD12]. Often management is found to undermine
the self-organising nature by command-and-control behavior [Hod13].

We can assume that teams that aim at taking on leadership roles struggle
to do so if the organisational level aims at sustaining hierarchical structures.
Yet, scarce research examines the link between the organisational context
and agile team behaviour [CHO1; HN17; SMD11]. This thesis specifically
focuses on implementing agile teams in bureaucratic organisations.

Recent studies [Bidc19; GL20; SMD11] have called for more research
on (a) leadership in agile teams, (b) while taking contextual factors into
account and (c) collecting data on leadership from diverse perspectives (d)
with mixed methods.

This thesis addresses the suggested topics and focuses on the changing
leadership role in bureaucratic organisations while approaching the Scrum
Master and the Development Team.

1.1 | Motivation 23

1.2 Research Objective

To be able to support organisations in their agile transformation, my research
objective is to explore leadership and how it evolves in agile teams using
the example of the Scrum Master. I believe that investigating the changing
leadership role of the Scrum Master will provide valuable insights into how
teams can adopt the agile way of working.

In order to explain the changing leadership role I refer to role theory, team
leadership, maturity and contextual factors. I state that the Scrum Master
transfers nine leadership roles (labeled 9-Factor Theory) to the Development
Team over time and thus, leadership changes while the team matures. I
suggest that this role transfer is influenced by the internal team environment
and contextual organisational factors.

The research questions are therefore:

* Which roles does the Scrum Master play to support the team to work
in an agile way? (RQ1)

* In which way do developers take on the Scrum Master role overtime?
(RQ2)

* How are roles transferred from the Scrum Master to the Developers?

(RQ3)

* What is the underlying internal team environment required for the
role transfer to occur? (RQ4)

¢ How can the Scrum Master foster the internal team environment?

(RQ5)

* Which expectations on the Scrum Master limit the changing leadership
role? (RQ6)

* How do organisational culture and structure influence the role transfer?
(RQ7)
* Which leadership roles does the Scrum Master play? (RQ8)

* Which leadership roles does the Development Team play? (RQ9)

24 1| Introduction

* Are leadership roles distributed between a Scrum Master and the
Development Team, and if so, is the role more often shared in mature
as compared to immature teams? (RQ10)

1.3 Research Strategy

Research differentiates between two different underlying types of reasoning:
inductive reasoning and deductive reasoning which classify two different
ways of argumentation [Mye19]. The aim of inductive reasoning is to gener-
ate hypotheses and develop new theory. Inductive reasoning is an interpretive
approach. Data is often embedded into a particular context and captures
social construction of the reality of participants [Mye19]. Deductive reason-
ing aims to test hypotheses that are build on existing theory [May10]. It
applies a positivist view and assumes that reality is objective which can be
measured by properties.

The aim of this thesis is to provide a theoretical understanding of changing
leadership in agile development teams. To tackle the research objective this
thesis applies inductive reasoning. We hence assume a social construction of
reality. This allows us to capture the meaning and interpretation individuals
give to human behavior during the agile transformation.

A minor up-front literature search revealed that publications on leadership
in agile software development teams are scarce and lack in theoretical
underpinning. Therefore, this research project used an exploratory approach.
The theory on changing leadership derived from an iterative process within
which industry-based data and scientific literature were constantly compared.

This research is divided into two consecutive parts: a qualitative explo-
ration (part I), and a quantitative exploration (part II). The theory selection
and theory building in chapter 4 emerged during the qualitative exploration
(part I). The quantitative exploration (part II) deepened the results of the
qualitative exploration.

1.3 | Research Strategy 25

The following two main research parts guide this research project:

(I) Part I is a Grounded Theory based study referring to observations and
qualitative interviews. It aims at exploring the evolving leadership role in
agile teams using the example of the Scrum Master. I chose Grounded Theory
because this method is applied in research fields with scarce knowledge and
aims at theory building [GS17]. Grounded Theory follows an iterative
approach in which each step is based on the previous step.

To explore evolving leadership in agile teams I collected data in 11 busi-
ness divisions of the corporation Robert Bosch GmbH, primarily operating
in the automotive industry. 75 agile practitioners took part in the qualita-
tive interviews. While collecting data in the field, emerging findings were
constantly compared with scientific literature.

To explain agile leadership concepts from social psychology were combined
with current state-of-the-art in agile software development literature. The
aim was to build a bridge between human factors in empirical software
engineering and in social psychology. This brings a new perspective to
research on agile teams. Chapters 3 and 4 elaborate on the literature. It is
important to mention that even though the literature is described before
part I, relevant literature was identified during the Grounded Theory study
described in part I and is not based on a heavy up-front literature search.

The result is a substantive theory on changing leadership in agile teams.
The Grounded Theory study answers research questions RQ1 to RQ7.

(I1) The second part reports on a quantitative exploration and digs deeper
into the findings related to RQ1, RQ2 and RQ3 in part I. It answers research
questions RQ8 to RQ10. The quantitative exploration builds on the findings
of the Grounded Theory and the identified nine leadership roles and designed
an online survey, aimed to quantify the presence of the 9 factors (leadership
roles) and the maturity of the team. 67 participants from more than 19
different Scrum teams of the Robert Bosch GmbH took part in the study.

Through a quantitative exploration, I build groundwork on examining
leadership in agile teams quantitatively and shed light on the distribution of

26 1| Introduction

leadership roles among the Scrum Master and the Developers with respect to

team maturity. The quantitative exploration does not aim to test the process
of the role transfer from one Scrum Master to the Developers.

Table 1.1: Research Strategy

Research Part Research Activities Aim
Part I
Qualitative Minor literature search Understanding
exploration Unstructured Interviews changing
Grounded Theory Continuous literature search | leadership in
Semi-structured interviews agile teams.
Field observations
Continuous data analysis
Major literature search
Theory building
Part II
Quantitative Quantitative survey Groundwork for
exploration Analysis testing leadership
Descriptive statistics in agile teams.

The research methods and data collection procedure are described in
detail in the respective chapters.

1.4 Contribution

This thesis supports organisations in their agile transformation by providing
practical insights on implementing agile teams in bureaucratic companies. I
suggest the changing Scrum Master to be a possible solution to supporting
teams in evolving into a truly agile team.

The major contribution of the study is theory building on the changing
leadership role (partI) and a quantitative exploration of the presence, change
and sharing of leadership roles in agile teams (part II).

Part I reports on a Grounded Theory study. The results, and hence my

1.4 | Contribution 27

theoretical contribution, is the description and explanation of:

nine leadership roles of a Scrum Master that are gradually transferred
to the Development Team while it matures

the role transfer process including a leadership gap which enables team
members to take on a leadership role themselves

an internal team environment of being on equal terms, psychological
safety, transparency, shared mental models, team orientation, team
potency and self-monitoring as enablers of the role transfer

contextual factors of high power distance, specialist culture and rigid
organisational structure as hindering factors of the role transfer

the Agile Matching Theory which implies a mandatory fit between
contextual factors and the internal team environment for the role
transfer to occur

Furthermore, part II describes the quantitative exploration of the leader-
ship roles, which is labeled the 9-Factor Theory, and reveals that:

the leadership roles are shared to a varying extent between one dedi-
cated Scrum Master and the Developers

leadership roles were shared most often in teams that had been working
between 3 to 5 months in the agile manner

the percentage of teams who did share the roles was about 20%. No
Development Team predominantly took over the Scrum Master role

despite sharing of some of the 9 factors (leadership roles), most roles
predominantly stick with one dedicated Scrum Master, such that the
committed Scrum Master did not become obsolete

Based on the results, I suggest to group the 9-Factor Theory along three

different clusters: psychological team factors, organisational factors and
product-related factors. While psychological factors were linked most of-
ten to the Scrum Master, the Developers tended to take on product-related

28

1| Introduction

factors. Organisational factors were assigned less often to both parties. I
suppose that the results are valuable input for further quantitative testing of
the 9-Factor Theory.

The findings provide empirical evidence on leadership in agile teams which
help companies in their agile transformation.

Practitioners get insights on leadership roles in an agile setting and under-
stand how the context influences leadership. Scrum Masters get inspiration
on how to play their role and empower the team to take on leadership
roles. Agile practitioners will understand that an agile team needs time
to take on leadership. Managers will increase their understanding on the
value of a Scrum Master and get input on providing the appropriate context
for leadership in agile teams. Furthermore, I develop a quantitative team
survey for determining leadership roles in agile teams which can be used by
practitioners.

1.4 | Contribution 29

1.5 List of Publications

Parts of the contributions presented in this thesis have been published in:

30

1. S.V. Spiegler, C. Heinecke, S. Wagner. “Leadership Gap in Agile Teams:

How Teams and Scrum Masters Mature.” In: International Conference
on Agile Software Development. Springer. 2019, pp. 37-52.

. S. V. Spiegler, C. Heinecke, S. Wagner. “The influence of culture and

structure on autonomous teams in established companies.” In: Interna-
tional Conference on Agile Software Development. Springer. 2019,pp.
46-54.

. Soderqvist, Johannes Berglind and Simone Spiegler, "How to enable

leadership among self-organising developers." Paper presented at the
R&D Management Conference, Paris, 2019, June.

. S. V. Spiegler, D. Graziotin, C. Heinecke, S. Wagner. “A Quantitative

Exploration of the 9-Factor Theory: Distribution of Leadership Roles
Between Scrum Master and Agile Team.” In: International Conference
on Agile Software Development. Springer. 2020, pp. 162-177.

. Spiegler, S. V., Heinecke, C., Wagner, S. (2021). An empirical study on

changing leadership in agile teams. Empirical Software Engineering,
26(3), 1-35.

1| Introduction

1.6 Outline

Eight chapters guide this thesis. Following this introductory chapter, Chap-
ter 2 introduces background information on traditional and agile software
development and outlines the change from traditional to agile teams.

Chapter 3 provides a literature review on leadership in agile teams. Section
3.1 introduces the term leadership and illustrates different perspectives on
the term. 3.2 provides an overview on agile leadership, and elaborates on the
leadership role of a Scrum Master in specific in Section 3.2.2. A discussion
closes Chapter 3 and identifies the changing leadership role of a Scrum
Master as a research gap.

Chapter 4 refers to the selected literature that will be used to build a
theory explaining the evolving Scrum Master role in Section 4.2.

Chapter 5 refers to part I by describing a Grounded Theory study. Section
5.1 outlines the study design by explaining the research method, the com-
pany context, the data collection procedure and data analysis. Section 5.2
illustrates the results deriving from data analysis and suggests propositions
for future testing. Chapter 5 closes with a summary, discussion and limita-
tions related to part L

I would like to emphasize that the extensive literature review and theory
building emerged during the Grounded Theory study over a period of ap-
proximately two years. However, for a better understanding of this thesis, I
decided to first describe the literature review, theory selection and theory
building and later on elaborate on the Grounded Theory study in part 1.

Chapter 6 refers to part II of this thesis which reports on the quantita-
tive exploration of the key propositions deriving from Chapter 5. Section
6.1 recapitalizes the findings deriving from the literature review and the
Grounded Theory study. Section 6.2 describes the research design, including
research method, data collection and analysis. It briefly repeats the company
context as describe in 5.1, while it adds new insights on the Scrum Master
description in the specific company context. Moreover, it characterises the

1.6 | Outline 31

sample which differed from part I. The results are reported in Section 6.3
followed by a discussion, practical implications, limitations and future work
related to the quantitative exploration.

Chapter 7 summarizes the findings in relation to the research questions
and discusses the results of part I and II while referring to existing literature.
Moreover, Section 7.3. outlines practical implications for the Developers, the
Scrum Master, the Product Owner, the management and the organisation.
Section 7.4. outlines further limitations while building a link between part I
and part II. Moreover, it refers to a research cooperation with another large
company active in the automotive industry during this thesis that additionally
supports our findings. Section 7.5 closes Chapter 7 with future research
directions.

Chapter 8 completes this thesis with a brief summary.

32 1| Introduction

CHAPTER

BACKGROUND

This chapter aims at providing background information to place the research
topic into a broader context.

During the last decades software development projects have used distinct
approaches to the way software is build. Researchers most often differentiate
between traditional development and agile development. Software processes
and models in different periods of time emerged from the respective historical
context. The following will scratch on traditional software development.
For a detailed overview, please refer to Boehm [Boe06] for the historical
background and to Ruparelia [Rup10] for the distinct methods.

Section 2.1 refers to the background of traditional software development
by describing the historical context, deriving development methods and way
of interaction among people. Section 2.2 explains the need for a change of
traditional development methods to more agile development. Agile software
development is characterised in Section 2.3. Section 2.3.2 explains the
Scrum framework and related Scrum roles in specific, while Section 2.3.3
refers to the underlying human behavior in agile development by describing
agile teams.

33

2.1 History of Software Development

2.1.1 Traditional Software Development

In general, every development project considers requirements specification,
implementation and modification [Som04]. Yet, in which order the steps
are organized, if they are overlapping or conducted in consecutive order and
who is involved how in which step and when to go to the next step varies.

The 1950’s refer to early software development. Often hardware engi-
neers became software developers and treated it like hardware engineering
[Boe06]. Before running the code by using punch cards on the mainframe
computer, engineers would do extensive and careful planing by using hand-
written notebooks, since running the large machines was very expensive
[Boe06].

In the 60’s the first organized way of developing software was the code
and fix approach, in which coding was followed by requirements, testing
and maintenance [Boe06]. Yet, this approach was expensive and managers
aimed to keep costs for development low [Boe88; Roy87]. Moreover, in the
60’s authority was taken into question. Students at university expressed
great admiration for programmers who could develop quick-and-dirty over
night to meet deadlines [Boe06].

Authorities felt like developing software was invisible and it was difficult to
determine if it was on track [Boe06]. Moreover, adjustments were expensive.
Therefore, managers felt the need to control, to manage and to organize the
way engineers developed software [Roy87]. The idea of a defined order of
consecutive development steps and transition criteria was born [Boe06].

During the 70’s a number of methods emerged that build on control and
use of hierarchy to manage transition through the distinct stages [Boe06].
Moreover, it provided tools to present results in each step via structure
charts, state transition diagrams and stimulus response threads [Boe88].
One method that became popular during this time is the waterfall model.

34 2 | Background

2.1.2 The Waterfall Model

One traditional development method is the waterfall model, rooted in the
cascade model by Benington [Rup10], and originally suggested by Royce in
1970 as software development based on specification [Roy87]. The cascade
Model by Benington suggests to develop software along the consecutive
stages operational analysis, operational specification, design and coding speci-
fication, development, testing, deployment and evaluation [Rup10].

Royce warns that a sequential order of the steps could lead to a doubling
of time or budget if testing at the end of the development process failed. To
avoid returning from testing to requirements or design and to restart the
whole process, he introduces a feedback loop in which each preceding phase
can be revisited. Thus, Royce developed the model further by integrating a
repetition of each preceding step [Roy87]. The waterfall model refers to the
phases system requirements, software requirements, analysis, program design,
coding, testing and operations [Roy87].

It is a document-driven model and Royce recommends heavy documenta-
tion at the end of each stage that allows for tight control [Roy87].

Furthermore, Royce suggests to integrate the customer at three defined
formal reviews. He considers it too risky to integrate the customer between
requirement definition and operation and proposes to invite the customer
twice in distinct program design phases and once after testing for a final
software acceptance review. It is up to management to decide upon the time
and the person who will deliver the software. [Roy87]

Even though the original idea of the waterfall model was a consecutive
repetition of the different steps it evolved into a linear process among prac-
titioners due to government process standards and contract negotiations
about requirements [Boe06]. It is described as a rigid up-front planning
by setting requirements and building design followed by a plan execution
terminating in the implementation of an entire system at once. A stage-gate
with a set of criteria that needs to be fulfilled to pass on to the next step
for each phase is suggested to serve as a source of control [Boe88]. Time
schedules, target dates and budget are said to guide the project.

2.1 | History of Software Development 35

Later on practitioners outline several weaknesses. Neglecting the iterative
loops, practitioners often link it to a heavy up-front planning followed by
a rigid process along sequential steps, a lack of customer integration, and
expensive changes due to a revision of planning and designing in case of
unsuccessful testing at the end of the development project.

A number of other models build upon the waterfall model and developed it
further, among them the b-model [BO88], the spiral model [Boe88] and the
v-model [FM91]. For example, the spiral model promised a better integration
of customers by prototyping [Boe88]. The b-model included a maintenance
cycle for continuous improvement [BO88].

Yet, most often agile methods are compared to the practitioner’s sequential
interpretation of the waterfall model by Royce.

2.1.3 Traditional Software Development Teams

Traditional development teams are embedded into a hierarchical organisa-
tional structure based on several layers and assigned authority over others
[THO4]. Traditional software development is a mechanistic approach which
can be described by the underpinning believe that problems can be fully
specified and understood [NMMO5]. This implies that there is an optimal
and predictable solution for any challenge. Extensive up-front planning and
tight control are considered to be success factors for traditional projects
[Roy87].

It is believed that an individual manager provides the solution to any prob-
lem at hand by knowing and understanding everything [NMMO5]. Moreover,
the manager is responsible for most decision-making [NMMO5]. The person
in charge demonstrates command and control behavior. The manager gives
orders to the Developers about what needs to be done by assigning tasks
and roles to individuals [NMMO5]. The manager tracks developers’ work
progress by heavy documentation [Boe06; NMMO5; Roy87].

The development process defines specific tasks for each step including the
desired results [NMMO5]. Developers cooperate via strict labour division
and assigned roles with specialization [THO4]. Individuals are used to work

36 2 | Background

alone or in homogeneous groups of analysts, designers, testers or architects
[NMMO5]. The developer does not have to understand the broader idea of
the project but excels the specified assigned task [TH04].

Royce [Roy87] suggests to strictly separate between designer and tester.
He raises the opinion, that a test specialist would do a better job at testing
than a designer, despite acknowledging that the designer understands the
area he or she has developed. The required work material for the tester is
a thorough documentation of the preceding steps. Therefore, developers
create heavy documentation that stores knowledge and serves as a tool for
communication between process stages. Therefore, traditional teams rely
on formal ways of communication.

2.2 The Need for Change

In the 1990’s an increasing number of companies abandoned traditional
software development. The root cause is considered to be the internet and
the World Wide Web [Boe06]. The internet makes it possible to spread
news rapidly and to access information almost immediately [BLPS01]. User
feedback can be integrated quickly into product development and customer
orientation is even more important [BLPSO1]. Moreover, computers have
almost no speed-limits any more and memory and storage capacity are not
far from unlimited [Boe06], also via cloud applications. As a consequence
technology develops rapidly and new products access the market fast.

Moreover, product development is often characterized as complex which
means that a high number of interaction among multiple individual parts,
including tasks, people and technology, leads to obscurity of cause and
effect [SLKCO1]. During project progress circumstances and requirements
continuously and rapidly change. Knowledge at the beginning of a project
might become obsolete during the project and replaced by new insights.
Development projects involve a high level of uncertainty and the exact
outcome is unpredictable in advance.

Velocity, complexity and uncertainty lead to a change in the way people

2.2 | The Need for Change 37

in an organisation interact and collaborate. For example, firms interact dif-
ferently with the environment by building more customer-oriented products
and increasing speed-to-market [BLPS01], while individuals have to make
decisions on incomplete information [CHO1; Mad07]. To minimize risks,
projects are managed via short iterations.

Companies that are built upon rather traditional development methodolo-
gies face several challenges when changing the way in which products are
developed [MAD12; NMMOS5]. Existing companies cannot transform into
faster and more adaptable companies by simply exchanging existing tools
and methods with new ones [HN17; NMMO05; SNMO1]. A change requires
several years of time and effort on many different levels [HN17; MAD12;
NMMO5]. Companies change business models and architecture, project
management, processes, tools and methods, management, leadership and
collaboration and deriving structure and culture [HN17; MAD12; NMMOS5].

2.3 Agile Software Development

2.3.1 Agile Software Development

Agile development is one way that promises fast reaction to a rapidly chang-
ing environment [WC03] and increasing complexity [Sch97].

Even though referring to a hardware development context, Nonaka and
Takeuchi [TN86] are often cited as the pioneers to describe agile’ software de-
velopment in 1986. Their paper describes a successful product development
process based on self-organised teams that continuously learn and exchange
knowledge in order to build new products based on given requirements and
high trust of management [TN86].

In the meanwhile, the concept ’agile’ evolved rapidly. Anecdotal narratives
on success stories about agile teams by practitioners and consultants have
launched a hype on the agile way of working [Stal4]. Despite a history of
about 30 years of agile software development, there is no common definition
of the term ’agile’ [LSA11]. Sometimes, the word agile is criticised as the
’silver bullet’ since it promises just anything [LSA11]. Some authors refer to

38 2 | Background

building high performing teams, while others focus on optimizing the entire
organisation [LSA11].

In 2001 a group of representatives of different agile development methods
met in a ski resort in the Wasatch mountains of Utah to discuss and align on
the meaning of ’agile’ [Hig20]. The result was the ’Agile Manifesto’ which
is considered the first document to explicitly describe and generalize agile
software development. The Agile Manifesto enumerates 12 principles and
the following four values:

¢ individuals and interactions over processes and tools
» working software over comprehensive documentation
* customer collaboration over contract negotiation

* responding to change over following a plan

The four values do not describe an either/or decision between different
options but urge to emphasize more on the values on the left side than on
those on the right side.

The aim of agile development is to continuously build fast deliverable
features of a product with high customer integration, and therefore, to
welcome and receive fast feedback. Consequently, projects can adapt quickly
to changing requirements. Agile methods are frameworks to empower
development teams to organize their knowledge and self-organise their
work.

There are a number of agile software development approaches among
which are: Feature Driven Development [PF02], XP [Bec00], Kanban [HS14],
Lean Software Development [Pop07], Scrum [SB02] and Adaptive Software
Development [HHO2b]. Each approach focuses on different aspects of soft-
ware development [LSA11]. For example, while XP aims at the implemen-
tation of software [BecO0], Scrum is an iterative development process in
project management [SB02].

Since this thesis examines teams that apply Scrum I describe this frame-
work in detail.

2.3 | Agile Software Development 39

2.3.2 Scrum

Schwaber [Sch97] wrote a white paper on the idea of the Scrum frame-
work which he introduced to the Software community during the OOPSLA
conference in 1995. He borrows the word ’Scrum’ from a paper on product
development teams by Nonaka and Takeuchi to build the presented Scrum
framework and states that Scrum is already applied successfully in software
development companies.

The white paper [Sch97] refers to complexity theory and defines Scrum
to be a development process that symbolizes a 'controlled black box’. Scrum
was originally invented for managers to not control development teams
directly, but to build a process framework as a tool for control.

The paper evolved into the Scrum Guide which was published in 2010
and has been revised seven times until 2020 by support of agile practitioners
via a community website [Cor20].

2.3.2.1 The Scrum Framework

Scrum consists of Scrum events, roles and artifacts and is based on common
values and principles [SS20].

Scrum is based on the following values: commitment to reach the common
goals, courage to do what is right, focus on the respective sprint goal, openness
about work and accomplishing it, and respect each other to be competent,
independent people. Teams are said to trust one another.

Scrum divides the product development project into regular short iter-
ation cycles. At the end of each cycle, developers provide a new product
feature to the customer and receive feedback for further improvement. A
single iteration cycle is called ’Sprint’, lasts 4 weeks maximum, and contains
four different types of events: the Planning, the Daily, the Review and the
Retrospective, in respective and repetitive order.

1. The Sprint Planning helps the team to decide what the next product
increment should contain and how the respective goal will be reached
in a self-organised way.

40 2 | Background

2. The Daily serves as a daily meet-up for transparent synchronization
of work progress of the Developers and short agreement on how to
continue the next 24 hours to focus on the committed sprint goal.

3. The Sprint Review is an opportunity for the team to present its progress
to the Product Owner or directly to the customer and for receiving
feedback. It is supposed to be an informal meeting and not a status
report.

4. The Retrospective is facilitated by the Scrum Master and helps the team
to reflect upon what is going well in the team, what needs improvement
and how to do so.

There are different artefacts which allow the team for a maximum of
transparent communication, coordination and synchronization to develop
a shared understanding. The Product Backlog enumerates all features,
functions, requirements, enhancements, and fixes that are needed in the
product and which are defined by the Product Owner. The Sprint Backlog
contains specific items from the Product Backlog. The items describe what
the Developers promise to be the next deliverable features by the end of
one Sprint. Scrum is said to help delivering the highest business value in a
limited scope of time by prioritization.

2.3.2.2 Roles in Scrum

The Scrum Guide does not mention managers and divides the work between
three different roles: the Developers, the Product Owner and the Scrum
Master [SS20]. In the following I will describe each role according to the
Scrum Guide [SS20].

Developers work self-organised and decide independently from the Scrum
Master and the Product Owner how they turn the Product Backlog into deliv-
erable features. A team is cross-functional and consists of dedicated full-time
developers with all the skills needed to create the feature. Despite potential
specialization in testing, architecture, operations or business analysis the

2.3 | Agile Software Development 41

team members are accountable as a team. In this thesis, I use the term
developers, team members and Development Team interchangeably.

The Product Owner is responsible for value maximization for the customer.
The role keeper is responsible for the Product Backlog and related prioriti-
zation. The Product Owner defines the focus for the up-coming sprint and
creates a transparent and common understanding on what needs to be done.
If someone intends to change the Product Backlog or prioritization, the
Product Owner needs to be addressed. This thesis focuses on how the Scrum
Master role is shared between a formal role keeper and the Developers and
refers to the Product Owner as a contextual factor (more in Section 5.2.3.4).

The Scrum Master role is described to serve the organisation, the Product
Owner and the Developers. The role teaches the Scrum method, serves as a
facilitator of the Scrum process and makes sure that the rules and processes
are followed.

The Scrum Master is said to be a true leader instead of a manager and to
replace the traditional project manager. The Scrum Master is assigned an
indirect authority and even though it embodies an assigned role, he or she
has to earn the trust of the Developers by demonstrating true commitment to
the team. The major challenge of this role is to develop from control of teams
to empowering for self-organisation, cross-functionality and a maximum of
productivity.

The role protects the team from interruption during the sprint and re-
moves impediments for the Developers and the Product Owner so that they
can drive development. Additionally the Scrum Master teaches the Product
Owner how to maximize ROI and reach the respective sprint goal through
Scrum. Furthermore, the Scrum Master serves as a change agent to the
organisation and makes the stakeholders understand Scrum. It is the Scrum
Master’s responsibility to fit the Scrum process to the respective organisa-
tional context.

Several studies have examined the role of a Scrum Master while referring
to leadership theories [Béc19; MDD10; SJ17], which is also the focus of this
thesis. I provide a literature review on research on the leadership role of the
Scrum Master in Section 3.2.2.

42 2 | Background

2.3.3 Agile Teams

Scrum teams cannot be automatically labeled as ’agile’. Schwaber [Sch04]
points out that even though a team applies the Scrum framework according
to the book it may still not behave in an agile way. The connection among
people is more important than keeping to a certain process for successful
software development [CHO1]. Therefore, the following sections describe
the human interaction of agile teams.

2.3.3.1 From Traditional to Agile Teams

While traditional project management relied heavily upon planning, docu-
mentation and establishing routines and standards, a complex project with
frequently changing requirements cannot be planned and controlled up-
front [Bon10; BT05; NMMOS5]. Therefore, projects shift from traditional
project management which follows rigid structures and processes to agile
project management which is more flexible, adaptable and customer-oriented
[NMMO5]. Agile software development is based on an organic approach
which can be described by the underpinning believe that problems cannot
be fully understood when they emerge and need social collaboration to be
solved successfully [NMMOS5].

Instead of long-term planning, projects plan in short iteration cycles, and
develop customer-oriented by continuously integrating feedback [NMMOS5].
Continuous team learning helps agile teams to cope with complexity and
frequently changing requirements [VW09]. Learning behavior implies that
individuals interact frequently with each other, share their knowledge openly,
learn quickly from each other, include early feedback from customers and
learn on the job while developing [VWO09]. Thus, agile teams continuously
adapt to new conditions and according to lessons learned [Sch16].

While project members in a traditional setting rather worked in soli-
tary and departmentalised [NMMOS5], agile teams work cross-functionally
within and across (organisational) boundaries [Con09]. Despite cross-
functional cooperation, developers continuously balance specialization and

2.3 | Agile Software Development 43

cross-functionality [HNM12a].

While managers used to assign tasks and roles to individuals, Developers
self-organise their own work, e.g. by picking their tasks voluntarily [CHO1].
Traditional management behavior that plans, decides and controls is consid-
ered to be less effective in a complex product development [B&ac19]. A fast
moving environment requires decision-making on the appropriate level to in-
crease speed of product development and handle customer demands quickly
[MAD12]. Even though several authors claim that the project manager
maintains responsibility for project management duties the role changes
and is supposed to be more of a facilitator who fosters self-organisation of
teams [Tay16; TN86; VWO09].

2.3.3.2 Self-organising Teams

Research on agile teams refers to the concept self-organisation, but also to
other seemingly alike concepts, including autonomy and self-management.

Self-organising teams manage their own work and organize their team
tasks independently [CHO1], while the manager provides the context within
which Developers can work self-organised [TN86]. Managers provide an
environment that facilitates group decision-making, and focus on setting
the boundary conditions and on providing a vision [Bon10; CHO1; MAD12;
TN86].

Autonomous teams define their own goals, make decisions regarding task
allocation and execution and solve their problems independently [LWRJO5].
The effectiveness of autonomous teams is influenced by interference by
management [HP06]. For example, a team may take over more or less
responsibility depending on the rights a team perceives.

Self-managed teams can be defined as “a group of individuals with diverse
skills and knowledge with the collective autonomy and responsibility to
plan, manage and execute tasks interdependently to attain a common goal.”
[p.4; MP18]. Team leadership describes that one or several individuals of
the self-managed team take on leadership activities and is sometimes used
to describe the Scrum Master role [MCDE15; MDD10]. The capability of

44 2 | Background

teams to self-manage depends on the cultural and structural context within
which they operate [MP18].

Table 2.1: Team Types with a High Level of Freedom

Concept Description

Self-organising Teams manage their own work and organize their
teams [CHO1] tasks independently.
Autonomous Teams define their own goals, make decisions
teams [LWRJO5] | regarding task allocation and execution and solve
their problems independently.

Self-managed A group of individuals with diverse skills and
teams [MP18] knowledge with the collective autonomy and
responsibility to plan, manage and execute tasks
interdependently to attain a common goal.
Agile Teams Teams work cross-functionally, self-organised and in
iterative learning loops towards a common goal.

While some authors emphasize the differences between the concepts (e.g.
[OB16]), other authors treat agile teams, self-organised teams, autonomous
and self-managed teams interchangeably (e.g. [MP18]).

I believe that the concepts overlap. Even though the different team types
promise a high level of freedom to organize work independently, the teams
are limited or enhanced by the context within which they are embedded
[DWO03; HP06; MP18]. For example, a compelling vision and high level of
trust by superior management empowers the team to have a common goal,
organize their work accordingly and deliver value [CHO1; HHO2a; HM16].
Furthermore, the concepts predominantly refer to mature teams, while only
a few studies examine how self-organisation can be developed [HN17].

A few researchers describe an agile team to undergo different development
stages until they become a high performing, truly agile team [CHO1; GTF17;
HN17]. Cockburn [CHO1] refers to the Japanese philosophy of Shu-Ha-Ri
and describes Scrum as a maturity model for agile adaption. Shu implies
that teams who are new to the Scrum framework should imitate Scrum

2.3 | Agile Software Development 45

according to the book. Ha describes to gradually develop an understanding
of the underlying reason behind the Scrum ceremonies. Ri expresses that an
individual is now ready to be a teacher of Scrum. This stage may involve
adapting the Scrum framework according to the context. Depending on
the maturity level teams may practice the agile manner differently [CHO1;
GTF17]. Nevertheless, more research is needed that explores how teams can
advance the agile way of working [HN17].

I believe that leadership contributes to understanding how a development
team can develop into a truly agile self-organised team. My objective is to
contribute to research on agile adaption with a specific focus on leadership in
agile teams by investigating the role of a Scrum Master. I believe that the core
aim of the leadership role of a Scrum Master is to enable the Development
Team to work in an agile way while it matures. Furthermore, I suggest that
leadership can be shared between one dedicated Scrum Master and the
Developers.

46 2 | Background

CHAPTER

LITERATURE REVIEW

This thesis aims to contribute to research on leadership in agile teams. The
aim of this chapter is to gain an overview on the literature on leadership in
agile teams and to identify a matter of contribution on the topic.

This chapter is organized as follows: Section 3.1 provides different perspec-
tives on the term leadership and therefore allows for a basic understanding
of leadership as used in this thesis. Section 3.2.1 summarizes literature on
agile leadership, while Section 3.2.2 describes leadership research on the
Scrum Master role in specific. Finally, the findings are discussed critically in
Section 3.2.3 and a topic of contribution is identified.

3.1 Leadership

Leadership has been a heavily explored research topic for more than one
century already [Gri10b]. Even though there is an infinite number of defini-
tions and theories on leadership, there is still no agreement on the essence of
leadership [CLP10; GrilOb; Sto74; Yuk13]. Some perspectives on leadership
strongly disagree on who can be considered a leader, how leadership is
created and what the aim of leadership is [CLP10; Gri10b]. Since leadership

47

is a heavily explored research topic it would exceed the scope of this thesis to
provide detailed information on leadership. This overview only scratches on
leadership to provide background information for understanding this thesis.
Indepth information on leadership concepts and theories can be found in
comprehensive textbooks, e.g. Yukl [Yuk13].

Research differentiates between a manager, a formal and informal leader
and leadership. Even though management and leadership are linked to each
other, most researchers do not consider them to be congruent [Yuk13].

While a traditional manager is often associated with decision-making
power, control, monitoring, planning and coordinating [Col04], a leader is
described to empower individuals to work well together by sharing power
with the team [KW88] and by providing boundary conditions within which
followers can nurture [CHO1]. A formal manager in a complex environment
should show more facets of a leader since complex environments with fre-
quently changing requirements cannot be controlled and organized [Bac19;
NMMO5].

A manager refers to a formal position, while a leader and leadership are
sometimes related and sometimes unrelated to a position and formal author-
ity [KW88]. Even though a leader can be one individual who influences a
follower, a leader can also be or become a follower [Yuk13]. For example, in
one situation person A may be the leader and person B may be the follower,
while in another situation person B may be the leader and person A may be
the follower. Yet, studies on leadership roles without formal authority over
others remain scarce [Bac19; MDK10].

Besides, while most research examines the relationship between a leader
and an individual, research also examines the relationship between an
individual and a team (e.g. [Cha91; MDK09; MDK10]).

In contrast to an individual leader, leadership can be considered as a social
influence process within which anyone in the team can take over leadership
activities [MDK10]. Shared leadership may either mean that anyone in the
team takes on any leadership activity or that certain leadership activities
are linked to defined roles (e.g.[MDK10].).

Furthermore, some authors describe leadership to be a result of social

48 3 | Literature Review

interpretation of reality which derives from the prevalent culture under study
[CLP10]. For example, a development team that is embedded in a culture of
strong hierarchy is used to command-and-control behavior by management
and may not accept empowering behavior [GTF17]. A manager who shares
power instead of commanding followers what to do may be perceived as an
incompetent manager. However, the influence of the context and situation
on the emergence of leadership is often neglected [KMC16].

Moreover, researchers disagree on the definition of leadership. An often
cited quote states that "there are almost as many definitions of leadership as
there are persons who have attempted to define the concept”. [p.7; Sto74].
Most often research defines leadership as social influence process towards a
common goal [Yuk13]. Latest research describes leadership as a collective
social process emerging through the interactions of several individuals often
expressed in complexity theory [UMMO7]. Complexity leadership behavior
claims that outcomes cannot be controlled for in advance anymore, therefore,
are not directly manageable and rather emerge through the interaction of
groups [Béac19].

Nevertheless, there is no right or wrong definition of leadership but defin-
ing leadership depends on the pursued goal of any study [GrilOb]. So
far, there is no definition of leadership in agile teams. I will explain the
perspective on leadership in this thesis in Section 4.2.1.

3.2 Agile Leadership

3.2.1 Overview

In the following I provide a general overview on leadership and agile teams.
I conducted a literature review using keywords related to ’agile’, agile team’
or ’scrum’ in combination with "leadership’, 'leader’, 'scrum master’ on ebsco,
Web of Science Scopus, IEEE Xplore, ACM Digital library, AIS (Association
for Information Systems) eLibrary, Springer Link, and Google Scholar. I had
a thorough look at the titles and abstracts of the results while considering

3.2 | Agile Leadership 49

quality criteria including publisher, reliability, objectivity and validity.

There is a limited number of studies on human behavior in agile soft-
ware development and there is even less research on leadership in agile
teams. While multiple experience reports and theoretical essays narrate
on leadership in agile teams, only a few articles are based on theory and
valid methods. A large majority of the resulting literature is subjectively
written, and provides neither a theoretical background nor a valid method
of data collection. Often the story is based on personal experience and
thus subjective interpretation of the author him- or herself whilst empirical
research on leadership in agile teams remains scarce.

While the majority of the studies is based on qualitative research including
interviews and case studies (e.g. [GL20; SJ17; VW09]), a few studies are
based on quantitative data (e.g. [HK18; Kak17; LLDL15]). Researchers
tend to examine agile teams by mainly interviewing managerial positions,
whereas interviewing team members and Scrum teams in specific remains
scarce.

Despite an increasing interest in the topic of leadership in agile teams in
recent years, scientific literature does not agree upon defining leadership in
agile teams. Agile Leadership depicts a term often referred to by practitioners.
I have not come across any definition of the term agile leadership in research
on leadership in agile teams. Moreover, researchers tend to not define the
term leadership.

The role and perspective on leadership in agile teams differs and there
is no common agreement on who can be considered a leader in an agile
team. The literature research identified several parties who exert leadership.
Most studies focus on a leader who is external to the agile team. An external
leader is for example a superior manager [Pri10; TN86], a project manager
[Bon10; Pri10; VWO09] or a manger who leads several teams [Fis19]. Besides
a formal position, people with the right mind-set and knowledge can help
teams to innovate successfully and, therefore, take on leadership [BTPH17;
HNM12a]. Moreover, coaching is said to be more important than decision-
making, since teams develop expertise in innovation with high uncertainty
and ambiguity [BTPH17].

50 3 | Literature Review

A few authors examine the leadership role of a Scrum Master. Research
categorizes the role contradictory: either one individual role keeper serves
as a facilitator and coach [B&c19; GL20; GTF17] or a team shares leadership
activities [MDKO09]. Moreover, authors describe a shift from one individual
leader to sharing of the role [MDD10; SJ17].

I focus on presenting research on the leadership role of a Scrum Master.
Managers are considered a contextual factor in this thesis and will be further
described in Section 5.2.3.4.

3.2.2 Leadership in Agile Teams

The leadership perspective on the Scrum Master varies among researchers.
I will first elaborate on research that focuses on individuals as leaders and
afterwards outline research that links the Scrum Master to shared leadership.

Bécklander [Béc19] refers to complexity leadership behavior and considers
the Scrum Master to be an enabling leader. Complexity leadership theory
[UMMO7] states that leadership in knowledge-intensive companies that face
complexity need leadership that focuses on outcomes that allow for change,
adaptation and innovation.

Bicklander [Bac19] emphasizes that leadership aims at influencing the
social interaction among individuals and describes the role of leadership to
enable team dynamics for emergent outcomes. Leadership influences team
interaction such that developers create innovative products as a team. This
may also involve influencing the context within which teams are embedded.

The study by Béacklander draws data from a newly established software
company. Since its implementation the role without disciplinary power
had evolved from specifically focusing on the Scrum Method to caring for
team dynamics, being a facilitator and working with an agile mind-set.
The enabling leader aims at improving team dynamics, instead of reaching
a specific team result, and at continuously balancing between providing
a structure, e.g. with the help of the Retrospective, and not providing a
structure, e.g. by being absent. The author concludes that complexity
leadership and team literature are tightly linked together, since enabling

3.2 | Agile Leadership 51

leadership provides space within which team processes, such as team learning
[Edm99; MMRGO8], and therefore adaptive behavior and innovation, can
happen.

The 2017 version of the Scrum Guide characterizes the Scrum Master
to be a servant leader. Servant leadership describes that a leader serves
followers [Gra91]. The relationship between a leader and followers is built
upon mutual caring and trust which is supposed to lead to autonomy and
empowerment of followers [Gra91].

Holtzhausen and De Clerk [HK18] conduct a quantitative study on servant
leadership behavior of a Scrum Master in more than ten different organi-
sations. Their findings illustrate that servant leadership behavior leads to
higher team performance if the Scrum Master is simultaneously the dis-
ciplinary team leader of the respective team. A Scrum Master without
disciplinary power who demonstrates servant leadership is found to be less
effective.

A study on group development of agile teams [GTF17] refers to situational
leadership theory which derives from the contingency stream. Contingency
theory suggests that the situation influences the effectiveness of a leadership
style [Fie67]. While the original theory by Fiedler claims that an individ-
ual cannot change the personal leadership style and should therefore be
selected depending on the situation, Gren et al. [GTF17] refer to the further
development by Hersey et al. [HBJO7] who coin situational leadership and
describe that the leader should change behavior if the followers develop.
Thus, the Scrum Master behavior should adapt to the maturity stage of a
team. Gren et al. [GTF17] speculate that a rather immature team needs
structure and order to organize themselves. They mention agile leadership
which they describe as facilitation by the Scrum Master. They speculate
that an immature team will not accept agile leadership behavior, while a
mature team is able to self-organise which allows the Scrum Master to step
back [GTF17]. An additional study builds on this idea and provides further
support for the claim that leadership behavior adapts to group maturity
[GL20]. Moreover, data reveals that leaders adapt their behavior to company
specific culture and structure [GL20].

52 3 | Literature Review

In contrast to the aforementioned perspective on the Scrum Master be-
ing linked to one individual leader, other authors [MDD10; SJ17] refer to
leadership sharing between one dedicated individual and the whole team.

Moe, Dingsgyr, and Dyba [MDD10] refer to team leadership from research
on self-manged teams to describe the Scrum Master. They explore teamwork
challenges of a newly established Scrum team over a period of nine months
and discover that one dedicated Scrum Master took over a team leadership
role most of the time. The formally appointed person even reduced self-
organisation of the team by starting to control team members. Therefore,
team members stopped revealing their impediments which resulted in weak
team leadership and lack in trust. However, the authors acknowledge that
while the team matured, team members started to take on more responsibility.
Moreover, the authors state that teams need management support and
resources to grow into self-organisation.

Srivastava and Jain [SJ17] provide a leadership framework of the Scrum
Master role in locally distributed teams that had been working in an agile way
for three years on average. They refer to super leadership [MS87] which also
derives from research on self-managed teams. Super leadership describes a
Scrum Master to enable a team to lead itself. They conclude by suggesting a
rotational leadership role of a Scrum Master which is shared among team
members depending on the situation. Also Moe et al. [MDK09] describe
rotating leadership depending on knowledge, skills and capabilities. They
further propose that the team needs a team leader who designs the team
and manages the boundaries of the team.

3.2.3 Discussion of the Literature

Despite an increasing interest in leadership in agile teams, research with
valid methods and theoretical underpinning remains scarce. Even though
a lack in appropriate leadership was often found to decrease agile team
performance [CHO1; HM16; HN17; MAD12] a shared understanding on
what leadership in an agile context denotes is yet missing [Den15]. Until
today, no one measured nor defined agile leadership successfully. Thus, there

3.2 | Agile Leadership 53

is more research needed examining focus topics of leadership in agile teams
while referring to scientific literature.

This thesis focuses on leadership in agile teams using the example of
the Scrum Master. The scarce empirical findings reveal contradicting re-
sults on the Scrum Master role. While some authors refer to the Scrum
Master as an individual leader [Bac19; GL20; GTF17; HK18], others link
the role to shared leadership [MDD10; MDKO09; SJ17]. Some authors de-
scribe that a Scrum Master struggles with command-and-control behavior
while developers neglect to take on leadership responsibilities [NRBB17;
SMD11]. Consequently, researchers still struggle with the inherent paradox
of leadership in a team that is actually supposed to be self-organising. Thus,
leadership in agile teams is not yet sufficiently understood.

Some authors refer to a changing leadership role by referring to team
maturity. Gren et al. [GTF17] refer to situational leadership and state that
an immature team needs more command-and-control behavior by a for-
mal leader while a mature team rather needs agile leadership. Yet, even
though situational leadership provides a feasible explanation, this theory still
assumes that there is an individual leader guiding the Developers. Hence, de-
scribing a leader-follower relationship. Likewise, an enabling leader [Béc19]
and a servant leader [HK18] refer to leader-follower relationships and do
not provide answers how shared leadership responsibilities emerge.

Moe et al. [MDD10] refer to team leadership from research on self-managed
teams to describe sharing of the leadership role by one dedicated Scrum
Master and the Developers over time. Likewise, Srivastava and Jain [SJ17]
use the concept super leadership from research on self-managed teams to
describe the rotational Scrum Master. However, the authors do not describe
how team leadership evolves while the team matures.

My aim is to explore and portray the characteristics of leadership in
immature as compared to mature teams and to describe how leadership
changes. I believe that the Scrum Master plays diverse leadership roles which
can be transferred from one individual to distinct team members during the
maturity journey.

I intend to explain the changing Scrum Master by integrating research

54 3 | Literature Review

from self-managed teams into research on agile development teams. I do
not only refer to team leadership as Moe et al. [MDD10] and Srivastava and
Jain [SJ17] but additionally refer to role theory. Role Theory is also used to
explain leadership in self-managed teams [Yan96; ZAMO9]. Besides inte-
grating existing research on leadership in self-managed teams to leadership
in agile teams, I build new theories to explain how a team can adapt the
agile manner.

Furthermore, this study follows the suggestion by Crevani [CLP10] who
states that research on leadership should take the culture into account.
Backlander [Bac19] conducts her study in a start-up environment, while
this thesis collects data in established companies. Established companies
are based on hierarchical culture and departmentalised structures deeply
imprinted in the organisation which influences the way leadership unfolds
in real company setting [GL20]. Teams may struggle to share leadership
while leaving departmental silos and hierarchy behind. Research related
to self-managed teams refers to contextual factors that influence the self-
managing capability of a team [MP18]. However, also research examining
agile teams refers to the influence of the context [GBS+16; GL20; HM16;
MAD12; NMMO5]. I explore in which way the context influences developers
to take on leadership roles.

How a team can learn to work in an agile self-organising way is still left
unexplained. I aim to contribute to research on agile teams by focusing on
leadership. To the best of my knowledge, the theoretical suggestion of a
changing leadership role while the team matures [GTF17] has never been
empirically tested. Despite referring to self-organised teams most research
describes an individual to be the leader of the agile team. This thesis aims to
provide empirical support that leadership evolves while the team matures in
such a way that leadership activities are shared between the Scrum Master
and the Developers over time.

To add to literature on human behavior in agile development I refer to team
leadership, role theory, maturity and contextual factors. These theoretical
streams help us explain how leadership activities shift from a dedicated
Scrum Master to the Developers while the team matures. Research on self-

3.2 | Agile Leadership 55

managed teams provides a valuable opportunity to contribute to leadership
in agile teams.

While empirical data on the Scrum Master is often missing or merely
based on single case studies, I provide qualitative and quantitative data
from multiple teams operating at different companies of one conglomerate.
Besides qualitative data I provide quantitative data to increase scientific
proof of our concept.

Scarce research refers to existing body of knowledge from leadership
literature and to empirical data to explain the Scrum Master role. Scientists
call for more research on team leadership in agile teams that are by definition
self-organised [SMD11]. This research tackles this call for action with the
objective to: (a) integrate team leadership and role theory to research on
human behavior in agile software development, (b) describe the changing
Scrum Master role, (c) provide empirical data, (d) contribute to a better
understanding on leadership in agile teams to advance research on human
behavior in agile development research.

56 3 | Literature Review

CHAPTER

THEORY SELECTION AND
THEORY BUILDING

While leadership is sometimes found to be centred on one individual, the
role is also described to be shared among one individual and the agile
team. This thesis aims at exploring the controversial empirical findings on
leadership in agile teams. The key message of my concept postulates that
leadership evolves while the team matures. I intend to explain the changing
leadership role by combining research on the Scrum Master from the agile
software community with role theory and research on team leadership in
self-managed teams.

Section 4.1 elaborates on literature that is used to build the theory in
Section 4.2. After an introduction to team leadership several team leadership
concepts from research on self-managed teams are explained in Section 4.1.1.
Subsequently divers perspectives and concepts related to role theory (Section
4.1.2) and maturity (Section 4.1.3) are illustrated. Moreover, agile team
features (Section 4.1.4) and contextual factors (Section 4.1.5) that influence
agile teams are described.

57

Section 4.2 expands Section 4.1 and builds the theory on the changing
Scrum Master role which emerged through the Grounded Theory study
reported in Chapter 5. First, the general perspective on the leadership
role of a Scrum Master is explained in Section 4.2.1. By relating to team
leadership, role theory and agile team features Section 4.2.2 describes nine
distinct leadership roles. Furthermore, Section 4.2.3 elaborates on the role
transfer process by relating to maturity. Moreover, the Section refers to the
factors influencing the role transfer labeled internal team environment and
contextual factors. Section 4.2.5 builds a bridge between contextual factors
and agile team features by describing the Agile Matching Theory.

I therefore integrate literature on self-managed teams into research on
agile software development teams to provide a leadership model that is
applicable unrelated to a specific framework such as Scrum.

4.1 Theory Selection

4.1.1 Team Leadership

Agile software development research refers to literature on team leadership
from self-managed teams to explain leadership in agile teams [MDD10;
SJ17]. Yet, the research that refers to team leadership to describe an agile
team only cites a few studies from team leadership literature. I believe that
there are more studies in team leadership literature that help us explain
agile teams. In the following I refer to the concepts that contribute to
understanding leadership in agile teams and that will be used to explain our
conceptual model.

Until today self-managed teams have been implemented in various settings
reaching from coal mines [TB51], to assembly lines [MS87], to software
projects [MDD10]. While self-managed teams have been studied across
various contexts, one recurring research topic relates to the role of leadership
in a team that is by definition self-managed. Researchers have provided
different leadership concepts to answer the research question.

The concepts differentiate in who is considered a leader, and how and in

58 4 | Theory Selection and Theory Building

which way leadership exerts influence. Some concepts describe that the team
leader has disciplinary power over the team [DWO03; MS87], while others
describe that the leader is a peer to the team [Bar93]. Traditional views on
team leadership suggest that a formal leader exercises power and authority
over the team, thus, is considered to be a position within hierarchy [DWO03;
MS87]. For example, this can be a stage setter who sets the overall direction,
and designs the team constellation and its context [HHO02a]. Latest research
on team leadership suggests that leadership is unrelated to a formal position
and that anyone with the right set of skills may take over a leadership role
in a team [MDD10]. Moreover, some concepts relate to the idea that the
team may take over leadership activities that were formally done by one
dedicated leader [DW03; MDDQ9].

I believe that the different concepts from team leadership literature help
us understand the Scrum Master role, and I will therefore elaborate on them
in detail in the following.

Manz and Sims [MS87] describe an un-leader who displays super-leadership
[Cha91] which empowers others to lead themselves. Manz and Sims explain:

"Our position is that true leadership comes mainly from within a
person, not from outside. At its best, external leadership provides
a spark and supports the flame of the true inner leadership that
dwells within each person. At its worst, it disrupts this internal
process, causing damage to the person and the constituencies
he or she serves." [p.18; Cha91]

Manz and Sims coin the term super leadership. The essence of this concept
is that the formal leader disenchants the capability of the people surrounding
her or him. The leader’s inner balance is based on strong self-leadership and
high moral standards. Furthermore, the leadership behavior focuses on four
common goals: (1) creating environments that support positive attitudes, (2)
empowering employees to set personal goals, (3) encouraging observation
and feedback amongst subordinates, (4) stimulate teams to support and
motivate each other. The authors state that the dedicated leader becomes
obsolete over time and suggest six encouraging behaviors that enable a

4.1 | Theory Selection 59

team to lead itself: self-goal setting, self-criticism, self-reinforcement, self-
expectation, rehearsal and observation/evaluation [MS87].

Besides the formal leader who supports the team to lead itself, Manz and
Sims [MS87] suggest a facilitator within the team. The role is an additional
team member and thus considered to be a peer. The facilitator helps the
team to organize itself and to coordinate job assignments. Furthermore,
the role makes sure that the team has access to all materials needed for
conducting the work.

Another study on self-managed teams points at the emergence of destruc-
tive team values in the absence of a formal leader [Bar93]. A longitudinal
observation of self-managed teams revealed that some team members would
overrule other team members and created a toxic team atmosphere. There-
fore, the team voluntarily agreed upon implementing a facilitator who served
as a neutral observer and mediator among different individuals and sub-
groups. This person served as a peer to the team members and helped the
team to have cooperative discussions. [Bar93]

This role was responsible to coordinate material with other departments,
handle requests of the formal group leader on behalf of the team, deliver
meetings and track production errors. Furthermore, the hiring process for
the new facilitator was as follows: firstly, the team nominated potential
facilitators. Secondly, the team and the group leader would interview the
person. Thirdly, they would decide together whom to chose. Moreover,
the role was linked to an increase in salary but not in hierarchical position.
[Bar93]

Druskat and Wheeler [DWO03] examine a leader who is responsible for
the performance of a self-managed team. They discover that the leader is a
boundary spanner who serves as a mediator between the organisation and
the team. The authors identify 11 leadership activities which they cluster
into four different broader categories. (1) building political awareness and
team trust, (2) seeking information from managers, experts and peers while
diagnosing team behavior and problems, (3) obtaining external support and
influencing team behavior, (4) empowering teams by delegating decisions
and coaching teams. Their conclusion suggests that the dedicated leader

60 4 | Theory Selection and Theory Building

should hand over the leadership activities to the team over time. By doing
so, the committed leader releases capacity and thus can take care of more
teams.[DWO03]

While the boundary spanner enumerates coaching as one facet of a team
leader, other authors elaborate on team coaching indepth [HWO05]. Coaching
refers to helping a team to help itself develop further. This approach implies
to observe group behavior and provide feedback on what impedes teamwork.
Furthermore, the coach helps the team to critically reflect upon changing
team behavior and discussing on patterns for improvement. The team must
be open to coaching and therefore, the coach must carefully pick the right
timing to do coaching [KGM+96]. The team coach should use specific
meetings within which the team and the coach review the team’s purpose,
current progress and matters for improvement.

Table 4.1: Leadership Roles Empowering Self-Managed Teams

Role Description
Un-Leader [MS87] A leader who empowers a team to lead itself.
Facilitator [Bar93] A neutral person in the group who empowers

the team to develop a supportive team climate.

Stage Setter [HHO02a] | A leader who sets goals and provides the
framework within which teams cooperate
towards a common goal.

Boundary Spanner A team leader who mediates between the

[DWO03] organisational level and the team.

Team Coach [HWO5] | A team leader who helps the team to develop
itself further.

4.1.2 Role Theory

Role theory can be considered from a static and dynamic perspective. The
static lens describes a set of roles that are shared within a team or that
are embraced by one individual while dynamic role theory describes that
the distribution of roles varies depending on the maturity of the team. In

4.1 | Theory Selection 61

addition, roles are either shared between self-organising team members or
a set of different roles are embodied within one individual leader.

Quinn [Qui88] uses the competing values framework to describe how
a manager embodies two paradoxical roles in order to succeed. A leader
must be task oriented to achieve certain goals on the one hand, and must
be people oriented by taking care of the employees on the other hand.
These two roles constantly challenge the inner balance of a manager. Quinn
et al. [QFTM90] build on this idea and suggest eight different leadership
roles (Mentor, Facilitator, Innovator, Broker, Producer, Director, Coordinator,
Monitor) located in four competing quadrants (relating people, leading
change, producing results, managing processes).

Zafft, Adams, and Matkin [ZAMO09] examine these competing roles for self-
organising teams in relation to team performance. They conclude that teams
that share self-organising roles more broadly show higher performance than
teams in which leadership roles are rather centred on one individual team
member. Yet, they measured distribution of leadership roles at the end of the
project and acknowledge that leadership roles may be distributed differently
depending on the project stage. Yang [Yan96] adopts a dynamic perspective
and finds that those eight roles vary according to the development stage of
a team. She suggests that the roles of monitoring and coordinating may be
replaced by team norms after a while.

Hoda, Noble and Marshall [HNM12b] discover six different self-organising
roles (Mentor, Coordinator, Translator, Champion, Promoter, and Termina-
tor) and describe that mature teams tend to share those roles more broadly
within the team than immature teams. While immature teams rather stick
to formal role keepers, the roles can be transferred to other team members
with the fitting skill set in more mature teams. Barke and Prechelt [BP19]
refer to the importance of role clarity among team members, e.g. shared
expectations, for taking on roles. An insufficient understanding of roles in
teams leads to role conflicts.

In this thesis, I build a bridge between one dedicated role keeper and role
sharing while taking maturity and role conflicts into account.

62 4 | Theory Selection and Theory Building

4.1.3 Maturity

Team literature research differentiates between static and dynamic team-
work models. While a static perspective refers to teams that are stable and
have successfully reached a constant mature stage, the dynamic approach
assumes that a team undergoes different maturity stages. This study refers to
dynamic teamwork models since I believe it helps us to explain the changing
Scrum Master.

There are several dynamic teamwork models. For example, Gersick
[Ger89] and Ginnett [Gin19] suggest the first meeting to be decisive for the
further collaboration of a team. Still others suggest an iterative approach
wherein the team continuously revolves between different phases [MMZ01].
Agile teams are linked to the forming-storming-norming-performing model
by Tuckman [Tuc65].

An agile team transfers through the different maturity stages until it
evolves into a truly agile team [GTF17]. Therefore, developers practice the
agile way of working differently over time. Through situational leadership
theory, Gren et al. [GTF17] suggest that a rather immature team needs
structure and order and that it will not accept agile leadership behavior
whereas a mature team is able to self-organise better which allows the
Scrum Master to step back.

The forming phase suggests that team members focus on a leader who sets
ground rules for further cooperation [Tuc65]. Team members are insecure
about how to behave, and they search for opportunities to observe expected
behavior. In this stage, agile teams are suggested to be more open towards
leadership that is centred on one person [GGJ19]. The storming phase
often involves role conflicts due to a lack in unity and security [Tuc65].
Performance often drops in this stage [KS15]. The norming phase helps
teams to increasingly understand and agree on how to work in an agile way
[GGJ19] and to build a shared understanding of roles and responsibilities
[NW99]. Team performance increases in this phase [KS15]. The performing
stage describes a high performing team in which the team members play

4.1 | Theory Selection 63

roles flexibly according to the situation [Tuc65].

Furthermore, the Retrospective is a tool that helps the team in developing
maturity [GGJ19].

Based on previous research, I differentiate between mature and immature
teams and suggest that leadership activities are rather centred on the dedi-
cated Scrum Master in an early team stage while in mature teams developers
also take on leadership activities.

4.1.4 Agile Team Features

Agile teams are described along the core features iterative learning, cross-
functionality and self-organisation [Con09; TN86] each containing several
sub-features. To explain the characteristics, studies often refer to theories
from psychology, social-psychology or organisational studies.

The first core feature is team learning. Team learning describes the learning
behavior of agile teams by delivering feedback to each other, sharing informa-
tion openly, providing support to each other, and learning from failures and
experiments [Edm99; TN86]. Team learning involves the two sub-features
shared mental models [[WWO1] and psychological safety [Edm99]. Shared
mental models means that members can place communication of fellows
into the appropriate context and thus receive and interpret communication
similarly. Psychological safety describes an environment within which team
members feel safe to talk openly with each other. Talking openly results in
shared learning experiences.

The second core characteristic is cross-functionality. Nonaka and Takeuchi
[TN86] emphasize that cross-functional project teams are not built by ex-
perts but rather by people that have access to all kind of different knowledge
of different hierarchical layers while they learn on the job. Even though the
team works cross-functionally, individuals still have specializations and con-
stantly aim to find a balance between cross-functionality and specialization
[HNM12a]. Cross-fertilization describes that agile teams incorporate differ-
ent specializations regarding cognition, behavior and personalities [TN86].
Even though there may be specialized skills within a team, all team members

64 4 | Theory Selection and Theory Building

must feel responsible since agile teams are team oriented [MDD10].

The third core characteristic is self-organisation which implies that teams
divide tasks among each other based on needs, fit and self-assignment
[HNM12b], make fast decisions towards a common goal [CHO1; Hig09;
TN86] and monitor themselves [MDD10]. While agile teams own a high
level of freedom, they feel responsible to deliver value [HNM12a].

I claim that the core goal of agile leadership is to enable the Developers
to evolve the agile team features.

4.1.5 Contextual Factors

Despite self-organisation, teams still commit to local rules [VW09]. Develop-
ment teams are embedded into the organisational context which influences
their capability to work in an agile way [HB13].

Magpili and Pazos [MP18] provide a literature review on contextual
factors influencing self-managed teams. They enumerate the following
success factors: corporate culture showing facets of a learning organisation
[GEGO08], collectivistic national culture [NLB99], clarity on organisational
goals [Wag01; Wag97] including high feedback on performance [GCD+16],
team-oriented and flat organisational structure [BBCL16], all kind of training,
access to resources depending on the team’s need [HNM12b; ICLG02] and
team rewards and social incentives [Wag97]. For a detailed description,
please refer to Magpili and Pazos [MP18].

Management is predominantly in charge of setting the context, and thus,
the capability to self-organise work depends heavily upon management sup-
port [HB13; HHO02a; TN86]. Instead of focusing on individuals a manager is
expected to set the context within which teams can work self-organised and
take over responsibility [CHO1; DWO03; TN86]. Setting the boundary con-
ditions involves providing money, moral support, challenging requirements
and a compelling vision [TN86].

Additionally a manager is described to be a guide who inspires the team
[CHO1] and does not rely on formal authority [Bon10]. Moreover, the
manager does not provide solutions to the team but is open towards an

4.1 | Theory Selection 65

inspect and adapt approach by the Developers [Hod13; TN86]. This requires
that the manager demonstrates a high level of trust in people to do a good
job [Bec00; CHO1; HHO2b; Hod13; MAD12].

Despite the influence of organisational context on agile teams scarce
research takes the context into consideration when examining agile team
behavior [CHO1; GBS+16; HN17]. I explore in which way bureaucratic
features influence Developers to take on leadership roles of one dedicated
Scrum Master.

4.2 Theory Building

This thesis aims at exploring changing leadership in agile teams using the
example of a Scrum Master. I combine the above-described literature on
team leadership, role theory, maturity and contextual factors with research
from agile software development to explain changing leadership in agile
teams.

4.2.1 Perspective on Leadership

Before I outline my theory on changing leadership in agile teams I specify
my leadership perspective on the Scrum Master in the following.

The dedicated Scrum Master is considered to be a leadership enabler who
follows the core goal to enable Developers to work in an agile way and to
take on leadership roles themselves [SSne]. The ’agile way’ is described
by the agile team features iterative learning, cross-functionality and self-
organisation. Therefore, the Scrum Master does not aim at a specific quantity
or quality of output but supports a team in developing the agile team features
[Béc19]. A team that embraces the agile way of working is a high-performing
and, thus, an effective team [GTF17]. However, I do not denote that certain
leadership responsibilities remain with one leader but that the leadership
roles shift from one person to another depending on the situation [MDK09].

Applying role theory the Scrum Master is divided into a set of nine distinct
leadership roles. I use team leadership to explain that the nine roles can be

66 4 | Theory Selection and Theory Building

played by one dedicated Scrum Master but also by the team. Therefore, I
suggest that anyone in the team may take on the Scrum Master behavior
[MDKO09; SJ17]. The role sharing of the nine leadership roles is summarized
in the 9-Factor Theory.

I refer to maturity and suggest that the Scrum Master role is located
within one dedicated leader in an immature team, but shared between one
individual and the Developers in a more mature team. Consequently, I argue
that leadership is a fluid concept that evolves over time while the team
matures. Yet, I suggest that a team will only take on leadership roles if it
is embedded in a supportive organisational environment. Thus, I take the
context within which leadership emerges into account [CLP10].

The conceptual model is described as follows: Firstly, I will describe the
nine different roles of a Scrum Master by referring to role theory and team
leadership literature. Secondly, I describe the role transfer from the Scrum
Master to the Developers by referring to the maturity model by Tuckman
[Tuc65]. Thirdly, I elaborate on the enablers of the role transfer on internal
team environment by referring to agile team features and on hindrances of
the role transfer on organisational level by referring to contextual factors.
These enablers result in the Agile Matching Theory which implies a required
match between the internal team environment and the contextual factors
for the materialization of the role transfer.

4.2.2 9 Leadership Roles

I apply role theory and propose a set of nine leadership roles of the Scrum
Master which are gradually transferred to the Developers. I summarize this
proposition as the 9-Factor Theory.

Each role aims at stimulating particular agile team features. In the fol-
lowing I will describe the roles in detail. I structure each role description in
the following way: Firstly, I refer to features of an agile team as specified in
Section 4.1.4. Secondly, I link each role description to existing research on
self-managed and agile teams, while also discovering new roles, and outline
how each role helps the team to develop the respective agile team features.

4.2 | Theory Building 67

4.2.2.1 Method Champion

Agile methods support teams to work well together. Even though the Scrum
framework may help a team to work in an agile way, Scrum is not always
beneficial in every team setting. Therefore, the team needs support in finding
the appropriate method for a specific context [MAD12; MDKO09].

I propose the Method Champion who is responsible for the implementation
and application of the Scrum Method. The role not only focuses on the
Scrum Method but also brings other new methods to the team that foster
collaboration. On the one hand the role keeper adapts the Scrum method to
the specific team context, on the other hand he or she also realizes when
the Scrum approach is not the most fitting one regarding the context.

4.2.2.2 Disciplinizer on Equal Terms

Members and managers of agile teams are peers and treat each other un-
related to title or position [HNM12b]. This encourages developers to talk
on equal terms with each other and to suggest their own ideas. While re-
ceiving a high level of freedom, individuals show commitment to achieve
the Sprint goal [HNM12a]. Developers focus on their respective tasks and
reveal discipline [SMD11].

I suggest the Disciplinizer on Equal Terms who helps the team to focus on
respective tasks and stops developers from multi-tasking. It is important to
not force the team to focus by referring to hierarchical power, e.g. by asking
for status reports, since the facilitator is a peer to the team members [Bar93;
MS87; TN86]. The role keeper communicates on equal terms with the team
members while supporting the team to create a hierarchical-free space.

4.2.2.3 Team Coach

Developers learn continuously while developing product features and team
members provide feedback to each other while they mature [TN86].

Team coaching is described to be an enabler for self-managing teams
[WagO1] but also for agile teams [Bic19; MCDE15; PGN14]. The coach

68 4 | Theory Selection and Theory Building

helps developers to constantly develop themselves further by setting triggers,
such as asking the right questions at the right time [KGM+96], and by
encouraging for self-criticism, observation and feedback delivery [MS87].
The Coach helps to identify what is missing in the team and provides feedback
on how to develop further. Particularly an immature team that aims to
become self-organised needs a supportive coach [MP18; Wag97].

4.2.2.4 Change Agent

Developers continuously challenge the status quo and find new ways of
getting work done [TN86]. Furthermore, implementing agile methods is a
change project [HN17]. Team members who had not been working in an
agile manner before, need to learn what it means to work in an agile way.
Particularly teams that are embedded in a bureaucratic environment are
used to a rather traditional way of working and may have to change habits.

Change Agents are critical roles during the agile team transition [PGN14].
The Change Agent convinces teams of the agile way of working and serves as
arole model. The developers learn the agile manner by observing the Change
Agent and imitating this behavior. Therefore, it is especially important at
the beginning when implementing agile teams. While the team matures
individuals become more and more convinced of the agile manner, hence
the Change Agent is played to a lesser extend.

4.2.2.5 Helicopter

Developers tackle complex projects, which implies that one individual cannot
understand how all matters of the project are linked to each other. Therefore,
they need to build shared mental models [[WWO01] of each others compe-
tences and skills to understand in which way tasks are interdependent. This
allows them to plan and divide their work among each other according to the
team needs and personal fit [HNM12a]. In order to be able to self-organise
and make fast high quality decisions towards a common goal [CHO1; Hig09;
TN86], team members need to develop a cross-functional understanding of

4.2 | Theory Building 69

the overall project.

Manz and Sims [MS87] refer to a facilitator who supports the team to
organize itself and coordinate job assignments. I suggest the role of a
Helicopter who empowers the Developers to understand how to work cross-
functionally as a team and how different issues are interdependent. Team
members learn who possesses which knowledge, whom to approach and
whom they should hand over a task if they have finished it and need someone
else to continue working on it. Moreover, they can plan their work together
and feel responsible for the product as a whole.

4.2.2.6 Moderator

Agile teams work cross-functionally which implies varying cognition, behav-
ior and personalities [TN86]. This may involve different domain languages,
working habits and interests regarding technical issues and may cause a lack
in understanding each other. Therefore, some authors take the capability of
a cross-functional team to self-manage work into question [CB97; Yuk13].
Furthermore, self-managed teams tend to establish destructive team values
[Bar93]. In order to work cross-functionally, developers need to understand
each other’s skills, capabilities and working habits [MDKO09].

I refer to the idea of a facilitator of discussions [Bar93] and suggest the
role of a Moderator who helps the team to build a bridge between different
domains. The role keeper mediates between individuals, e.g. translating
domain language, and between different point of views which may refer
to technical issues but also to personal matters. Therefore, the Developers
learn to understand each other properly and thus work cross-functionally as
one team while they mature.

4.2.2.7 Networker

Even though an agile team is cross-functional, it does not contain all expertise
needed within one team but has access to all competences needed [TN86].
The agile team connects to external parties depending on specific Sprint

70 4 | Theory Selection and Theory Building

goals.

Former studies found that the team leader of self-managed teams serves
as a boundary spanner between the organisation and the team [DW03] and
makes sure that the team has access to all required materials and knowledge
from the organisation [Bar93; Cha91]. Based on these findings I propose the
Networker. This role helps developers to connect with relevant stakeholders
outside the team. However, unlike Druskat and Wheeler I do not suggest that
the Networker should be assigned to one individual but anyone within the
team can provide the personal Network and can approach experts outside
of the team - unrelated to status, title and position - within an organisation.

4.2.2.8 Knowledge Enabler

Agile projects often tackle new challenges which require an inspect and
adapt approach and learning on the job [TN86]. Therefore, developers
learn iteratively [TN86] and apply team learning [Edm99]. Since developers
balance continuous learning and iteration pressure they take time for learning
but also realize when to stop acquiring new knowledge on a topic [HNM12a].

I suggest the Knowledge Enabler who supports and reminds the Develop-
ers of team learning [Edm99] and of transparent knowledge sharing. For
example, the Knowledge Enabler encourages learning sessions for sharing
knowledge openly with colleagues and for learning from each other. Also
the role helps teams who are used to a rather traditional way of learning,
e.g. learn with the help of a book, to a more unconventional way of learning,
e.g. using github or attending meet-ups.

4.2.2.9 Protector

Developers have a high level of freedom to organize their work [HNM12a]
and monitor themselves [MDD10]. They need interference-free space to
focus on their respective Sprint goals [SMD11]. Therefore, the team needs
a Protector who shields the Developers from disrupting and unreasonable
requests [HM16; SMD11]. Moreover, I suggest that the Protector creates

4.2 | Theory Building 71

hierarchical free space in which developers can take on the other leadership
roles. I label this space leadership gap and will describe it further in Section
4.2.3.

4.2.2.10 Summary

This thesis aims to integrate team leadership literature into research on
leadership in agile teams. I have broadened the suggestion by Moe et al.
[MDD10] and investigate team leadership in agile teams by referring to
more research from team leadership literature. While I explain some of the
roles by referring to team leadership not all of the roles can be described by
already existing concepts from team leadership literature. In the following
I recapitulate the link between each leadership role and existing body of
knowledge and which further roles I suggest.

I link the Networker to the Boundary Spanner [DWO03] and facilitator
[Bar93; MS87], the Coach to several suggestions on coaching behavior
[DWO03; Wag01], the Disciplinizer on Equal Terms partly to the idea of a
person serving as a peer to the team [Bar93; TN86], the Helicopter partly
to the facilitator [MS87] and the Moderator to the idea of a mediator and
neutral observer [Bar93].

I identify further roles related to the Method Champion, Change Agent,
Knowledge Enabler and Protector, which have, up to my knowledge, not
yet been discovered in research related to self-managed teams. However,
research on leadership in agile software development teams has already
referred to the Change Agent [Bic19; PGN14], the Protector [HM16] and
implicitly to the Method Champion [MAD12; MDKO09]. I suggest the Knowl-
edge Enabler as a new role.

I therefore propose the following nine leadership roles:

1. Method Champion: Organises meetings and get-togethers, teaches
the method, supports formulating tasks and setting goals, visualises
information, and discusses how to adapt the method during the Retro-
spective.

72 4 | Theory Selection and Theory Building

. Disciplinizer on Equal Terms: Supports the team to keep to the rules,
ensures that the team focuses on relevant topics and makes sure that
team members attend the meetings. Discipline is accomplished via
communication on a par.

. Coach: Observes team members and uncovers which kind of behaviour
is missing in a team to improve teamwork, provides feedback, and
helps teams to find out what they wish to change and how to do so.

. Change Agent: Serves as a role model, changes habits, and convinces
newly established project teams of the agile way of working.

. Helicopter: Possesses the ability to see the bigger picture, to know
who possesses the right skill for a certain task, to include relevant
stakeholders and to structure work.

. Moderator: Moderates all kind of meetings and builds a bridge between
perspectives and domains.

. Networker: Connects the team with relevant stakeholders from within
and outside the organisation.

. Knowledge Enabler: Realises which kind of knowledge the team needs,
supports team members to acquire that knowledge and promotes
iterative learning.

. Protector: Shelters teams from inappropriate requests from the Product
Owner, managers, disciplinary leaders and other departments.

4.2.3 The Role Transfer Process

Several authors refer to a changing Scrum Master in such a way that the

primary objective of a Scrum Master is to transfer leadership activities to the

Developers over time [MDD10; SJ17]. Furthermore, a number of authors

claim that leaders of agile teams need to demonstrate more monitoring at

early stage, but can delegate tasks at a later stage of team development
[Kak17; LLDL15]. Gren et al. [GTF17] states that depending on the maturity
level of a team, team members tend to adapt agile working differently and

4.2 | Theory Building 73

Figure 4.1: The three steps of the role transfer process.

demonstrate : support if
> Scrum Master > role > leadership gap > needed

!

> Developers > observe role > Sﬁém and grant > play role

)

that leadership should adapt accordingly. Yet, up to our knowledge there is
no indepth research that describes how the leadership role changes and in
which way leadership activities are transferred to the Developers.

This thesis builds on former studies [GGJ19; MDD10; SJ17] by referring to
maturity to explain the changing Scrum Master. I use a dynamic leadership
model and suggest that the nine roles of the Scrum Master are shared
differently depending on the maturity stage of a team. While the above-
mentioned nine leadership roles are rather centred on one dedicated Scrum
Master in an immature team, the roles are rather played by the Developers
in a more mature team.

I describe the changing Scrum Master along three consecutive steps which
I label the role transfer process (figure 4.1). The core element of the role
transfer process is the leadership gap which empowers the Developers to
take on leadership roles themselves. The consecutive steps are as follows:

Firstly, the Scrum Master demonstrates the leadership roles while the team
observes the behavior and learns its meaning. Secondly, the Scrum Master
steadily steps back from leadership responsibilities and therefore provides a
leadership gap. The leadership gap describes a hierarchical free space within
which any team member is allowed to take on a leadership role if it makes
sense in a given situation. The Developers jump right into the leadership gap
by starting to claim leadership roles while the respective colleagues grant
the person to be the new role keeper. In the last step, the Scrum Master
performs leadership roles only where still needed whilst the Developers play
most of the Scrum Master roles themselves.

After a while most of the roles are played by whoever feels committed,
capable and responsible to take over the role in any given moment. Thus,

74 4 | Theory Selection and Theory Building

I claim that leadership roles can be shared between a formally appointed
Scrum Master and the Developers depending on the maturity level.

4.2.4 Factors influencing the Role Transfer

There are enablers and hindrances that influence the role transfer process.
I refer to the internal team environment as an enabling factor and to the
contextual factors as a hindering aspect in a rather bureaucratic setting.

4.2.4.1 Internal Team Environment

I propose that the role transfer process is fostered by the internal team
environment which is composed of the following features: being on equal
terms, psychological safety [Edm99], transparency, shared mental models
[LWWO01], team orientation [MDD10], team potency [GYCS93] and moni-
toring themselves [MDD10]. The following enumeration describes how each
of the features contributes to the role transfer.

* Being on equal terms creates an atmosphere within which everyone
feels equally free to take on leadership roles unrelated to hierarchical
position.

* Psychological safety [Edm99] empowers developers to take on lead-
ership activities for the first time even though they might fear to fail
without having previous experience in performing the role.

* Transparency empowers teams to build a shared understanding of the
roles.

* Shared mental models [[WWO01] imply that the Developers have the
same meaning of the different roles in mind and agree that anyone in
the team can take on the respective role depending on the situation
(claiming and granting).

* Team orientation is important to act according to the shared purpose
of the team [MDD10], and therefore to know which leadership roles
team members should take on to achieve the common goal.

4.2 | Theory Building 75

Figure 4.2: Integrative model of the role transfer process.

Scrum Master > role transfer > Developers >

Internal team environment

Moni-
gcrllual fosgiccl:icl)_ Trans- Sharfac} zi;rr? Team toring Team
men - .
arenc otenc - learnin,
Terms safety P Y| models | tation P Y geli::s g

* Team potency implies that the team believes in its capabilities [GYCS93]
and therefore, to feel comfortable to take on the leadership roles.

* Monitoring themselves [MDD10] empowers the Developers to feel a
sense of responsibility to take on leadership roles instead of external-
izing responsibility to a formal leader.

* Team Learning [Edm99] allows the team to continuously develop
themselves further regarding playing the divers roles.

4.2.4.2 Contextual Factors

Often agile teams are implemented as isolated clusters in rather traditional
development companies [GL.20; HB13] which can be classified as bureau-
cratic organisations. The core contextual factors of that company type are
strong hierarchy, functional departments, rigid standards and processes and
written rules [Web09].

Strong hierarchy [GBS+16; HB13; HM16; MAD12; NMMO5], specialist
culture [HM16; MDDO09], rigid structure [NMMO5] and inflexible processes
[BTO5; CCWP11; NMMO5] were identified to hinder the agile way of working
in former studies. The reasoning behind it is that strong hierarchy with a
focus on decision-making by management contradicts teams that take on
leadership roles [MAD12], rigid planning opposes iterative team learning
[BTO5] and a functional structure with rigid processes and specialists limits

76 4 | Theory Selection and Theory Building

cross-functional collaboration of developers [NMMO05].
Wagemann put it this way:

These organisations have long histories of hierarchical decision
making cemented with a work ethic based on individual achieve-
ment. Given this culture and context, team members will balk
at the idea of relying on one another to get work done. [p.50;
Wag97]

Not only team members hesitate to take on leadership but also manage-
ment can destroy the self-organising nature easily by making decisions on
behalf of the team or creating dependencies on other departments by imple-
menting and sustaining rigid processes (e.g. [CHO1; HB13; HM16; HN17;
MAD12]).

While team coaching is said to be unsuccessful if the contextual and
structural environment is not supportive towards team performance [HWO05;
Wag97] teams that face a supportive context are suggested to even develop
coaching capabilities themselves while they mature [LBT95]. I broaden
this perspective to the other leadership roles besides the Coach and suggest
that contextual factors influence team members in taking on the divers
leadership activities. My research focuses on agile teams that are embedded
in bureaucratic companies which currently undergo an agile transformation
but are not yet agile companies.

Since a bureaucratic organisation contradicts the agile way of working on
team level [HB13; NMMO5; SHW19b], I consider the contextual factors as
hindering the role transfer. I can assume that developers struggle to take
over the leadership roles if the necessary preconditions on organisational
level are absent.

4.2.5 The Agile Matching Theory

Based on the role transfer process, the internal team environment and
the contextual factors I build an integrative theory which I label the Agile

4.2 | Theory Building 77

Matching Theory. This theory implies that the organisational context and the
desired agile team features need to match for the role transfer to materialize.

The reasoning behind it is that people behave according to the context
within which they operate [CHO1]. Developers are more keen to take on
leadership roles if they face the necessary preconditions on the organisa-
tional level. Team leadership can be supported with appropriate boundary
conditions since agile teams nurture in an environment that supports the
agile way of working. For example, a learning organisation [GEGO08] in
which developers feel safe to make mistakes and learn from each other
increases team learning and psychological safety. Consequently developers
may take on the role of a Knowledge Enabler.

Vice verse if the organisational level rather embodies bureaucratic organ-
isational features, also an internal team environment will rather contain
bureaucratic team features than the desired agile team features, and thus,
the role transfer less likely occurs.

Moreover, the Scrum Master is torn in between fulfilling expectations
deriving from a bureaucratic organisational culture and structure and expec-
tations deriving from the agile manner. The agile way of working is based
on shared values, believes and a common goal, a normative approach while
bureaucratic organisations are based on written rules, standards, processes.
This leads to a clash of expectations linked to the agile way of working (e.g.
self-monitoring or handing over leadership roles) and to the bureaucratic
culture and structure (e.g. traditional career models, key performance index
(KPI) or reporting). Feeling the need to fulfil contradicting expectations
leads to role conflicts (see also Noll et al. [NRBB17] and Stray, Sjgberg, and
Dyba [SSD16]).

I speculate that if the Scrum Master decides to fulfill expectations obtained
from a bureaucratic way of thinking, she or he is not capable of playing agile
roles like the Protector and providing a leadership gap. Consequently, the
team’s opportunity for taking on leadership roles is limited.

Table 4.2 shows the contradiction by displaying features of bureaucratic
organisations on the left and desired agile team features on the right. The
results presented in Section 5.2.3.4 provides a detailed description of how

78 4 | Theory Selection and Theory Building

organisational features influence agile team features.

Table 4.2: Organisational Factors and Internal Team Environment

Bureaucratic organisation Internal Team Environment
(1) Hierarchical Culture Monitoring Themselves [MDD10]
[HM16; MAD12; NMMO5] Transparency

On Equal Terms

Psychological Safety [Edm99]
Team Potency [GYCS93]

(2) Specialist Culture Shared Mental Models [LWWO01]
[HM16; MDD09] Transparency

Team Learning [Edm99]

Team Orientation [MDD10]

On Equal Terms
(3) Functionally Departmentalised | Shared Mental Models [[WWO01]
[Web09] Team Learning [Edm99]

Team Orientation [MDD10]

4.2.6 Summary of the Conceptual Model

I add to research in agile software development by integrating team lead-
ership, role theory, maturity and contextual factors from research on self-
managed teams to research on leadership in agile teams. I contribute to
empirical studies on agile teams by proposing a conceptual model on the
changing Scrum Master. In the following I summarize my theoretical model:

* The Scrum Master embodies a set of nine distinct leadership roles.

* In an immature team the nine leadership roles are rather played by
one dedicated Scrum Master.

¢ While the team matures the Scrum Master transfers the roles to the
Developers.

* The heart of the role transfer process involves a leadership gap provided
by the Scrum Master and claiming and granting of the roles by the
Developers.

4.2 | Theory Building 79

80

The dedicated Scrum Master does not become obsolete in a mature
team. Some roles stick with the Scrum Master.

A supportive internal team environment stimulates the role transfer.

Bureaucratic culture and structure often lead to role conflicts and
hinder the role transfer.

The Agile Matching Theory suggests that the desired agile team fea-
tures and the organisational context need to match in order for the
role transfer to occur.

4 | Theory Selection and Theory Building

CHAPTER

PART I: A GROUNDED THEORY
STUDY

It is organized as follows: Section 5.1 explains the study design, including the
research questions, the research methods, context, data collection procedure
and sample. Section 5.1.6 portrays the data analysis by referring to examples
derived from this study. Section 5.2 presents the results of the study which
build the theory as described in Section 4.2. The findings are critically
discussed in section 5.3. Finally, Section 5.4 refers to limitations of the
Grounded Theory study and suggests topics for future research.

5.1 Study Design

5.1.1 Research Questions

The objective of the thesis was to explore the changing leadership using the
example of a Scrum Master. I therefore formulate the following research
questions for my Grounded Theory study:

81

1. Which roles does the Scrum Master play to support the team to work
in an agile way? (RQ1)

2. In which way do developers take on the Scrum Master role overtime?
(RQ2)
3. How are roles transferred from the Scrum Master to the Developers?

(RQ3)

4. What is the underlying internal team environment required for the
role transfer to occur? (RQ4)

5. How can the Scrum Master foster the internal team environment?
(RQ5)

6. Which expectations on the Scrum Master limit the changing leadership
role? (RQ6)

7. How do organisational culture and structure influence the role transfer?

(RQ7)

5.1.2 Grounded Theory

Section 3.2 described that there is scarce research on leadership in agile
teams. I chose Grounded Theory because this method is applied in research
fields with scarce knowledge and it aims at generating new theory on social
interaction between actors [GS17]. Furthermore, it is used to identify
repetitive pattern of actions [Myel9].

Grounded Theory distinguishes most often between the perspective by
Glaser [GS17] and by Strauss and Corbin [CS15]. While Strauss and Corbin
claim that the researcher should focus on specific literature early in the
research process, Glaser suggests that the researcher should read a wide
range of literature while analysing data in iterative steps in order to remain
open to the emergence of new theory [HC04].

Moreover, Grounded theory can be conducted by applying a positivist
and constructivist view [BCO7]. The positivist perspective claims that there
is an objective reality, which is linked to the Glaserian point of view. The

82 5| Part I: A Grounded Theory Study

constructivist view aims to explain subjective reality of individuals that
is embedded in the specific context and situation in a particular point in
history [BCO7]. The objective is to describe how individuals make sense of the
ongoing transformation at a rather traditional development company. We aim
to describe which kind of leadership individuals believe to be useful during an
agile transformation. The constructivistic approach aims to reveal multiple
perspectives on reality [Chal6]. Therefore, there may not only be one
point of view reflected by the research participants. Moreover, participants
may behave in a certain way due to social conventions and power relations
[Chal6]. We search for underlying assumptions that foster specific behavior
[Chalé6].

While we apply the iterative approach of the data analysis method by
Glaser and Strauss [GS17], we take a constructivist view when interpreting
the data.

Grounded Theory aims at generating new theory from a repetitive com-
parison of emerging data. It does not intend to test existing theory. While
the research initially contains a general research topic, the research question
emerges during the research. Grounded Theory is an interpretative approach
and the research question should be embedded in the specific context under
study. [GS17]

Grounded Theory follows an iterative approach in which each step deter-
mines the next step to be taken during the research [GS17]. The different
steps will be described during the following subsections while referring to
data collection and analyses applied in part I. For a detailed description of
each step please refer to Hoda, Noble, and Marshall [HNM12a].

5.1.3 Research Context

The research aimed at contributing to agile leadership in bureaucratic com-
panies.

I conducted this study at Robert Bosch GmbH. The Robert Bosch GmbH
employs more than 410,000 people in 60 different countries worldwide.
The company history dates back to 1886. The conglomerate is active in four

5.1 | Study Design 83

different business areas: mobility solutions, industrial technology, consumer
goods as well as energy and building technology. Each business area consists
of various subsidiaries and business divisions. Therefore, market conditions
and subcultures vary wildly.

The group aims to develop from a rather bureaucratic company type to a
more agile company. While the agile transformation had been a project by
the headquarter until 2017, since 2018 each division has been responsible
for its own agile transformation. While sometimes management decides
top-down that they would like their teams to work in a more agile way, e.g.
apply the Scrum framework, other project teams decide by themselves how
they want to work.

Even though there exists a company-wide role description for a Scrum
Master behaviour, there is neither an obligatory training nor a general rule
regarding the Scrum Master. Each team can decide on its own how to train
the team and Scrum Masters in the agile way of working. For example, they
could book a training internally or externally of the company or not book a
training at all.

5.1.4 Data Collection and Sample

Since I was an industrial PhD student at the respective company, I had direct
access to the field and collected data on the topic between June 2017 and
November 2018. I identified Scrum practitioners either via my personal
network or via intranet and first contacted them by email. Interviews were
conducted according to availability and willingness to take part.

Data was collected from 11 business divisions which have slightly different
subcultures. While several divisions are already in the forefront of its agile
transformation, others have started its journey just recently.

Most divisions were active in the automotive industry, while others pro-
duced domestic appliances and gardening tools.

Interviewed teams stated that they apply the Scrum framework mostly
in modified form, e.g. w.r.t. the regularity of Scrum meetings. All Scrum
Masters were without disciplinary power, responsible for the Scrum process

84 5| Part I: A Grounded Theory Study

and in charge of team development. Most practitioners of the company call
the Scrum Master role Agile Master, indicating that this role should adapt to
the specific team, rather than sticking to the Scrum approach by the book.
Thus, I consider the sample fitting to examine maturity and the changing
Scrum Master role.

Three rounds of collecting interviews were conducted. I conducted inter-
views with practitioners in case the interviewees were available and willing
to contribute. The first round of interviews involved 22 individuals from
10 different sub-divisions. Among other roles, interviewees were software
developers, Scrum Masters or coaches on organisational level. The purpose
of the first round was to identify a focus topic for this research project on
leadership in agile teams. Data is based on unstructured interviews and is
not included in the results report in Section 5.2.

The second and third round of interviews were used for the qualitative
data analysis. The data set includes 22 Scrum Masters, 8 Product Owners
and 23 Developers from 14 software development and 15 non-software
project teams. The size of teams ranged from 5 to 12 members and often
included diverse nationalities. Since the age of teams stretched from three
months up to three years, I expected the maturity of teams to vary. The
second round of interviews involved predominantly Scrum Masters, while
the third round of interviews approached teams as a whole (the Scrum
Master, several Developers and the Product Owner). I report on the results
of the 53 interviews in Section 5.2.

Observations: It is recommended to supplement semi-structured inter-
views by observations to understand the context of the interviews [AHKOS8].
I observed Scrum events, such as the daily stand-up, review, planning and
retro, of sixteen Scrum teams from four different sub-companies. I observed
ten of the teams between an hour and a whole day and six of the teams
over a period of several months. While observing, I made notes and asked
clarifying questions afterwards if necessary.

Feedback: I collected feedback from Scrum practitioners by presenting
preliminary findings to observed teams and by discussing upon the results.
Moreover, preliminary concepts were presented on two internal open space

5.1 | Study Design 85

formats, two interactive workshops, one presentation and several one-to-one
conversations with practitioners from the company. During discussions with
Scrum practitioners I made notes and the participants of the workshops
send their group work results to me. This material was used to refine and
strengthen the developed concepts and add to validity.

Memos: During our data collection I wrote memos. I wrote down emerg-
ing questions, new ideas and relationships between codes and categories
while collecting, analysing and discussing data with research colleagues
from the institute and my industrial supervisor. Moreover, the memos stored
ideas about links between the data and relevant literature.

5.1.5 Data Collection Procedure

Grounded Theory requires a general up-front research topic [HNM12a]
which was leadership in agile teams. Initially I merely conducted a minor
up-front literature study since the research problem should be allowed to
emerge during the study while collecting data at the research field [GS17].
The research problem should emerge from a challenge that practitioners
face [GS17].

Besides conducting qualitative interviews which were audio-taped and
transcribed, I observed Scrum events, such as the daily stand-up, review,
planning and retro, of various agile teams. Grounded Theory suggests
theoretical sampling [GS17] in which each step determines the next step to
be taken during the research based on previous results. In total, I conducted
three rounds of collecting interviews while continuously comparing my
findings with current literature.

First round of interviews: I first focused on leadership in agile teams in
general to find out which specific research problem would be of interest.
Since the purpose of the first round of interviews was to get an overview
on relevant topics, this data is not included in the results section. However,
I will briefly summarize the findings in the following since it lead to the
focus topic of this research project. During the first round of unstructured
interviews with practitioners from various business divisions and diverse

86 5| Part I: A Grounded Theory Study

organisational roles, I realized that there was a lack of clarity regarding the
leadership role of one dedicated Scrum Master. Practitioners agreed that
agile teams were expected to be self-organising, yet, how the Scrum Master
was supposed to enable the team to do so was not entirely clear.

Comparing the data with current literature on the leadership role of a
Scrum Master I found that several authors claim that the Scrum Master
changes while the team matures and that parts of the Scrum Master role are
transferred to the Developers over time [CHO1; MDD10; SJ17]. Yet, up to
our knowledge, this claim has never been empirically investigated. I decided
to broaden past research and explore how the Scrum Master changes.

Second round of interviews: I conducted a second set of interviews
mainly interviewing Scrum Masters besides a minority of team members. A
semi-structured questionnaire focusing on the leadership role of a Scrum
Master guided the interviews and allowed further questions if the answer of
an interviewee seemed to offer more insights. Interviewees were asked to
describe how they supported Developers and what they had learned since
they had started to play the Scrum Master role. The guiding questions are
available online [SHW18].

I identified nine leadership roles which the Scrum Master performs. Yet,
the interviews revealed that not only the Scrum Master played leadership
roles but that developers tended to take on some of the Scrum Master
responsibilities, as well. Thus, I developed a second questionnaire that
focused on sharing leadership responsibilities between the Scrum Master
and the Developers with a specific interest in how the sharing of leadership
roles had evolved over time.

Third round of interviews: The third round of interviews approached
entire teams and viewed the Scrum Master role from three different angles:
the Product Owner, the Scrum Master and the Developers. This helped us
in understanding how the role evolved while the team matured and how
leadership responsibilities were shared among developers and the dedicated
Scrum Master. I became to realize that Scrum teams without a Scrum Master
struggled with working in an agile way.

5.1 | Study Design 87

5.1.6 Data Analysis

I coded the collected data by applying Glaser’s Grounded Theory [GS17].
While Glaser and Strauss [GS17] have a positivist view, we had a con-
structivist perspective for interpretation of data [Chal6]. I openly coded
transcripts sentence-by-sentence. The content of the interviews was con-
stantly compared within the same interview and across interviews. I aligned
codes that appeared to be alike to one concept. I constantly reflected and
compared emerging concepts critically. I aligned concepts if they appeared
to be alike to build categories. Observations helped us to place the content
of the interviews into context.

During data analysis we made a few sketches, quick power-point presen-
tations and used sticky notes on whiteboards demonstrating preliminary
results. We critically discussed the concepts in our researcher group and
with practitioners. This led to a refinement of the concepts.

Example:

Quote: IfI am convinced of something I bring it into the world. [...] simply
I bring agility with me, always on the basis of a mind-set [...], so that people
can understand why it makes sense to work in that way. (AM)

Key Point: serves as role model to others

Codes: role model, agile mind-set, change team

Concept: Change Agent

Category: Leadership Role

This example reveals that the Scrum Master convinced some team mem-
bers of the agile manner by acting as a role model. The codes merged to the
concept Change Agent. Overall I identified nine different concepts during the
iterative data analysis. The core category is leadership role. One leadership
role is a set of performed, connected activities that influences individuals
with the objective to lead one another to the achievement of team or organ-
isational goals or both. I chose the term role because it expresses a set of
connected activities that is unrelated to a position or title. A leadership role
can be either performed by a Developer or a Scrum Master. A leadership
role emerges context-dependent.

88 5| Part I: A Grounded Theory Study

While analysing the data I compared emerging concepts with existing
research in agile software development. I had identified new roles, but also
roles that were similar to findings of other studies. The names of the nine
leadership roles resulted from their relation to the agile team features, e.g.
the Knowledge Enabler aims at continuous learning, but also from previous
research on human behavior in agile development teams, e.g. the Change
Agent is named a critical role during the agile transition [PGN14].

Additionally, Scrum Masters explained that they gradually lead the team to
a lesser extent and also that sometimes they would empower the Developers
by doing nothing at all, which I labelled leadership gap. Through constant
comparison [GS17] of various interviews and observations I identified nine
different Scrum Master roles and developed a substantive theory [GS17]
which I labelled the role transfer process.

I furthermore identified concepts that did not describe activities but team
features which I label as the category internal team environment. I suggest
this to be an enabler of the role transfer.

Furthermore, I uncovered challenges on organisational level that hindered
the team to work in an agile way. The organisational level contained the three
categories high power distance, expert culture and functionally departmen-
talised structure which each consisted of a bundle of concepts. For example,
the category high power distance involved the concepts several hierarchical
layers included in decision making, positional legitimacy and management
overrules. Those categories were found to decrease the role transfer.

Through constant comparison of various interviews I identified a mismatch
between organisational factors and the core features of agile teams. Based
on three propositions I suggest the Agile Matching Theory which implies that
prevalent organisational factors and the internal team environment need to
fit in order for the role transfer to occur.

Theoretical saturation of data describes that data collection stops if data
analysis does no longer reveal new patters [GS17]. I stopped collecting
data when I felt that I received no more new insights. I started an extensive
literature review [GS17] and compared my categories with existing theory.
I realized that my findings were related to research on team leadership,

5.1 | Study Design 89

role theory, maturity and contextual factors from research on self-managed
teams. Therefore, I decided to integrate research on self-managed teams
into research on agile teams to explain the changing leadership role of a
Scrum Master.

5.2 Results

In this section, I illustrate the results of the interviews.

I grouped my findings on the Scrum Master activities into nine different
leadership roles. While some teams described that the leadership roles were
rather centred on the Scrum Master, other teams outlined that the Scrum
Master role had changed over time. In the latter cases, the Developers started
to take over some of the roles themselves and the Scrum Masters diminished
the extent to which they played those roles.

While earlier researchers either reported on one individual who performs
several leadership roles [QFTM90; Qui88] or on teams that distribute lead-
ership roles among each other [HNM12b; ZAMO9], I report on both levels
of analysis. I first describe the leadership roles as they were played by the
Scrum Master (RQ1) and then outline the leadership roles as they were
performed by the Developers (RQ2). Thereafter I refer to the role transfer
process which built the bridge between both levels of analysis (RQ3). I
further describe the underlying internal team environment which serves
as an enabler of the role transfer process (RQ4) and the supportive role
of the Retrospective (RQ5). Afterwards I elaborate on role conflicts which
limit a change in the Scrum Master role (RQ6). I conclude by reporting on
contextual factors that diminished the role transfer (RQ7).

To respect participants’ confidentiality, I cite them by AM (Agile Master),
Dev (Developer) and PO (Product Owner).

5.2.1 9 Scrum Master Roles

I identified nine distinct leadership roles that were found to be transferred
from the dedicated Scrum Master to the team while it matured. In the

90 5| Part I: A Grounded Theory Study

following I will describe each of the nine roles. Each role is described in the
following order: after a short general description of the role and its aim, I
describe how the Scrum Master played the role and afterwards, I describe
how the Developers played the role. These descriptions answer the first and
second research questions:

* Which leadership roles does the Scrum Master play? (RQ1)

* In which way do developers take on the Scrum Master role overtime?

(RQ2)

5.2.1.1 Role 1: Method Champion

The aim of the Method Champion is to execute the Scrum Method to foster
teams in working in an agile manner.

The role keeper organises meetings and get-together, teaches the method,
such as supporting to formulate tasks and to set goals, and visualises in-
formation. Furthermore, the role involves to provide new methods and
tools depending on the intended aim on team level, and to stimulate discus-
sions on how to adapt the method to the particular team context during the
Retrospective.

Scrum Master: A large majority of Scrum Masters mentioned conducting
and adapting the method to be their main task when working with agile
teams.

Well, I actually bring a broad method toolbox and expertise to the
table. I've noticed it everywhere, like creative techniques. Its all
about technical topics, if you can get them fast, you can create
proper workshops and pick the right method. It can be a real
door-opener. (AM)

At the beginning it’s about teaching the method. [...] Preparing
the events and facilitating them. [...] It is a lot of handicrafts. [...]
Well, I also do visualization such as burn up diagram, which I have
to evaluate. (AM)

5.2 | Results 91

Developers: In newly established agile teams, members rather waited until
the Daily Stand-Up to speak about issues with each other. Over time, devel-
opers started to speak with each other right away when an issue occurred.
Some teams stated that the Scrum Master had initially organised team events
but after some time the Developers organised such events themselves. Also,
two teams explicitly stated that the Developers visualised information on
a board on their own initiative and that this was the way they learned and
exchanged knowledge.

5.2.1.2 Role 2: Disciplinizer on Equal Terms

The aim of the Disciplinizer on Equal Terms is to help the team developing
focus and discipline without directly monitoring developers top-down but
communicating on a par. Interaction on equal terms creates non-hierarchical
spaces which are important to speak openly with each other and allow team
members to take on responsibility. The role keeper supports the team to
stick to the rules, ensures that the team focuses on relevant topics and makes
sure that team members attend the meetings.

Scrum Master: Initially, some team members were reluctant to follow the
Scrum process. When the Scrum Master insisted on discipline, however, such
as only talking for a certain amount of time during the daily or to follow up
on measurements they had agreed on during the Retrospective, the team
members started to see the benefit.

There are people [...] after a quarter of an hour they still talk. You
do that two or three times and then you point it out carefully, it
doesn’t work like that. And more and more clearly and at some
point I set a clock in the backlog, in the stand up and said hey, we
are out of time. (AM)

I consider the Scrum Master to be a person who takes action. The
tools are the method and the stopwatch. If time is up, it is time to
move on. That’s it. (Dev)

92 5| Part I: A Grounded Theory Study

Developers: Due to the influence of the Scrum Master developers improved
to focus and prioritise their own work. Besides reminding colleagues to
stop endless discussions team members embraced the agile value focus.
For example, developers reported to only do one thing at a time and not
everything at the same time as they used to do in the past.

Ialso used to have this switch. That was a lot! So I tried to focus on
one specific thing, on this day, for this particular amount of hours.
(Dev)

Usually it is a team member who says, ok we could talk about this
another 40 minutes but the facts will not change. (Dev)

5.2.1.3 Role 3: Coach

The aim of the coach is to identify which kind of team behavior is missing
for executing the agile way of working and to help the team to develop this
behavior. The Coach observes team members and helps the team to find
ways of improvement by bringing developing conflicts to the surface and
providing feedback and stimulating questions.

Scrum Master: Scrum Masters emphasized that they aimed at supporting
the Developers to reflect upon their behavior and continuously improve
mastering the agile way of working.

Scrum says that you as the team, you are the decision-makers, you
have to know that. One sometimes has to do very very much, to
take the road together with the people to get there. [...] That is the
art of being a Scrum Master, to take the team out of their comfort
zone over and over again. Without expecting too much of them but
always feeding the development of the team. (AM)

What you always deal with is to think and observe what went well
in the team and what did not go so well. [...] As a team coach you
often have to act from the background and observe strongly at first.
(AM)

5.2 | Results 93

Developers: Several interviewees described how they established psycho-
logical safety [Edm99] over time, e.g. during the Retrospective. Mutual
trust created an atmosphere within which team members felt safe providing
feedback to each other. It was no longer merely the Scrum Master who
revealed personal observations.

The Retrospectives [...] push us to actually stand up for some
opinion, to say what is wrong or to open up, and then he [the
Scrum Master] unleashed the monster. I have always been very
critical about lots of stuff, but now I see that everyone is critical
sometimes, now I see that they [the other team members] actually
care to say “look, I am not happy about this” and speaking openly
had never happened before. (Dev)

Well, the exchange with each other clearly is important and works
very well for us. And it is also important that you talk openly and
honestly with each other, what does not really work in the team
and that you can talk about it without the other being offended.
(Dev)

5.2.1.4 Role 4: Change Agent

The Change Agent supports the team to change their project management
habits in order to get used to the agile way of working. The role keeper
serves as a role model, changes habits, and convinces newly established
project teams of the agile way of working.

Scrum Master: While a large majority helped team members get used to
the method step by step, others wanted to help people develop an agile
way of thinking, e.g. openness towards results, rather than focusing on
executing the method properly. Either way, their overall aim was to convince
individuals why the agile manner was relevant and useful.

At the beginning, it was a bit tough to convince some team members
of the agile approach. But now I think our team does not want to

94 5| Part I: A Grounded Theory Study

work in a different style anymore. There is a drive in our team that
some team members even would like to go further. They have been
infected with the agile virus and they want more and more. (AM)

If I am convinced of something I bring it into the world. [...] simply
I bring agility with me, always on the basis of a mind-set [...], so
that people can understand why it makes sense to work in that way.
(AM)

If you do not set an example [...], you will not be able to take the
team on that journey and to take that road. (AM)

Then there were the new methods added, that was a big change.
And they strongly questioned the meaningfullness at the beginning.
"'Why do we do that? Everything used to be good and to be working.’
This has died a bit over time. The people accept it now. They also see
some benefits. [...] The whole thing is a long habituation process
regarding the people and the processes. (AM)

Developers: The Developers did not mention to act as Change Agents
intentionally, such as prompting others to apply the method. However,
several agile teams started to serve as role models for traditional project
teams who apparently had raised the wish to also start working in an agile
way.

Back then when I started with agile development, it was rather
amusing. Because we felt like animals in a circus. At first, there
was astonishment, then amusement, later interest and, finally, they
asked whether they [our partner team] couldn’t do it the same way.
But this was not a process of a few days. It rather took several
months. (PO)

5.2.1.5 Role 5: Helicopter

The Helicopter aims at decreasing project complexity by understanding the
broad view of a project and therefore, increasing cross-functional collabora-
tion within teams. The role keeper owns the ability to catch the big picture of

5.2 | Results 95

a project, to understand how topics are interrelated, to know who possesses
the right skill for a certain task within or outside the team and to structure
work.

Scrum Master: One Product Owner elaborated that he has chosen the
architect to be the Scrum Master because he believed that this person was
most suitable to identify cross-boundary links between components and
team members. The team members of that team reported that the Scrum
Master coached them to learn which task they may choose.

In our team, I don’t feel like I am the boss or anything of that kind.
I am just the one in my team who is best at keeping track of things
and to give them a general direction. (AM)

Either it is good if the team itself has the complete overview and
everyone knows a little bit of everything or you need someone who
kind of intellectually brings the threads together. Well, someone
who spots what people get out of single issues. So to say if there was
a complex heterogeneous team and you let it work independently,
they may not necessarily look to the right and left what other people
can do. (AM)

Developers: Due to daily communication and visualisation, team members
formed a mutual understanding [Hod11; MDD10] while they matured, so
that they knew who had which knowledge or skills. Developing a Helicopter
perspective helped team members to connect tasks, to know who they could
approach for certain topics and to quickly transfer work to relevant experts.

But one can sense now that we try to exchange information with
each other more and more, because we also see the complexity. It
is really no longer the way it used to be that someone says: ’hey, I
pick this single topic and do it all by myself.’ [...] Because there are
always some dependencies between topics and we try to sit together
from the beginning. And this is how everyone gets to know the
other topics a little bit. (Dev)

96 5| Part I: A Grounded Theory Study

In the beginning, I think you don’t know who has more experience
in a certain area or expertise in another area. But slowly I get
to know everyone and can judge who can support me in which
difficulty in the quickest possible way. [...] But in the end I know,
okay, I have a problem here and who can support me. (Dev)

5.2.1.6 Role 6: Moderator

The Moderator translates among different perspectives to help the cross-
functional team develop a shared understanding. The role keeper moderates
all kind of meetings and builds a bridge between perspectives and domains.

Scrum Master: The Scrum Masters mediated between individuals from
different domains and helped the team to tolerate each others point of view.

We like to discuss a lot, thus the Scrum Master needs to moderate
the conversation, to mediate between different points of view.(PO)

So it is always like this, or in my understanding like this, that you
train the other members a little bit through the dailies, through
the communication that is supposed to take place. So that they
understand what the neighbour can do to support and help each
other. So that on the one hand the interfaces work, but also so that
ideas are passed on when you come up with something and say Tve
seen something here, you can use it’ or vice versa. (AM)

Developers: We have not come across any team within which the De-
velopers succeeded in playing the Moderator. One team had attended a
well-prepared meeting which was moderated by a developer. While it was
supposed to be a Retrospective it had ended up in a planning instead. Two
teams believed that the Scrum Master needed to keep the Moderator role
since it was considered to be difficult to remain neutral during a discussion
while being part of the Development Team.

5.2 | Results 97

5.2.1.7 Role 7: Networker

The Networker ensures that the team has access to required expertise that
goes beyond the current knowledge within the team. The role keeper con-
nects the team with relevant stakeholders, e.g. managers and experts, from
within and outside the organisation.

Scrum Master: The Scrum Masters reported to approach relevant experts
depending on the team’s demand. For example, they approached disciplinary
supervisors to support the agile way of working, invited experts or trainers
from inside and outside the company to explain topics, or called internal
administrative support when needed.

For me it is very important to see and help people when they need
external help. This is very important, too, when they need to go
outside of the team to contact somebody else. In the organisation
or even outside the project. (AM)

Another one is to build up connections so you know whom to ask
the question and from whom to learn. [...] . Or who from outside
could be the one to see what other steps we have to do if a guy is
missing. (Dev)

In that case I knew someone from the past [...] who focused on
problem-solving methods. And than I booked him for an analysis
[...] and then we sat together and [...] we realized, that his way to
formulate a question, and his systematic approach, that this was
really good for us. After just 10 minutes he had proven to the team
that he got what it takes and led it into the right direction. (AM)

Developers: Over time, team members increased their personal network
and learned whom they could approach for what. Moreover, during dailies
the Developers increasingly offered personal network contacts to their team
members. This increased access to knowledge and improved speed of solving
tasks.

98 5| Part I: A Grounded Theory Study

For example, that one has an information for someone, that he nor-
mally would not have access to as a planning guy. [...] Actually, I
bring in my network from production and the developer his network
and the TEF person yet another. During the open discussion at the
Daily Stand-Up, I can say that I have a problem. Someone knows
someone who can help me with it. (Dev)

If the expert is not within the team, we have to reach out to other
people who are not part of our team. [...] For example, we had an
integration task to do [...] and the team did not have this expertise
or has done that activity so far and the one team member took up
this task and he was supported by the team members in whatever
extend they can. But since we did not have this expertise we got
support from another external team and then he delivered this task.
(Dev)

5.2.1.8 Role 8: Knowledge Enabler

The aim of the Knowledge Enabler is to teach the team a new approach to
learning thereby team members work themselves fast into new topics and
solve complex issues which had not been solved before. The role keeper
recognizes which kind of knowledge the team needs, e.g. expert information
or methodological skills, and supports team members to acquire that knowl-
edge, e.g. sends them to training or conferences, and schedules knowledge
exchange meetings. Furthermore, this role promotes iterative learning, e.g.
learning from mistakes, fosters learning-by-doing and helps the team to
become used to visualizing information, e.g. on whiteboards.

Scrum Master: Some Scrum Masters urged developers to take time for
learning and to share knowledge more openly with each other. A few of them
convinced managers that agile teams must sit close to each other to approach
each other easily, learn from each other and build a shared understanding.

There is one person who is a specialist. It is important to me that not
everything goes through this person, but that this person explains

5.2 | Results 99

to the other person how it works. So that this person can do the
job him- or herself in the future. The person should get the ability
to solve the task by him or herself in the future. (AM)

They just do not know the whole approach and how to access it.
They know classic learning like you go to a training or you study
a book, but in this field, you have so many user groups, meet-ups
[...]. And we also try to just propose a nice event. They can meet
other people there and discuss with them. For example, we all went
to a conference together. (AM)

Developers: While a few team members expected the Scrum Master to own
technical expertise to provide feedback, other interviewees had learned to
receive feedback from their peers. They shared improvements and lessons
learned and served as a sparring partner. They also described to simply
approach colleagues to ask for information, to learn from each other and to
work together on tasks.

Every now and then I also sat down with colleague A in the meeting
room and simply discussed a topic where it was not so clear to me.
There one has already helped each other. (Dev)

But for a start, it’s easier to really see everything. And then they
put a component together and I did it with someone and that’s how
I learned it. (Dev)

Today it is all very easy going. I just go over to my colleague’s
desk, sit down for, like, 45 minutes and work with him on a topic.
Nobody says anything against that. It is very informal, but it also
happens that I personally have to answer some questions. (Dev)

5.2.1.9 Role 9: Protector

The Protector aims to maintain trouble-free working conditions as agile
teams are meant to focus on their respective sprint goals only. The role
keeper shelters teams from inappropriate requests from the Product Owner,
managers, disciplinary leaders and other departments.

100 5| Part I: A Grounded Theory Study

Scrum Master: Scrum Masters reported to shelter the team from re-prioritisa-
tion or excessive work demands by the Product Owner. Moreover, they pro-

tected the team from management interfering in daily business or reversing

team decisions.

You have to be up front if there are attacks, and there are attacks.
From somewhere else, from other departments or from outside. You
have to be up front and protect them. (AM)

Managing stakeholders. Talk to all those who are involved in the
reviews, those who have had arguments from time to time, and
communicate with them. That way they can keep work off the table.
Talk to them, because they always asked, ’do this and do that’. Then
simply say that this makes us no longer capable of acting. (AM)

But then, I also pushed some things through in certain teams, [...]
in which managers had taken decisions again. I had to go to the
management and tell them “that is not OK, you make a mistake”.
Then they had to compromise and later they were really glad that
they had reacted that way. Because the team gave the right hints
after all. That is a situation in which one has to fight a battle on
behalf of the team. (AM)

Developers: Multiple team members reported on occasions when they en-
countered disturbances by stakeholders, yet, no Development Team had
created a strategy how to protect themselves successfully from such distur-
bance that lasted for long.

I came across one approach by developers aiming at protecting themselves
but did not succeed long-term:

Not everyone could participate, because actually we also have to do
the fire fighting thing. We have a Batman for this. One of us would
take over the role while the others were working. For example,
someone for Monday, for Tuesday and so on. We rotate with this.
[...] now we do not answer any call when we are not batman. So
the team was shielded and we could actually learn in little steps.
(Dev)

5.2 | Results 101

In particular, teams without a regular support by a Scrum Master struggled
to work in an agile manner. One team reported that it had occurred twice
that management removed members temporarily while the Product Owner
was absent. Likewise, a Product Owner of another team revealed that he
struggled with not disturbing operational work and tended to give orders.
Both Product Owners wished that there was a Scrum Master on a regular
basis to defend the team.

Investigating which role the Scrum Master plays (RQ1) and in which way
it changes over time (RQ2), I found that the Scrum Master played nine
different roles which are transferred to the team while it matures. In
addition, I found that some roles were more suitable for a transfer to the
team members than others.

Based on the findings I suggest the following propositions:

(1) The Scrum Master involves the nine different leadership roles Method
Champion, Disciplinizer on Equal Terms, Coach, Change Agent, Helicopter,
Moderator, Networker, Knowledge Enabler and Protector. (2) The Developers
take on the Method Champion, Disciplinizer on Equal Terms, Coach, Change
Agent, Helicopter, Networker and Knowledge Enabler over time.

5.2.2 The Role Transfer Process

The third research question was: How are the leadership roles transferred
from the Scrum Master to the Developers? (RQ3) I found that roles were
transferred via three steps I labelled the role transfer process (shown in
figure 4.1).

The first step illustrates that the Scrum Master serves as a role model by
demonstrating the activities of the nine leadership roles while the Developers
observe the behavior to learn it. The Scrum Master empowers the team in
understanding the value and utility of the roles, e.g. during the Retrospective.
They build a shared understanding of the roles and its meaning for the
agile manner and agree to aim at distributing the leadership roles among
team members.

I try to help colleagues to find their way into the roles. It is always

102 5| Part I: A Grounded Theory Study

tricky to keep the balance between what the team should do by
themselves and what should be done by the PO or SM. That is one
thing that one has to reflect upon and to level out. (AM)

The second step describes that the Scrum Master provides a leadership
gap when the team is considered to be more mature. The Scrum Master plays
particular roles to a lesser extend while keeping management and Product
Owners from undertaking the respective role. The emerging leadership gap
provides the space for the Developers to perform the roles themselves. While
a team member claims to play the role the colleagues grant that person to
take on the leadership role and respect the new role keeper.

As a Scrum Master I can provide strong support at the beginning
to get started. But then I have to retreat gradually so that the team
gets into the mode of self-organisation. Because if you do not create
some free space or a vacuum, nobody will jump in. (AM)

The most exciting thing is to bear the silence until someone says
something and to wait until someone else gets active. [...] Also
we have to give them some free space to experiment and try out
themselves. (AM)

Scrum Masters claimed that they either prepared a leadership gap inten-
tionally by withdrawing from particular roles while waiting that Developers
would take on the role, or they were not playing the role due to being absent
which gave the team the chance to perform the role. Moreover, some teams
experienced that management truly empowered them to take on respon-
sibility, whereas others encountered that management, Scrum Masters or
Product Owners clung to power and kept them from taking on leadership
roles.

I did not have sufficient capacity to do everything myself. Therefore,
some team members took over tasks, e.g. one guy arranged a timer;
another one took care of the whiteboard. They were quite proactive
as a team. [...] They did not tell me: “You are in the Scrum Master
role, you have to make things better for us.” (AM)

5.2 | Results 103

The third step contains that the Scrum Master only plays certain roles
if the team needs support while team members perform most of the roles
themselves. Yet, I found that not every role can be passed on to the Devel-
opers equally because for some roles the keeper must not be part of the
Development Team, e.g. Moderator and Protector. This indicates that the
dedicated Scrum Master does not disappear in a mature team but is played
to a lesser extent over time.

It takes a lot of energy but is quite nice to experience when the team
gradually walks by itself. At the same time, the time effort by the
Scrum Master can be reduced. (AM)

Based on the findings I suggest the following propositions:

(3) The Scrum Master changes in three consecutive steps over time, such that
the role is rather centred on one dedicated Scrum Master in an immature team,
while it is rather shared in a mature team.

5.2.3 Factors Influencing the Role Transfer Process
5.2.3.1 Internal Team Environment

The fourth research question aimed at exploring the team enablers required
for the role transfer to occur: What is the underlying internal team environ-
ment required for the role transfer to occur? (RQ4) I found eight enablers
shaping an internal team environment that stimulated team members to
take on leadership roles. Figure 4.2 illustrates the factors describing the
internal team environment.

Firstly, teams that communicated with each other on equal terms and
seemed to refrain from hierarchical thinking appeared to share leadership
roles more openly among the Developers and the Scrum Master. The Scrum
Master was not considered to be a formal leader they had to please. Hierar-
chical free space allowed the leadership gap to occur and therefore, to claim
and grant a leadership role. The overall atmosphere within the team should
reflect that it is generally accepted to take on a leadership role even without
being a formal leader of the group.

104 5| Part I: A Grounded Theory Study

I believe that somehow this it what makes it special at this place.

Even if people have different pay grades, you do not feel like this
one is the one being above the other one because this one belongs
to a higher salary group than the other one. Maybe also because of
the occupation or because of the level of knowledge. No one makes
someone else realize that there might be a difference between each
other but rather it works well with each other. (Dev)

Secondly, teams who communicated on equal terms had established psy-
chological safety [Edm99; MDD10] which made them feel safe taking over
the risk of playing a leadership role without previous experience in it. The
Scrum Master was found to provide safety by the Scrum process. The Ret-
rospective helped teams to build trust among each other and encouraged
team members to talk openly about personal matters.

I think, first, one benefit is that we learned [...] to lose the fear of
talking. So the methods forced us to bring out opinions, to give the
opinions on something that was bothering. (Dev)

Additionally, as referred to in Section 5.2.2 team members had developed
a shared mental model [[WWO01] regarding the meaning and content of the
roles often via transparency, e.g. during the Retrospective. Furthermore,
they had agreed that anyone in the team could claim and should grant
performing the leadership roles.

It is also not that easy for the others of the team. [...] They had
never been working in an agile way. And I believe to make agile
work you need to embrace a specific mind-set. They need to be
conscious about that they work in an agile way now. And that you
have the right to say 'no’ and that you have the right to say to the
PO: No, I cannot handle [this workload]. And this is not that easy.
(Dev)

Moreover, team orientation [MDD10] was identified to be important
for team members to understand how each role contributed to the shared
team goal. It empowered teams to feel responsible for a particular topic and

5.2 | Results 105

thus feel the urgency to play the respective leadership role. For example,
one team struggled in iterative learning and they complained that they had
no vision. They felt like the knowledge they were required to learn was
useless, and they did not understand why they should learn continuously. As
a consequence, the team members seldom took over the Knowledge Enabler
role.

Furthermore, I found that developers who performed leadership roles
increased their team potency which implies to believe in the team’s capa-
bility to be successful [GYCS93]. Therefore, they felt motivated to continue
playing leadership roles in the future. Yet, it seemed to be challenging to
have the courage to get started playing the respective leadership role for
the first time. One team member described it to be painful to take on a
leadership role when facing the leadership gap initially.

What gave me at least some confidence to make decisions is that
I learned what is my degree of influence. If my decisions now
reach this scope and I am not crashing the project because they are
working on the tool I am supposed to know. I think most of the
confidence is about the environment. (Dev)

Additionally, team members felt that self-monitoring [MDD10] would
empower them to take on leadership roles. Teams with low level of self-
monitoring stated that they externalized the sense of responsibility to a
formal leader.

I think, maybe if the Product Owner would not tell me everyday
what I have to do, maybe I would be more intrinsically motivated
to do my tasks, maybe I would chose my tasks voluntarily. But like
this. . . I just deliver a status report to my Product Owner every
day! (Dev)

Finally, team learning [Edm99] allows the team to continuously reflect
upon the leadership roles, e.g. during the Retrospective, and therefore,
develop themselves further regarding playing the divers roles.

Based on the results I suggest the following proposition:

106 5| Part I: A Grounded Theory Study

(4) An internal team environment of communication on equal terms, psy-
chological safety, transparency, shared mental models, team orientation, team
potency, monitoring themselves and team learning enables that roles are trans-
ferred from the Scrum Master to the Developers.

5.2.3.2 Retrospective

Yet, some teams reported to struggle in developing the internal team envi-
ronment needed for transferring the roles. The fifth research question was
therefore: How can the Scrum Master foster the internal team environment?
(RQ5)

The interviews revealed that the Retrospective supported agile teams to
develop a supportive internal team environment. One interviewee explicitly
said that the Retrospective helped the team to continuously develop itself
further, while others circumscribed its positive effect on the team atmosphere.
In the following I will provide different examples of how the Retrospective
influenced the internal team environment.

The Retrospective helped the team to develop shared mental models re-
garding working together as a team and on individual preferences, e.g. with
regard to personality or working style. A shared understanding of differences
between team members also stimulated team orientation.

That one learns what makes the different personalities tick, how do
I perceive them in the different rounds. Starting with the standup,
through the review to the Retrospective, how do they act, do I
perceive resistance, do I perceive that they have difficulties, how
team-oriented are they, or how strongly do they simply push ahead
without taking the team with them. I think this is the most im-
portant thing a Scrum Master should do to stimulate teamwork.
(AM)

Additionally, the Retrospective led to transparent communication which is
one prerequisite to talk openly about the roles.

If communication did not work well, we normally addressed this
topic during the Retrospective, or rather if it was not addressed

5.2 | Results 107

there, we would have had a bigger problem inside the team. The
climate was quite good since we always talked about everything.
Also when there were coordination problems, the people treated
each other well. (AM)

Furthermore, the Retrospective established psychological safety which is
necessary to have the courage to take on the divers roles.

Each time before the Retrospective I tried to explain that the purpose
was not about blaming someone but to discuss constructively with
each other and to develop further. I want to create an atmosphere
within which failures are allowed to happen. (AM)

The Retrospective also helped team members in developing team potency.
Agile teams learned that they themselves were responsible to change situa-
tions for the better. Consequently, team members became aware that they
were responsible to take on the divers leadership roles.

I believe they have developed into a real team because we always
reflect upon our-selves. For example, that it is not the task of a
Product Owner to set the direction but that we expect and that we
also wish that they also think for themselves. They should not only
be sheep in the flock, like it would be in a traditional project. Also
we give them the freedom to try new things [...] to encourage them
to just give it a try. If someone imagines, yes, I can do it, well than
do it. (AM)

You realize that the team really demands the Retrospective. Actually,
every week there is something that one can improve, or at least
discuss with the team. I would say doing the Retrospective is also
something that we have achieved by the agile way of working [...]
It also changes the way you look at things. Our first Retrospective
was quite bad. There was always an external view. Such as the
manager does not do anything about it, or the team does not do this
or that. Always focused on individuals. At some point we managed
[...] to talk about things that we could influence and could change
our-selves. Even though those are not big changes, it motivates me
when I see, that I can change things and that I benefit from it. (AM)

108 5| Part I: A Grounded Theory Study

Investigating how the Scrum Master fostered the internal team environ-
ment I found that the Retrospective promoted different facets of the internal
team environment.

Based on the findings I suggest the following proposition:

(5) The Scrum Master empowers the team to develop a supportive team
climate and consequently take on leadership roles by facilitating the Retrospec-
tive.

5.2.3.3 Role Conflicts

So far, I have described that the Scrum Master tends to play nine different
leadership roles which are handed over to the Developers via a leadership
gap, a supportive internal team environment and the Retrospective. Yet,
despite a supportive internal team environment, still parts of the Scrum
Master role may not be transferred to the Developers. Interviewees often
described rather bureaucratic demands on the Scrum Master that led to role
conflicts and to a struggle in providing the leadership gap necessary for the
role transfer. The sixth research question was therefore: Which expectations
on the Scrum Master limit the changing leadership role? (RQ6)

In the following I will refer to divers expectations by the Developers, man-
agers and the Product Owner, as well as requirements due to the position of
the Scrum Master in the organisational chart.

Developers

Often team members expected the Scrum Master to behave in an agile
way, e.g. trusting the Developers to monitor themselves while opening the
leadership gap.

He is a person who gives freedom to the team member to select tasks
that he or she would like to do and in case of problems the Scrum
Master is the one who can support and enable the team member
to really work on the topic. In another way the Scrum Master is a
team member but if he directs the associate how to do things this
would not be a right Scrum Master. (Dev)

5.2 | Results 109

Yet, some team members also expected the Scrum Master to take on typical
project manager tasks, e.g. reporting, providing clear direction or taking
over responsibility for team decisions. These behaviors are in contrast to
maintaining a leadership gap within which the Developers take on leadership
roles.

For us it is very difficult to find the right role as a Scrum Master
where he only follows the methodology, because from an organ-
isational point of view we actually need a project manager as a
developer who tells us what to do and our Scrum Master already
takes over this role. If he didn’t know what was going on then it
would be difficult because then we would have to manage ourselves
completely and our organisation would not allow that. (Dev)

Therefore, even though the Scrum Master would provide the leadership
gap, team members would not take the opportunity to take on leadership
roles.

Managers

Managers involved the disciplinary supervisor of the Scrum Master or
of the Developers, internal customer and line managers. A few managers
expected the Scrum Master to improve teamwork. Yet, many managers
rather demanded achieving defined hard facts, e.g. improved efficiency, and
keeping to formal standards. Some managers had expectations regarding
the Scrum process, formal standards and leadership behavior that were in
contrast to opening the leadership gap.

Maybe the expectation of the line managers is that the agile methods
are faster for the time being. It can be faster, but I don’t think this
is the goal of agile project management. (AM)

Of course, everyone talks about the agile way of working. But when
it really comes to implementing it and you have to let go of things,
as I said earlier, then it is simply a long way. [...] So one must also
shape the culture from above. Of course, it is also important that

110 5| Part I: A Grounded Theory Study

the employees are also involved in some way. Someone once said in
a management seminar, [...] ‘'my employees can do anything until
they make a mistake.” And I thought, you didn’t really understand
much of Agile. These are the things where you still have to work
hard on it. (AM)

It was easy for the project leaders, the group leaders and the depart-
ment leaders to say from now on you do Scrum’. What it was really
all about often did not matter to them at first. Since then, [...]
they have gone through a long valley of tears while doing a mix of
Scrum and of we don’t do it after all. The department heads still
wanted to see their documents, still wanted to orientate themselves
on the waterfall model. But overwrote it with ’Scrum’. Of course,
this was a stupid hybrid for the project teams. (AM)

While the Developers should take on leadership roles themselves and are
therefore responsible for work outcomes, manifold managers expected the
Scrum Master or Product Owner to be mainly responsible for outcomes.

This topic reporting structure, this must change colossally. This
internal reporting to the next level of the hierarchy, that must no
longer be. We are using a relatively large number of resources in
the Group for this. That’s why I believe that today’s management
team must radically change. (PO)

Therefore, the Scrum Master was rather expected to follow the rules of
the pre-existing bureaucratic organisational system instead of serving as a
Change Agent and Coach for the agile approach. The Scrum Master was torn
in between meeting traditional management requirements and embracing
the agile leadership behavior, such as providing a leadership gap.

Product Owner

Some Product Owners expected the Scrum Master to serve as a counterpart
with whom they could have constructive conflicts. Yet, some Product Owners
were found to put high pressure on the Scrum Master or directly on the
Developers. This led to the Scrum Master also putting more pressure on the

5.2 | Results 111

Developers instead of opening the leadership gap. Furthermore, it diminished
the willingness of the Developers to take on leadership roles.

The PO has a lot of pressure. He controls more than he actually
performs his role. (AM)

That [the Product Owner position] is not really a nice position to be
in in such an organisation. Because you have a team that has the
pull and you are under a lot of pressure, you have the push and you
have to bear it, this balancing act where you say, ok, I'm letting go
of the reins for two weeks and I'm under incredible pressure. And
I'm put under pressure every day. It’s incredibly difficult. (PO)

Scrum Master Position in Organisational Chart

Furthermore, some Scrum Masters said that the way their role was formally
embedded in the organisational chart led to role conflicts and diminished
the options to open the leadership gap. For example, some interviewees
described that they hold distinct formal roles within one team that embodied
contradicting interests.

That would also be a point of criticism that I can say, if you are also
PO, you have a conflict of interest. [...] I am a technical project
manager and I am already involved in the project goal setting. So
my project goals are to lead the team to success by delivering our
projects in time to market, cost and quality and performance. [...]
As a Scrum Master I have to say, no, that is too much. It overtaxes
the team, or do we need a shift as project manager or PO, I cannot
say that. (AM)

The disciplinary superior sits in the line. The [annual employee
development dialogue], i.e. the success dialogues, I do them anyway.
Depending on what kind of agreement you have there, but usually
the line manager is also involved. But he [the disciplinary supervi-
sor] hardly sees the people anymore. So it’s not perfectly separated
for me. [...] In the classic blueprint, someone who makes success
dialogues would not be the Scrum Master, but the PO almost, in
the classic theoretical picture. (AM)

112 5| Part I: A Grounded Theory Study

I am part of the team myself. I still perform my tasks in the team,
in the part of the project where my responsibilities still lie. This
is sometimes a difficult point, because you can’t discuss the work
packages from the outside in a really neutral way as a Scrum Master,
but you also have a certain amount of action and interest in who
does what and when. (AM)

One interviewee was simultaneously Scrum Master and disciplinary su-
pervisor. While the role of a Scrum Master was rather expected to provide a
leadership gap in which the team took on leadership roles, the disciplinary
supervisor was rather considered to make decisions him- or herself.

For me, [would say the tasks differ a little bit. On the one hand, as
I said, I would rather see myself as a team coach and as part of the
team, because that promotes the cause. On the other hand, [...] I
also have other tasks. I have to do that from time to time, although
we try to make a decision and see how we get it done. (AM)

Furthermore, some Scrum Masters lack in positional power to protect the
leadership gap.

If the environment, especially the managerial authority or some-
thing, or the delegation to these agile teams, [...] so to speak what
I can’t influence from the outside. If the department managers
who release the people or the department managers who have the
management task [...] who actually have the line responsibility, if
that doesn’t fit. (AM)

I mean when I say there is nothing it is a volunteering thing if you
say 'No, I don’t want these people working there’. I just do not know
the consequences. I do not know if they have the authority to say
no. 'No, I am not giving anyone of my people to you’, I don’t know
the consequences. You do it in good faith and release people to the
task force. (Dev)

We uncovered how demands by the Developers, managers and the Product
Owner limited the role transfer. The Scrum Master was often expected to

5.2 | Results 113

meet requirements deriving from a rather bureaucratic view on ’leading a
project team’, e.g. reporting, monitoring and decision-making. This contra-
dicts the nature of the agile way of working which implies that the Developers
take on leadership roles. The contradiction led to role conflicts between
meeting the needs of the existing bureaucratic system and the new agile
approach. Fulfilling the rather traditional requirements restricted opening
the leadership gap, thus, limited the changing Scrum Master role.

Based on the findings I suggest the following proposition:

(6) Expectations that aim at bureaucratic behavior limit the changing Scrum
Master role.

5.2.3.4 Contextual Factors

The last subsection described role conflicts deriving from expectations based
on a bureaucratic company context. [will now further describe the company
context that helps us understand where the expectations come from.

The last research question in my qualitative study was: How do organisa-
tional culture and structure influence the role transfer? (RQ7) Past research
revealed that the context plays an important role for transforming into an
agile team [HN17]. I explore how the bureaucratic context influences the
role transfer. The findings describe challenges regarding organisational cul-
ture and structure and in which way each factor influenced the role transfer.

Interviewees often mentioned that organisational culture linked to high
power distance and specialised knowledge workers reduced working in an
agile way.

High power distance was exemplified by several hierarchical layers which
all needed to be included in decision-making processes even though some
were said to not even add value, by management or Product Owner that felt
to have the right to overrule team decisions or told the Developers what they
had to do and by status legitimacy. As a result, some developers reported to
be frustrated, demotivated or to fear that management or Product Owner
would overrule their decisions anyways. Thus, high power distance resulted

114 5| Part I: A Grounded Theory Study

in a low level of self-monitoring, of psychological safety and of team potency.
Which led to a lack of willingness and capability to make team decisions.

But you don'‘t necessarily receive decisions, you don‘t get information
if you go there and say: hey, I am a team member of the agile
team. If you go there as a common team member, you only get the
information if you are in the proper hierarchical layer, only if you
talk to a person at the same hierarchical level. That are the power
plays. (Dev)

I therefore suggest the following proposition:

(7) High power distance diminishes the role transfer (7a). This relationship
is moderated by monitoring (7b), psychological safety (7¢) and team potency
(7d).

A specialist culture was described by territories and by a lack in readiness
to experiment. Some managers were said to prefer teams to follow a strict
plan that was thoroughly thought through in advance and were reluctant to
apply an inspect and adapt approach.

Territory refers to an expert who enjoys a sovereign right to keep specific
knowledge and even the respective task all to him- or herself without sharing
it. Therefore, other team members did not feel responsible or allowed to learn
the specific knowledge. Interviewees also referred to a lack of willingness
to learn things unrelated to the personal field of expertise or to a lack of
discipline to not dig too deep into an expert topic.

Well, there are clearly defined areas in this team. Territories which
are well hidden. You need some time to recognize them. [...] cer-
tain people are in certain territories which is simply inflexible. You
realize this when there is one topic dropped, it is not considered.
And than there are the people waiting and have nothing to do, even
though there actually needs quite a lot to be done. Because there
are the territories that you are not allowed to enter and than one
does not work together. (SM)

5.2 | Results 115

While some team members appeared to own high specialization regarding
tasks, they had a low willingness to think cross-functionally. Thus, a specialist
culture resulted in weak team learning, shared mental models and team
orientation, thus, developers did not perform roles like the Knowledge
Enabler. I suggest the following proposition:

(8) A specialist culture diminishes the role transfer (8a). This relationship
is moderated by shared mental models (8b), team learning (8c) and team

orientation (8d).

Some interviewees described the organisational structure as functionally
departmentalised. It involved the categories departmental silos, department-
oriented goals, geographical distribution and rigid processes.

Developers reported that they had to rely on external know-how due to
processes which slowed them down. Some teams that depended on external
support had difficulties in receiving a timely response or even at all.

If a team is not both at the same time - a self-organised team and
the company itself - you always need interfaces, stuff from other
people. And especially big companies are often divided into silos,
which makes it very very difficult. You always need to wait for
stuff. You ask for something and then you don't get it. And you do
something, you show it to someone and then they don‘t respond.
[...] or because they simply don’t have time to respond. (PO)

Sometimes, different sprint goals or contrasting departmental goals re-
sulted in slow decision-making. For example, purchasing would try to reduce
costs while developers searched for the technically best solution which would
be more expensive. Some agile teams reported to clash with traditional teams
that followed a classic project plan in contrast to iterative learning. Those
neighbouring project teams were considered to be slow and inflexible in
relation to agile teams, which made it difficult to synchronise project goals
and milestones. Interviewees also said that it was a challenge to include
external experts for the up-coming sprint in advance. Furthermore, geograph-

116 5| Part I: A Grounded Theory Study

ical distribution limited knowledge exchange, synchronisation of progress,
visualisation, discussions about critical topics and decision making.

Therefore, a functionally departmentalised structure resulted in weak
shared understanding, team learning and team orientation. This reduced the
presence of leadership roles in the team. I suggest the following proposition:

(9) A functional departmentalised structure diminishes the role transfer (9a).
This relationship is moderated by shared mental models (9b), team learning
(9¢) and team orientation (9d).

5.3 Discussion

Despite a steadily increasing number of attempts to implement agile teams
in industrial setting and a growing body of papers pointing at challenges
such teams face, scarce empirical research explores how teams can actually
learn to work in an agile manner. My research objective was to explore
how the leadership role of a Scrum Master empowers a team to work in
an agile way in real organisational settings with a particular focus on the
changing Scrum Master. I identified nine leadership roles of a Scrum Master
which are transferred to the Development Team while it matures. The core
element of the role transfer process was found to be the leadership gap: a
lack of leadership which offers the opportunity for the Developers to step
up and take on leadership roles which were previously performed by the
Scrum Master. Yet, roles were not always transferred to the Developers. I
found that role conflicts limited the role transfer. Role conflicts emerged
from a mismatch between features of the agile way of working and formal
requirements, as well as expectations deriving from informal organisational
characteristics, e.g. a bureaucratic culture or authoritarian management
style.

While some researcher consider a self-organised team to perform at its
best when leadership roles are shared within the team [HNM12b; ZAMO09]
other researchers examine competing leadership roles within one individual
[QFTM90; Qui88]. I put a new perspective to role theory and suggest that a

5.3 | Discussion 117

Scrum Master first involves multiple leadership roles which are transferred to
the Developers while they mature. Consequently, roles are shared between
the Scrum Master and the Developers.

My suggestion that developers can learn to take on parts of the Scrum
Master role is in line with the findings of other researchers [Bac19; MDD10].
Furthermore, just as Yang [Yan96] who implies that the roles Monitor and
Coordinator may turn into team values, I suggest that certain roles may turn
into team values in a more mature team. The Disciplinizer on Equal Terms
may turn into the team values of focus and working on a par.

Yet, I do not believe that all roles can be shared equally among the De-
velopers and the Scrum Master but instead claim that the Scrum Master
keeps the Protector and the Moderator role in a mature team. Therefore,
suggest that some roles should always be played by the Scrum Master, which
is a similar result as the findings by Hoda et al. [HNM12b] who discovered
that in the absence of specific formal role keepers some aspects of agile
working lost the team’s attention, such as the Retrospective. In line with
Gren et al. [GGJ19] I found the Retrospective to be an important enabler
for continuously fostering an internal team climate that stimulates the role
transfer. I am thus convinced that a Scrum Master will not become obsolete
in a mature team but is continuously needed to empower developers to work
in an agile way.

The role transfer process reflects several elements of the forming-storming-
norming-performing model by Tuckman [Tuc65]. The forming phase by
Tuckman [Tuc65] suggests that team members focus on a leader who sets
ground rules for further cooperation. Team members are insecure how to
behave and search for opportunities to observe expected behavior. It is
therefore decisive for a Scrum Master to demonstrate the agile leadership
roles from the beginning onward and to agree with the team that they aim
towards sharing those roles.

While some interviewees described that the Scrum Master provided a
leadership gap others had experienced that the Scrum Master, the Product
Owner or the managers struggled with transferring leadership roles to the
team. This is also described by role conflicts during the storming phase by

118 5| Part I: A Grounded Theory Study

Tuckman.

Over time agile teams establish a shared understanding of roles and
responsibilities which is expressed by the norming phase by Tuckman. Team
members who are used to a rather traditional way of working become to
understand how to work in an agile manner. They start to claim and grant
leadership roles: team members learn to play parts of the Scrum Master
role themselves while being allowed to do so by team members, the Scrum
Master, the Product Owner and the managers.

The performing stage allows individuals to take on roles whenever it makes
sense. Yet, it is important to emphasize that I have not come across many
teams during my research in which leadership roles were truly shared among
the Scrum Master and the team members. This matches with earlier empirical
observations that the performing phase is seldom reached in organisational
context [MMZO01].

I suggest that a contradiction between expectations deriving from a rather
bureaucratic organisation and from the agile way of working is one of the
reasons why truly agile teams are rare in company settings.

Similar to previous studies [BP19; NRBB17; SSD16] I identified role
conflicts. The Scrum Master was torn between meeting demands of rather
bureaucratic organisations and of the agile way of working. Those role
conflicts limited the role transfer from the Scrum Master to the Developers.
Therefore, to enable Developers to take on leadership roles, the organisation
should adapt its processes and requirements to the agile approach. An
alternative option would be to add project management activities officially
to the Scrum Master role. Yet, than organisations should not call their
teams self-organised but semi-autonomous teams [SHW19b] since otherwise
teams may have wrong expectations of the agile way of working which
results in frustration. Therefore it is important for organisations to decide to
which degree they want to provide leadership roles to the agile team and
communicate clearly what is expected in the specific company setting.

Furthermore, while researchers either consider the Scrum Master as part
of a method or as a leadership role, I combine both point of views and
suggest the Method Champion to be one leadership role of the Scrum Master.

5.3 | Discussion 119

The Method Champion facilitates the Scrum process, e.g. Retrospectives,
which sparks an internal team environment of psychological safety and
shared understanding within which team members feel empowered to take
on leadership roles.

Command-and-control behavior by Scrum Masters, Product Owners or
management was found to weaken self-organisation of teams [Hod13;
MDD10]. Backlander [Bac19] advises Scrum Masters to be absent from time
to time to improve teamwork, which was already found to increase infor-
mation sharing among team members in earlier studies [MDD10]. I believe
that my finding of displaying a leadership gap that empowers developers to
play leadership roles fits well with those previous empirical findings.

5.4 Limitations and Future Work

In the following I will critically reflect upon the research limitations and
suggest topics for follow-up studies.

Grounded Theory does neither claim to test hypotheses nor to be univer-
sally applicable but to build new theory grounded in the specific context
under research which can be tested quantitatively in proceeding research
[GS17]. Therefore, my results cannot be generalized.

Yet, to increase construct validity, I draw data from different organi-
sations from one conglomerate and used multiple sources of evidence by
capturing the Scrum Master from three different angles involving Scrum
Masters, Product Owners and Developers. The researchers discussed the
extracted results and built concepts and theories. Additionally, emerging
results were frequently reflected critically with various agile practitioners
from the company and the main author observed multiple agile teams at the
company site over a period of 1.5 years. The final results were supported by
the observations and discussions with practitioners.

All participants work at the same corporation, mostly in the automotive
industry. To increase external validity, I aimed at approaching an equal
number of project teams at each division. Despite their slightly similar overall

120 5| Part I: A Grounded Theory Study

working culture, the 11 business divisions embrace different subcultures.
Yet, I do not claim my results to be universally applicable and acknowledge
that they might be limited to the specific context. Nevertheless, I did conduct
a research cooperation with another conglomerates active in the automotive
industry which will be briefly described in Section 7.4. Further studies should
compare my findings on the changing Scrum Master role with data drawn
from other companies from varying industries.

Reliability: An open-ended semi-structured questionnaire guided the
interviews and therefore, each interview followed a similar structure. Yet, I
asked participants about past activities based on memory. Since memories
of individuals tend to change retrospectively my interviews are difficult to
replicate. Furthermore, qualitative studies cannot proof hypotheses. In order
to examine whether a larger majority of Scrum Masters and developers play
the nine leadership roles I have identified, a quantitative follow-up study is
needed to increase reliability of my study.

Social Response Bias: I only asked participant who were willing to take
part in the interview. At the beginning of each interview, participants were
informed about the purpose of this study and assured of confidentiality, so
as to receive open and honest responses.

The majority of participants spoke openly, also about their personal con-
cerns what was not working well in their organisation or in their agile team.
There were three people from three different teams whose overly positive
statements did not match with the comments on the same topic from other
interviewees of the very same team. Moreover, after the official interviews
had terminated, the three interviewees made statements that contradicted
the content of the previous interviews during small-talk with the interviewer.
Since the authors could not be sure whether social response bias applied,
those three participants were excluded from the sample.

5.4 | Limitations and Future Work 121

CHAPTER

PART II: A QUANTITATIVE
EXPLORATION

So far I have investigated how leadership in agile teams changed over time
based on observation and retrospective narratives of interviewees. I have
built a substantive theory on the changing leadership role. I have not yet
quantitatively explored the findings on the presence and change of the nine
leadership roles. In a follow-up study, I aimed to quantitatively explore the
presence and distribution of the nine leadership roles in relation to maturity.

Part II reports on the quantitative exploration of the 9-Factor Theory. This
chapter is predominantly based on the paper A Quantitative Exploration of the
9-Factor Theory: Distribution of Leadership Roles between Scrum Master and
Agile Team [SGHW20a] which was published in the proceedings of XP’20. I
slightly modified the original article to make if fit with the rest of this thesis.

Section 6.1 recaps the key findings related to the literature review and
Grounded Theory study, while Section 6.2 describes the study design. Section
6.3 reports on the findings of the quantitative exploration by referring to
the nine leadership roles of a Scrum Master and the sharing of the distinct

123

roles between Scrum Master and the Developers while taking maturity into
account.

Section 6.4 discusses the findings critically. Practical implications for the
Scrum Master description are suggested in Section 6.5. Finally, limitations
and suggestions for future work close part IIL.

6.1 Concept

6.1.1 Motivation

Studies have found that leadership influences the ability of a team to work
in an agile manner [Bac19; GTF17; MDD10; SJ17]. Different qualitative
studies suggest that the leadership role of a Scrum Master changes while the
team matures and that some aspects of it are transferred to team members
[MDD10; SJ17]. The Grounded Theory study in part I presented similar
results.

While some studies suggest that the Scrum Master is entirely transferred
to Developers in more mature teams [Bic19; SJ17], other studies find that
one dedicated Scrum Master plays the role differently in more mature teams
[GGJ19; MDD10]. For example, the Scrum Master is assumed to evolve from
command-and-control behavior to a coach [GGJ19; MDD10].

Part I of this thesis examined the activities of a Scrum Master by apply-
ing Grounded Theory and identified nine leadership roles which change
while the team matures. Based on qualitative semi-structured interviews I
speculated that the Protector and the Moderator remain with one dedicated
Scrum Master, while the other seven roles are gradually transferred to the
Developers. The results of a Grounded Theory study are a new theory for
future quantitative work [GS17]. Part II aimed at a quantitative support for
a mature team predominantly playing the Scrum Master activities. Moreover,
part IT aims to contribute to understanding agile teams by providing a survey
to quantitatively examine leadership in agile teams.

124 6 | Part II: A Quantitative Exploration

6.1.2 Changing Leadership in Agile Teams

To place part II into the research context I shortly recapitulate the findings
of my literature review in Section 3.2.2.

Leadership is often characterised to change depending on the maturity of
the team [Bac19; GGJ19; MDD10; SJ17]. Moe et al. [MDD10] report on
teamwork challenges of a newly implemented Scrum team over a period of
nine month. They observe that initially team leadership was rather centred
on the Product Owner and the Scrum Master. The Scrum Master even started
to control team members which diminished team leadership and led to less
motivation and trust of the Developers. While the team matured, the authors
observed that team leadership advanced, such that team members started
to take on more responsibility.

Even though several studies find similar results [Bac19; GGJ19; SJ171],
researchers do not agree on the extent to which the team plays the leadership
activities of a Scrum Master over time. While some authors speculate that
only some of the Scrum Master activities are transferred to the Developers
[GGJ19; MDD10], other authors suggest that the dedicated Scrum Master
becomes obsolete in more mature teams [Bdc19; SJ17]. While a study by
Biacklander [Bac19] describes that often developers grow into the Scrum
Master role over time, Moe et al. [MDD10] discover that team members
rarely take over responsibility. Srivastava and Jain [SJ17] conclude that all
team members should be able to take on the Scrum Master role in more
mature teams.

Part I of this thesis suggests a set of 9 leadership roles of which 7 are
gradually transferred to the Developers, while 2 of the roles remain with
one dedicated Scrum Master. I discovered the roles Method Champion, Dis-
ciplinizer on Equal Terms, Change Agent, Helicopter, Moderator, Networker,
Knowledge Enabler and Protector, which I summarize once again in Section
6.2.3 but are explained to a greater extent in Section 4.2.2. I name the nine
leadership roles of a Scrum Master the 9-Factor Theory.

Since part I is a Grounded Theory based theory grounded in empirical
qualitative data, the 9 leadership roles of a Scrum Master and how the role

6.1 | Concept 125

distribution unfolds in an immature as compared to a mature team has not
yet been quantitatively analyzed. Based on previous research, I explore the
9-Factor Theory, and find that the Scrum Master varies with regard to the
presence of the distinct roles and to the extent to which leadership is shared
in different maturity stages.

6.2 Study Design

This section recaps the research question and company context and portrays
the participants, the measurement, data collection and analysis of my study.

6.2.1 Research Questions

I build on the findings related to research question RQ1 and RQ2 of part I
and suggest the following research questions:

* Which leadership roles does the Scrum Master play? (RQ8)
* Which leadership roles do the Developers play? (RQ9)

* Are leadership roles distributed between a Scrum Master and the
Developers, and if so, is the role more often shared in mature as
compared to immature teams? (RQ10)

6.2.2 Company Context and Participants

The data derived from the same corporation as the data used in part I. Yet, I
did not approach the same people but different respondents in order to add
reliability to my findings. Data was collected from the multi-national con-
glomerate Robert Bosch GmbH with more than 20 different sub-companies
producing automotive, electrical and consumer industry goods. Scrum teams
have the roles Product Owner, Scrum Master and Developers. Depending on
the setting teams may have additional roles like a project manager, business
owner, group leader or release train engineer. Yet, there is no company-wide
standard.

126 6 | Part Il: A Quantitative Exploration

The Scrum Master is a job title at the Robert Bosch GmbH. The person
playing the committed Scrum Master varies among teams. For example,
the role keeper can be a former developer or a former group leader. Often,
the Scrum Master is called ’Agile Master’ indicating that the role keeper
should rather focus on team dynamics than on the Scrum method. Scrum
Masters at the Robert Bosch GmbH are usually not disciplinary supervisors
of agile team members, and were probably without authoritative power in
the sample.

In total, 67 participants took part in the study. 46 were from software
development projects, 3 from software and hardware development, 4 from
software development and IT and the remaining 14 from other topics (e.g.
mechanical engineering, purchasing, human resources). 56.7% of the par-
ticipants had been working more than 11 months with their colleagues.

The sample contained 37 Scrum Masters of which 20 had at least 10 months
of experience in the Scrum Master role. The remaining 30 participants were
team members. 14 team members stated that they were 9 or more members
in their team. I did not measure this item for the Scrum Masters.

Due to confidentiality reasons, providing the team name was optional.
37 participants opted to enter their team name and related to 19 different
teams from nine different business divisions at the Robert Bosch GmbH. Since
not all respondents inserted their team name, I could not map responses to
teams and were only able to compare individual responses.

6.2.3 Measurement

The research questions guiding this study required a quantitative exploration
of the 9-Factor theory. Each of the nine factors describes a leadership role.
Besides evaluating the existence of different leadership roles, part IT aimed at
providing evidence that leadership roles are shared between a Scrum Master
and the Developers and that the leadership roles are distributed differently
depending on the maturity of an agile team.

I now briefly describe the 9 Factors. A deeper description is offered in

6.2 | Study Design 127

Section 4.2.2.

Factor MC (Method Champion): The role contains organizing meetings,
teaching the method, support formulating tasks and setting goals, and
discusses how to adapt the method during the Retrospective.

Factor DE (Disciplinizer on Equal Terms): Supports the team to keep
to the rules, ensures that the team focuses on relevant topics and makes
sure that team members attend the meetings. Discipline is accomplished via
communication on a par.

Factor CO (Coach): Observes team members and uncovers which kind
of behaviour is missing in a team to improve teamwork, provides feedback,
and helps teams to find out what they wish to change and how to do so.

Factor CA (Change Agent): Serves as a role model, changes habits, and
convinces newly established project teams of the agile way of working.

Factor HEL (Helicopter): Possesses the ability to see the bigger picture,
to know who possesses the right skill for a certain task, to include relevant
stakeholders and to structure work.

Factor MO (Moderator): Moderates all kind of meetings and builds a
bridge between perspectives and domains.

Factor NET (Networker): Connects the team with relevant stakeholders
from within and outside the organisation.

Factor KE (Knowledge Enabler): Realises which kind of knowledge the
team needs, supports team members to acquire that knowledge and promotes
iterative learning.

Factor PRO (Protector): Shelters teams from inappropriate requests from
the Product Owner, managers, disciplinary leaders and other departments.

Items for Measuring the 9 Factors Based on the description of the Scrum
Master roles as described in Section 5.2.1, I initially built a set of 67 items.
Based on techniques rooted in pool items and item review [Rus09], after
two revisions I reduced the initial set to 55 items, each connected to one
activity of the nine different roles.

Each factor was covered by 4 to 9 different items. For example, the
Disciplinizer on Equal Terms contained the following four items: Supports

128 6 | Part II: A Quantitative Exploration

Table 6.1: Maturity

Months Team Member Scrum Master
(N=29) (N=36)
0-2 0 2
3-5 5 8
6-8 6 3
9-11 4 5
More than 11 14 18

team to keep to the rules. Helps team to focus on relevant topics. Makes sure
members attend meetings. Communicates on a par. Yet, items are not grouped
in the questionnaires, s.t. participants are blind to the existence of the factors.
This helps avoid bias that could artificially form clusters.

Maturity To test maturity, I asked how many months the team had
been working in an agile manner. The choice is inspired by Wheelan et
al. [WDTO03]. They found a significant correlation between the average
number of months a team had been working together and the four group
development stages [WH96], in which a mature team was perceived to be
meeting 5.2 months or more on average (Stage 3=5.2 months on average;
Stage 4=8.5 months on average). Based on previous results the question
How many months has your team been working in an agile manner? provided
five choices (0-2 months, 3-5 months, 6-8 months, 9-11 months, more than
11 months).

Self-Assessment and External Assessment Since teams and formal lead-
ers often rate leadership behavior differently [CLP10], I conducted a self-
assessment and an external assessment for evaluation of each item (lead-
ership activity). Therefore, each item contained two Likert items: the
self-assessment and the external assessment. More specifically, the Scrum
Master conducted a self-assessment of the leadership behavior he or she
believed to perform and an external assessment of the leadership activities
he or she believed the Developers performed, and the Developers vice verse
rated themselves and the Scrum Master.

6.2 | Study Design 129

Therefore, the participants answered each item twice (2*55): one to rate
the Scrum Master and one to rate the Developers. The participants rated
their perception of leadership activities displayed by the Scrum Master and
the Development Team using a five-point Likert item with 1=strong disagree-
ment that the activity was done by the respective party, 5=high agreement,
and an additional option = Don’t know/Not applicable. Questions were
randomly ordered.

6.2.4 Data Collection

To assess the 9-Factor Theory I used a web-based survey tool provided by the
Robert Bosch GmbH, as part of the agreement to run the study with them.

To invite Scrum practitioners to take part in my survey, I used my per-
sonal network within the Robert Bosch GmbH and a internal social business
platform provided by the company. An invitation letter contained the link
to the online survey and introduced the broader topic of the research and
informed that data would be treated anonymously and that participation
was voluntarily. Besides treating personal data confidentially on my side,
participants had the opportunity to voluntarily insert their team name and
their email address to receive their aggregated team results. This personal
data was used for the respective team Retrospective only and for no scientific
or management purpose, which was also emphasized in the invitation letter.
Filling out the survey took approximately 15 minutes. With the exception
of the personal data all questions were compulsory. The full questionnaire
is available online [SGHW20b]. Due to confidentiality requirements by the
Robert Bosch GmbH, the raw data cannot be provided openly.

6.2.5 Pilot study

Eight individuals filled out a pilot of the online survey and provided feedback
on understanding the content of the items and the convenience to answer
the survey.

Some participants had stated to be annoyed when they had to read one

130 6 | Part Il: A Quantitative Exploration

item twice on consecutive pages separately for the Scrum Master and the
team members and the company had urged to build a questionnaire that
would not take longer than 15 minutes to be filled out. Rating each item for
both parties at the same time and on one page was considered to save time
and to be more convenient.

Even though I had used the feedback for modification, drop out rate was
60% after launching the survey officially. Several participants delivered the
feedback that reading all the items on one page was inconvenient. Therefore,
I modified the questionnaire once again, and put the 55 items on three
consecutive pages each containing an equal number of items.

This modification led to a loss of data, which I could not plan for with the
tool supplied by the company, in 8 already fully filled-out responses. The
modified survey accomplished 121 responses, of which 68 were completed
while 53 did not reach the last item. I opted to retain only fully completed
questionnaires rather than adding partial data. 16 respondents stopped after
they had filled out the first block of items, while 22 respondents dropped
out when reaching the first block of items and 15 individuals just opened
the link without answering any of the questions. Once again, I received the
feedback by participants, that the questionnaire was inconvenient to be read.

Due to the above-mentioned constraints I still kept the questionnaire
the way it was designed. Also I cannot say with certainty why so many
individuals decided to stop filling out the questionnaire. It may also be that
they did not feel comfortable with rating Scrum Master and team members
separately.

I removed the responses of one individual who rated every item with
“agree,” likely indicating a lack of motivation to participate in the study. This
led to a total sample of 67 (55.37%) respondents.

6.2.6 Analysis

For each of the 9 factors I built a mean value by the related items for the
Scrum Master and the Development Team separately. To avoid including
individuals that had only answered a few items related to one factor, I

6.2 | Study Design 131

included responses in the calculation of the mean value when individuals
had at least answered n-1 items per role. That means, if a factor had 4 items,
I only included individuals that had answered at least 3 of the items.

To assess whether leadership roles were shared between the Scrum Master
and the Development Team I applied a similar approach as Zafft, Adams
and Smith’s [ZAMO09] approach to measuring leadership distribution in
self-managed teams. Applying a 5-point Likert scale (1=strongly disagree,
5=strongly agree), they suggest a leadership behavior to be present when
someone scores higher than 4.0 [ZAMO09]. In the analysis, I considered a
factor to be embodied by the Scrum Master or the Development Team if the
respective party rated 4.0 or higher. If one participant rated both, Scrum
Master and Development Team, in one factor higher than 4.0, the respective
role was considered to be distributed between both parties within one team.

If at least five of the nine factors were found to be shared within the
same team, I considered the Scrum Master role to be shared between the
Development Team and the dedicated Scrum Master.

6.3 Results

The results are structured as follows: After referring to external and self-
assessment, I will answer the three research questions in consecutive order.

External and Self-Assessment The average mean for the nine factors
revealed that the Scrum Master tended to rate herself higher than the Devel-
opment Team rated the respective Scrum Master, while the Scrum Master
tended to rate the Development Team lower. One exception was the Net-
worker which the Scrum Master rated slightly higher than the Development
Team rated itself. Likewise, I found that the team members tended to rate
themselves higher than the Scrum Master rated them, while they tended to
rate the activities performed by the Scrum Master lower.

132 6 | Part II: A Quantitative Exploration

Table 6.2: Descriptive Statistics for the 9 Factors (Scrum Master)

Scrum Master
Factor | N Mean Std. n* h**
deviation
MC 67 4.15 .56 47 70.15%
DE 67 4.18 .55 49 73.13%
Cco 66 4.09 .73 46 69.69%
CA 61 3.95 .65 37 60.66%
HEL | 64 3.73 .68 28 43.75%
MO 67 4.07 .63 49 73.13%
NET | 65 3.70 .86 30 46.15%
KE 63 3.62 .76 22 34.92%
PRO | 62 3.70 .88 32 51.61%

*n describes the absolute frequency of a factor rating higher than 4.0.

**h describes the relative frequency (n/N per row).

Note: Each column contains summarized results and refers to answers by
Scrum Masters and the agile team taken together.

6.3.1 Scrum Master

The first research question is: Which leadership roles does the Scrum Master
play? (RQ8)

To be able to give evidence on the Scrum Master performing one of the
nine leadership roles, the mean value of a factor has to be higher than 4.0
(explained in Section 6.2.6). The mean value for four factors is higher than
4.0, namely Factor MC, DE, CO and MO, and more than two third of the
Scrum Masters score high on them. Factor CA, HEL, NET and PRO are linked
to about half of the Scrum Masters. Only about one third have a mean value
higher than 4.0 regarding Factor KE. More information in Table 6.2.

Therefore, I answer RQ8 and find that a majority of the Scrum Masters play
the Method Champion, Disciplinizer on Equal Terms, Coach and Moderator,
while the Change Agent, Helicopter, Networker and Protector is played
by merely about half of the Scrum Masters and the Knowledge Enabler is
performed by only about one third.

6.3 | Results 133

Table 6.3: Descriptive Statistics for the 9 Factors (Development Team)

Development Team
Factor | N Mean Std. n* h**
deviation
MC 60 3.19 .67 7 11.67%
DE 65 3.83 .52 32 49.23%
CcoO 64 3.58 .59 17 26.56%
CA 56 3.56 .52 16 28.57%
HEL | 62 3.72 .54 24 38.71%
MO 62 3.72 48 22 35.48%
NET | 62 3.44 .81 21 33.87%
KE 58 3.58 .66 20 34.48%
PRO | 53 3.10 .84 10 18.86%

*n describes the absolute frequency of a factor rating higher than 4.0.

**h describes the relative frequency (n/N per row).

Note: Each column contains summarized results and refers to answers by
Scrum Masters and the Development Team taken together.

6.3.2 Developers

My second research question is: Which leadership roles do the Developers
play? (RQ9)

To be able to give evidence on the Developers playing one of the nine roles,
the mean value of a factor has to be higher than 4.0 (explained in Section
6.2.6). Table 6.3 illustrates that all mean values of the nine factors related
to the Development Team are lower than 4.0. Therefore, one could claim
that team members tend to not play the leadership roles. Yet, almost 50% of
the Development Teams score higher than 4.0 for Factor DE. Between 30%
and 40% perform Factor HEL, MO, NET and KE. Factor MC and PRO are
rarely aligned to the Developers.

Based on my results, I answer RQ9 and find that the Development Team
tends to not play the leadership roles. About half of the team members
perform the Disciplinizer on Equal Terms, while only about one third perform
the Helicopter, Moderator, Networker and Knowledge Enabler. The Method

134 6 | Part Il: A Quantitative Exploration

Table 6.4: Distribution of the 9 Factors

Only Only N Total %
Factor Shared Scrum Master Devs No one

DE 43.30% 29.90% 4.50% 22.40% | 67 100.00%
MO 31.30% 41.80% 1.50% 25.40% | 67 100.00%
HEL 28.40% 13.40% 7.50% 50.70% | 67 100.00%
Cco 25.40% 43.30% 0.00% 31.30% | 67 100.00%
NET 22.40% 22.40% 9.00% 46.30% | 67 100.00%
CA 19.40% 35.80% 4.50% 40.30% | 67 100.00%
KE 16.40% 16.40% 13.40% 53.70% | 67 100.00%
PRO 14.90% 32.80% 0.00% 52.20% | 67 100.00%
MC 10.40% 59.70% 0.00% 29.90% | 67 100.00%

Note: Each column contains summarized results and refers to answers by
Scrum Masters and the Development Team taken together.

Champion, Coach and Protector are performed least often by the teams.

6.3.3 Distribution of the 9 Factors between Scrum Master and Development
Team

The third research question is: Are leadership roles distributed between a
Scrum Master and the Development Team, and if so, is the role more often
shared in mature as compared to immature teams? (RQ10)

If a participant scores a factor for both the Scrum Master and the Develop-
ers higher than a mean value of 4.0, the factor is considered to be distributed
between the Scrum Master and the Development Team. While Factor DE,
HEL and MO are distributed in 30% to 40% of the teams, Factors MC, CA,
KE and PRO are distributed in 10% to 20% of the teams. Table 6.4 shows an
overview on the distribution for each of the nine factors, starting with the
most frequently shared Factor DE to the least frequently shared Factor MC.

If a respondent scores a mean value higher than 4.0 for at least five of the
factors for both, Scrum Master and Development Team, the Scrum Master
role is considered to be distributed between the Developers and the dedicated

6.3 | Results 135

Scrum Master. 20.90% of the respondents share the Scrum Master role.

38.5% of the teams that had been working 3-5 months in an agile manner
shared the Scrum Master role, 11.11% of the teams rating 6-11 months
shared it and 18.8% of the teams rating more than 11 months shared the
role. Therefore, teams that had been working for 3-5 months tended to share
the role by 20 percentage points more than teams that had been working
for 11 months or more, and by 27.39 percentage points more than teams
that had been working in an agile way between 6-11 months.

Furthermore, I check if some Development Teams perform the Scrum
Master predominantly, such that the Development Team scored for 5 factors
higher than 4.0, while the Scrum Master scored for less than 5 factors higher
than 4.0. I did not find such a case in the data.

Based on these results I answer RQ10 and claim that leadership roles
can be shared, yet, some roles are shared more often than others. While I
find that the Disciplinizer on Equal Terms is most often shared between the
Developers and the Scrum Master, I find that the Method Champion, Coach
and Protector are rather centred on one dedicated Scrum Master.

Furthermore, the distribution of the Scrum Master role varies in different
maturity stages. I find that teams who share the role had most often been
working in an agile way between 3 to 5 months. Therefore, the role was
rather shared in immature teams. Furthermore, I did not find a single team
in which the Scrum Master role was centred on the Developers.

6.4 Discussion

My study aimed at exploring the presence of and the change in the 9-Factor
Theory as described in part I. Based on descriptive statistics, I found that the
nine different roles are performed to a varying extent:

While the Scrum Master rates highest in the Method Champion, Disci-
plinizer on Equal Terms, Coach and Moderator, the Development Team
scores highest in the Disciplinizer on Equal Terms, Helicopter, Moderator,
Knowledge Enabler and Networker. Both, Scrum Master and Development

136 6 | Part Il: A Quantitative Exploration

Table 6.5: 3 proposed Clusters of the 9-Factor Theory

Cluster Leadership Role (Factor) More
important to

Psychological Method Champion (ME) Scrum

Team Factors Coach (CO) Master

Moderator (MO)
Product-Related Disciplinizer on Equal Terms (DE) Development

Factors Helicopter (HEL) Team
Knowledge Enabler (KE)
Organisational Change Agent (CA) It
Factors Networker (NET) depends

Protector (PRO)

Team, tend to perform the Protector less often than the other roles.

Based on this result, I suggest to broaden the 9-Factor Theory. My results
indicate that the nine factors can be further grouped into three clusters: psy-
chological team factors, product-related factors and organisational factors. I
will now elaborate on this idea based on empirical results.

Factor MC, CO and MO rather focus on internal socio-psychological team
mechanisms, while Factor CA, NET and PRO involve an external focus to-
wards the organisation. Factor DE, HEL and KE are rather product-related
and aim at continuous learning and knowledge sharing. The Scrum Master
scores higher in roles related to psychological team factors (e.g. Method
Champion and Coach). The Development Team scores higher in product-
related factors (e.g. Helicopter and Knowledge Enabler). Roles that bridge
the organisation with the team were played more often by the Development
Team regarding the Networker, but less often regarding the Protector.

Moreover, about half of the Development Teams did not play the Protector,
the Change Agent or the Networker which are linked to the organisational
factors. In rather bureaucratic organisations, as in our case, it might be more
difficult to perform the roles related to bridging the organisation and the
team. A traditional environment rather focuses on hierarchy as opposed to

6.4 | Discussion 137

protect the team from management and on departmentalised structure as
opposed to network with each other independent from formal structures
[NMMO5].

I speculate that if a Scrum Master played the Protector to a larger extent,
the team members would take over the leadership roles more often. The
Protector provides hierarchical free space within which developers feel safe
to take on the divers roles [SHW19a].

Furthermore, 53% of the teams did not perform the Knowledge Enabler
and about 51% the Helicopter. A possible explanation for our results would
be that either the Scrum Master considers product-related roles to not be
part of the job description since the Developers are expected to self-organise
their work, or it is more difficult to play the respective roles in a bureaucratic
context since that company type is build on experts with specialized skills
as opposed to cross-functional knowledge sharing [NMMO5]. This may be
supported by the Developers scoring equally low on this factor.

This study also aimed at exploring the 9-Factor Theory in relation to
maturity. The 20% of the teams that did share the Scrum Master role,
provided support for the suggestion that the Scrum Master role is distributed
differently in different maturity stages. Teams that had been working in the
agile manner for 3 to 5 months and more than 11 months shared the role
most often.

This finding fits with the maturity model by Tuckman [Tuc65]: Teams
after 3 to 5 months tend to be in the storming phase, within which teams
are not sure about who plays which role within the team. Therefore, both,
Development Team and Scrum Master, perform the nine leadership roles.
Teams working in an agile way for more than 11 months could already have
reached the performing phase within which roles are played according to
the situation and less linked to one dedicated role keeper.

Yet, I did not find any Development Team that played the Scrum Master
role to a larger extent than the dedicated Scrum Master. Therefore, my
results do not point at the direction that the formal role keeper steps back
from the role as suggested by several studies [Bac19; SJ17]. This finding also
fits with earlier claims that teams in organisational settings rarely develop

138 6 | Part Il: A Quantitative Exploration

into high performing teams that take on roles spontaneously [MMZ01]. I
therefore propose that in most of the teams the dedicated Scrum Master
does not become obsolete over time but rather changes the primary role
during the different phases of team development.

Another explanation of the results could be that neither Scrum Master
nor Development Team but someone else took over the role. As described in
Section 6.2.2 agile teams and the aligned agile roles vary among different
settings at the Robert Bosch GmbH. It might be that some of the nine leader-
ship roles are also played by the Product Owner or disciplinary supervisor.
However, those roles were neglected in our quantitative exploration. The
last paragraph of the practical implications provide suggestions on how to
deal with this in company settings.

6.5 Practical Implications

I found that the leadership roles were rather centred on the Scrum Master.
In the following I thus suggest how to develop the Scrum Master description
in company settings. Section 6.4 proposed to group the Scrum Master
description into three clusters: psychological team factors, organisational
factors and product-related factors.

While some practitioners suggest that the Scrum Master should play
product-related roles, others state that interference on a technical level
hinders self-organising teams. I suggest that every team should discuss
on its own, to which degree it needs product-related support by a Scrum
Master. Yet, a Scrum Master who performs product-related roles builds an
understanding of the respective product, thus, can also more easily bridge
the agile team with the processes, requirements, tools and standards of a
rather bureaucratic surrounding.

For example, the Scrum Master can be a mouthpiece of the team to discuss
with the management which processes and requirements of rather traditional
project management are still needed despite the team working in an agile
way, and which ones are rather unnecessary and hinder the progress of the

6.5 | Practical Implications 139

team. The Scrum Master can argue which tools and processes the team
needs to work in a more agile way. Also, taking over product-related roles
improves understanding when to protect the team, e.g. from re-prioritization,
and when to give in and allow to re-arrange planning due to changes in
requirements on organisational level.

Thus, the Scrum Master supports the organisation to gradually evolve into
a more agile place. Yet, I acknowledge the balancing act of a Scrum Master
to support the team in product-related matters and to serve as a coach at
the same time. The Scrum Master continuously needs to serve as a coach
and support the Developers to learn how to take on the divers roles.

Agile teams in a traditional industrial corporation may not be used to take
on leadership activities as a whole team. Yet, if the leadership gap is not
filled by the Developers, there is the risk of a leadership vacuum, in which
no one takes over leadership roles. This may lead to less performance.

Nevertheless, I found that the Scrum Master and the Development Team
tend to play organisational factors to a lesser extent, and encourage man-
agers even further to build an agile friendly surrounding within which the
organisational factors can be performed. These factors are necessary to inte-
grate the agile team into the organisational setting, such as having access to
relevant stakeholders and information, reducing interfaces and efforts for
alignment and building trust between agile teams and traditional structures.
Consequently, motivation and progress of agile teams will increase even fur-
ther. Yet, organisations also need to understand and accept that sometimes
developers do not want to take on leadership roles.

Therefore, companies should use my questionnaire to reflect upon the
role distribution in their specific industry background and organisational
environment relevant to their team. There might be roles beyond the Scrum
Master and the Development Team that take on the leadership roles. Thus, I
suggest to not only focus on leadership sharing among the Scrum Master
and the Development Team but to broaden the perspective. I propose to use
the leadership roles and aligned activities to determine if they are covered
by any ’job title’ in the setting, which might be the Product Owner or the
disciplinary supervisor. After all, the agile way of working is not about

140 6 | Part Il: A Quantitative Exploration

establishing a standard regarding which job title plays which leadership role
but about making sure that the needs of an agile team are covered in any
given situation. Since teams mature and agile settings vary, teams need to
find a context-dependent equilibrium of leadership sharing. Therefore, each
team has to discuss on its own how to divide leadership activities among each
other. Furthermore, since context changes, teams need to discuss regularly
upon who takes on which leadership role in a given situation. Practitioners
will understand respective leadership needs, learn to balance and evolve
them, and thus, improve teamwork.

6.6 Limitations and Future Work

In the following I will suggest future topics for research while referring to
limitations of this study.

Objectivity: since I conducted an online survey, I assume a low level of
social response bias. Yet, respondents were allowed to insert their email
address for receiving their team results. This could lead to a social response
bias in such a way that respondents wanted to rate high in the Scrum Master
activities.

With 67 participants our sample is limited in size and prevented us to
perform a psychometric evaluation of the tool, limiting our confidence in the
tool validity. A psychometric evaluation of the tool would not be a familiar
step in software engineering studies, so we see this as a missed opportunity
rather than a limitation. Future studies should aim for a bigger sample size
that allows to perform an exploratory factor analysis, thus quantitatively
clustering the factors. As the theorized 9 factors might be difficult to test
psychometrically, I suggest future studies to test the three suggested clusters
in Section 6.4, thus, allowing for testing agile team behavior along three
variables instead of nine.

Since the drop-out rate for this study was quite high, for future studies
I suggest, to rate the Scrum Master and the Development Team each on
separate consecutive pages. Therefore, participants will have to answer six

6.6 | Limitations and Future Work 141

different pages of questions. This will take more time, yet, may lead to a
more convenient experience to fill out the questionnaire, and thus, increase
the number of responses.

Moreover, even though each business division operates within a different
sub-culture and industry context, still all teams were from the same con-
glomerate. Even if this study is clearly placed as an exploratory one, I want
to highlight that we cannot claim the results to be universally applicable.
I suggest a larger sample drawn from different companies with different
industry backgrounds to extend this study in the future.

Moreover, almost 50% of the team members stated to be 9 or more persons
in their team. I was not able to control for this variable since I had not asked
the Scrum Master on their number of team members. Larger groups are
found to be less likely to evolve into a mature team [WDTO03]. Future testing
should take this into account.

Data points at an evolving Scrum Master role in relation to maturity.
However, maturity was rated by the number of months each team had been
working in an agile way. I cannot claim with certainty that the time a team has
been working in an agile manner is related to maturity stages. Furthermore,
I have not conducted a longitudinal study but compared different teams
which had been working a varying amount of time in the agile manner.

Future testing should refer to the maturity stage by Wheelan [WDTO03]
to examine the 9-Factor Theory for a valid measurement of group maturity,
investigate time and group development in relation to varied company types
and sizes, as well as in a longitudinal study.

142 6 | Part II: A Quantitative Exploration

CHAPTER

DiscussioN AND CONCLUSION

This chapter summarizes the findings and discusses them critically while
referring to existing evidence. I highlight my contribution to research and
suggest practical implications.

Section 7.1 summarizes the results of part I and part II while referring to
the research questions RQ1 - RQ10. The discussion in Section 7.2 elaborates
on the value of one individual performing the Scrum Master, the challenges
of shared leadership in established companies and suggests a new role
description of the Agile Master. This discussion provides groundwork for the
practical implications for the Development Team, Scrum Master, Product
Owner, Management and organisation in Section 7.3. Section 7.4 refers to
limitations of the study and Section 7.5 suggests future research which has
not yet been referred to in part I and part IL

7.1 Summary of the Research Findings

Empirical studies have suggested that the role of leadership evolves while
the team matures [GTF17; MDD10; SJ17]. Some authors state that team
members in a more mature team also take on leadership roles [MDD10;

143

SJ17]. Yet, up to my knowledge, no scientific study has examined how the
leadership role changes in an agile team over time. This thesis explored how
leadership enables the Developers to take on leadership roles and adapt to
the agile way of working.

I focus on the leadership role of a Scrum Master and explain how the
team can evolve from one dedicated leader to self-organisation in established
organisations.

Through a Grounded Theory based study (part I) and a quantitative
exploration (part II) this thesis provides empirical support for a change in
leadership using the example of the Scrum Master. Furthermore, I advance
the theoretical underpinning of agile leadership by integrating more research
on role theory and team leadership in self-managed teams into research
on leadership in agile software development teams. Based on theory and
empirical findings I build a substantive theory and a quantitative test on
changing leadership in agile teams. I therefore contribute to understanding
leadership in agile teams.

In the following I summarize my research findings. I briefly recapitulate
part I and part II while referring to the respective research questions in
consecutive order.

Part I reported on the results of a Grounded Theory study. Based on
observations and qualitative interviews with 75 Scrum practitioners from 11
different business divisions of the Robert Bosch GmbH I answered research
questions RQ1 to RQ7.

Which roles does the Scrum Master play to support the team to work
in an agile way? (RQ1)

I identified the following leadership roles: Method Champion, Disciplinizer
on Equal Terms, Coach, Change Agent, Helicopter, Moderator, Networker,
Knowledge Enabler and Protector. I label the set of nine leadership roles the
9-Factor Theory. A description of each role can be found in Section 4.2.2.10.

In which way do the Developers take on the Scrum Master role over-
time? (RQ2)

The semi-structured interviews with Developers, Scrum Masters and Prod-

144 7 | Discussion and Conclusion

uct Owners provided examples for the Developers taking over 7 of the 9
leadership roles over time: the Method Champion, Disciplinizer on Equal
Terms, Coach, Change Agent, Helicopter, Networker and Knowledge Enabler.
I did not come across examples in which the Developers played the Protector
and the Moderator.

How are roles transferred from the Scrum Master to the Developers?
(RQ3)

The leadership roles are transferred in three consecutive steps which
I name the role transfer process. First the Scrum Master is a role model
and demonstrates the nine leadership roles while the Development Team is
observing the behavior. Secondly, the Scrum Master provides a leadership
gap, namely a hierarchical-free space within which neither the dedicated
Scrum Master, managers, the Product Owner nor any formal leader role
interferes. This allows the Developers to take on leadership roles themselves.
Team members claim and grant leadership roles depending on the situation.
In the last step, the Scrum Master only plays the leadership roles when still
needed, while the Development Team performs most of the nine roles.

What is the underlying internal team environment required for the
role transfer to occur? (RQ4)

The role transfer requires an internal team environment of communication
on equal terms, psychological safety, transparency, shared mental models,
team orientation, team potency, self monitoring and team learning. These
team features help the Development Team to understand the leadership
roles and agree upon sharing the roles. How each of these factors influences
the role transfer is described in Section 5.2.3.1.

How can the Scrum Master foster the internal team environment?
(RQ5)

By facilitating the Retrospective the Scrum Master helps the Developers
to create a supportive internal team environment. The Retrospective con-
tributes to building a shared understanding on leadership in agile teams and
empowers to take action.

Which expectations on the Scrum Master limit the changing leader-
ship role? (RQ6)

7.1 | Summary of the Research Findings 145

The Scrum Master is torn between fulfilling expectations deriving from a
bureaucratic way of thinking and the agile way of thinking which led to role
conflicts. For example, sometimes managers expect the Scrum Master to do
monitoring, even though the agile way of working describes that the Develop-
ment Team monitors itself. As a consequence of the role conflicts, the Scrum
Master is torn between clinging to the leadership roles and handing them
over to the Developers. If the Scrum Master decides to fulfill expectations
deriving from a bureaucratic system, the role transfer is diminished.

How do organisational culture and structure influence the role trans-
fer? (RQ7)

Organisational culture linked to high power distance (e.g. command-and-
control behavior), specialised culture (e.g. very knowledgeable experts) and
functional departmentalised structure (e.g. departmental silos) reduces the
role transfer.

Based on the results of part I I suggest the Agile Matching Theory which
implies that an internal team environment and organisational context need
to match for the role transfer to occur. Section 4.2.5 provides a detailed
description of the theory.

Part II reported on a quantitative exploration with 67 participants from
more than 19 different Scrum teams of the Robert Bosch GmbH. This study
aimed to test the presence and change of the nine leadership roles. Which
leadership roles does the Scrum Master play? (RQ8)

Our data revealed that a majority of the Scrum Masters play the leadership
roles of the Method Champion, Disciplinizer on Equal Terms, Coach and
Moderator, while the Change Agent, Helicopter, Networker and Protector
is played by merely about half of the Scrum Masters and the Knowledge
Enabler is performed by only about one third.

Which leadership roles does the Development Team play? (RQ9)

Our data displayed that the Development Teams rarely take on the leader-
ship roles. About half of the teams perform the role of Disciplinizer on Equal
Terms, while only about one third perform the roles of Helicopter, Moderator,

146 7 | Discussion and Conclusion

Networker and Knowledge Enabler. The Method Champion, Coach and
Protector are performed least often by the Developers.

Are leadership roles distributed between a Scrum Master and the
Development Team, and if so, is the role more often shared in mature
as compared to immature teams? (RQ10)

The quantitative exploration revealed that a few teams share the leadership
role and that the distribution of the leadership roles varies in different
maturity stages. I find that teams who share the Scrum Master role had
most often been working in an agile way between 3 to 5 months. Therefore,
the role was rather shared in immature teams. Furthermore, I did not find
a single team in which the Scrum Master was centred on the Development
Team.

Since part II finds that different roles are performed to a varying extend I
suggest to divide the 9-Factor Theory into the three clusters: 1) psychological
team factors, comprised of the leadership roles Method Champion, Coach
and Moderator 2) product-related factors, comprised of the roles Disciplin-
izer of Equal Terms, Helicopter and Knowledge Enabler 3) organisational
factors, comprised of the roles Change Agent, Networker and Protector. I
suggest this clustering as we find that organisational factors are rather rare
in Development Teams, product-related factors are more often performed in
selected teams, while psychological team factors are rarely transferred from
the Scrum Master to developers.

7.2 Discussion

7.2.1 The Value of a dedicated Scrum Master

One recurring question is who should take on the dedicated Scrum Master
role. Some researchers argue in favor of a rotational Scrum Master in mature
teams [SJ17; SSD16] which implies that any developer in the team can
take over the role. Other studies reveal that some sort of dedicated neutral
facilitator is needed to establish a healthy team environment [Bar93]. Our
data revealed that only a few teams shared the Scrum Master role and no

7.2 | Discussion 147

individual Development Team predominantly performed the leadership roles.
I therefore argue in favor of one dedicated person taking on the leadership
role of a Scrum Master and do not support the claim of a rotational Scrum
Master. Even though I suggest a role transfer process, I propose that one
dedicated leader is always needed in an agile team. Yet, I do not agree that
one person keeps all leadership roles [QFTM90] but suggest that the Scrum
Master should rather be shared between one dedicated role keeper and the
Developers.

Based on the quantitative exploration I propose that some roles are more
suitable to be shared than others. The psychological team factors (e.g.
Method Champion and Coach) and the Protector rather remain with the
dedicated Scrum Master over time, while the product-related factors (e.g. He-
licopter and Knowledge Enabler) and the Networker are gradually shared be-
tween the committed Scrum Master and the Developers. Whoever feels will-
ing and competent in a given situation takes over a required role [HNM12b].

Some of the roles, such as the Helicopter, were reported to stick with the
same team member after a while. Teams stated that the person who was
best in a specific role would always play this role. Yet, sometimes clinging to
roles created territories in which only that specific person was allowed to
play that role and other team members lacked the opportunity to perform
each role to an equal amount (Section 5.2.3.4). Some studies reveal that
self-managed teams who share roles perform better [ZAMO09], and therefore,
one can speculate that committed role keepers are not always beneficial
for the team. However, role sharing also varies in different maturity stages
[Yan96] and role distribution needs to fit with the respective context and
maturity stage. I therefore highlight that the Scrum Master should reflect
regularly with the team who takes upon which role and whether or not
team members would prefer to share specific leadership roles. Role clarity is
important for establishing shared expectations [BP19] on how to distribute
leadership roles.

The Retrospective helps to reflect upon expectations. Despite its impor-
tance for team development, the Retrospective was found to be neglected
in the absence of the Scrum Master [HNM12b]. An agile team needs a

148 7 | Discussion and Conclusion

committed Method Champion and Coach who facilitates the Retrospective
and contributes to a healthy internal team environment during the Retro-
spective. A supportive internal team environment encourages teams to take
on leadership roles and therefore work in a more agile way.

Furthermore, teams need a Protector who shelters the team from inap-
propriate disturbances by Product Owner or management [Hod13]. This
is especially important in a rather bureaucratic environment that is used to
command-and-control mode. Team members in such an environment may
lack in the legitimate right to play the Protector which may lead to less focus
and consequently diminished work progress. Therefore, a dedicated Scrum
Master is needed who has the legitimate power to perform the Protector.

The quantitative exploration revealed that not all of the leadership roles
were performed to an equal amount by the committed Scrum Master, while
also the Development Team did not take over the roles which were neglected
by the Scrum Master. For example, the Protector was only performed by
about half of the Scrum Masters and by no developer. While I acknowledge
that sometimes the context does not require certain roles, I still think teams
would benefit from a dedicated role keeper playing the distinct leadership
roles to a larger extend. All of the leadership roles aim at improving the agile
manner and the agile way of working helps teams to develop high-value
products [CHO1].

Moreover, team mechanisms and organisational environments are complex
and understanding them requires a lot of experience and practice. One
committed person should continuously develop coaching and method skills
further to play the Method Champion and Coach and increase knowledge
about the organisational context in order to play the Protector and Change
Agent. The committed Scrum Master should be trained in psychological team
mechanisms and organisational factors to support the team in an appropriate
manner. Continuous learning and development requires time and cannot be
done by all developers to an equal amount. However, this would be required
if the Scrum Master role was rotated among team members.

A dedicated leadership enabler is a neutral person who fosters a supportive
internal team environment and leadership sharing, knows the organisational

7.2 | Discussion 149

setting, links the team to it and develops it further, protects the team and
continuously takes time and effort to enhance these skills and capabilities
further.

I would like to emphasize that it is not only important that one dedi-
cated Scrum Master encourages developers in taking on leadership roles
actively, but also needs to step back by providing a leadership gap. While
much research emphasizes the need to intentionally 'motivate’ followers (e.g.
[PHP15]), I would like to support the claim by Charles C. Manz [Cha91]
that teams are intrinsically motivated, and do not need to be motivated. A
more mature Development Team which is built upon a proper team design
[GL20] and embedded in a fitting environment with a compelling vision will
not hesitate to take on leadership roles when facing the leadership gap.

7.2.2 Leadership in Agile Teams in Established Companies

The Grounded Theory study discovered nine leadership roles that are shared
between one dedicated Scrum Master and the Developers. The descriptive
exploration indicated that some roles were shared less often than others
and that not all roles were performed by developers. One explanation
emerging from the qualitative interviews is that role conflicts deriving from
a mismatch between bureaucratic culture and the agile manner diminished
the role transfer. Thus, a bureaucratic environment is a major challenge for
evolving leadership in agile teams.

Several studies indicate that a lack of external support limits leadership
in teams [HB13; HN17; MDDO9]. For example, management can diminish
self-organisation easily by micro-management (e.g. [HB13; HM16; HN17;
MAD12]). Project managers that are responsible for results struggle with
transferring leadership to the team and experience tension [Tay16]. Simi-
larly, I found that the Scrum Master felt the need to protect the team from
disturbances, while simultaneously coping with rather traditional requests
by Product Owner, manager or other stakeholders, e.g. reporting. This
resulted in role conflicts and restricted team leadership.

Moreover, our data revealed that some settings did not change the or-

150 7 | Discussion and Conclusion

ganisational structure. Instead of replacing traditional roles, organisations
add agile roles on top of existing traditional roles. Therefore, even more
roles approached the Developers. Consequently, agile teams handled many
requests at once which made them lose focus and therefore less productive.
Moreover, in settings where group leaders and project managers still existed,
the Scrum Master had less power, because the role keeper was sometimes
merely considered to be a personal assistant rather than a leadership enabler.
This diminished the Protector and Change Agent role. Also a study by Gren
[GL20] concludes that existing structures in bureaucratic companies are
sometimes renamed by agile terms, yet, teams in such an environment do
not develop the agile way of working.

Therefore, even though companies aim at implementing agile teams, team
leadership will remain low if a company does not simultaneously abandon
bureaucratic organisational culture and structure. To which extent the
organisational context must change to allow for more leadership on team
level is an ongoing discussion among researchers and practitioners alike.

Simply replacing the traditional positions by agile roles is considered
not to be the appropriate solution to develop the agile manner [GGJ19;
HB13; HN17; Pril0]. The sample predominantly derived from companies
that are active in the automotive industry which develops products for a
safety critical environment. Due to legal requirements, it appears to be
difficult to change the organisation towards a more agile way. However,
newly established companies in the same industry do have more flexible
structures and a learning culture. For example, they think more in features
and continuous delivery instead of delivering a finished product. To compete
with emerging companies and rapid product development, a fundamental
change of the way established companies develop products is inevitable.

Research on agile transformation tends to argue in favor of a gradual pro-
cess to adapting to the agile manner [GL20; HN17]. Grigg [GrilOa] describes
a gradual process by referring to the transformation from a command-and-
control organisation to self-organised teams in three different stages over a
period of several years. The author claims that it is very difficult to make
employees take over more responsibility and they need to get used to it step-

7.2 | Discussion 151

by-step. The author suggests to gradually provide more rights to the team
while attending supportive training, e.g. how to use certain tools. Rather
than exchanging traditional methods with agile methods, organisations are
advised to harmonize agile and traditional development depending on a
given situation and the context [BT05; GL20; HN17].

The Agile Matching Theory describes that the transfer of leadership roles
depends on the fit between contextual factors and agile team features. I claim
that distribution of leadership between the dedicated Scrum Master and
the Developers is not about whether or not transferring leadership roles but
about finding an equilibrium of role sharing while taking the organisational
context into account.

However, this does not mean that the context should remain bureaucratic
since culture and structure in established companies need to evolve to ensure
competitiveness. Instead the context should be examined critically to search
for opportunities for gradual change. Designing the context of the self-
organised team right in the first place was identified to be a key leadership
responsibility [GL20; HHO02a; Wag97]. organisations have to make sure that
the agile team is implemented in an agile-friendly environment, such that
team members feel encouraged to take over leadership roles.

I suggest that instead of over-emphasizing changing Scrum Master behav-
ior and developer behavior, leaders should critically examine the context
within which agile teams operate and gradually adjust it such that teams
can work in a more agile way. Organisational context and team behavior
are interdependent and have to evolve together in order to diminish role
conflicts and therefore, empower the team to take on more leadership roles.
This equilibrium has to be re-examined and adapted iteratively since the
team and the organisation gradually evolve.

To make agile working a success, not only developers need to change
behavior but also management [HB13; MDD09]. Change on management
level includes the way resources are allocated [HB13], adjusting the backlog
to the strategy on organisational level [MDD10], handing over decision-
making power to the team [Hod13] and a minimum of required processes.
The vision of a project should be clear and access to required resources

152 7 | Discussion and Conclusion

should be guaranteed [Wag97].

Moreover, a learning environment is found to increase acceptance of the
agile mode of working [CT09]. Therefore, management should encourage a
learning organisation [GEG08], which involves continuous integration, an
inspect and adapt approach, learning from failures and flat hierarchies within
which team members feel motivated to take on leadership roles [Hod13].
Furthermore, management should not jump into the leadership gap when
provided by the Scrum Master but allow the Developers to drive.

7.2.3 New Role Description: Agile Master

Backlander [Bidc19] describes that the Scrum Master has evolved from
facilitating the Scrum process to caring for team dynamics since its imple-
mentation in the company setting. I found similar results. The Scrum Master
at our company setting focused on supporting context-dependent adaption
of the agile manner instead of facilitating the Scrum method according to
the book.

Even though many teams had left the Scrum process behind, I found that
the team still applied agile methods, such as ScrumBan or Kanban, or had
developed team-specific adaptations of agile methods. Those teams still had
a Scrum Master who helped the Developers to collaborate and to apply a
suitable agile method in their specific context. Often the teams did not call
the role keeper Scrum Master but Agile Master.

Focusing on human behavior is more important than keeping a certain
agile method [CHO1]. Our results indicate that the Scrum Master in a
company setting actually does more than facilitating agile methods and
also evolves and cannot be considered a static concept. I acknowledge that
applying a fitting agile method in a given team context is important and
label the respective role the Method Champion. Yet, I discovered eight more
roles that enable the team to work in an agile way. I summarize the set of 9
leadership roles the 9-Factor Theory.

Based on my results I suggest to give a new name to the term Scrum
Master. I suggest to label the role Agile Master. By doing so, I hope that

7.2 | Discussion 153

practitioners will perceive the role as someone who serves as a leadership
enabler to the team and the organisation more than someone who focuses
on facilitating the Scrum process. I will provide a description of the Agile
Master in the following.

The Agile Master is a peer to the Developers but does not take part in
operational activities of the respective team. The dedicated role keeper
is a leadership enabler who enables the team to adapt the agile manner
while taking the context into account. The Agile Master plays a set of nine
leadership roles (9-Factor Theory), all supporting varying features of agile
teams which relate to self-organisation, cross-functionality and iterative
learning.

The 9-Factor Theory can be clustered into psychological team factors,
product related factors and organisational factors. While the Agile Master
rather takes care of psychological team factors and organisational factors,
the product related factors are rather performed by the Developers.

A team aims to share the leadership roles. However, how the Agile Master
evolves and in which way the role is shared depends on the maturity, the
internal team environment, the structure and the culture of a given setting.
Furthermore, the Agile Master needs to provide a leadership gap within
which developers feel capable and willing to take on leadership roles. In
a more mature team, the dedicated Agile Master plays the role to a lesser
extent but does not become obsolete.

The Agile Master facilitates the Retrospective which generates discussions
on current challenges, leadership needs and the preferred extent of role
distribution. Team external leaders can also be invited to the discussions
on leadership needs and expectations. As a result, the team builds a shared
understanding on leadership in a given context. Yet, the aim is not to share all
roles to an equal amount but to find an equilibrium of role sharing according
to the unique needs and context of the given team. Simultaneously all people
involved continuously and critically examine the context for opportunities of
changing towards a more agile place.

Moreover, role sharing between the Agile Master and the Developers
requires support by the Product Owner, disciplinary supervisor and other

154 7 | Discussion and Conclusion

stakeholders. The person who is in touch with the customer needs to provide
money, moral support and a clear vision and strategic goal, while also offering
a high level of freedom and trust to do the work and to reach the common
goal.

7.3 Practical Implications

The following chapter provides practical implications of our findings. I
provide suggestions for the Developers, the Scrum Master, the Product Ownet,
the management and the organisational culture and structure.

7.3.1 Implications for the Developers

When individuals from rather traditional development companies start work-
ing in agile teams they have to learn a new way of leadership in teams, which
will lead to slower delivery of work products at the beginning. Management
should grant sufficient time to teams to enable them to regularly reflect upon
the leadership roles during the Retrospective. Team members must become
convenient with interacting with their team and managers in a different way,
and to develop the courage to bridge the leadership gap when provided.
Teams need time to try the roles and learn them, possibly by failure. Just
like any newbie in a formal leadership position needs time and is given time
to learn the role, Development Teams need time to learn the leadership roles
of Scrum.

I suggest the practice of the Retrospective to be a core element to enable
the role transfer. The reasoning behind it is that the Retrospective establishes
a beneficial internal team environment. For example, when talking about
personal matters during the Retrospective, team members establish psycho-
logical safety within which they feel safe to take on leadership roles. The
Retrospective serves as a learning opportunity within which team members
discuss about the various leadership roles, the leadership gap, the opportu-
nity to take on leadership roles and what would need to change to develop
towards more shared leadership. Furthermore, the agile team should occa-

7.3 | Practical Implications 155

sionally invite stakeholders and managers to the Retrospective. This allows
them to build a shared understanding of working together and a shared
leadership culture.

I also found that not aligning responsibilities at all leads to insecurity about
roles and responsibilities. This will lead to a leadership vacuum within which
no one takes on responsibility, at worst. Therefore, I urge practitioners to
talk openly about roles and responsibilities and to agree on having specified
owners for some topics and on having shared ownership for other topics.

Last but not least, Development Teams need to continuously discuss about
what they would need to perform all roles. I have found that taking on
leadership is not only about being capable and willing to fill the leadership
gap but also about having access to the respective rights to fill the gap. For
example, conglomerates sometimes only grant specific team members access
to information on certain type of data. Therefore, knowledge is centred on
that specific person which may become a bottleneck in case of absence of
that individual person. Consequently, this dependency on expert knowledge
slows the team progress down and limits playing the Knowledge Enabler.
While in some cases the law requires that only a person with a specific
educational background has access to certain data, in other cases access to
data could actually be shared openly with other team members. Therefore,
Scrum teams and respective managers have to talk openly about rights and
duties, and whether or not expectations can be met in reality while taking
the organisational context into account.

7.3.2 Implications for the Scrum Master

The Scrum Master has to be granted sufficient legitimacy to shelter the team
while it matures and to preserve the leadership gap as a major enabler for the
team’s transformation. Especially in traditional development companies that
are rather hierarchical in its nature, developers tend to struggle in receiving
the leadership gap. Manifold, the Product Owner or managers would jump
into the leadership gap instead of allowing the team to do so. Therefore,
Developers need a Scrum Master to protect the team and shelter it while it

156 7 | Discussion and Conclusion

matures.

The Scrum Master must encourage the team to take the time to regularly
reflect upon the leadership roles during the Retrospective, learn their mean-
ing and content, build a mutual understanding and figure out how and to
what extent to take on leadership roles. Simultaneously, the Scrum Master
must be patient and wait until team members take on responsibility when
they face a lack of leadership.

While immature teams rather focus on internal issues, more mature teams
have learned self-regulating behavior and are ready to focus on adapting to
changes in external demands [HWO05]. The Scrum Master steps back and
may be needed less over time, and hence, can start focusing on other issues.
Either a Scrum Master could become responsible for other Development
Teams since the respective team requires less time or the Scrum Master
could become an organisational coach and focus even more on solving
organisational impediments and aligning divers agile teams. For example,
the Scrum Master could increase coaching service for management and
Product Owner. Also the Scrum Master could take even more care of linking
the Developers with relevant stakeholders.

Furthermore, I have uncovered that some developers demand their Scrum
Master to also do project management activities. Thus, some Scrum Mas-
ters operating in rather traditional development organisations may need
to embody additional thoroughly selected project management activities.
Hence, implementing the agile way of working means to continuously walk
the tightrope between keeping purposeful bureaucratic facets and changing
towards more agile characteristics.

My findings have several implications for the training of Scrum Masters.
Many consultancy firms offer a certified 2-day Scrum Master training in
which they explain the basics of the Scrum method. I claim that an effective
Scrum Master needs a more comprehensive learning opportunity than a
2-day training.

My results demonstrate that the Scrum Master is a very comprehensive
role, dealing with complex team mechanisms and organisational features.
I propose that a long-term training for the Scrum Master is needed since

7.3 | Practical Implications 157

a longer period of time is required to understand the impact of the nine
leadership roles on teams and organisations. The Scrum Master has to learn
how to apply the role more context-dependent instead of following a given
process.

The Scrum Master needs regular knowledge exchange meetings to con-
tinuously develop the skill to train teams in the agile manner. For example,
a community of Scrum Masters can meet regularly for peer consulting to
learn from each other and support each other. Team mechanisms are highly
complex and many situations in daily life of a Scrum Master are unique. It is
therefore important for a Scrum Master to continuously discuss with peers
about practical examples and to do peer coaching.

7.3.3 Implications for the Product Owner

Many teams cannot adapt the agile manner due to hindrances on organisa-
tional level. Those challenges on organisational level can seldom be solved
by team members or the Scrum Master alone because of lack of legitimate
power. In such organisational environment, it is the task of the Product
Owner and management to provide a framework within which developers
receive the necessary freedom to act.

The Product Owner is an important mediator between the organisational
surrounding and the Development Team. The Product Owner is supposed
to point at the overall direction, as agreed to with the customer, while also
protecting the team from organisational pressure. Yet, some Product Owners
were found to be torn in between delivery pressure and providing freedom
to the Developers. Some Scrum Masters were limited in their scope of
action due to the Product Owner putting pressure on them. Therefore, the
agile teams seldom performed the leadership roles. I found that in rather
traditional development organisations Product Owners struggled in bridging
the expectations by the organisation with the expectations and needs of the
Scrum Master and the Developers.

I therefore suggest to take action to diminish the organisational pressure.
For example, representatives from the Development Teams could meet reg-

158 7 | Discussion and Conclusion

ularly and increase alignment between different agile teams in terms of
budget and resources. Also, the Product Owner should believe even more
in the power of providing freedom to the Developers instead of asking for
regular status reports.

7.3.4 Implications for the Management

Many practitioners on the management level have set the agile transforma-
tion of their organisations as one of their top priorities. One method to reach
this goal is the framework Scrum which promises that when implementing
agile projects their teams are instantly “doing twice the work in half the
time” [SS14]. Yet, the Scrum Guide describes an ideality missing a link to
team mechanisms such as maturity and a detailed description of how to
comfort project teams on their journey to become an agile team. Thus, few
have recognized and welcomed the time required for the team development
process.

Even though management expects employees to change and take on more
responsibility, some managers are reluctant to grant leadership roles to the
teams. Due to the bureaucratic past being deeply imprinted in parts of the
organisational memory, traditional viewpoints on hierarchy tend to remain
in some areas. Therefore it is easy to hold on to traditional sources of power.
External pressure, top-down changed targets, shifted priorities and rewards
for traditional behavior as well as frequent changes of the team setup destroy
the sheltered space within which agile teams can grow.

When implementing agile teams in rather traditional development com-
panies, often organisations develop hybrid models: they try new approaches
to collaboration while keeping to traditional processes and sources of powet,
e.g. in terms of reporting. This leads to even more complexity and higher
efforts for alignment and communication. For example, agile teams may
have a review and a status report separately. This does not only take more
time but may also result in controversial decision-making processes. Even
though managers expect developers to take on leadership roles, not every-
one is aware of the consequences. While some managers steadily transfer

7.3 | Practical Implications 159

more and more responsibility to the team, others still cling to traditional
decision-making rituals. This might lead to de-motivation of agile teams
since they were promised more leadership responsibility when launching
agile methods.

I suggest that managers try even harder to change their mind-set towards
more agility and provide the appropriate boundary condition for the agile
way of working. Despite much effort to provide autonomy to teams, many
agile development projects still need more rights and less processes to fulfill
their tasks successfully. I therefore suggest to critically examine the existing
structure and processes and agree upon decision-making responsibilities.
Moreover, I propose to avoid introducing even more formal meetings when
implementing Scrum teams but instead trust agile teams to take on leadership
roles in a more informal way. This will lead to improved team maturity, and
therefore to high performing teams. Management not only needs to provide
the leadership gap but also to provide help to fill the gap. For example, grant
access to resources such as required level of rights for decision-making.

Additionally, managers should provide opportunities for developers to be
actively part of the needed structural change towards a more agile organisa-
tion. For example, managers should provide the necessary freedom to the
team to design their own working conditions. Furthermore, I urge managers
to provide even more transparency and opportunities to voice the opinion
by a regular Backlog Grooming and implementing openly accessible activity
boards. Including developers in strategic decisions will lead to even more
motivation and commitment to take on leadership roles.

7.3.5 Implications for the Organisation

Besides high power distance, I found that specialist culture and a func-
tional departmentalised structure decreased team leadership. Therefore,
established companies that have already started its agile transformation
by implementing agile teams have to increase its efforts even further to
empower teams to take on leadership. They have to put even more effort
into changing the organisational structure and culture.

160 7 | Discussion and Conclusion

Even though the Scrum method suggests dedicated full-time team mem-
bers that own all competences needed to fulfill a given task, this is often
not possible in reality since companies fulfill different customer’s needs
simultaneously.

Consequently, teams have to call in experts according to their sprint goals
which is often difficult in rather bureaucratic organisations due departmen-
talised structure and fixed staffing on projects or departments. Therefore,
the organisational structure has to change more to an open organisation
with easy access to different competences and skills. Companies can also
consider more open source projects and approach experts from the outside.
This makes staffing of projects more flexible and generates new knowledge.
It also includes the advantage of external workers being independent from
company career systems and norms, therefore, making them unbiased actors
which allows for more entrepreneurial spirit.

Furthermore, established companies should foster a learning organisa-
tion [GEGO8] that encourages employees to continuously share knowledge
openly and to learn from each other unrelated to their position or func-
tional structure. I suggest that a learning organisation and a cross-boundary
friendly structure are prerequisites for team learning and cross-functional
collaboration. This requires tools and communities to allow for transparency,
e.g. social business platforms that are easily accessible. Management needs
to foster knowledge management tools and experiments, and appreciate
those that actively share or promote knowledge and voice their opinion. Fur-
thermore, managers should provide space and work time for communities
of practice and open space meetings, give developers the right to speak on
conferences and grant developers a personal training budget which they can
manage themselves.

The opportunity to contribute and to be acknowledged for knowledge
sharing among team members and communities intrinsically motivates in-
dividuals and fosters team learning and creativity [TN86]. This leads to
an open organisation with easy access to different competences and skills.
Besides, knowledge sharing saves time in the long-term since it impedes
re-inventing the wheel each time a new team faces a challenge another team

7.3 | Practical Implications 161

had already solved in the past.

I have observed several promising initiatives in established companies to
start an agile transformation by setting up agile teams in protected yet even
isolated clusters. Providing a guarded environment to let teams, manage-
ment and the surrounding structures try, experiment, learn and accept new
ways of collaboration for too long brings the risk that those "islands" will only
exist as such. Established companies that have made first experience with
working in an agile way and that have created valuable insights must take
the next challenging step to introduce their individual learning episodes to a
broader organisational level and to expand their activities to those structures
that seemed not ready yet, by providing similar values, believes as well as
goal setting and to nourish from the success of their protected test teams.

7.4 Limitations

We have already referred to limitations in part I and part IL In the following
further limitations of the thesis are described.

The Grounded Theory is embedded in the context of the subjects under
study and the semi-structured interviews are based on personal interpretation
and retrospective memories of interviewees. To increase objectivity of the
qualitative interviews and observations (part I), I conducted a quantitative
survey (part IT). Yet, the disadvantage of the quantitative exploration was that
I could not capture the context within which data was collected. For example,
I did not collect data on culture, structure or additional formal roles since
this would have added numerous more items to the survey which probably
had increased the drop-out rate of respondents. Due to a lack of information
on the context my explanation of the findings of the quantitative exploration
is rather of speculative nature. I therefore would like to emphasize that
the quantitative data in part II should be interpreted while considering
the context as described in part I. For future studies I recommend to do
more mixed-studies of qualitative and quantitative methods. For example, a
study with another focus topic on leadership in agile teams could conduct

162 7 | Discussion and Conclusion

a longitudinal case study based on observation, qualitative interviews and
several iterations of the quantitative survey.

Even though part I and part IT were based on two different samples, data
was collected from one conglomerate only. While working on this thesis, I
conducted a research cooperation with another large company active in the
automotive industry. Due to legal requirements I do not report on the other
company in this thesis and just provide a brief insight in the following. For
detailed information please refer to the respective paper by Séderqvist and
Spiegler [SSne].

The cooperation was a shared project on the leadership enabler [SSne].
Even though the Developers at the other company did not apply Scrum,
product development teams had implemented a role similar to the Scrum
Master that was responsible to help the team to self-organise itself while
developing products. This role rather asked critical questions and helped the
team to reflect upon teamwork than telling the team what to do. I therefore
believe, that my findings on the Scrum Master as a leadership enabler can be
broadened to other company contexts. Moreover, it supports the proposal of
the ’Agile Master’ which is unrelated to a specific method like Scrum. Since
the other company was a Swedish corporation, it broadens the research
implications to another culture. Nevertheless, the group is also operating in
the automotive domain which limits our findings to a specific industry.

Even though I collected data from teams operating in different industries,
this thesis neglects which kind of product was developed in the distinct
projects. Distinct products require distinct project methods [Rup10]. There-
fore, different business cases may also require different kind of leadership
sharing. Even though we scratch on the market conditions and product
requirements in our Spiegler, Heinecke, and Wagner [SHW19b] paper we
have not considered in detail in which way the business model and product
influences the way leadership is shared. Future studies should take the mar-
ket environment, business model and product into account while examining
leadership sharing.

While many companies report on success stories on agile teams this re-
search also takes the challenges into consideration. I believe that suitable

7.4 | Limitations 163

leadership in agile teams requires effort and time on many different levels.
This study is one further step to help management understand how culture
and structure limit and enhance leadership in agile teams. More research
is needed to understand supporting and hindering factors and to how they
apply in reality [GBS+16].

7.5 Future Research Directions

The research contribution and limitations pave the way for a number of
follow-up research options. In the following, I describe the possible avenues
for research that build on this thesis.

Future research could create a valid assessment of the 9-Factor Theory. A
psychometric evaluation of the 9-Factor theory can design a valid test of the
9 leadership roles in agile teams. The resulting questionnaire can be used to
test distinct hypotheses. For example, a quantitative test can examine the
relationship between agile leadership and performance. It can examine if
teams that share the nine leadership roles to a higher extend tend to build
more effective products. Likewise, such a valid test can show if a particular
distribution of the roles among team members leads to more effective product
development. For example, it could evaluate whether or not teams are more
effective if product related factors are more centered on developers and
psychological factors are more centred on one dedicated Scrum Master.
Knowing this could help practitioners provide appropriate training for Scrum
Masters and developers, and it would also help them to hire the right fit for
a role. If teams with a Scrum Master who takes on product-related factors
tend to develop more effectively, companies should hire Scrum Masters with
a technical background. If teams develop more effectively with a Scrum
Master who rates high in psychological factors, companies should rather
hire Scrum Masters with a background in psychology.

Moreover, a longitudinal study could assess if product development be-
comes more effective if the Scrum teams are trained in the 9 leadership roles
and in the role transfer process. The research method could be either an ex-

164 7 | Discussion and Conclusion

periment or action research. The researchers could train some groups in the
nine leadership roles, while they would not train control groups. Comparing
the trained groups with the control groups could provide valuable insights
on the effectiveness of the nine leadership roles on product development.
Moreover, it would be interesting to examine if the role transfer process in
the trained groups increases and if leadership roles are shared to a larger
extend in these groups than in the control groups.

Furthermore, research could compare the presence and distribution of
the nine roles in teams operating in different company types. For example,
research could compare organisations with flat hierarchical structure and
strong hierarchical structure or expert culture and open learning culture.
The results would show if some roles are more present in some company
contexts than in others. Assuming that a team with a strong presence of
the nine leadership roles tends to work in a more agile way than teams
with a weak presence of the nine roles, the results would provide insights
into which company context foster teams working in a more agile way. The
findings would support change agents to consider necessary changes in the
organisational context to allow teams to work in a more agile way. Moreover,
the findings would help practitioners decide how to train Scrum Masters
and developers in different company contexts.

Last but not least, we have found that management and Product Owner
need to provide freedom but also have to take the individual’s specific need of
freedom into account. Some teams may need more freedom than others, just
as some individuals need more freedom than others. Hoda and Murugesan
[HM16] suggest a relationship between Hofstede’s cultural model [MH11]
and individual’s willingness to act autonomously. I found that individuals
perceive autonomy and control differently. Future research could test the
relationship between the individual’s capability of self-leadership [MS87]
and the willingness to take on leadership roles. I suggest that depending on
the level of self-leadership, team members share leadership roles differently.
If individuals with a low level of self-leadership tend to take on the leadership
roles less often, practitioners could train individuals in self-leadership in
order to empower them to take on leadership roles in the future.

7.5 | Future Research Directions 165

CHAPTER

CONCLUSION

An increasing number of companies aim to develop software in an agile way.
The agile way of working promises high-value, feedback-oriented products
in a fast-pacing, complex and uncertain environment [SS20; WC03]. While
some companies narrate success stories, others still struggle. How to establish
agile teams successfully and how to accompany them on their agile journey
is still left unexplained. Even though agile methods increase in popularity,
the agile way of working still lacks in theoretical underpinning [DDO0S;
DNBM12]. Cockburn [CHO1] suggests that a team learns over time how to
work in an agile way. One way to support developers evolving into a truly
agile team is fitting leadership. What kind of leadership a team needs that is
by definition self-organised is not yet clear [SMD11].

One leadership role that helps the Developers to work in an agile way is
the Scrum Master. A few studies suggest a changing leadership role while the
team evolves into a truly agile self-organised team. This thesis replies to the
calls for more research on leadership in agile teams [SMD11] by explaining
evolving leadership and by providing a theoretical foundation to leadership
in agile teams. This thesis is the first research project to thoroughly examine
leadership of evolving agile teams using the example of a Scrum Master. I

167

contribute to understanding leadership roles in agile teams by integrating
research on team leadership from self-managed teams into research on agile
teams. While research often relies on single case studies, I approached more
than 48 agile teams in a real company setting and found support for the
claim of a changing leadership role.

I first conducted a qualitative study applying Grounded Theory. The data
derived from observations and interviews with 53 Scrum practitioners from
29 teams. I continuously compared emerging data with existing theory from
agile software development but also from other research fields that focus
on human behavior. I built a new theory by integrating research on team
leadership in self-managed teams into research on leadership in agile teams.
The result is a theoretical explanation for the changing leadership role. I
later on built on the findings and conducted a quantitative survey on the
9 leadership roles with 67 individuals from more than 19 different Scrum
teams.

I discovered that the Scrum Master embodies 9 distinct leadership roles
that empower the team to work in an agile way. While the team matures
those roles are transferred to the Developers via the role transfer process. The
leadership gap is the core enabler. It describes a hierarchical- and leader-free
space which empowers developers to take on leadership roles themselves.
Yet, I did not find that the dedicated leader becomes obsolete in a mature
team, but that the committed Scrum Master plays the role to a lesser extend.

Moreover, I found that leadership in agile teams is highly context-dependent
and changes according to the internal team environment, contextual factors
including leadership culture, organisational culture and functional, depart-
mentalised structure. I suggest the Agile Matching Theory which implies
a mandatory fit between contextual factors and the internal team environ-
ment for the role transfer to occur. I suggest that a contradiction between
expectations deriving from a rather bureaucratic organisation and from the
agile way of working is one of the reasons why truly agile teams are rare in
bureaucratic company settings.

The findings aim to support companies in their agile transformation. I
believe that by focusing more on understanding the underlying human

168 8 | Conclusion

behavior and context of agile methods rather than understanding how to
conduct an agile method according to the book, will boost the agile way of
working.

Leadership in an agile setting is highly context-dependent. Each company
has to find its own leadership model while taking the current situation into
account. Finding appropriate leadership that supports agile teams during the
agile transformation requires regular reflection upon the current maturity,
and expectations deriving from culture and structure. To think that there
is an agile "final’ stage and a road-map to follow is a non-agile thought in
itself. Leadership is about continuously finding an equilibrium within a given
context - taking culture, structure and maturity into account.

Future studies should build on my theoretical foundation and empirical
findings to conduct more research on leadership in agile software develop-
ment teams.

7.5 | Future Research Directions 169

[AHKO08]

[Bac19]

[Bar93]

[BBCL16]

[BCO7]

[Bec00]

[BLPSO1]

[BO88]

BIBLIOGRAPHY

S. Adolph, W. Hall, P. Kruchten. “A methodological leg to stand on:
lessons learned using grounded theory to study software develop-
ment.” In: Proceedings of the 2008 conference of the center for advanced
studies on collaborative research: meeting of minds. 2008, pp. 166-178
(cit. on p. 85).

G. Bicklander. “Doing complexity leadership theory: How agile coaches
at Spotify practise enabling leadership.” In: Creativity and Innovation
Management 28.1 (2019), pp. 42-60 (cit. on pp. 22, 23, 42, 44, 48,
49, 51, 54, 55, 66, 68, 72, 118, 120, 124, 125, 138, 153).

J.R. Barker. “Tightening the iron cage: Concertive control in self-
managing teams.” In: Administrative science quarterly (1993), pp. 408-
437 (cit. on pp. 22, 59-61, 68, 70-72, 147).

E. Bernstein, J. Bunch, N. Canner, M. Lee. “Beyond the holacracy
hype.” In: Harvard business review 94.7 (2016), p. 8 (cit. on p. 65).

A. Bryant, K. Charmaz. Grounded theory. London, United Kingdom:
SAGE Publications Ltd, 2007 (cit. on pp. 82, 83).

K. Beck. Extreme programming explained: Embrace change. Boston,
MA: Addison-Wesley, 2000 (cit. on pp. 39, 66).

R. Baskerville, L. Levine, J. Pries-Heje, S. Slaughter. “How internet
software companies negotiate quality.” In: Computer 34.5 (2001),
pp. 51-57 (cit. on pp. 37, 38).

N.D. Birrell, M. A. Ould. A practical handbook for software development.
Cambridge: Cambridge University Press, 1988 (cit. on p. 36).

171

[Boe06]

[Boe88]

[Bon10]

[BP19]

[BTOS]

[BTPH17]

[CB97]

[CCWP11]

[CHO1]

[Chal6]

172

B. Boehm. “A view of 20th and 21st century software engineering.” In:
Proceedings of the 28th international conference on Software engineering.
2006, pp. 12-29 (cit. on pp. 33-37).

B. W. Boehm. “A spiral model of software development and enhance-
ment.” In: Computer 21.5 (1988), pp. 61-72 (cit. on pp. 34-36).

N. A. Bonner. “Predicting leadership success in agile environments: An
inquiring systems approach.” In: Journal of Management Information
and Decision Sciences 13.2 (2010), pp. 83-103 (cit. on pp. 43, 44, 50,
65).

H. Barke, L. Prechelt. “Role clarity deficiencies can wreck agile teams.”
In: PeerJ Computer Science 5 (2019), e241 (cit. on pp. 62, 119, 148).

B. Boehm, R. Turner. “Management challenges to implementing agile
processes in traditional development organizations.” In: IEEE Software
22.5 (2005), pp. 30-39 (cit. on pp. 23, 43, 76, 152).

M. Beaumont, B. Thuriaux-Aleman, P. Prasad, C. Hatton. “Using ag-
ile approaches for breakthrough product innovation.” In: Strategy &
Leadership (2017), pp. 26-37 (cit. on p. 50).

S.G. Cohen, D.E. Bailey. “What makes teams work: Group effective-
ness research from the shop floor to the executive suite.” In: Journal
of management 23.3 (1997), pp. 239-290 (cit. on p. 70).

K. Conboy, S. Coyle, X. Wang, M. Pikkarainen. “People over process:
key people challenges in agile development.” In: IEEE Software 28.4
(2011), pp. 47-57 (cit. on p. 76).

A. Cockburn, J. Highsmith. “Agile software development: The people
factor.” In: Computer 11 (2001), pp. 131-133 (cit. on pp. 22, 23, 38,
43-46, 48, 53, 65, 66, 69, 77, 78, 87, 149, 153, 167).

K. Charmaz. “Shifting the Grounds: Constructivist Grounded Theory
Methods for the 21st Century.” In: Developing grounded theory: The
second generation. Ed. by J. M. Morse, P. N. Stern, J. Corbin, B. Bowers,
K. Charmaz, A. E. Clarke. Vol. 3. Routledge, 2016, pp. 127-193 (cit. on
pp- 83, 88).

Bibliography

[Cha91]

[CLP10]

[Col04]

[Con09]

[Cor20]

[CS15]

[CTO9]

[DDO8]

[Den15]

[DNBM12]

Bibliography

H.P. S. Charles C. Manz. “Super Leadership: Beyond the myth of heroic
leadership.” In: Organizational Dynamics 19.4 (1991), pp. 18-35 (cit.
on pp. 48, 59, 71, 150).

L. Crevani, M. Lindgren, J. Packendorff. “Leadership, not leaders: On
the study of leadership as practices and interactions.” In: Scandinavian
journal of management 26.1 (2010), pp. 77-86 (cit. on pp. 47, 49, 55,
67, 129).

G. A. Cole. Management theory and practice. 6th ed. London: Cengage
Learning EMEA, 2004 (cit. on p. 48).

K. Conboy. “Agility from first principles: Reconstructing the concept of
agility in information systems development.” In: Information systems
research 20.3 (2009), pp. 329-354 (cit. on pp. 21, 43, 64).

P. Corry. The Evolution of the Scrum Guide— ‘10 to ‘19. 2010 (accessed
June 10, 2020). URL: https://medium. com/serious-scrum/the-
evolution-of -the-scrum-guide-10-to-19-£f3ac4d82cfcb
(cit. on p. 40).

J. Corbin, A. Strauss. Basics of qualitative research: Techniques and
procedures for developing grounded theory. 4. ed. Los Angeles, Calif.:
Sage publications, 2015 (cit. on p. 82).

F.K. Chan, J.Y. Thong. “Acceptance of agile methodologies: A critical
review and conceptual framework.” In: Decision support systems 46.4
(2009), pp. 803814 (cit. on p. 153).

T. Dyb4, T. Dingseyr. “Empirical studies of agile software development:
A systematic review.” In: Information and software technology 50.9-10
(2008), pp. 833-859 (cit. on p. 167).

S. Denning. “Agile: it’s time to put it to use to manage business com-
plexity.” In: Strategy & Leadership 43.5 (2015), pp. 10-17 (cit. on
p- 53).

T. Dingsgyr, S. Nerur, V. Balijepally, N. B. Moe. “A decade of agile
methodologies: Towards explaining agile software development.” In:
Journal of Systems and Software 85.6 (2012), pp. 1213-1221 (cit. on
p. 167).

173

https://medium.com/serious-scrum/the-evolution-of-the-scrum-guide-10-to-19-f3ac4d82cfcb
https://medium.com/serious-scrum/the-evolution-of-the-scrum-guide-10-to-19-f3ac4d82cfcb

[DWO03]

[Edm99]

[Fie67]

[Fis19]

[FM91]

[GBS+16]

[GCD+16]

[GEGO8]

[Ger89]

[GGJ19]

174

V. U. Druskat, J. V. Wheeler. “Managing from the boundary: The ef-
fective leadership of self-managing work teams.” In: Academy of Man-
agement Journal 46.4 (2003), pp. 435-457 (cit. on pp. 45, 59-61, 65,
71, 72).

A. Edmondson. “Psychological safety and learning behavior in work
teams.” In: Administrative science quarterly 44.2 (1999), pp. 350-383
(cit. on pp. 52, 64, 71, 75, 76, 79, 94, 105, 106).

F.E. Fiedler. A theory of leadership effectiveness. New York: McGraw-
Hill, 1967 (cit. on p. 52).

M. Fischer. “Exploring External Leadership in Agile Software Devel-
opment Teams and its Influence on Team Empowerment.” In: Inter-
national Research Workshop on IT Project Management 2019. 2019
(cit. on p. 50).

K. Forsberg, H. Mooz. “The relationship of system engineering to the
project cycle.” In: INCOSE International Symposium. Vol. 1. 1. Wiley
Online Library. 1991, pp. 57-65 (cit. on p. 36).

P. Gregory, L. Barroca, H. Sharp, A. Deshpande, K. Taylor. “The chal-
lenges that challenge: Engaging with agile practitioners’ concerns.” In:
Information and Software Technology 77 (2016), pp. 92-104 (cit. on
pp. 21, 55, 66, 76, 164).

E. Gonzalez-Mulé, S. H. Courtright, D. DeGeest, J.-Y. Seong, D.-S. Hong.
“Channeled autonomy: The joint effects of autonomy and feedback on
team performance through organizational goal clarity.” In: Journal of
Management 42.7 (2016), pp. 2018-2033 (cit. on p. 65).

D. A. Garvin, A. C. Edmondson, F. Gino. “Is yours a learning organi-
zation?” In: Harvard business review 86.3 (2008), pp. 1-10 (cit. on
pp. 65, 78, 153, 161).

C.J. Gersick. “Marking time: Predictable transitions in task groups.”
In: Academy of Management journal 32.2 (1989), pp. 274-309 (cit. on
p- 63).

L. Gren, A. Goldman, C. Jacobsson. “Agile ways of working: A team
maturity perspective.” In: Journal of Software: Evolution and Process
(2019), e2244 (cit. on pp. 21, 63, 64, 74, 118, 124, 125, 151).

Bibliography

[Gin19]

[GL20]

[Gra91]

[GrilOa]

[Gri10b]

[GS17]

[GTF17]

[GYCS93]

[HB13]

[HBJO7]

Bibliography

R. C. Ginnett. “Crews as groups: Their formation and their leadership.”
In: Crew resource management. Elsevier, 2019, pp. 73-102 (cit. on
p- 63).

L. Gren, M. Lindman. “What an Agile Leader Does: The Group Dy-
namics Perspective.” In: International Conference on Agile Software
Development. Springer, 2020, pp. 178-194 (cit. on pp. 23, 50-52, 54,
55, 76, 150-152).

J. W. Graham. “Servant-leadership in organizations: Inspirational and
moral.” In: The Leadership Quarterly 2.2 (1991), pp. 105-119 (cit. on
p- 52).

A. Grigg. “Employee empowerment is the main ingredient in a baking
company’s competitive strategy.” In: Global Business and Organiza-
tional Excellence 29.2 (2010), pp. 6-18 (cit. on p. 151).

K. Grint. Leadership: A very short introduction. Oxford University Press,
2010 (cit. on pp. 47, 49).

B. G. Glaser, A. L. Strauss. Discovery of grounded theory: Strategies for
qualitative research. New York: Routledge, 2017 (cit. on pp. 26, 82,
83, 86, 88, 89, 120, 124).

L. Gren, R. Torkar, R. Feldt. “Group development and group maturity
when building agile teams: A qualitative and quantitative investigation
at eight large companies.” In: Journal of Systems and Software 124
(2017), pp. 104-119 (cit. on pp. 23, 45, 46, 49, 51, 52, 54, 55, 63,
66, 73, 124, 143).

R. A. Guzzo, P.R. Yost, R.J. Campbell, G.P. Shea. “Potency in groups:

Articulating a construct.” In: British journal of social psychology 32.1
(1993), pp. 87-106 (cit. on pp. 75, 76, 79, 106).

D. Hodgson, L. Briand. “Controlling the uncontrollable: Agile’teams
and illusions of autonomy in creative work.” In: Work, employment and
society 27.2 (2013), pp. 308-325 (cit. on pp. 65, 76, 77, 150-152).

P. Hersey, K. H. Blanchard, D. E. Johnson. Management of organiza-
tional behavior. Upper Saddle River: Prentice Hall, 2007 (cit. on p. 52).

175

[HCO04]

[HHO2a]

[HHO2b]

[Hig09]

[Hig20]

[HK18]

[HM16]

[HN17]

[HNM12a]

[HNM12b]

176

H. Heath, S. Cowley. “Developing a grounded theory approach: a
comparison of Glaser and Strauss.” In: International journal of nursing
studies 41.2 (2004), pp. 141-150 (cit. on p. 82).

J.R. Hackman, R.J. Hackman. Leading teams: Setting the stage for
great performances. Harvard Business Press, 2002 (cit. on pp. 45, 59,
61, 65, 152).

J. A. Highsmith, J. Highsmith. Agile software development ecosystems.
Boston: Addison-Wesley, 2002 (cit. on pp. 39, 66).

J. R. Highsmith. Agile project management: creating innovative products.
Boston: Pearson Education, 2009 (cit. on pp. 65, 69).

J. Highsmith. History: The Agile Manifesto. 2001 (accessed June 10,
2020). URL: https://agilemanifesto.org/history.html (cit.
on p. 39).

N. Holtzhausen, J.J. de Klerk. “Servant leadership and the Scrum
team’s effectiveness.” In: Leadership & Organization Development Jour-
nal 39.7 (2018), pp. 873-882 (cit. on pp. 50, 52, 54).

R. Hoda, L.K. Murugesan. “Multi-level agile project management
challenges: A self-organizing team perspective.” In: Journal of Systems
and Software 117 (2016), pp. 245-257 (cit. on pp. 21, 45, 53, 55, 71,
72,76,77,79, 150, 165).

R. Hoda, J. Noble. “Becoming agile: a grounded theory of agile transi-
tions in practice.” In: Proceedings of the 39th International Conference
on Software Engineering. IEEE Press. 2017, pp. 141-151 (cit. on pp. 21,
23, 38, 45, 46, 53, 66, 69, 77, 114, 150-152).

R. Hoda, J. Noble, S. Marshall. “Developing a grounded theory to
explain the practices of self-organizing Agile teams.” In: Empirical
Software Engineering 17.6 (2012), pp. 609-639 (cit. on pp. 44, 50,
64, 65, 68, 69, 71, 83, 86).

R. Hoda, J. Noble, S. Marshall. “Self-organizing roles on agile software
development teams.” In: IEEE Transactions on Software Engineering
39.3 (2012), pp. 422-444 (cit. on pp. 22, 62, 65, 68, 90, 117, 118,
148).

Bibliography

https://agilemanifesto.org/history.html

[Hod11]

[Hod13]

[HPO6]

[HS14]

[HWO5]

[ICLGO2]

[Kak17]

[KGM+96]

[KMC16]

[KS15]

[KW88]

Bibliography

R. Hoda. “Self-organizing agile teams: A grounded theory.” PhD thesis.
Victoria University of Wellington, 2011 (cit. on p. 96).

R. Hoda. “Power to the People.” In: IEEE software 30.2 (2013), pp. 92—
92 (cit. on pp. 22, 23, 66, 120, 149, 152, 153).

M. Hoegl, P. Parboteeah. “Autonomy and teamwork in innovative
projects.” In: Human Resource Management 45.1 (2006), pp. 67-79
(cit. on pp. 44, 45).

M. Hammarberg, J. Sunden. Kanban in action. Shelter Island, New
York: Manning Publications Co., 2014 (cit. on p. 39).

J.R. Hackman, R. Wageman. “A theory of team coaching.” In: Academy
of management review 30.2 (2005), pp. 269-287 (cit. on pp. 61, 77,
157).

Z. Irani, J. Choudrie, P.E. Love, A. Gunasekaran. “Sustaining TQM
through self-directed work teams.” In: International Journal of Quality
& Reliability Management 19.5 (2002), pp. 596-609 (cit. on p. 65).

A.K. Kakar. “Investigating the prevalence and performance correlates
of vertical versus shared leadership in emergent software development
teams.” In: Information Systems Management 34.2 (2017), pp. 172-
184 (cit. on pp. 50, 73).

S. W. Kozlowski, S. Gully, P. McHugh, E. Salas, J. Cannon-Bowers. “A
dynamic theory of leadership and team effectiveness: Developmental
and task contingent leader roles.” In: Research in personnel and human
resources management 14 (1996), pp. 253-306 (cit. on pp. 61, 69).

S.W. Kozlowski, S. Mak, G.T. Chao. “Team-centric leadership: An
integrative review.” In: Annual Review of Organizational Psychology
and Organizational Behavior 3 (2016), pp. 21-54 (cit. on p. 49).

J.R. Katzenbach, D. K. Smith. The wisdom of teams: Creating the high-
performance organization. Boston: Harvard Business Review Press,
2015 (cit. on p. 63).

B. Keys, J. Wolfe. “Management education and development: Current
issues and emerging trends.” In: Journal of Management 14.2 (1988),
pp. 205-229 (cit. on p. 48).

177

[LBT95]

[LLDL15]

[LSA11]

[LWRJO5]

[LWWO01]

[Mad07]

[MAD12]

[May10]

[MCDE15]

178

D. H. Lindsley, D. J. Brass, J. B. Thomas. “Efficacy-performing spirals:
A multilevel perspective.” In: Academy of management review 20.3
(1995), pp. 645-678 (cit. on p. 77).

M.-L. Liu, N.-T. Liu, C. G. Ding, C.-P. Lin. “Exploring team performance
in high-tech industries: Future trends of building up teamwork.” In:
Technological Forecasting and Social Change 91 (2015), pp. 295-310
(cit. on pp. 50, 73).

M. Laanti, O. Salo, P. Abrahamsson. “Agile methods rapidly replacing
traditional methods at Nokia: A survey of opinions on agile transforma-
tion.” In: Information and Software Technology 53.3 (2011), pp. 276—
290 (cit. on pp. 38, 39).

D.J. Leach, T.D. Wall, S. G. Rogelberg, P. R. Jackson. “Team autonomy,
performance, and member job strain: Uncovering the teamwork KSA
link.” In: Applied Psychology 54.1 (2005), pp. 1-24 (cit. on pp. 44,
45).

L. L. Levesque, J. M. Wilson, D. R. Wholey. “Cognitive divergence and
shared mental models in software development project teams.” In:
Journal of Organizational Behavior 22.2 (2001), pp. 135-144 (cit. on
pp. 64, 69, 75, 79, 105).

S. Madsen. “Conceptualising the causes and consequences of uncer-
tainty in IS development organisations and projects.” In: European
Conference on Information Systems. 2007 (cit. on p. 38).

N.B. Moe, A. Aurum, T. Dyba. “Challenges of shared decision-making:
A multiple case study of agile software development.” In: Information
and Software Technology 54.8 (2012), pp. 853-865 (cit. on pp. 21,
23, 38, 44, 53, 55, 66, 68, 72, 76, 77, 79, 150).

P. Mayring. “Qualitative inhaltsanalyse.” In: Handbuch qualitative
Forschung in der Psychologie. Springer, 2010, pp. 601-613 (cit. on
p- 25).

N. B. Moe, D. S. Cruzes, T. Dyb4, E. Engebretsen. “Coaching a global ag-
ile virtual team.” In: 10th International Conference on Global Software
Engineering. IEEE. 2015, pp. 33-37 (cit. on pp. 44, 68).

Bibliography

[MDDO09] N. B. Moe, T. Dingsgyr, T. Dyba. “Overcoming barriers to self-management
in software teams.” In: IEEE Software 26.6 (2009), pp. 20-26 (cit. on
pp- 21, 59, 76, 79, 150, 152).

[MDD10] N. B. Moe, T. Dingsgyr, T. Dyba. “A teamwork model for understanding
an agile team: A case study of a Scrum project.” In: Information and
Software Technology 52.5 (2010), pp. 480-491 (cit. on pp. 22, 23, 42,
44, 51, 53-55, 58, 59, 65, 71-76, 79, 87, 96, 105, 106, 118, 120, 124,
125, 143, 152).

[MDKO09] N.B. Moe, T. Dingsyr, O. Kvangardsnes. “Understanding shared leader-
ship in agile development: A case study.” In: 42nd Hawaii International
Conference on System Sciences. IEEE. 2009, pp. 1-10 (cit. on pp. 21,
48, 51, 53, 54, 66-68, 70, 72).

[MDK10] F.P. Morgeson, D.S. DeRue, E.P. Karam. “Leadership in teams: A
functional approach to understanding leadership structures and pro-
cesses.” In: Journal of management 36.1 (2010), pp. 5-39 (cit. on
p- 48).

[MH11] M. Minkov, G. Hofstede. “The evolution of Hofstede’s doctrine.” In:
Cross cultural management: An international journal 18.1 (2011),
pp. 10-20 (cit. on p. 165).

[MMRGO08] J. Mathieu, M. T. Maynard, T. Rapp, L. Gilson. “Team effectiveness
1997-2007: A review of recent advancements and a glimpse into the
future.” In: Journal of management 34.3 (2008), pp. 410-476 (cit. on
p- 52).

[MMZ01] M. A. Marks, J. E. Mathieu, S.J. Zaccaro. “A temporally based frame-
work and taxonomy of team processes.” In: Academy of management
review 26.3 (2001), pp. 356-376 (cit. on pp. 63, 119, 139).

[MP18] N. C. Magpili, P. Pazos. “Self-managing team performance: A system-
atic review of multilevel input factors.” In: Small Group Research 49.1
(2018), pp. 3-33 (cit. on pp. 44, 45, 55, 65, 69).

[MS87] C.C. Manz, H.P. Sims Jr. “Leading workers to lead themselves: The
external leadership of self-managing work teams.” In: Administrative
science quarterly (1987), pp. 106-129 (cit. on pp. 22, 23, 53, 58-61,
68-70, 72, 165).

Bibliography 179

[Myel9]

[NLB99]

[NMMO5]

[NRBB17]

[NW99]

[OB16]

[PF02]

[PGN14]

[PHP15]

[Pop07]

[Pril0]

180

M. D. Myers. Qualitative research in business and management. 3rd ed.
Los Angeles: Sage Publications Limited, 2019 (cit. on pp. 25, 82).

C.E. Nicholls, H. W. Lane, M. B. Brechu. “Taking self-managed teams
to Mexico.” In: Academy of Management Perspectives 13.3 (1999),
pp- 15-25 (cit. on p. 65).

S. Nerur, R. K. Mahapatra, G. Mangalaraj. “Challenges of migrating
to agile methodologies.” In: Communications of the ACM 48.5 (2005),
pp- 72-78 (cit. on pp. 21, 23, 36-38, 43, 48, 55, 76, 77, 79, 138).

J. Noll, M. A. Razzak, J. M. Bass, S. Beecham. “A study of the Scrum
Master’s role.” In: International Conference on Product-Focused Software
Process Improvement. Springer. 2017, pp. 307-323 (cit. on pp. 54, 78,
119).

G. A. Neuman, J. Wright. “Team effectiveness: beyond skills and cog-
nitive ability.” In: Journal of Applied psychology 84.3 (1999), p. 376
(cit. on p. 63).

H. H. Olsson, J. Bosch. “No More Bosses?” In: International Conference
on Product-Focused Software Process Improvement. Springer. 2016,
pp. 86-101 (cit. on p. 45).

S.R. Palmer, M. Felsing. A practical guide to feature-driven development.
Upper Saddle River: Prentice Hall, 2002 (cit. on p. 39).

R. M. Parizi, T. J. Gandomani, M. Z. Nafchi. “Hidden facilitators of agile
transition: Agile coaches and agile champions.” In: 8th. Malaysian
Software Engineering Conference (MySEC). IEEE. 2014, pp. 246-250
(cit. on pp. 68, 69, 72, 89).

D. W. Parker, M. Holesgrove, R. Pathak. “Improving productivity with
self-organised teams and agile leadership.” In: International Journal of
Productivity and Performance Management 64.1 (2015), pp. 112-128
(cit. on p. 150).

M. Poppendieck. “Lean software development.” In: Companion to the
proceedings of the 29th International Conference on Software Engineer-
ing. IEEE Computer Society. 2007, pp. 165-166 (cit. on p. 39).

M. Prifling. “Exploring Leadership Styles in Software Development
Projects.” In: PACIS. 2010, p. 72 (cit. on pp. 50, 151).

Bibliography

[QFTM90]

[Qui88]

[Roy87]

[Rup10]

[Rus09]

[SB02]

[Sch04]

[Sch16]

[Sch97]

[SGHW20a]

[SGHW20b]

Bibliography

R.E. Quinn, S.R. Faerman, M. P. Thompson, M. R. McGrath. Becoming
a master manager: A competency framework. New York: Wiley, 1990
(cit. on pp. 62, 90, 117, 148).

R. E. Quinn. Beyond rational management: Mastering the paradoxes and
competing demands of high performance. San Francisco: Jossey-Bass,
1988 (cit. on pp. 62, 90, 117).

W. W. Royce. “Managing the development of large software systems:
concepts and techniques.” In: Proceedings of the 9th international
conference on Software Engineering. 1987, pp. 328-338 (cit. on pp. 34—
37).

N. B. Ruparelia. “Software development lifecycle models.” In: ACM
SIGSOFT Software Engineering Notes 35.3 (2010), pp. 8-13 (cit. on
pp- 33, 35, 163).

J. Rust. Modern psychometrics : the science of psychological assessment.
New York: Routledge, 2009 (cit. on p. 128).

K. Schwaber, M. Beedle. Agile software development with Scrum. Vol. 1.
Upper Saddle River: Prentice Hall, 2002 (cit. on pp. 22, 39).

K. Schwaber. Agile project management with Scrum. Sebastopol: Mi-
crosoft press, 2004 (cit. on p. 43).

C. Schmidt. Agile software development teams. Springer, 2016 (cit. on
p- 43).

K. Schwaber. “Scrum development process.” In: Business object design
and implementation. Springer, 1997, pp. 117-134 (cit. on pp. 22, 38,
40).

S. V. Spiegler, D. Graziotin, C. Heinecke, S. Wagner. “A Quantitative
Exploration of the 9-Factor Theory: Distribution of Leadership Roles
Between Scrum Master and Agile Team.” In: International Conference
on Agile Software Development. Springer. 2020, pp. 162-177 (cit. on
p. 123).

S.V. Spiegler, D. Graziotin, C. Heinecke, S. Wagner. A Quantitative
Exploration of the 9-Factor Theory: Distribution of Leadership Roles
between the Scrum Master and the Agile Team. http://doi.org/10.
5281/zenodo . 3634046. 2020 (cit. on p. 130).

181

http://doi.org/10.5281/zenodo.3634046
http://doi.org/10.5281/zenodo.3634046

[SHW18]

[SHW19a]

[SHW19b]

[SJ17]

[SLKCO1]

[SMD11]

[SNMO1]

[Som04]
[SS14]

[SS20]

182

S.V. Spiegler, C. Heinecke, S. Wagner. Interview Guidelines for "Lead-
ership Gap in Agile Teams: How Teams and Scrum Masters Mature".
http://doi.org/10.5281/zenodo.2243113. 2018 (cit. on p. 87).

S.V. Spiegler, C. Heinecke, S. Wagner. “Leadership Gap in Agile Teams:
How Teams and Scrum Masters Mature.” In: International Conference
on Agile Software Development. Springer. 2019, pp. 37-52 (cit. on
p. 138).

S. V. Spiegler, C. Heinecke, S. Wagner. “The influence of culture and
structure on autonomous teams in established companies.” In: Inter-
national Conference on Agile Software Development. Springer. 2019,
pp. 46-54 (cit. on pp. 77, 119, 163).

P. Srivastava, S. Jain. “A leadership framework for distributed self-
organized scrum teams.” In: Team Performance Management: An Inter-
national Journal 23.5/6 (2017), pp. 293-314 (cit. on pp. 22, 23, 42,
50, 51, 53-55, 58, 67, 73, 74, 87, 124, 125, 138, 143, 144, 147).

R. Schmidt, K. Lyytinen, M. Keil, P. Cule. “Identifying software project
risks: An international Delphi study.” In: Journal of management in-
formation systems 17.4 (2001), pp. 5-36 (cit. on p. 37).

V.G. Stray, N.B. Moe, T. Dingsgyr. “Challenges to teamwork: a multi-
ple case study of two agile teams.” In: International conference on agile
software development. Springer. 2011, pp. 146-161 (cit. on pp. 23, 54,
56, 68, 71, 167).

S. Sircar, S. P. Nerur, R. Mahapatra. “Revolution or evolution? A com-
parison of object-oriented and structured systems development meth-
ods.” In: MIS Quarterly (2001), pp. 457-471 (cit. on p. 38).

. Sommerville. Software Engineering. Harlow, UK. 2004 (cit. on p. 34).
J. Sutherland, J. Sutherland. Scrum: the art of doing twice the work in
half the time. Currency, 2014 (cit. on p. 159).

J. Sutherland, K. Schwaber. The Scrum guide: The definitive guide to
Scrum: The rules of the game. http://scrumguides.org/. 2020
(cit. on pp. 22, 40, 41, 167).

Bibliography

http://doi.org/10.5281/zenodo.2243113
http://scrumguides.org/

[SSD16]

[SSne]

[Sta14]

[Sto74]

[Tay16]

[TB51]

[THO4]

[TN86]

[Tuc65]

[UMMO7]

Bibliography

V. Stray, D. L. Sjgberg, T. Dyba. “The daily stand-up meeting: A grounded
theory study.” In: Journal of Systems and Software 114 (2016), pp. 101-
124 (cit. on pp. 78, 119, 147).

J.B. Soderqvist, S. Spiegler. “How to enable leadership among self-
organizing developers.” R&D Management Conference. Paris, 2019,
June (cit. on pp. 66, 163).

S. Stavru. “A critical examination of recent industrial surveys on agile
method usage.” In: Journal of Systems and Software 94 (2014), pp. 87—
97 (cit. on pp. 21, 38).

R. M. Stogdill. Handbook of leadership: A survey of theory and research.
Free Press, 1974 (cit. on pp. 47, 49).

K. J. Taylor. “Adopting Agile software development: the project man-
ager experience.” In: Information Technology & People (2016) (cit. on
pp- 44, 150).

E.L. Trist, K. W. Bamforth. “Some social and psychological conse-
quences of the longwall method of coal-getting: An examination of
the psychological situation and defences of a work group in relation
to the social structure and technological content of the work system.”
In: Human relations 4.1 (1951), pp. 3-38 (cit. on pp. 22, 58).

J.E. Tomayko, O. Hazzan. Human aspects of software engineering.
Charles River Media, 2004 (cit. on pp. 36, 37).

H. Takeuchi, I. Nonaka. “The new new product development game.”
In: Harvard business review 64.1 (1986), pp. 137-146 (cit. on pp. 22,
38, 44, 50, 64-66, 68-72, 161).

B. W. Tuckman. “Developmental sequence in small groups.” In: Psy-
chological Bulletin 63.6 (1965), pp. 384-399 (cit. on pp. 63, 64, 67,
118, 138).

M. Uhl-Bien, R. Marion, B. McKelvey. “Complexity leadership theory:
Shifting leadership from the industrial age to the knowledge era.”
In: The leadership quarterly 18.4 (2007), pp. 298-318 (cit. on pp. 49,
51).

183

[VWO09]

[Wag01]

[Wag971]

[WC03]

[WDTO03]

[Web09]

[WH96]

[WM18]

[Yan96]

[Yuk13]

[ZAMO9]

184

R. Vidgen, X. Wang. “Coevolving systems and the organization of agile
software development.” In: Information Systems Research 20.3 (2009),
pp. 355-376 (cit. on pp. 43, 44, 50, 65).

R. Wageman. “How leaders foster self-managing team effectiveness:
Design choices versus hands-on coaching.” In: Organization Science
12.5 (2001), pp. 559-577 (cit. on pp. 65, 68, 72).

R. Wageman. “Critical success factors for creating superb self-managing
teams.” In: Organizational dynamics 26.1 (1997), pp. 49-61 (cit. on
pp. 65, 69, 77, 152, 153).

L. Williams, A. Cockburn. “Agile software development: it’s about
feedback and change.” In: IEEE computer 36.6 (2003), pp. 39-43
(cit. on pp. 38, 167).

S. A. Wheelan, B. Davidson, F. Tilin. “Group development across time:
Reality or illusion?” In: Small group research 34.2 (2003), pp. 223-245
(cit. on pp. 129, 142).

M. Weber. The theory of social and economic organization. New York:
The Free Press, 2009 (cit. on pp. 76, 79).

S.A. Wheelan, J. M. Hochberger. “Validation studies of the group
development questionnaire.” In: Small group research 27.1 (1996),
pp. 143-170 (cit. on p. 129).

K. Werder, A. Maedche. “Explaining the emergence of team agility: A
complex adaptive systems perspective.” In: Information Technology &
People 31.3 (2018), pp. 819-844 (cit. on p. 23).

O. Yang. “Shared leadership in self-managed teams: A competing
values approach.” In: Total Quality Management 7.5 (1996), pp. 521—
534 (cit. on pp. 22, 55, 62, 118, 148).

G. Yukl. Leadership in Organizations. 8th ed. Boston Munich: Pearson,
2013 (cit. on pp. 47-49, 70).

C.R. Zafft, S. G. Adams, G. S. Matkin. “Measuring leadership in self-
managed teams using the competing values framework.” In: Journal
of Engineering Education 98.3 (2009), pp. 273-282 (cit. on pp. 22, 55,
62, 90, 117, 132, 148).

Bibliography

LLIST OF FIGURES

4.1 The three steps of the role transfer process. 74
4.2 Integrative model of the role transfer process. 76

185

1.1

2.1

4.1
4.2

6.1
6.2
6.3
6.4
6.5

LIST OF TABLES

Research Strategyt 27
Team Types with a High Level of Freedom. 45
Leadership Roles Empowering Self-Managed Teams. 61
Organisational Factors and Internal Team Environment 79
Maturity . . . v oo e e e e e e e e e 129
Descriptive Statistics for the 9 Factors (Scrum Master) 133
Descriptive Statistics for the 9 Factors (Development Team) . . 134
Distribution of the 9 Factors 135
3 proposed Clusters of the 9-Factor Theory 137

187

	1 Introduction
	1.1 Motivation
	1.2 Research Objective
	1.3 Research Strategy
	1.4 Contribution
	1.5 List of Publications
	1.6 Outline

	2 Background
	2.1 History of Software Development
	2.1.1 Traditional Software Development
	2.1.2 The Waterfall Model
	2.1.3 Traditional Software Development Teams

	2.2 The Need for Change
	2.3 Agile Software Development
	2.3.1 Agile Software Development
	2.3.2 Scrum
	2.3.3 Agile Teams

	3 Literature Review
	3.1 Leadership
	3.2 Agile Leadership
	3.2.1 Overview
	3.2.2 Leadership in Agile Teams
	3.2.3 Discussion of the Literature

	4 Theory Selection and Theory Building
	4.1 Theory Selection
	4.1.1 Team Leadership
	4.1.2 Role Theory
	4.1.3 Maturity
	4.1.4 Agile Team Features
	4.1.5 Contextual Factors

	4.2 Theory Building
	4.2.1 Perspective on Leadership
	4.2.2 9 Leadership Roles
	4.2.3 The Role Transfer Process
	4.2.4 Factors influencing the Role Transfer
	4.2.5 The Agile Matching Theory
	4.2.6 Summary of the Conceptual Model

	5 Part I: A Grounded Theory Study
	5.1 Study Design
	5.1.1 Research Questions
	5.1.2 Grounded Theory
	5.1.3 Research Context
	5.1.4 Data Collection and Sample
	5.1.5 Data Collection Procedure
	5.1.6 Data Analysis

	5.2 Results
	5.2.1 9 Scrum Master Roles
	5.2.2 The Role Transfer Process
	5.2.3 Factors Influencing the Role Transfer Process

	5.3 Discussion
	5.4 Limitations and Future Work

	6 Part II: A Quantitative Exploration
	6.1 Concept
	6.1.1 Motivation
	6.1.2 Changing Leadership in Agile Teams

	6.2 Study Design
	6.2.1 Research Questions
	6.2.2 Company Context and Participants
	6.2.3 Measurement
	6.2.4 Data Collection
	6.2.5 Pilot study
	6.2.6 Analysis

	6.3 Results
	6.3.1 Scrum Master
	6.3.2 Developers
	6.3.3 Distribution of the 9 Factors between Scrum Master and Development Team

	6.4 Discussion
	6.5 Practical Implications
	6.6 Limitations and Future Work

	7 Discussion and Conclusion
	7.1 Summary of the Research Findings
	7.2 Discussion
	7.2.1 The Value of a dedicated Scrum Master
	7.2.2 Leadership in Agile Teams in Established Companies
	7.2.3 New Role Description: Agile Master

	7.3 Practical Implications
	7.3.1 Implications for the Developers
	7.3.2 Implications for the Scrum Master
	7.3.3 Implications for the Product Owner
	7.3.4 Implications for the Management
	7.3.5 Implications for the Organisation

	7.4 Limitations
	7.5 Future Research Directions

	8 Conclusion
	Bibliography
	List of Figures
	List of Tables

