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ABSTRACT

Scintigraphy is a common nuclear medicine method to image molecular target’s bio-distribution and pharma-
cokinetics through the use of radiotracers and gamma cameras. The patient’s images are obtained by using a
pair of opposing large flat gamma ray detectors equipped with parallel-hole lead or tungsten collimators that
preferentially detect gamma-rays that are emitted perpendicular to the plane of the detector. The resulting
images form an anterior/posterior (A/P) planar image pairs. The obtained images are contaminated by noise
and contain artifacts caused by gamma-ray attenuation, collimator penetration, scatter and other detrimental
factors. Post-filtering of the images can reduce the noise, but at the cost of spatial resolution loss, and cannot
remove any of the aforementioned artifacts. In this study, we introduced a new image reconstruction-based
method to recover a single corrected planar scintigraphic patient image corrected for attenuation, system spatial
resolution and collimator penetration, using the A/P image pair (two conjugated views) as data. To accomplish
this task, we used a system model based on the gamma camera detectors physical properties and applied regu-
larization method based on sparse image representation to control noise while preserving spatial resolution. In
this proof-of-concept study, we evaluated the proposed approach using simple numerical phantoms. The images
were evaluated for simulated lesions images contrast and background variability. Our initial results indicate that
the proposed method outperforms the conventional methods. We conclude, that the proposed approach is a
promising methodology for improved planar scintigraphic image quality and warrants further exploration.

Keywords: planar scintigraphic imaging, image reconstruction, sparse regularization

1. INTRODUCTION

In planar scintigraphy, radiologists and physicians view images of the accumulated count distribution produced
by collimated single gamma photon emissions within a patient, typical anterior/posterior (A/P) pair. Unlike
reconstructed 3D tomographic images, these images are not corrected for degradation due to physical processes
such as attenuation, scatter, or collimator penetration. Thus, these images are not quantitative and many of the
details are obscured by overlying structures.

This kind of imaging is especially problematic for high energy, low intensity gamma emission lines. This
is especially problematic in the field of targeted alpha therapy (TAT) imaging. Another problem stems from
half-lives of alpha emitting isotopes that results in high effective doses to patients and limits the acceptable
administered activity of TAT. Nonetheless, it is vitally important to image the bio-distribution of TAT tracers to
determine their therapeutic benefit and toxicity. In this situation the old adage of nuclear medicine physicians,
“.. we want to treat what we see and see what we treat ...,” takes on a new sense urgency.
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A number of approaches have been used to improve planar scintigraphy images including denoising by
post-filtering via a wavelet transformation,1–8 a combination of Fourier and wavelet transformations,9,10 con-
tourlets,6,11–13 bandelets,6 complex ridgelets,6,14 curvelets,6,15,16 by more sophisticated blind-deconvolution
schemes,17 by statistically adaptive methods,18–22 or by Monte Carlo methods,23 but because these methods are
not based on an underlying physical model they are incapable of removing image artifacts due to attenuation,
scatter, or collimator penetration.

We observe that the physical model for planar scintigraphy is identical to two-views (A/P) single photon
emission computed tomography (SPECT) system. Hence, if A/P planar images were fully corrected for noise
and various artifacts and other degradation’s, they would be identical. Unfortunately, the two-view SPECT
physical model is severely ill-posed and cannot be used without additional considerations. We add that the
geometric mean can partially correct attenuation, however, it does not remove other artifacts.

The goal of this research is to use the A/P views to produce a single combined, corrected planar scintigraphic
image (CPSI). To do this, we propose a regularized image reconstruction approach that is based on a constrained
two-view (A/P) SPECT physical model. In this approach, the two-view SPECT system model is used as a
constraint to estimate the A/P projection of activity bio-distribution. This requires explicitly solving a highly
ill-posed two-view SPECT problem. Because A/P views are co-linear there is very little depth information in
the data, making 3D recovery problematic. However, because the information in the projection planes of the
A/P images is preserved, the summing can still be performed and a CPSI can be recovered.

We hypothesize that this CPSI would be valuable tool for clinical application. We believe this will be especially
true for challenging radionuclides such as those used in TAT. In the sections that follow, we will describe a CPSI
reconstruction method based on a simplified two-view SPECT physical model, an effective regularization model,
an efficient image reconstruction algorithm, and assess its performance in a simulated TAT imaging study.

2. METHODS

2.1 Corrected Planar Scintigraphic Image Integral Equations

The physical model for planar image formation is described by a two-view SPECT system model. To describe
this model we begin by defining a region J := [a, b] and its kernel as K (x;y) and data as g (x), with x,y ∈ J3.
This results in the SPECT image reconstruction model as∫

J3

K (x;y) f (y) dy = g (x) ,x ∈ J3 , (1)

where x := (x1, x2, x3) and y := (y1, y2, y3).

In the case of the initial CPSI model, we define the projected activity distribution in y3,

f(y1, y2) :=

∫
J

f(y1, y2, y3)dy3, subject to: eq. (1) , (2)

as the image we desire to recover. Introducing total variation regularization to control the noise this results in
the following minimization problem

f(y1, y2) =

∫
J

f(y1, y2, y3)dy3, subject to:

min
f

{∥∥∥∥∫
J3

K(·;y)f(y)dy− g(·)
∥∥∥∥
KL

+ λ ‖f‖TV (J3) + ι+(f)
}
,

(3)

where ‖·‖KL denotes the KL-divergence norm, λ is the regularization parameter, and ι+ is the indicator function
imposing a non-negativity constraint on f .
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2.2 Idealized Kernel

Under the assumption of an ideal collimator and detectors, and a known attenuation map µ(y) with y ∈ J3,
which can be provided by an accompanying CT, the kernel for the problem shown in (1) is given by

K(x;y) = δ(x1 − y1, x2 − y2)e
−

∫ x3
y3

µ(y1,y2,t)dt + s(x), x,y ∈ J3 , (4)

where s(x) represents an additive term such as scatter that is independently estimated. This leads to the
constrained integral formulation in equation (3) of the CSPI reconstruction model given by

f(y1, y2) =

∫
J

f(y1, y2, y3)dy3, subject to:

min
f

{∥∥∥∥∫
J

e
−

∫ x3
y3

µ(y1,y2,t)dtf(y1, y2, y3)dy3 + s(y1, y2)− g(y1, y2)

∥∥∥∥
KL

+λ ‖f‖TV (J3) + ι+(f)
}
.

(5)

Discretizing this model where region J3 gives

f =
∑
y3

f(y), subject to: min
f
{‖Kf + s− g‖KL + λ ‖B3f‖1 + ι+(f)} , (6)

Ignoring terms solely dependent on g the KL-divergence term in eq. (6) is given by

‖Kf + s− g‖KL = Kf + s− g log (Kf + s) . (7)

2.3 Fixed Point Algorithm

To solve the discretized idealized model (6) we use a preconditioned proximity gradient algorithm similar to that
described in Lin et al.24 This results in following fixed-point algorithm with higher order total variation (HOTV)
regularization,24–26 

fk+1 = proxι+

{
fk − S

[
K>

(
1− g

Kfk+s

)
+B>3 b

k + C>3 c
k
]}

bk+1 = ρ1(I − proxλ1
ρ1
ϕ1

)( b
k

ρ +B3(2fk+1 − fk))

ck+1 = ρ2(I − proxλ2
ρ2
ϕ2

)( c
k

ρ + C3(2fk+1 − fk)) ,

(8)

where bk and ck are the respective subgradient terms, B3 and C3 the respective 3D first and second order gradient
block matrices, ϕ1,2 are the first and second order isotropic total variation norms, λ1,2 are the regularization
weights, S is the preconditioner, and ρ1,2 are the algorithmic parameters. The Moreau envelope function for a
convex function ψ : Rn → R is defined by

proxψ(x) = arg min
u

{
1

2
‖u− x‖22 + ψ(u) : u ∈ Rn

}
. (9)

For the definitions of B3 and C3, we let N =
√
d, IN denote the N ×N identity matrix, D denote the N ×N

backward difference matrix such that Dj,j = 1 and Dj,j−1 = −1 for j = 2, 3, . . . , N , and all other entries of D
are zero. Through the matrix Kronecker product ⊗, B3 ∈ R3N and C3 ∈ R9N are defined, respectively, by

B3 :=

 IN ⊗ IN ⊗D
IN ⊗D ⊗ IN
D ⊗ IN ⊗ IN

 , C3 :=



IN ⊗ IN ⊗ (−D>)D
IN ⊗ (−D>)⊗D
(−D>)⊗ IN ⊗D
IN ⊗D ⊗ (−D>)
IN ⊗ (−D>)D ⊗ IN

(−D>)⊗D ⊗ IN
D ⊗ IN ⊗ (−D>)
D ⊗ (−D>)⊗ IN

(−D>)D ⊗ IN ⊗ In


. (10)
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Figure 1: Maximum-Intensity Projection of the contrast detail phantom. Phantom size is 64 cm x 64 cm x 16
cm, with a 1-cm gap of air on all sides in the FOV.

The first and second order isotropic total variation norms are defined by

ϕ1(x) =

d∑
i=1

√√√√ 2∑
j=0

x2i+jd , and ϕ2(y) =

d∑
i=1

√√√√ 8∑
j=0

y2i+jd . (11)

The preconditioner in eq. (8) S is defined by

S =
fk

K>1
. (12)

The algorithmic parameter is taken from26 and is defined by

ρ1,2 =
1

2‖B3, C3‖22‖S‖∞
, (13)

where ‖B3‖22 = 12 and ‖C3‖22 = 144. The regularization weights λ1,2 were determined by minimum mean squared
error.

2.4 Simulation Description

To test our method, we reconstructed a numerical phantom with a 3x3 contrast detail object in a uniform
background. The phantom, shown in Fig. 1, is a 64x64x16 cm3 box with with grid of 1 cm thick discs with
radii (2, 3, & 4) cm and intensity (1.75, 2.125, & 2.5) times the A/P background counts. The disks were
inserted at a depth of 2 cm from posterior detector. An Actinium-225 source was used that included its short
lived daughter products including Francium-221, Astatine-217, and Bismuth-213. Eight photon emissions were
taken into account (all emissions with 1% or larger branching ratios) and are shown in Table 1. A 50% scatter
background was used. We performed this reconstruction using 12500, 25000, and 50000 total counts using a
HOTV penalty.

3. RESULTS

Figure 3 shows the results obtained with HOTV. On can see that the reconstructed corrected scintigraphic planar
images are much smoother while still preserving lesion conspicuity. This is seen in both the single realization
and is in the mean images of 200 realizations (not shown).

The recovered contrast versus background variability trade-off plots obtained from 200 realizations are shown
in Fig. 4 at three count levels (12,500, 25,000, and 50,000 counts) with a 50% scatter fraction. In this figure,
the reconstruction performance across a wide range of regularization weights and post-filter strengths are shown
for the HOTV and geometric mean images, respectively.
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Table 1: Photo-peak energies from the 225Ac decay chain (225Ac decay chain (225Ac
t1/2=9.92d
−−−−−−−→ 221Fr

t1/2=4.8min
−−−−−−−−→

217At
t1/2=33µs
−−−−−−→ 213Bi

t1/2=45.6min
−−−−−−−−−→) considered for preliminary image simulation. The attenuation coefficient in

lead at 99.91 keV is large due to the k-edge of lead around that energy. Horizontal lines within table contents
represent the energy windows considered for imaging: 15 percent width window centered at 87 keV, 10 percent
windows centered at 218 keV and 440 keV.

Emitting

Nuclide

Photo-peak

Energy (keV)

Branching

Ratio

Fraction of Max.

Branching Ratio µH2O (cm−1) µNaI (cm−1) µPb (cm−1)
213Bi 76.863 0.012 0.046 0.186 12.238 30.364
213Bi 79.290 0.020 0.076 0.184 11.270 28.064
221Fr 81.517 0.015 0.056 0.182 10.406 26.032
225Ac 83.231 0.012 0.045 0.181 9.911 24.873
225Ac 86.105 0.020 0.074 0.179 9.058 22.867
225Ac 99.910 0.010 0.039 0.171 6.137 63.081
221Fr 218.190 0.116 0.444 0.133 1.024 9.245
213Bi 440.460 0.261 1.000 0.102 0.391 2.236

Figure 2: Energy resolution of NaI and spectrum of photopeaks from the 225Ac decay chain, 225Ac decay chain

(225Ac
t1/2=9.92d
−−−−−−−→ 221Fr

t1/2=4.8min
−−−−−−−−→ 217At

t1/2=33µs
−−−−−−→ 213Bi

t1/2=45.6min
−−−−−−−−−→) with proposed energy windows to be

used for imaging. Peaks, weighted with their respective branching ratios, are plotted according to the ratios
found in Table 1. The resolution of the NaI gamma camera is calibrated at 6.5% at 662 keV, with a 1/

√
E

energy dependence.27
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Figure 3: Reconstructed higher order total variation (HOTV) planar, post-filtered geometric mean, geometric
mean, and A/P imagesare shown from left to right (1 of 200 realizations) at three count levels (12,500, 25,000,
and 50,000 counts) with a 50% scatter fraction. The HOTV and post-filtered geometric mean images were
optimized with respect to minimum mean squared error.

4. DISCUSSION

In this initial study, we used a highly idealized SPECT system model to test our planar image reconstruction
method. The results here are promising, and we expect that more detailed system model that includes more
realistic spatial resolution and collimator penetration modeling will show image quality additional improvement,
as compared to uncorrected images. We also expect that a more advanced regularization model would lead to
improvements over our HOTV model. It is our conjecture that our method will outperform post-processing meth-
ods that do not include a physical model of the imaging system in their attempts to denoise/deblur scintigraphic
images.

5. CONCLUSIONS

We conclude our constrained integral approach produced better images, as compared to conventional geometric
mean images. We show that our method better recovers contrast while suppressing image noise than a geometric
mean image with post-filtering. However, we have not evaluated our method for detection tasks performance
and we have not used it with patient images. The proposed corrected planar scintigraphic image reconstruction
methods is an unexplored idea, with which the clinical utility has not yet been investigated. Here we present the
first steps of a very promising idea that needs further exploration.
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Figure 4: Recovered contrast / background variability trade-off plots from 200 realizations are shown at three
count levels (12,500, 25,000, and 50,000 counts) using a 50% scatter fraction. Each target (small, medium, and
large) are compared at three contrast levels.

Proc. of SPIE Vol. 11600  1160013-7
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 05 Jul 2021
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

-0 2 

~ 1.8 

> 
0 1.6 
u 
~ 1.4 

1.2 

Small Target (12 .Sk) 

1 ~-- -~-~-~-~-~-~-
0 0 .1 0.2 0.3 0.4 0.5 0.6 0.7 

Background Variabil ity 

Small Target (25k) 

.. t½i .. Corrected Low 
J-1 

2•
8 

- ~ ·Corrected Medium 
Vl 2 6 ...J;¥f" Corrected High 
~ • tYi • GeoMean Low 

C 2.4 ~~=~~=:~ ~ i::,ium 8 2.2 

-0 2 

~ 1.8 

> a 1.6 
u 
~ 1.4 

1.2 

2.8 
.µ 

~ 2.6 

C 2.4 

8 2.2 

-0 2 

~ 
QJ 1.8 

> 
0 1.6 
u 
~ 1.4 

1.2 

0. 1 0.2 0.3 0.4 0.5 0.6 0.7 

Background Variabil ity 

Small Target (50k) 

. tf-i •• Corrected Low 
_t-;fi ·corrected Mediun 
..J;ff" Corrected High 

t-Yl •• GeoMean Low 
J¥j ·GeoMean Medium 
~ GeoMean High 

i L "_,__ ~ - ~ - _,_'::====:::":::= 
0 0 .1 0.2 0.3 0 .4 0 .5 0.6 0 .7 

Background Variabil ity 

2.8 
.µ 

~ 2.6 

c 2.4 

8 2.2 

-0 2 

~ 1.8 

> 
0 1.6 
u 
~ 1.4 

1.2 

Medium Target (12 .Sk) 

, ~ -~-~-~-~-~-~-~-

2.8 
.µ 

~ 2.6 

c 2.4 

8 2.2 

-0 2 

~ 1.8 

> 
0 1.6 
u 
~ 1.4 

1.2 

2.8 
.µ 

~ 2.6 

C 2.4 

8 2.2 

-0 2 

~ 
QJ 1.8 

> 
0 1.6 
u 
~ 1.4 

1.2 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 

Background Variability 

Medium Target (25k) 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 

Background Variability 

Medium Target (50k) 

0.1 0.2 0 .3 0.4 0.5 0 .6 0 .7 

Background Variability 

2.8 
.µ 

~ 2.6 

c 2.4 

8 2.2 

-0 2 

~ 1.8 

> 
0 1.6 
u 
~ 1.4 

1.2 

Large Target (12.Sk) 

, ~ -~--~--~-~--~--~ 

2.8 
.µ 

~ 2.6 

c 2.4 

3 2.2 

-0 2 

~ 1.8 

> 
0 1.6 
u 
~ 1.4 

1.2 

2.8 
.µ 

~ 2.6 

c 2.4 

8 2.2 

-0 2 

~ 
(1J 1 .8 

> 
0 1.6 
u 
~ 1.4 

1.2 

0 0.1 0.2 0.3 0.4 0.5 0.6 

Background Variabi lity 

Large Target (25k) 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

Background Variabi lity 

Large Target ( 50k) 

0.1 0 .2 0 .3 0.4 0.5 0 .6 0.7 0.8 

Background Variabi lity 



REFERENCES

[1] Khlifa, N., Kamel, H., and Noureddine, E., “Image denoising using wavelets: A powerful tool to overcome
some limitations in nuclear imaging,” in [Medical Imaging ], Brunet, G., ed., Proc, ICTTA 2, 1114–1118
(2006).

[2] Arikidis, N., J., Kalatzis, Tsantis, S., Prassopoulos, V., and Cavouras, D., “Suppression of high frequency
noise from scintigraphic images using the discrete wavelet transform,” in [European Symposium on Biomed-
ical Engineering and Medical Physics ], 3, 36 (2002).

[3] Kirkokve, M. and Seret, A., “Comparative study of wavelet packet local thresholdings within the framework
of scintigraphic images denoising,” Experimental Medical Imaging (2005).

[4] Gribaa, N., Khlifa, N., and Hamrouni, K., “Scintigraphic images restoration using jointly fourier and wavelet
domains,” in [2008 3rd International Conference on Information and Communication Technologies: From
Theory to Applications ], 1–5 (2008).

[5] Ogawa, K., Sakata, M., and Li, Y., “Adaptive noise reduction of scintigrams with a wavelet transform,”
International Journal of Biomedical Imaging 2012, 7 pages (2012).

[6] Makhlouf, F., Besbes, H., N. Khlifa, C. B. A., and Solaiman, B., “Planar scintigraphic images denoising,”
Open Journal of Medical Imaging 3, 116–124 (2013).

[7] Nowak, R. D. and Baraniuk, R. G., “Wavelet-domain filtering for photon imaging systems,” IEEE Trans-
actions on Image Processing 8(5), 666–678 (1999).

[8] Khan, A. and Singh, M., “Wavelet transform based image denoising using different thresholding methods,”
in [4th ICCEE ], (2011).

[9] Guy, M. J., “Fourier block noise reduction: an adaptive filter for reducing poisson noise in scintigraphic
images,” Nuclear Medicine Communications 29(3), 291–297 (2008).

[10] King, M. A., Doherty, P. W., Schwinger, R. B., and Penney, B. C., “A wiener filter for nuclear medicine
images,” Medical Physics 10, 876–880 (1983).

[11] Zhang, X. and Jing, X., “Image denoising in contourlet domain based on a normal inverse gaussian prior,”
Digital Signal Processing 20, 1439–1446 (2010).

[12] Li, X. M., Yan, G. P., and Chen, L., “A new method of image denoise using contourlet transform,” Intelligent
Information Technology Application 3, 25–30 (2010).

[13] Chen, G. and Zhu, W., “Image denoising using neighboring contourlet coefficitents,” in [Proceeding of the
5th International Symposium on Neural Networks: Advances in Neural Networks ], 5264, 384–391 (2008).

[14] Chen, G. Y. and Kegl, B., “Image denoising with complex ridgelets,” 1439–1446 (2006).

[15] Binh, N. T. and Khare, A., “Multilevel threshold-based image denoising in curvelet domain,” Computer
Science and Technology 25, 632–640 (2010).

[16] Reddy, G. J., Prasad, T. J., and Prasad, M. N., “Fingerprint image denoising using curvelet transform,”
Engineering and Applied Sciences 3 (2008).

[17] Dupe, F. X., Fadili, J. M., and Starck, J. L., “A proximal iteration for deconvolving poisson noisy images
using sparse representations,” IEEE Transactions on Image Processing 18(2), 310–321 (2009).

[18] Khan, K. B., Shahid, M., H. Ullah, E. R., and Khan, M. M., “Adaptive trimmed mean autoregressive model
for reduction of poisson noise in scintigraphic images,” IIUM Engineering Journal 19(2), 68–79 (2018).

[19] Khan, K. B., Khaliq, A. A., Shahid, M., and Ullah, H., “Poisson noise reduction in scintigraphic images
using gradient adaptive trimmed mean filter,” in [2016 International Conference on Intelligent Systems
Engineering (ICISE) ], 301–305 (2016).

[20] Weselowski, C., Yahil, A., Puetter, R., Babyn, P., Gilday, D., and Khan, M., “Improved lesion detec-
tion from spatially adaptive, minimally complex, pixon® reconstruction of planar scintigraphic images,”
Computational Medical Imaging Graph. 29, in press (2005).

[21] Vija, A., Gosnell, T., A. Yahil, E. H., and Engdahl, J., “Statistically based spatially adaptive noise reductin
of planar nuclear studies,” in [SPIE Medical Imaging 2005: Image Processing ], Proc. SPIE 5747 (2005).

[22] Hannequin, P. and Mas, J., “Statistical and heuristic noise extraction (shine): a new method for processing
poisson noise in scintigraphic images,” Physics in Medicine and Biology 47(24), 4329–4344 (2002).

Proc. of SPIE Vol. 11600  1160013-8
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 05 Jul 2021
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



[23] Minarik, D., Enqvist, O., and Tragardh, E., “Denoising of scintillation camera images using a deep con-
volutional neural network: a monte carlo simulation approach,” The Journal of Nuclear Medicine 61(2),
298–303 (2020).

[24] Lin, Y., Schmidtlein, C. R., Li, Q., Li, S., and Xu, Y., “A krasnoselskii-mann algorithm with an improved
em preconditioner for pet image reconstruction,” IEEE transactions on medical imaging 38(9), 2114–2126
(2019).

[25] Schmidtlein, C. R., Lin, Y., Li, S., Krol, A., Beattie, B. J., Humm, J. L., and Xu, Y., “Relaxed ordered
subset preconditioned alternating projection algorithm for pet reconstruction with automated penalty weight
selection,” Medical physics 44(8), 4083–4097 (2017).

[26] Li, S., Zhang, J., Krol, A., Schmidtlein, C. R., Vogelsang, L., Shen, L., Lipson, E., Feiglin, D., and Xu,
Y., “Effective noise-suppressed and artifact-reduced reconstruction of spect data using a preconditioned
alternating projection algorithm,” Medical physics 42(8), 4872–4887 (2015).

[27] Knoll, G. F., [Radiation Detection and Measurement ], Wiley, 111 River St. Hoboken, New Jersey (2010
(fourth edition)).

Proc. of SPIE Vol. 11600  1160013-9
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 05 Jul 2021
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use


	A Deblurring/Denoising Corrected Scintigraphic Planar Image Reconstruction Model for Targeted Alpha Theory
	Original Publication Citation
	Authors

	tmp.1728333054.pdf.rXCa9

